Methods

Rats were kept in sedentary conditions or were trained. RNA was isolated from whole cell and mito fractions. Libraries were generated by the Deakin Genomics Facility and sequenced on the MiSeq system generating paired end 150 bp reads.

Fastqc and MultiQC were run to summarise the QC checks that were done.

Reads were then were mapped to the rat genome (Ensembl version 99) with Kallisto then imported to R for analysis with DESeq2. Pathway level analysis was then done using mitch with Reactome gene sets.

Read counts

Import the Kallisto transcript counts. We can also include some info out of the Ensembl GTF file including gene name and gene class.

# libraries
library("reshape2")
library("DESeq2")
library("mitch")
library("gplots")

# import the 3 column table
tmp<-read.table("3col.tsv.gz",header=F)

# convert the 3 col table into a standard count matrix 
x<-as.matrix(acast(tmp, V2~V1, value.var="V3"))
# tidy up the column headers
colnames(x)<-sapply(strsplit(colnames(x),"_"),"[[",1)
head(x)
##                             1        10       11        12        13       14
## ENSRNOT00000000008.4   0.0000   5.17195  10.0000   6.12831   5.26551   3.0000
## ENSRNOT00000000009.5  10.0209  47.86210  53.7012  35.32830  34.89250  51.1897
## ENSRNOT00000000010.5   1.0000   1.00000   0.0000   0.00000   0.00000   0.0000
## ENSRNOT00000000011.5   0.0000   0.00000   1.0000   1.00000   0.00000   1.0000
## ENSRNOT00000000013.5 299.6020 674.72100 346.8700 553.52400 741.68800 466.5910
## ENSRNOT00000000018.7   0.0000   0.00000   2.0000   2.00000   1.00000   0.0000
##                             15       16      17        18       19        2
## ENSRNOT00000000008.4   3.90088   0.0000   0.000   4.07072  16.4054   1.3407
## ENSRNOT00000000009.5  49.16160  27.3429  83.000  51.24440  63.8893  23.2207
## ENSRNOT00000000010.5   0.00000   0.0000   0.000   0.00000   0.0000   0.0000
## ENSRNOT00000000011.5   0.00000   1.0000   1.000   0.00000   1.0000   4.0000
## ENSRNOT00000000013.5 341.29800 372.3020 416.936 509.46900 513.9120 320.8710
## ENSRNOT00000000018.7   0.00000   0.0000   3.000   0.00000   1.0000   1.0000
##                            20       21       22        23        24       25
## ENSRNOT00000000008.4   0.0000  20.9863   0.0000   6.54813   3.93027  13.1300
## ENSRNOT00000000009.5  42.3625  68.9222  17.6006  36.76790  24.36560  47.0854
## ENSRNOT00000000010.5   0.0000   2.0000   0.0000   0.00000   0.00000   0.0000
## ENSRNOT00000000011.5   2.0000   1.0000   6.0000   3.00000   3.00000   0.0000
## ENSRNOT00000000013.5 346.0990 936.4710 645.0050 845.56600 657.88000 653.9830
## ENSRNOT00000000018.7   0.0000   0.0000   0.0000   2.00000   4.00000   1.0000
##                             26       27       28       29        3        30
## ENSRNOT00000000008.4   3.92594  10.0000   0.0000   0.0000   7.0000   6.53318
## ENSRNOT00000000009.5  63.18030  76.1159  43.9129  42.8444  37.8331  54.25200
## ENSRNOT00000000010.5   0.00000   0.0000   0.0000   0.0000   1.0000   0.00000
## ENSRNOT00000000011.5   0.00000   0.0000   2.0000   2.0000   1.0000   0.00000
## ENSRNOT00000000013.5 699.78700 850.1850 771.5110 475.2300 491.6540 343.60600
## ENSRNOT00000000018.7   0.00000   0.0000   0.0000   0.0000   3.0000   0.00000
##                            31       32       33      34       35      36
## ENSRNOT00000000008.4   8.0000   0.0000  40.0898 19.1593  25.9218 11.4780
## ENSRNOT00000000009.5  41.2632  33.1978  28.8229 35.7135  70.6359 35.9501
## ENSRNOT00000000010.5   0.0000   1.0000  19.0000 11.0000  37.0000 15.0000
## ENSRNOT00000000011.5   4.0000   0.0000  35.0000 20.0000  34.0000 32.0000
## ENSRNOT00000000013.5 479.0410 319.9350 111.7250 72.2435 153.0400 62.8931
## ENSRNOT00000000018.7   0.0000   0.0000  14.0000 15.0000  29.0000 18.0000
##                           37      38      39         4       40      41
## ENSRNOT00000000008.4 13.7003 22.6135 14.9332   6.50394  8.52695 12.2591
## ENSRNOT00000000009.5 50.6873 54.7243 35.2301  27.46480 34.80920 26.7389
## ENSRNOT00000000010.5 40.0000 41.0000 35.0000   0.00000 29.00000 10.0000
## ENSRNOT00000000011.5 47.0000 33.0000 14.0000   0.00000 28.00000 22.0000
## ENSRNOT00000000013.5 52.7508 85.5584 68.9108 294.70900 55.07810 72.7735
## ENSRNOT00000000018.7 27.0000 17.0000 13.0000   0.00000 14.00000 15.0000
##                            42       43       44       45       46       47
## ENSRNOT00000000008.4  4.69899  13.6271  16.2942  24.1949  12.9460  32.2802
## ENSRNOT00000000009.5 33.73670 114.9440  47.4423  53.6637  41.5453  67.1163
## ENSRNOT00000000010.5 16.00000  35.0000  13.0000  32.0000  18.0000  25.0000
## ENSRNOT00000000011.5 21.00000  49.0000  29.0000  44.0000  39.0000  37.0000
## ENSRNOT00000000013.5 65.41440 121.1980 114.3950 131.3720 124.3370 131.1560
## ENSRNOT00000000018.7 11.00000  24.0000  15.0000  21.0000  18.0000  10.0000
##                            48      49        5       50       51      52
## ENSRNOT00000000008.4  16.3970 36.6810   0.0000  32.6092  20.9075 23.8737
## ENSRNOT00000000009.5  36.0636 49.3216  32.9113  53.3994  60.2464 36.7990
## ENSRNOT00000000010.5  20.0000 38.0000   0.0000  42.0000  46.0000 40.0000
## ENSRNOT00000000011.5  25.0000 43.0000   0.0000  48.0000  56.0000 33.0000
## ENSRNOT00000000013.5 114.0700 78.2890 824.7450 130.2330 150.1700 93.1834
## ENSRNOT00000000018.7  14.0000 25.0000   0.0000  22.0000  29.0000 17.0000
##                            53       54       55       56        57       58
## ENSRNOT00000000008.4  19.3599  24.1487  14.2184  32.6797   9.35056  10.1055
## ENSRNOT00000000009.5  39.9345  36.7259  56.0723  34.3157  55.51630  40.9847
## ENSRNOT00000000010.5  30.0000  40.0000  41.0000  29.0000  43.00000  27.0000
## ENSRNOT00000000011.5  54.0000  33.0000  53.0000  42.0000  33.00000  34.0000
## ENSRNOT00000000013.5 120.6350 129.7970 127.9770 122.6540 145.20200 117.3270
## ENSRNOT00000000018.7  18.0000  15.0000  24.0000  21.0000  17.00000  15.0000
##                           59        6       60       61       62       63
## ENSRNOT00000000008.4 31.4681  15.3007  17.6768  18.0824  21.5445  30.3799
## ENSRNOT00000000009.5 41.2987  34.8236  53.4337  70.0980  50.4952  49.1870
## ENSRNOT00000000010.5 24.0000   0.0000  24.0000  34.0000  33.0000  41.0000
## ENSRNOT00000000011.5 34.0000   0.0000  50.0000  47.0000  45.0000  48.0000
## ENSRNOT00000000013.5 96.5047 645.2290 100.4960 139.6330 153.3700 129.0280
## ENSRNOT00000000018.7 14.0000   0.0000  25.0000  14.0000  19.0000  25.0000
##                            64         7        8        9 95      96
## ENSRNOT00000000008.4  29.0847   1.67668   0.0000   0.0000  0  0.0000
## ENSRNOT00000000009.5  48.8472  19.33470  22.7956  30.2034  0  0.0000
## ENSRNOT00000000010.5  24.0000   0.00000   1.0000   0.0000  0  0.0000
## ENSRNOT00000000011.5  51.0000   0.00000   3.0000   0.0000  0  0.0000
## ENSRNOT00000000013.5 155.7100 400.78800 316.4870 461.2840  6 28.8082
## ENSRNOT00000000018.7  33.0000   0.00000   3.0000   0.0000  0  0.0000
#dont forget gene names
g<-read.table("../ref/Rattus_norvegicus.Rnor_6.0.cdna+ncrna.gene_names.tsv",row.names=1)
g$gene_ID <- paste(g$V2,g$V3,g$V4)
head(g)
##                      V2                   V3      V4
## ENSRNOT00000047550.4 MT ENSRNOG00000030644.4  Mt-nd1
## ENSRNOT00000040993.4 MT ENSRNOG00000031033.4  Mt-nd2
## ENSRNOT00000050156.3 MT ENSRNOG00000034234.3  Mt-co1
## ENSRNOT00000043693.3 MT ENSRNOG00000030371.3  Mt-co2
## ENSRNOT00000046201.3 MT ENSRNOG00000033299.3 Mt-atp8
## ENSRNOT00000046108.3 MT ENSRNOG00000031979.3 Mt-atp6
##                                              gene_ID
## ENSRNOT00000047550.4  MT ENSRNOG00000030644.4 Mt-nd1
## ENSRNOT00000040993.4  MT ENSRNOG00000031033.4 Mt-nd2
## ENSRNOT00000050156.3  MT ENSRNOG00000034234.3 Mt-co1
## ENSRNOT00000043693.3  MT ENSRNOG00000030371.3 Mt-co2
## ENSRNOT00000046201.3 MT ENSRNOG00000033299.3 Mt-atp8
## ENSRNOT00000046108.3 MT ENSRNOG00000031979.3 Mt-atp6
g[,1:3]=NULL
x<-merge(g,x,by=0)
rownames(x) <- x[,1]
x[,1]=NULL
# aggregate Tx data to genes
xx <- aggregate(. ~ gene_ID,x,sum)
# now round to integers so that DESeq2 doesn't fail
rownames(xx) <- xx[,1]
xx[,1]=NULL
x <- round(xx)
head(x)
##                                        1   10   11   12   13   14   15   16
## 1 ENSRNOG00000000417.7 Numa1        3301 4795 4460 4965 5104 4177 3716 4657
## 1 ENSRNOG00000001466.6 LOC100361492    0    0    0    0    0    0    0    0
## 1 ENSRNOG00000001488.6 Psmb1        1525 1671 1845 1952 1631 1286 1407 1245
## 1 ENSRNOG00000001489.5 Tbp           189  181  195  156  154  156  120  159
## 1 ENSRNOG00000001490.4 Pdcd2          95  114  123  125  120   93  107   96
## 1 ENSRNOG00000001492.7 Slc8a2        188  150  155  192  199  173  158  192
##                                       17   18   19    2   20   21   22   23
## 1 ENSRNOG00000000417.7 Numa1        4314 4337 3901 2782 3403 5194 3945 4823
## 1 ENSRNOG00000001466.6 LOC100361492    1    0    0    0    0    0    0    0
## 1 ENSRNOG00000001488.6 Psmb1        1756 1851 1947 1204 2112 2717 1679 1861
## 1 ENSRNOG00000001489.5 Tbp           188  197  210  147  165  241  183  234
## 1 ENSRNOG00000001490.4 Pdcd2         190  159  175   59  171  227  124  137
## 1 ENSRNOG00000001492.7 Slc8a2        250  262  188  106  210  365  253  246
##                                       24   25   26   27   28   29    3   30
## 1 ENSRNOG00000000417.7 Numa1        4317 5347 4593 5806 4751 3516 3178 3746
## 1 ENSRNOG00000001466.6 LOC100361492    0    0    0    0    0    0    0    0
## 1 ENSRNOG00000001488.6 Psmb1        1707 1830 1644 1567 1776 1343 1737 1470
## 1 ENSRNOG00000001489.5 Tbp           200  201  194  153  155  135  127  160
## 1 ENSRNOG00000001490.4 Pdcd2         152  177  118  129  161   62  143  112
## 1 ENSRNOG00000001492.7 Slc8a2        323  300  266  194  248  123  110  217
##                                       31   32  33  34  35  36  37  38  39    4
## 1 ENSRNOG00000000417.7 Numa1        3497 2733 192 137 252 173 206 219 166 3357
## 1 ENSRNOG00000001466.6 LOC100361492    0    0  20  24  23  13  15  19  24    0
## 1 ENSRNOG00000001488.6 Psmb1        1762 1083  27  15  30  28  16  29  23 1649
## 1 ENSRNOG00000001489.5 Tbp           171  128  19  23  31  18  28  45  39  168
## 1 ENSRNOG00000001490.4 Pdcd2         123   84  21  12  33  12  13  30  20   85
## 1 ENSRNOG00000001492.7 Slc8a2        155  183 250 238 360 245 335 349 229  185
##                                      40  41  42  43  44  45  46  47  48  49
## 1 ENSRNOG00000000417.7 Numa1        168 154 144 336 190 188 199 205 162 229
## 1 ENSRNOG00000001466.6 LOC100361492  15  18  13  17   8  25  12  10  17  21
## 1 ENSRNOG00000001488.6 Psmb1         23  18  11  43  19  23  28  22  21  20
## 1 ENSRNOG00000001489.5 Tbp           17  25  21  54  26  38  25  34  24  30
## 1 ENSRNOG00000001490.4 Pdcd2         19  13  14  31  28  18  24  18  25  19
## 1 ENSRNOG00000001492.7 Slc8a2       227 241 191 482 286 323 305 339 250 340
##                                        5  50  51  52  53  54  55  56  57  58
## 1 ENSRNOG00000000417.7 Numa1        4574 243 296 243 214 232 249 265 237 235
## 1 ENSRNOG00000001466.6 LOC100361492    0  31  44  11  26  28  29  37  32  14
## 1 ENSRNOG00000001488.6 Psmb1        1879  37  40  24  24  29  29  22  29  43
## 1 ENSRNOG00000001489.5 Tbp           150  43  42  36  44  45  41  44  26  36
## 1 ENSRNOG00000001490.4 Pdcd2         128  29  28  35  26  33  28  30  20  20
## 1 ENSRNOG00000001492.7 Slc8a2        151 378 501 384 364 336 355 420 408 403
##                                      59    6  60  61  62  63  64    7    8    9
## 1 ENSRNOG00000000417.7 Numa1        185 4385 281 255 250 300 247 3642 3364 3272
## 1 ENSRNOG00000001466.6 LOC100361492  30    0  24  24  31  31  23    0    1    0
## 1 ENSRNOG00000001488.6 Psmb1         34 1459  45  25  37  34  19 1518 1201 1268
## 1 ENSRNOG00000001489.5 Tbp           25  150  37  34  46  42  25  178   88  143
## 1 ENSRNOG00000001490.4 Pdcd2         19  105  24  35  25  28  22  108   66   78
## 1 ENSRNOG00000001492.7 Slc8a2       345  183 382 442 448 440 419  147  164  127
##                                     95 96
## 1 ENSRNOG00000000417.7 Numa1         2 32
## 1 ENSRNOG00000001466.6 LOC100361492  0  0
## 1 ENSRNOG00000001488.6 Psmb1         5  0
## 1 ENSRNOG00000001489.5 Tbp           0  0
## 1 ENSRNOG00000001490.4 Pdcd2         0  0
## 1 ENSRNOG00000001492.7 Slc8a2        0  0

Samplesheet

samplesheet <- read.table("samplesheet.tsv",header=TRUE)
samplesheet$UDI <- gsub("UDI_0","",samplesheet$UDI)
samplesheet$UDI <- gsub("UDI_","",samplesheet$UDI)
samplesheet$label <- paste(samplesheet$fraction,samplesheet$Group)
samplesheet
##    UDI    fraction Group RatID         label
## 1    1 wholetissue     T     1 wholetissue T
## 2    2 wholetissue     T     2 wholetissue T
## 3    3 wholetissue     S     3 wholetissue S
## 4    4 wholetissue     S     4 wholetissue S
## 5    5 wholetissue     T     5 wholetissue T
## 6    6 wholetissue     T     6 wholetissue T
## 7    7 wholetissue     S     7 wholetissue S
## 8    8 wholetissue     S     8 wholetissue S
## 9    9 wholetissue     T     9 wholetissue T
## 10  10 wholetissue     T    10 wholetissue T
## 11  11 wholetissue     S    11 wholetissue S
## 12  12 wholetissue     S    12 wholetissue S
## 13  13 wholetissue     T    13 wholetissue T
## 14  14 wholetissue     T    14 wholetissue T
## 15  15 wholetissue     S    15 wholetissue S
## 16  16 wholetissue     S    16 wholetissue S
## 17  17 wholetissue     T    17 wholetissue T
## 18  18 wholetissue     T    18 wholetissue T
## 19  19 wholetissue     S    19 wholetissue S
## 20  20 wholetissue     S    20 wholetissue S
## 21  21 wholetissue     T    21 wholetissue T
## 22  22 wholetissue     T    22 wholetissue T
## 23  23 wholetissue     S    23 wholetissue S
## 24  24 wholetissue     S    24 wholetissue S
## 25  25 wholetissue     T    25 wholetissue T
## 26  26 wholetissue     T    26 wholetissue T
## 27  27 wholetissue     T    27 wholetissue T
## 28  28 wholetissue     T    28 wholetissue T
## 29  29 wholetissue     S    29 wholetissue S
## 30  30 wholetissue     S    30 wholetissue S
## 31  31 wholetissue     S    31 wholetissue S
## 32  32 wholetissue     S    32 wholetissue S
## 33  33        mito     T     1        mito T
## 34  34        mito     T     2        mito T
## 35  35        mito     S     3        mito S
## 36  36        mito     S     4        mito S
## 37  37        mito     T     5        mito T
## 38  38        mito     T     6        mito T
## 39  39        mito     S     7        mito S
## 40  40        mito     S     8        mito S
## 41  41        mito     T     9        mito T
## 42  42        mito     T    10        mito T
## 43  43        mito     S    11        mito S
## 44  44        mito     S    12        mito S
## 45  45        mito     T    13        mito T
## 46  46        mito     T    14        mito T
## 47  47        mito     S    15        mito S
## 48  48        mito     S    16        mito S
## 49  49        mito     T    17        mito T
## 50  50        mito     T    18        mito T
## 51  51        mito     S    19        mito S
## 52  52        mito     S    20        mito S
## 53  53        mito     T    21        mito T
## 54  54        mito     T    22        mito T
## 55  55        mito     S    23        mito S
## 56  56        mito     S    24        mito S
## 57  57        mito     T    25        mito T
## 58  58        mito     T    26        mito T
## 59  59        mito     T    27        mito T
## 60  60        mito     T    28        mito T
## 61  61        mito     S    29        mito S
## 62  62        mito     S    30        mito S
## 63  63        mito     S    31        mito S
## 64  64        mito     S    32        mito S

Overall clustering with multidimensional scaling

Sample 95 is a HUMAN mito control sample. Sample 96 is a RAT mito control sample. These should be excluded from main results.

ss <- samplesheet
ss <- ss[order(ss$UDI),]
colours = c('pink', 'lightblue','lightgreen','gray')
mds <- cmdscale(dist(t(x)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2, pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
  col = colours[as.factor(ss$label)] ,  type = "p" ,
  xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(x) )
legend('topright', col=colours, legend=levels(as.factor(ss$label)), pch = 16, cex = 1)

x <- x[,which(! colnames(x) %in% c("95","96"))]

colours = c('pink', 'lightblue','lightgreen','gray')
mds <- cmdscale(dist(t(x)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2, pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
  col = colours[as.factor(ss$label)] ,  type = "p" ,
  xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(x) )
legend('topright', col=colours, legend=levels(as.factor(ss$label)), pch = 16, cex = 1)

par(mar=c(5,10,5,3))
barplot(colSums(x),horiz=TRUE,las=2,main="number of reads per sample",cex.names=0.5)

par(mai=c(1.02,0.82,0.82,0.42))

Check purity of mito fraction samples

Here I'm quantifying the mitochondrial read fraction. That is the number of mt reads divided by the total number of reads. We can see that purity is highly variable.

par(mar=c(5,10,5,3))
mtfrac <-  colSums(x[grep("^MT",rownames(x)),]) / colSums(x) 
barplot(mtfrac,horiz=TRUE,las=2,main="number of reads per sample",cex.names=0.5)

par(mai=c(1.02,0.82,0.82,0.42))

mylevels <- levels(as.factor(ss$label))
mylevels
## [1] "mito S"        "mito T"        "wholetissue S" "wholetissue T"
y <- x[,which(ss$label==mylevels[1])]
mitoS <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)
y <- x[,which(ss$label==mylevels[2])] 
mitoT <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)
y <- x[,which(ss$label==mylevels[3])] 
wholeS <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)
y <- x[,which(ss$label==mylevels[4])] 
wholeT <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)

boxplot(mitoS,mitoT,wholeS,wholeT,names=mylevels,ylab="mito frac")

median(wholeS)
## [1] 0.3338761
median(wholeT)
## [1] 0.3550418
table(mitoS>0.4)
## 
## FALSE  TRUE 
##    14     2
table(mitoT>0.4)
## 
## FALSE  TRUE 
##    11     5
ss$mtfrac <- mtfrac

Functions

run_de <- function(ss,xx){

y <- round(xx)

# MDS
colours = c('yellow', 'orange')
mds <- cmdscale(dist(t(y)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2 , pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
  col = colours[as.factor(ss$trt)] ,  type = "p" , 
  xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(y) )
legend('topright', col=colours, legend=c("ctrl","trt"), pch = 16, cex = 1.5)

# DE
dds <- DESeqDataSetFromMatrix(countData=y, colData = ss, design = ~ trt)
dds <- DESeq(dds)
de <- DESeq2::results(dds)
de <- de[order(de$pvalue),]
up <- rownames(subset(de, log2FoldChange>0 & padj<0.05 ))
dn <- rownames(subset(de, log2FoldChange<0 & padj<0.05 ))
str(up)
str(dn)

# MA plot
sig <-subset(de, padj < 0.05 )
GENESUP <- length(up)
GENESDN <- length(dn)
SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down")
ns <-subset(de, padj > 0.05 )
plot(log2(de$baseMean),de$log2FoldChange,
     xlab="log2 basemean", ylab="log2 foldchange",
     pch=19, cex=0.5, col="dark gray",
     main="smear plot")
points(log2(sig$baseMean),sig$log2FoldChange,
       pch=19, cex=0.5, col="red")
mtext(SUBHEADER)

# heatmap
yn <- y/colSums(y)*1000000
yf <- yn[which(rownames(yn) %in% rownames(de)[1:50]),]
mycols <- gsub("0","yellow",ss$trt)
mycols <- gsub("1","orange",mycols)
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(  as.matrix(yf), col=colfunc(25),scale="row",
    ColSideColors =mycols ,trace="none",
    margin = c(10,15), cexRow=0.6, cexCol=0.8 , main="Top 50 genes by p-val")
mtext("yellow=ctrl, orange=trt")

return(de)
}

Set up contrasts

  1. Whole tissue S versus T

  2. Mito fraction S versus T

  3. Whole versus mito fraction in S

  4. Whole versus mito fraction in T

ss1 <- subset(samplesheet,fraction=="wholetissue")
ss1$trt <- grepl("T",ss1$Group)*1
x1 <- x[,which(colnames(x) %in% rownames(ss1))]

ss2 <- subset(samplesheet,fraction=="mito")
ss2$trt <- grepl("T",ss2$Group)*1
x2 <- x[,which(colnames(x) %in% rownames(ss2))]

ss3 <- subset(samplesheet,Group=="S")
ss3$trt <- grepl("mito",ss3$fraction)*1
x3 <- x[,which(colnames(x) %in% rownames(ss3))]

ss4 <- subset(samplesheet,Group=="T")
ss4$trt <- grepl("mito",ss4$fraction)*1
x4 <- x[,which(colnames(x) %in% rownames(ss4))]

DE

Here, were using DESeq2 to perform differential expression analysis for the specified contrasts. The run_de function does the analysis and generate the charts. Here we actually run the analysis.

  1. Whole tissue S versus T: 1 DEG

  2. Mito fraction S versus T: 0 DEGs

  3. Whole versus mito fraction in S: 22754 DEGs

  4. Whole versus mito fraction in T: 22406 DEGs

These results suggest that:

ss1
##    UDI    fraction Group RatID         label trt
## 1    1 wholetissue     T     1 wholetissue T   1
## 2    2 wholetissue     T     2 wholetissue T   1
## 3    3 wholetissue     S     3 wholetissue S   0
## 4    4 wholetissue     S     4 wholetissue S   0
## 5    5 wholetissue     T     5 wholetissue T   1
## 6    6 wholetissue     T     6 wholetissue T   1
## 7    7 wholetissue     S     7 wholetissue S   0
## 8    8 wholetissue     S     8 wholetissue S   0
## 9    9 wholetissue     T     9 wholetissue T   1
## 10  10 wholetissue     T    10 wholetissue T   1
## 11  11 wholetissue     S    11 wholetissue S   0
## 12  12 wholetissue     S    12 wholetissue S   0
## 13  13 wholetissue     T    13 wholetissue T   1
## 14  14 wholetissue     T    14 wholetissue T   1
## 15  15 wholetissue     S    15 wholetissue S   0
## 16  16 wholetissue     S    16 wholetissue S   0
## 17  17 wholetissue     T    17 wholetissue T   1
## 18  18 wholetissue     T    18 wholetissue T   1
## 19  19 wholetissue     S    19 wholetissue S   0
## 20  20 wholetissue     S    20 wholetissue S   0
## 21  21 wholetissue     T    21 wholetissue T   1
## 22  22 wholetissue     T    22 wholetissue T   1
## 23  23 wholetissue     S    23 wholetissue S   0
## 24  24 wholetissue     S    24 wholetissue S   0
## 25  25 wholetissue     T    25 wholetissue T   1
## 26  26 wholetissue     T    26 wholetissue T   1
## 27  27 wholetissue     T    27 wholetissue T   1
## 28  28 wholetissue     T    28 wholetissue T   1
## 29  29 wholetissue     S    29 wholetissue S   0
## 30  30 wholetissue     S    30 wholetissue S   0
## 31  31 wholetissue     S    31 wholetissue S   0
## 32  32 wholetissue     S    32 wholetissue S   0
de1 <- run_de(ss1,x1)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 187 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr "8 ENSRNOG00000054774.1 SNORD14"
##  chr(0)

as.data.frame(de1[1:20,])
##                                          baseMean log2FoldChange      lfcSE
## 8 ENSRNOG00000054774.1 SNORD14           2.559404      3.0038415 0.61757231
## 6 ENSRNOG00000013097.4 LOC691485         6.418021     -1.2981181 0.33416843
## 4 ENSRNOG00000009863.8 Prrt3            34.415892     -0.5955203 0.16136270
## 14 ENSRNOG00000052298.1 AABR07014974.1 225.654033     -0.2661652 0.07212133
## 17 ENSRNOG00000059621.1 AABR07027502.1   2.331437      2.3852231 0.65165708
## 1 ENSRNOG00000029784.4 Pak1            253.982556     -0.3028753 0.08642951
## 18 ENSRNOG00000016275.4 Ttr             11.727925     -3.0817896 0.89633403
## 3 ENSRNOG00000028616.6 Pck1             22.651521     -1.6601164 0.50334305
## 1 ENSRNOG00000020188.8 LOC102549471     24.421430     -0.5559625 0.17168992
## X ENSRNOG00000057147.1 Praf2            52.230594      0.3109798 0.09642761
## 17 ENSRNOG00000055942.1 AC120310.1       6.646284      1.0329367 0.32106516
## Y ENSRNOG00000062090.1 Sry              14.618619      0.7028882 0.21860668
## 1 ENSRNOG00000017538.8 Lrrc27           12.502304     -0.5724669 0.18090780
## 1 ENSRNOG00000018257.5 Hpx               9.278214     -2.4935056 0.79209321
## 10 ENSRNOG00000004834.5 Llgl2          199.988997     -0.2241675 0.07147975
## 4 ENSRNOG00000008031.7 Cacna2d4          8.089351     -0.9252866 0.29680104
## 1 ENSRNOG00000031003.5 Zfp764           86.932883     -0.2517188 0.08097268
## 5 ENSRNOG00000019589.2 Tas1r3           48.207189     -0.4108980 0.13388012
## 4 ENSRNOG00000023337.2 Sema3a           19.472169      0.9205249 0.30303588
## 20 ENSRNOG00000001242.6 Gstt3           65.356944     -0.2870963 0.09529135
##                                             stat       pvalue       padj
## 8 ENSRNOG00000054774.1 SNORD14          4.863951 1.150654e-06 0.03139673
## 6 ENSRNOG00000013097.4 LOC691485       -3.884622 1.024892e-04 0.99890044
## 4 ENSRNOG00000009863.8 Prrt3           -3.690570 2.237525e-04 0.99890044
## 14 ENSRNOG00000052298.1 AABR07014974.1 -3.690520 2.237962e-04 0.99890044
## 17 ENSRNOG00000059621.1 AABR07027502.1  3.660243 2.519765e-04 0.99890044
## 1 ENSRNOG00000029784.4 Pak1            -3.504304 4.578019e-04 0.99890044
## 18 ENSRNOG00000016275.4 Ttr            -3.438216 5.855613e-04 0.99890044
## 3 ENSRNOG00000028616.6 Pck1            -3.298181 9.731344e-04 0.99890044
## 1 ENSRNOG00000020188.8 LOC102549471    -3.238178 1.202959e-03 0.99890044
## X ENSRNOG00000057147.1 Praf2            3.225008 1.259690e-03 0.99890044
## 17 ENSRNOG00000055942.1 AC120310.1      3.217218 1.294401e-03 0.99890044
## Y ENSRNOG00000062090.1 Sry              3.215310 1.303038e-03 0.99890044
## 1 ENSRNOG00000017538.8 Lrrc27          -3.164412 1.553964e-03 0.99890044
## 1 ENSRNOG00000018257.5 Hpx             -3.147995 1.643944e-03 0.99890044
## 10 ENSRNOG00000004834.5 Llgl2          -3.136098 1.712120e-03 0.99890044
## 4 ENSRNOG00000008031.7 Cacna2d4        -3.117532 1.823724e-03 0.99890044
## 1 ENSRNOG00000031003.5 Zfp764          -3.108688 1.879201e-03 0.99890044
## 5 ENSRNOG00000019589.2 Tas1r3          -3.069149 2.146696e-03 0.99890044
## 4 ENSRNOG00000023337.2 Sema3a           3.037676 2.384100e-03 0.99890044
## 20 ENSRNOG00000001242.6 Gstt3          -3.012827 2.588264e-03 0.99890044
write.table(de1,file="de1.tsv",quote=FALSE,sep="\t")

ss2
##    UDI fraction Group RatID  label trt
## 33  33     mito     T     1 mito T   1
## 34  34     mito     T     2 mito T   1
## 35  35     mito     S     3 mito S   0
## 36  36     mito     S     4 mito S   0
## 37  37     mito     T     5 mito T   1
## 38  38     mito     T     6 mito T   1
## 39  39     mito     S     7 mito S   0
## 40  40     mito     S     8 mito S   0
## 41  41     mito     T     9 mito T   1
## 42  42     mito     T    10 mito T   1
## 43  43     mito     S    11 mito S   0
## 44  44     mito     S    12 mito S   0
## 45  45     mito     T    13 mito T   1
## 46  46     mito     T    14 mito T   1
## 47  47     mito     S    15 mito S   0
## 48  48     mito     S    16 mito S   0
## 49  49     mito     T    17 mito T   1
## 50  50     mito     T    18 mito T   1
## 51  51     mito     S    19 mito S   0
## 52  52     mito     S    20 mito S   0
## 53  53     mito     T    21 mito T   1
## 54  54     mito     T    22 mito T   1
## 55  55     mito     S    23 mito S   0
## 56  56     mito     S    24 mito S   0
## 57  57     mito     T    25 mito T   1
## 58  58     mito     T    26 mito T   1
## 59  59     mito     T    27 mito T   1
## 60  60     mito     T    28 mito T   1
## 61  61     mito     S    29 mito S   0
## 62  62     mito     S    30 mito S   0
## 63  63     mito     S    31 mito S   0
## 64  64     mito     S    32 mito S   0
de2 <- run_de(ss2,x2)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 43 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr(0) 
##  chr(0)

as.data.frame(de1[1:20,])
##                                          baseMean log2FoldChange      lfcSE
## 8 ENSRNOG00000054774.1 SNORD14           2.559404      3.0038415 0.61757231
## 6 ENSRNOG00000013097.4 LOC691485         6.418021     -1.2981181 0.33416843
## 4 ENSRNOG00000009863.8 Prrt3            34.415892     -0.5955203 0.16136270
## 14 ENSRNOG00000052298.1 AABR07014974.1 225.654033     -0.2661652 0.07212133
## 17 ENSRNOG00000059621.1 AABR07027502.1   2.331437      2.3852231 0.65165708
## 1 ENSRNOG00000029784.4 Pak1            253.982556     -0.3028753 0.08642951
## 18 ENSRNOG00000016275.4 Ttr             11.727925     -3.0817896 0.89633403
## 3 ENSRNOG00000028616.6 Pck1             22.651521     -1.6601164 0.50334305
## 1 ENSRNOG00000020188.8 LOC102549471     24.421430     -0.5559625 0.17168992
## X ENSRNOG00000057147.1 Praf2            52.230594      0.3109798 0.09642761
## 17 ENSRNOG00000055942.1 AC120310.1       6.646284      1.0329367 0.32106516
## Y ENSRNOG00000062090.1 Sry              14.618619      0.7028882 0.21860668
## 1 ENSRNOG00000017538.8 Lrrc27           12.502304     -0.5724669 0.18090780
## 1 ENSRNOG00000018257.5 Hpx               9.278214     -2.4935056 0.79209321
## 10 ENSRNOG00000004834.5 Llgl2          199.988997     -0.2241675 0.07147975
## 4 ENSRNOG00000008031.7 Cacna2d4          8.089351     -0.9252866 0.29680104
## 1 ENSRNOG00000031003.5 Zfp764           86.932883     -0.2517188 0.08097268
## 5 ENSRNOG00000019589.2 Tas1r3           48.207189     -0.4108980 0.13388012
## 4 ENSRNOG00000023337.2 Sema3a           19.472169      0.9205249 0.30303588
## 20 ENSRNOG00000001242.6 Gstt3           65.356944     -0.2870963 0.09529135
##                                             stat       pvalue       padj
## 8 ENSRNOG00000054774.1 SNORD14          4.863951 1.150654e-06 0.03139673
## 6 ENSRNOG00000013097.4 LOC691485       -3.884622 1.024892e-04 0.99890044
## 4 ENSRNOG00000009863.8 Prrt3           -3.690570 2.237525e-04 0.99890044
## 14 ENSRNOG00000052298.1 AABR07014974.1 -3.690520 2.237962e-04 0.99890044
## 17 ENSRNOG00000059621.1 AABR07027502.1  3.660243 2.519765e-04 0.99890044
## 1 ENSRNOG00000029784.4 Pak1            -3.504304 4.578019e-04 0.99890044
## 18 ENSRNOG00000016275.4 Ttr            -3.438216 5.855613e-04 0.99890044
## 3 ENSRNOG00000028616.6 Pck1            -3.298181 9.731344e-04 0.99890044
## 1 ENSRNOG00000020188.8 LOC102549471    -3.238178 1.202959e-03 0.99890044
## X ENSRNOG00000057147.1 Praf2            3.225008 1.259690e-03 0.99890044
## 17 ENSRNOG00000055942.1 AC120310.1      3.217218 1.294401e-03 0.99890044
## Y ENSRNOG00000062090.1 Sry              3.215310 1.303038e-03 0.99890044
## 1 ENSRNOG00000017538.8 Lrrc27          -3.164412 1.553964e-03 0.99890044
## 1 ENSRNOG00000018257.5 Hpx             -3.147995 1.643944e-03 0.99890044
## 10 ENSRNOG00000004834.5 Llgl2          -3.136098 1.712120e-03 0.99890044
## 4 ENSRNOG00000008031.7 Cacna2d4        -3.117532 1.823724e-03 0.99890044
## 1 ENSRNOG00000031003.5 Zfp764          -3.108688 1.879201e-03 0.99890044
## 5 ENSRNOG00000019589.2 Tas1r3          -3.069149 2.146696e-03 0.99890044
## 4 ENSRNOG00000023337.2 Sema3a           3.037676 2.384100e-03 0.99890044
## 20 ENSRNOG00000001242.6 Gstt3          -3.012827 2.588264e-03 0.99890044
write.table(de2,file="de2.tsv",quote=FALSE,sep="\t")

ss3
##    UDI    fraction Group RatID         label trt
## 3    3 wholetissue     S     3 wholetissue S   0
## 4    4 wholetissue     S     4 wholetissue S   0
## 7    7 wholetissue     S     7 wholetissue S   0
## 8    8 wholetissue     S     8 wholetissue S   0
## 11  11 wholetissue     S    11 wholetissue S   0
## 12  12 wholetissue     S    12 wholetissue S   0
## 15  15 wholetissue     S    15 wholetissue S   0
## 16  16 wholetissue     S    16 wholetissue S   0
## 19  19 wholetissue     S    19 wholetissue S   0
## 20  20 wholetissue     S    20 wholetissue S   0
## 23  23 wholetissue     S    23 wholetissue S   0
## 24  24 wholetissue     S    24 wholetissue S   0
## 29  29 wholetissue     S    29 wholetissue S   0
## 30  30 wholetissue     S    30 wholetissue S   0
## 31  31 wholetissue     S    31 wholetissue S   0
## 32  32 wholetissue     S    32 wholetissue S   0
## 35  35        mito     S     3        mito S   1
## 36  36        mito     S     4        mito S   1
## 39  39        mito     S     7        mito S   1
## 40  40        mito     S     8        mito S   1
## 43  43        mito     S    11        mito S   1
## 44  44        mito     S    12        mito S   1
## 47  47        mito     S    15        mito S   1
## 48  48        mito     S    16        mito S   1
## 51  51        mito     S    19        mito S   1
## 52  52        mito     S    20        mito S   1
## 55  55        mito     S    23        mito S   1
## 56  56        mito     S    24        mito S   1
## 61  61        mito     S    29        mito S   1
## 62  62        mito     S    30        mito S   1
## 63  63        mito     S    31        mito S   1
## 64  64        mito     S    32        mito S   1
de3 <- run_de(ss3,x3)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 1021 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr [1:15793] "8 ENSRNOG00000031483.3 AABR07071482.1" ...
##  chr [1:6961] "7 ENSRNOG00000028837.4 AC128207.1" ...

head(de3,20)
## log2 fold change (MLE): trt 
## Wald test p-value: trt 
## DataFrame with 20 rows and 6 columns
##                                         baseMean log2FoldChange     lfcSE
##                                        <numeric>      <numeric> <numeric>
## 7 ENSRNOG00000028837.4 AC128207.1      651.49961       -3.88988  0.490167
## 5 ENSRNOG00000032994.5 Myom3           905.26082       -2.34838  0.307146
## 20 ENSRNOG00000050647.2 Hspa1b         466.92249       -2.52965  0.331401
## 8 ENSRNOG00000031483.3 AABR07071482.1    5.28289        5.99866  0.829018
## 12 ENSRNOG00000001452.3 Fzd9           157.59935       -1.71999  0.241920
## ...                                          ...            ...       ...
## 13 ENSRNOG00000003209.6 Pcp4l1         163.67894        2.08555  0.323851
## 11 ENSRNOG00000055575.1 Olr1545          3.74962        5.44399  0.847647
## 1 ENSRNOG00000013840.7 Ankrd2         1234.76921       -3.23027  0.503943
## 17 ENSRNOG00000022595.1 LOC100362965     3.54889        5.59743  0.874369
## 15 ENSRNOG00000010137.6 Xpo4           729.70955       -1.73268  0.271168
##                                            stat      pvalue        padj
##                                       <numeric>   <numeric>   <numeric>
## 7 ENSRNOG00000028837.4 AC128207.1      -7.93581 2.09123e-15 6.77244e-11
## 5 ENSRNOG00000032994.5 Myom3           -7.64583 2.07604e-14 2.47209e-10
## 20 ENSRNOG00000050647.2 Hspa1b         -7.63320 2.29003e-14 2.47209e-10
## 8 ENSRNOG00000031483.3 AABR07071482.1   7.23586 4.62582e-13 3.74518e-09
## 12 ENSRNOG00000001452.3 Fzd9           -7.10974 1.16263e-12 7.53034e-09
## ...                                         ...         ...         ...
## 13 ENSRNOG00000003209.6 Pcp4l1          6.43983 1.19606e-10 2.42091e-07
## 11 ENSRNOG00000055575.1 Olr1545         6.42248 1.34075e-10 2.53741e-07
## 1 ENSRNOG00000013840.7 Ankrd2          -6.40999 1.45530e-10 2.53741e-07
## 17 ENSRNOG00000022595.1 LOC100362965    6.40168 1.53673e-10 2.53741e-07
## 15 ENSRNOG00000010137.6 Xpo4           -6.38967 1.66249e-10 2.53741e-07
write.table(de3,file="de3.tsv",quote=FALSE,sep="\t")

ss4
##    UDI    fraction Group RatID         label trt
## 1    1 wholetissue     T     1 wholetissue T   0
## 2    2 wholetissue     T     2 wholetissue T   0
## 5    5 wholetissue     T     5 wholetissue T   0
## 6    6 wholetissue     T     6 wholetissue T   0
## 9    9 wholetissue     T     9 wholetissue T   0
## 10  10 wholetissue     T    10 wholetissue T   0
## 13  13 wholetissue     T    13 wholetissue T   0
## 14  14 wholetissue     T    14 wholetissue T   0
## 17  17 wholetissue     T    17 wholetissue T   0
## 18  18 wholetissue     T    18 wholetissue T   0
## 21  21 wholetissue     T    21 wholetissue T   0
## 22  22 wholetissue     T    22 wholetissue T   0
## 25  25 wholetissue     T    25 wholetissue T   0
## 26  26 wholetissue     T    26 wholetissue T   0
## 27  27 wholetissue     T    27 wholetissue T   0
## 28  28 wholetissue     T    28 wholetissue T   0
## 33  33        mito     T     1        mito T   1
## 34  34        mito     T     2        mito T   1
## 37  37        mito     T     5        mito T   1
## 38  38        mito     T     6        mito T   1
## 41  41        mito     T     9        mito T   1
## 42  42        mito     T    10        mito T   1
## 45  45        mito     T    13        mito T   1
## 46  46        mito     T    14        mito T   1
## 49  49        mito     T    17        mito T   1
## 50  50        mito     T    18        mito T   1
## 53  53        mito     T    21        mito T   1
## 54  54        mito     T    22        mito T   1
## 57  57        mito     T    25        mito T   1
## 58  58        mito     T    26        mito T   1
## 59  59        mito     T    27        mito T   1
## 60  60        mito     T    28        mito T   1
de4 <- run_de(ss4,x4)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 1292 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr [1:15569] "18 ENSRNOG00000059935.1 7SK" ...
##  chr [1:6837] "15 ENSRNOG00000001052.7 Slc25a30" ...

head(de4,20)
## log2 fold change (MLE): trt 
## Wald test p-value: trt 
## DataFrame with 20 rows and 6 columns
##                                         baseMean log2FoldChange     lfcSE
##                                        <numeric>      <numeric> <numeric>
## 18 ENSRNOG00000059935.1 7SK              5.38745        6.09288  0.786191
## 15 ENSRNOG00000050432.2 AABR07017850.1   6.00234        6.27404  0.866595
## 11 ENSRNOG00000037983.3 LOC103693605     7.42209        5.72409  0.813110
## X ENSRNOG00000058972.1 AABR07042321.1    4.52193        5.84441  0.839960
## 1 ENSRNOG00000060881.1 AABR07003167.3    4.51377        5.82571  0.849694
## ...                                          ...            ...       ...
## 3 ENSRNOG00000042321.2 AABR07052588.1    5.71903        3.16993  0.502554
## X ENSRNOG00000046097.1 AABR07042071.1    3.11742        5.48103  0.869241
## 7 ENSRNOG00000051708.1 Olr1084           6.29478        5.94607  0.946000
## 3 ENSRNOG00000053580.1 AABR07053471.1    4.03582        5.68406  0.905828
## 4 ENSRNOG00000051718.1 AABR07059220.1    2.89649        5.14333  0.824434
##                                             stat      pvalue        padj
##                                        <numeric>   <numeric>   <numeric>
## 18 ENSRNOG00000059935.1 7SK              7.74987 9.19847e-15 2.98095e-10
## 15 ENSRNOG00000050432.2 AABR07017850.1   7.23987 4.49107e-13 7.27711e-09
## 11 ENSRNOG00000037983.3 LOC103693605     7.03975 1.92589e-12 2.08041e-08
## X ENSRNOG00000058972.1 AABR07042321.1    6.95797 3.45216e-12 2.79686e-08
## 1 ENSRNOG00000060881.1 AABR07003167.3    6.85624 7.06970e-12 4.10878e-08
## ...                                          ...         ...         ...
## 3 ENSRNOG00000042321.2 AABR07052588.1    6.30763 2.83336e-10 5.47485e-07
## X ENSRNOG00000046097.1 AABR07042071.1    6.30554 2.87199e-10 5.47485e-07
## 7 ENSRNOG00000051708.1 Olr1084           6.28549 3.26828e-10 5.88418e-07
## 3 ENSRNOG00000053580.1 AABR07053471.1    6.27499 3.49657e-10 5.96386e-07
## 4 ENSRNOG00000051718.1 AABR07059220.1    6.23861 4.41462e-10 7.11522e-07
write.table(de4,file="de4.tsv",quote=FALSE,sep="\t")

Second pass DE analysis

Here we are going to exclude the mito samples with < 40% mito reads. Contrast 1 is not repeated.

  1. Mito fraction S versus T: 0 DEGs

  2. Whole versus mito fraction in S: 20 DEGs

  3. Whole versus mito fraction in T: 0 DEGs

ss0 <- subset(ss, fraction=="mito" & mtfrac>0.4)
ss <- subset(ss, fraction!="mito")
ss <- rbind(ss,ss0)

ss2 <- subset(ss,fraction=="mito")
ss2$trt <- grepl("T",ss2$Group)*1
x2 <- x[,which(colnames(x) %in% rownames(ss2))]

ss3 <- subset(ss,Group=="S")
ss3$trt <- grepl("mito",ss3$fraction)*1
x3 <- x[,which(colnames(x) %in% rownames(ss3))]

ss4 <- subset(ss,Group=="T")
ss4$trt <- grepl("mito",ss4$fraction)*1
x4 <- x[,which(colnames(x) %in% rownames(ss4))]

ss2
##    UDI fraction Group RatID  label    mtfrac trt
## 33  33     mito     T     1 mito T 0.6465534   1
## 34  34     mito     T     2 mito T 0.8147126   1
## 47  47     mito     S    15 mito S 0.7268125   0
## 58  58     mito     T    26 mito T 0.4821588   1
## 59  59     mito     T    27 mito T 0.6646957   1
## 60  60     mito     T    28 mito T 0.5887804   1
## 64  64     mito     S    32 mito S 0.5016151   0
de2 <- run_de(ss2,x2)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing

##  chr(0) 
##  chr(0)

as.data.frame(de2[1:20,])
##                                             baseMean log2FoldChange     lfcSE
## 17 ENSRNOG00000056825.2 AABR07072539.4     11.661671      6.5676953 1.5385473
## 1 ENSRNOG00000020025.4 LOC108348052        17.782509      2.9172245 0.7530693
## 3 ENSRNOG00000050864.2 Cpne1               14.072848     -2.9272763 0.7602602
## 2 ENSRNOG00000020832.4 C2cd4d              15.822890      2.7222352 0.7431078
## 7 ENSRNOG00000050884.2 AABR07058745.1      50.195404      1.6687089 0.4779421
## 20 ENSRNOG00000045654.2 LOC108348108        7.187484      5.8570854 1.6931454
## 4 ENSRNOG00000049639.2 LOC100909784        52.027683      1.1890107 0.3485934
## 13 ENSRNOG00000056279.1 AC115369.1        199.904660     -0.5561194 0.1700077
## 6 ENSRNOG00000051280.1 AABR07064502.1       5.509108      5.4622037 1.6700748
## 12 ENSRNOG00000057927.1 AABR07035796.1     58.135739     -0.9607682 0.2975668
## 18 ENSRNOG00000051569.1 LOC103690147       16.613644      2.4049396 0.7510958
## 14 ENSRNOG00000050406.1 AABR07014914.1    102.689535     -0.7408943 0.2335580
## 5 ENSRNOG00000048618.1 AABR07049890.1      68.590808      0.9768229 0.3118632
## 2 ENSRNOG00000061049.1 AABR07011512.1     391.297383      0.4903412 0.1577683
## 1 ENSRNOG00000038697.3 AABR07003616.1       2.349799     -4.7978937 1.5525918
## MT ENSRNOG00000029070.3 AY172581.1         28.057647      1.9396338 0.6302285
## 17 ENSRNOG00000052667.1 AABR07027555.1      4.412753      5.1807393 1.6974583
## KL568337.1 ENSRNOG00000057871.1 5_8S_rRNA   5.377655     -3.1465703 1.0320391
## 13 ENSRNOG00000052639.1 LOC108352591       11.174558      2.3679557 0.7780118
## 8 ENSRNOG00000059264.1 U6                   5.160780      5.3206380 1.7779022
##                                                stat       pvalue      padj
## 17 ENSRNOG00000056825.2 AABR07072539.4     4.268764 1.965591e-05 0.6313871
## 1 ENSRNOG00000020025.4 LOC108348052        3.873780 1.071604e-04 0.9999479
## 3 ENSRNOG00000050864.2 Cpne1              -3.850361 1.179438e-04 0.9999479
## 2 ENSRNOG00000020832.4 C2cd4d              3.663311 2.489758e-04 0.9999479
## 7 ENSRNOG00000050884.2 AABR07058745.1      3.491445 4.804147e-04 0.9999479
## 20 ENSRNOG00000045654.2 LOC108348108       3.459293 5.415960e-04 0.9999479
## 4 ENSRNOG00000049639.2 LOC100909784        3.410881 6.475334e-04 0.9999479
## 13 ENSRNOG00000056279.1 AC115369.1        -3.271142 1.071140e-03 0.9999479
## 6 ENSRNOG00000051280.1 AABR07064502.1      3.270634 1.073066e-03 0.9999479
## 12 ENSRNOG00000057927.1 AABR07035796.1    -3.228748 1.243335e-03 0.9999479
## 18 ENSRNOG00000051569.1 LOC103690147       3.201908 1.365205e-03 0.9999479
## 14 ENSRNOG00000050406.1 AABR07014914.1    -3.172207 1.512852e-03 0.9999479
## 5 ENSRNOG00000048618.1 AABR07049890.1      3.132216 1.734925e-03 0.9999479
## 2 ENSRNOG00000061049.1 AABR07011512.1      3.107983 1.883688e-03 0.9999479
## 1 ENSRNOG00000038697.3 AABR07003616.1     -3.090248 1.999894e-03 0.9999479
## MT ENSRNOG00000029070.3 AY172581.1         3.077667 2.086276e-03 0.9999479
## 17 ENSRNOG00000052667.1 AABR07027555.1     3.052057 2.272790e-03 0.9999479
## KL568337.1 ENSRNOG00000057871.1 5_8S_rRNA -3.048887 2.296911e-03 0.9999479
## 13 ENSRNOG00000052639.1 LOC108352591       3.043599 2.337668e-03 0.9999479
## 8 ENSRNOG00000059264.1 U6                  2.992649 2.765673e-03 0.9999479
write.table(de2,file="de2b.tsv",quote=FALSE,sep="\t")

ss3
##    UDI    fraction Group RatID         label    mtfrac trt
## 11  11 wholetissue     S    11 wholetissue S 0.3521941   0
## 12  12 wholetissue     S    12 wholetissue S 0.2845851   0
## 15  15 wholetissue     S    15 wholetissue S 0.3354321   0
## 16  16 wholetissue     S    16 wholetissue S 0.3323202   0
## 19  19 wholetissue     S    19 wholetissue S 0.3574090   0
## 20  20 wholetissue     S    20 wholetissue S 0.3501682   0
## 23  23 wholetissue     S    23 wholetissue S 0.3802950   0
## 24  24 wholetissue     S    24 wholetissue S 0.2678982   0
## 29  29 wholetissue     S    29 wholetissue S 0.3670548   0
## 3    3 wholetissue     S     3 wholetissue S 0.3273260   0
## 30  30 wholetissue     S    30 wholetissue S 0.3000018   0
## 31  31 wholetissue     S    31 wholetissue S 0.3738198   0
## 32  32 wholetissue     S    32 wholetissue S 0.3556323   0
## 4    4 wholetissue     S     4 wholetissue S 0.2853209   0
## 7    7 wholetissue     S     7 wholetissue S 0.3214936   0
## 8    8 wholetissue     S     8 wholetissue S 0.2543348   0
## 47  47        mito     S    15        mito S 0.7268125   1
## 64  64        mito     S    32        mito S 0.5016151   1
de3 <- run_de(ss3,x3)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 5629 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr [1:18] "9 ENSRNOG00000046834.3 C3" "13 ENSRNOG00000004405.5 Pigr" ...
##  chr [1:2] "14 ENSRNOG00000027791.5 AABR07015346.1" ...

head(de3,20)
## log2 fold change (MLE): trt 
## Wald test p-value: trt 
## DataFrame with 20 rows and 6 columns
##                                         baseMean log2FoldChange     lfcSE
##                                        <numeric>      <numeric> <numeric>
## 9 ENSRNOG00000046834.3 C3               189.9471        6.69434  0.804430
## 14 ENSRNOG00000027791.5 AABR07015346.1  154.4810      -23.40818  3.368853
## 13 ENSRNOG00000004405.5 Pigr             33.1470        5.57613  0.834008
## 2 ENSRNOG00000011200.3 Bhmt              23.2130        4.70473  0.753431
## 19 ENSRNOG00000014964.8 Hp               85.9235        3.64868  0.643773
## ...                                          ...            ...       ...
## 3 ENSRNOG00000010128.7 Slc27a2           6.10714        4.33947  0.979589
## 4 ENSRNOG00000006675.5 Fabp1            52.46798        1.63489  0.373544
## 1 ENSRNOG00000031391.4 Ceacam16         40.66142       -2.34982  0.539710
## 16 ENSRNOG00000033386.5 Itih1           11.06883        8.01467  1.870598
## 2 ENSRNOG00000013736.6 C9               11.30135        3.22151  0.772705
##                                             stat      pvalue        padj
##                                        <numeric>   <numeric>   <numeric>
## 9 ENSRNOG00000046834.3 C3                8.32185 8.66016e-17 2.09264e-12
## 14 ENSRNOG00000027791.5 AABR07015346.1  -6.94841 3.69423e-12 4.46337e-08
## 13 ENSRNOG00000004405.5 Pigr             6.68594 2.29440e-11 1.84806e-07
## 2 ENSRNOG00000011200.3 Bhmt              6.24441 4.25413e-10 2.56992e-06
## 19 ENSRNOG00000014964.8 Hp               5.66765 1.44766e-08 6.24722e-05
## ...                                          ...         ...         ...
## 3 ENSRNOG00000010128.7 Slc27a2           4.42989 9.42824e-06   0.0142390
## 4 ENSRNOG00000006675.5 Fabp1             4.37669 1.20497e-05   0.0171276
## 1 ENSRNOG00000031391.4 Ceacam16         -4.35386 1.33759e-05   0.0179564
## 16 ENSRNOG00000033386.5 Itih1            4.28455 1.83109e-05   0.0232876
## 2 ENSRNOG00000013736.6 C9                4.16913 3.05764e-05   0.0369424
as.data.frame(de3[1:20,])
##                                          baseMean log2FoldChange     lfcSE
## 9 ENSRNOG00000046834.3 C3              189.947150       6.694343 0.8044297
## 14 ENSRNOG00000027791.5 AABR07015346.1 154.480954     -23.408177 3.3688533
## 13 ENSRNOG00000004405.5 Pigr            33.147013       5.576134 0.8340084
## 2 ENSRNOG00000011200.3 Bhmt             23.212978       4.704729 0.7534309
## 19 ENSRNOG00000014964.8 Hp              85.923541       3.648683 0.6437731
## 16 ENSRNOG00000017381.8 Itih4           27.994702       6.468558 1.1437031
## 6 ENSRNOG00000005542.8 Apob             91.699635       9.580368 1.7184669
## 19 ENSRNOG00000015438.5 LOC501233       19.393163       5.876676 1.0579672
## 4 ENSRNOG00000006709.6 Pzp              51.516746       7.538147 1.3639175
## 1 ENSRNOG00000017223.7 Plg              27.573652       6.470047 1.2003796
## 1 ENSRNOG00000046727.2 Abcc2            36.686475       3.034077 0.5814550
## 6 ENSRNOG00000010478.7 LOC299282       196.409234       2.161695 0.4150939
## 2 ENSRNOG00000012436.6 Adh6             12.016400       3.126573 0.6145946
## 1 ENSRNOG00000024016.7 Cyp2c6v1         19.504106       2.998256 0.6171350
## 3 ENSRNOG00000018899.8 C5                6.163963       5.651434 1.2054685
## 3 ENSRNOG00000010128.7 Slc27a2           6.107139       4.339469 0.9795889
## 4 ENSRNOG00000006675.5 Fabp1            52.467979       1.634886 0.3735441
## 1 ENSRNOG00000031391.4 Ceacam16         40.661418      -2.349823 0.5397098
## 16 ENSRNOG00000033386.5 Itih1           11.068833       8.014672 1.8705981
## 2 ENSRNOG00000013736.6 C9               11.301354       3.221508 0.7727049
##                                             stat       pvalue         padj
## 9 ENSRNOG00000046834.3 C3               8.321849 8.660158e-17 2.092641e-12
## 14 ENSRNOG00000027791.5 AABR07015346.1 -6.948411 3.694234e-12 4.463374e-08
## 13 ENSRNOG00000004405.5 Pigr            6.685944 2.294401e-11 1.848064e-07
## 2 ENSRNOG00000011200.3 Bhmt             6.244406 4.254128e-10 2.569918e-06
## 19 ENSRNOG00000014964.8 Hp              5.667654 1.447659e-08 6.247220e-05
## 16 ENSRNOG00000017381.8 Itih4           5.655802 1.551205e-08 6.247220e-05
## 6 ENSRNOG00000005542.8 Apob             5.574950 2.476003e-08 8.400314e-05
## 19 ENSRNOG00000015438.5 LOC501233       5.554687 2.781100e-08 8.400314e-05
## 4 ENSRNOG00000006709.6 Pzp              5.526835 3.260591e-08 8.754326e-05
## 1 ENSRNOG00000017223.7 Plg              5.390001 7.045743e-08 1.702533e-04
## 1 ENSRNOG00000046727.2 Abcc2            5.218078 1.807892e-07 3.849503e-04
## 6 ENSRNOG00000010478.7 LOC299282        5.207726 1.911688e-07 3.849503e-04
## 2 ENSRNOG00000012436.6 Adh6             5.087212 3.633657e-07 6.754130e-04
## 1 ENSRNOG00000024016.7 Cyp2c6v1         4.858347 1.183697e-06 2.043061e-03
## 3 ENSRNOG00000018899.8 C5               4.688164 2.756674e-06 4.440817e-03
## 3 ENSRNOG00000010128.7 Slc27a2          4.429887 9.428237e-06 1.423899e-02
## 4 ENSRNOG00000006675.5 Fabp1            4.376687 1.204969e-05 1.712756e-02
## 1 ENSRNOG00000031391.4 Ceacam16        -4.353863 1.337593e-05 1.795644e-02
## 16 ENSRNOG00000033386.5 Itih1           4.284550 1.831091e-05 2.328763e-02
## 2 ENSRNOG00000013736.6 C9               4.169131 3.057636e-05 3.694236e-02
write.table(de3,file="de3b.tsv",quote=FALSE,sep="\t")

ss4
##    UDI    fraction Group RatID         label    mtfrac trt
## 1    1 wholetissue     T     1 wholetissue T 0.2601233   0
## 10  10 wholetissue     T    10 wholetissue T 0.3723191   0
## 13  13 wholetissue     T    13 wholetissue T 0.3195613   0
## 14  14 wholetissue     T    14 wholetissue T 0.3552110   0
## 17  17 wholetissue     T    17 wholetissue T 0.3617978   0
## 18  18 wholetissue     T    18 wholetissue T 0.3904784   0
## 2    2 wholetissue     T     2 wholetissue T 0.3441832   0
## 21  21 wholetissue     T    21 wholetissue T 0.3680570   0
## 22  22 wholetissue     T    22 wholetissue T 0.3551245   0
## 25  25 wholetissue     T    25 wholetissue T 0.3205449   0
## 26  26 wholetissue     T    26 wholetissue T 0.2691352   0
## 27  27 wholetissue     T    27 wholetissue T 0.3549592   0
## 28  28 wholetissue     T    28 wholetissue T 0.2879719   0
## 5    5 wholetissue     T     5 wholetissue T 0.3747933   0
## 6    6 wholetissue     T     6 wholetissue T 0.3510836   0
## 9    9 wholetissue     T     9 wholetissue T 0.3754423   0
## 33  33        mito     T     1        mito T 0.6465534   1
## 34  34        mito     T     2        mito T 0.8147126   1
## 58  58        mito     T    26        mito T 0.4821588   1
## 59  59        mito     T    27        mito T 0.6646957   1
## 60  60        mito     T    28        mito T 0.5887804   1
de4 <- run_de(ss4,x4)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 294 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr(0) 
##  chr(0)

head(de4,20)
## log2 fold change (MLE): trt 
## Wald test p-value: trt 
## DataFrame with 20 rows and 6 columns
##                                         baseMean log2FoldChange     lfcSE
##                                        <numeric>      <numeric> <numeric>
## 17 ENSRNOG00000053995.1 AABR07027810.4   8.35074        3.02225  0.685593
## 2 ENSRNOG00000048082.2 AABR07013776.1    8.90530        3.51125  0.830426
## 5 ENSRNOG00000055453.1 AC127935.1        3.82793        2.87295  0.680451
## 3 ENSRNOG00000011715.3 AABR07053669.1    9.92304        2.66588  0.632305
## 2 ENSRNOG00000045639.2 RGD1560883       70.61063        1.18753  0.283671
## ...                                          ...            ...       ...
## X ENSRNOG00000002413.6 Gpc4            905.96927       1.233723  0.303703
## 4 ENSRNOG00000006726.7 Zfp9             63.47564       1.747441  0.433260
## 1 ENSRNOG00000043141.3 Ap3s2           109.56215      -0.638875  0.158630
## 3 ENSRNOG00000016488.6 Pltp            212.51737      -0.591838  0.147572
## 2 ENSRNOG00000053898.1 AABR07013208.1    8.55656       1.789090  0.449492
##                                             stat      pvalue      padj
##                                        <numeric>   <numeric> <numeric>
## 17 ENSRNOG00000053995.1 AABR07027810.4   4.40823 1.04218e-05 0.0900534
## 2 ENSRNOG00000048082.2 AABR07013776.1    4.22825 2.35516e-05 0.0900534
## 5 ENSRNOG00000055453.1 AC127935.1        4.22213 2.42007e-05 0.0900534
## 3 ENSRNOG00000011715.3 AABR07053669.1    4.21613 2.48533e-05 0.0900534
## 2 ENSRNOG00000045639.2 RGD1560883        4.18629 2.83550e-05 0.0900534
## ...                                          ...         ...       ...
## X ENSRNOG00000002413.6 Gpc4              4.06227 4.85987e-05 0.0900534
## 4 ENSRNOG00000006726.7 Zfp9              4.03324 5.50127e-05 0.0928726
## 1 ENSRNOG00000043141.3 Ap3s2            -4.02745 5.63852e-05 0.0928726
## 3 ENSRNOG00000016488.6 Pltp             -4.01051 6.05884e-05 0.0945435
## 2 ENSRNOG00000053898.1 AABR07013208.1    3.98025 6.88439e-05 0.0969047
as.data.frame(de4[1:20,])
##                                          baseMean log2FoldChange      lfcSE
## 17 ENSRNOG00000053995.1 AABR07027810.4   8.350737      3.0222524 0.68559281
## 2 ENSRNOG00000048082.2 AABR07013776.1    8.905297      3.5112469 0.83042551
## 5 ENSRNOG00000055453.1 AC127935.1        3.827934      2.8729506 0.68045088
## 3 ENSRNOG00000011715.3 AABR07053669.1    9.923043      2.6658784 0.63230489
## 2 ENSRNOG00000045639.2 RGD1560883       70.610633      1.1875298 0.28367109
## 8 ENSRNOG00000023809.5 Opcml            59.018462      1.0449219 0.25067282
## 1 ENSRNOG00000060312.1 LOC108348197    271.784529     -2.4832702 0.59722048
## 1 ENSRNOG00000015717.8 Ptpre            86.690130      0.9615012 0.23166209
## 7 ENSRNOG00000005551.6 Derl1           541.437086      0.2653631 0.06421305
## 5 ENSRNOG00000022953.4 Ccdc163          36.357350      1.6456259 0.39955397
## 3 ENSRNOG00000050251.1 MGC105649        13.324704      2.2234732 0.53985842
## 16 ENSRNOG00000045643.3 AABR07026271.2   5.871765      5.9098751 1.43960720
## 15 ENSRNOG00000047211.1 Fzd3            42.068994      1.2291144 0.30046287
## 9 ENSRNOG00000050660.1 LOC100911713     86.887371     -2.2825034 0.55950762
## 13 ENSRNOG00000058096.1 AABR07021704.1 181.540160      0.6374446 0.15634295
## X ENSRNOG00000002413.6 Gpc4            905.969267      1.2337233 0.30370324
## 4 ENSRNOG00000006726.7 Zfp9             63.475641      1.7474409 0.43325967
## 1 ENSRNOG00000043141.3 Ap3s2           109.562150     -0.6388746 0.15863006
## 3 ENSRNOG00000016488.6 Pltp            212.517369     -0.5918376 0.14757176
## 2 ENSRNOG00000053898.1 AABR07013208.1    8.556559      1.7890899 0.44949227
##                                             stat       pvalue       padj
## 17 ENSRNOG00000053995.1 AABR07027810.4  4.408232 1.042177e-05 0.09005338
## 2 ENSRNOG00000048082.2 AABR07013776.1   4.228250 2.355158e-05 0.09005338
## 5 ENSRNOG00000055453.1 AC127935.1       4.222128 2.420068e-05 0.09005338
## 3 ENSRNOG00000011715.3 AABR07053669.1   4.216128 2.485326e-05 0.09005338
## 2 ENSRNOG00000045639.2 RGD1560883       4.186291 2.835496e-05 0.09005338
## 8 ENSRNOG00000023809.5 Opcml            4.168469 3.066524e-05 0.09005338
## 1 ENSRNOG00000060312.1 LOC108348197    -4.158046 3.209814e-05 0.09005338
## 1 ENSRNOG00000015717.8 Ptpre            4.150447 3.318265e-05 0.09005338
## 7 ENSRNOG00000005551.6 Derl1            4.132542 3.587733e-05 0.09005338
## 5 ENSRNOG00000022953.4 Ccdc163          4.118657 3.810865e-05 0.09005338
## 3 ENSRNOG00000050251.1 MGC105649        4.118623 3.811434e-05 0.09005338
## 16 ENSRNOG00000045643.3 AABR07026271.2  4.105200 4.039656e-05 0.09005338
## 15 ENSRNOG00000047211.1 Fzd3            4.090736 4.300057e-05 0.09005338
## 9 ENSRNOG00000050660.1 LOC100911713    -4.079486 4.513541e-05 0.09005338
## 13 ENSRNOG00000058096.1 AABR07021704.1  4.077220 4.557739e-05 0.09005338
## X ENSRNOG00000002413.6 Gpc4             4.062266 4.859870e-05 0.09005338
## 4 ENSRNOG00000006726.7 Zfp9             4.033242 5.501268e-05 0.09287265
## 1 ENSRNOG00000043141.3 Ap3s2           -4.027449 5.638517e-05 0.09287265
## 3 ENSRNOG00000016488.6 Pltp            -4.010507 6.058844e-05 0.09454348
## 2 ENSRNOG00000053898.1 AABR07013208.1   3.980246 6.884394e-05 0.09690469
write.table(de4,file="de4b.tsv",quote=FALSE,sep="\t")

Session info

sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] gplots_3.1.0                mitch_1.2.2                
##  [3] DESeq2_1.30.0               SummarizedExperiment_1.20.0
##  [5] Biobase_2.50.0              MatrixGenerics_1.2.0       
##  [7] matrixStats_0.57.0          GenomicRanges_1.42.0       
##  [9] GenomeInfoDb_1.26.0         IRanges_2.24.0             
## [11] S4Vectors_0.28.0            BiocGenerics_0.36.0        
## [13] reshape2_1.4.4             
## 
## loaded via a namespace (and not attached):
##  [1] httr_1.4.2             bit64_4.0.5            splines_4.0.3         
##  [4] gtools_3.8.2           shiny_1.5.0            blob_1.2.1            
##  [7] GenomeInfoDbData_1.2.4 yaml_2.2.1             pillar_1.4.6          
## [10] RSQLite_2.2.1          lattice_0.20-41        glue_1.4.2            
## [13] digest_0.6.27          RColorBrewer_1.1-2     promises_1.1.1        
## [16] XVector_0.30.0         colorspace_2.0-0       htmltools_0.5.0       
## [19] httpuv_1.5.4           Matrix_1.2-18          plyr_1.8.6            
## [22] XML_3.99-0.5           pkgconfig_2.0.3        genefilter_1.72.0     
## [25] zlibbioc_1.36.0        purrr_0.3.4            xtable_1.8-4          
## [28] scales_1.1.1           later_1.1.0.1          BiocParallel_1.24.1   
## [31] tibble_3.0.4           annotate_1.68.0        echarts4r_0.3.3       
## [34] generics_0.1.0         ggplot2_3.3.2          ellipsis_0.3.1        
## [37] survival_3.2-7         magrittr_1.5           crayon_1.3.4          
## [40] mime_0.9               evaluate_0.14          memoise_1.1.0         
## [43] GGally_2.0.0           MASS_7.3-53            beeswarm_0.2.3        
## [46] tools_4.0.3            lifecycle_0.2.0        stringr_1.4.0         
## [49] munsell_0.5.0          locfit_1.5-9.4         DelayedArray_0.16.0   
## [52] AnnotationDbi_1.52.0   compiler_4.0.3         caTools_1.18.0        
## [55] rlang_0.4.8            grid_4.0.3             RCurl_1.98-1.2        
## [58] htmlwidgets_1.5.2      rmarkdown_2.5          bitops_1.0-6          
## [61] gtable_0.3.0           DBI_1.1.0              reshape_0.8.8         
## [64] R6_2.5.0               gridExtra_2.3          knitr_1.30            
## [67] dplyr_1.0.2            fastmap_1.0.1          bit_4.0.4             
## [70] KernSmooth_2.23-18     stringi_1.5.3          Rcpp_1.0.5            
## [73] vctrs_0.3.4            geneplotter_1.68.0     tidyselect_1.1.0      
## [76] xfun_0.19