Rats were kept in sedentary conditions or were trained. RNA was isolated from whole cell and mito fractions. Libraries were generated by the Deakin Genomics Facility and sequenced on the NovaSeq system.
Fastqc and MultiQC were run to summarise the QC checks that were done.
Reads were then were mapped to the rat genome build mRatBN7.2 with Ensembl v106 annotations using STAR aligner version 2.7.1a.
imported to R for analysis with DESeq2. Pathway level analysis was then done using mitch with Reactome gene sets.
Import the STAR transcript counts. We can also include some info out of the Ensembl GTF file including gene name and gene class.
# libraries
library("reshape2")
library("DESeq2")
library("mitch")
library("gplots")
library("kableExtra")
# import the 3 column table
tmp<-read.table("3col.tsv.gz",header=F)
# convert the 3 col table into a standard count matrix
x<-as.matrix(acast(tmp, V2~V1, value.var="V3"))
# tidy up the column headers
colnames(x)<-sapply(strsplit(colnames(x),"_"),"[[",1)
head(x)
## 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22
## ENSRNOG00000000001 18 32 15 16 31 18 12 15 49 20 20 22 16 16 18
## ENSRNOG00000000007 8 5 10 6 12 1 6 3 9 8 19 3 5 21 5
## ENSRNOG00000000008 6 46 46 16 25 44 39 23 73 40 54 21 30 64 11
## ENSRNOG00000000009 1 1 0 0 0 1 0 0 0 0 0 0 0 2 0
## ENSRNOG00000000010 0 0 1 1 0 1 0 1 1 0 1 4 2 1 6
## ENSRNOG00000000012 278 678 336 527 702 446 307 347 368 482 501 322 319 906 598
## 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37
## ENSRNOG00000000001 24 29 20 12 27 16 16 16 10 24 26 14 12 30 13 28
## ENSRNOG00000000007 8 2 12 5 11 10 5 11 9 9 6 34 21 41 34 37
## ENSRNOG00000000008 38 14 35 44 62 29 31 32 34 28 22 14 10 17 6 17
## ENSRNOG00000000009 0 0 0 0 0 0 0 0 0 0 0 18 7 20 11 23
## ENSRNOG00000000010 3 3 0 0 0 2 3 1 0 4 0 23 11 24 16 30
## ENSRNOG00000000012 834 630 619 648 867 758 472 493 296 468 289 19 11 10 6 5
## 38 39 4 40 41 42 43 44 45 46 47 48 49 5 50 51 52 53 54
## ENSRNOG00000000001 35 22 13 24 16 17 29 27 36 14 8 26 25 19 19 37 31 31 20
## ENSRNOG00000000007 42 28 6 17 25 18 44 35 41 38 41 32 40 8 49 52 48 33 42
## ENSRNOG00000000008 25 13 18 16 6 8 40 15 17 9 31 6 19 25 17 25 18 13 14
## ENSRNOG00000000009 29 26 0 22 5 8 20 10 22 13 21 7 22 0 27 36 33 22 33
## ENSRNOG00000000010 18 12 0 21 17 14 24 13 20 25 21 13 18 0 25 37 16 24 23
## ENSRNOG00000000012 18 2 247 7 4 6 19 14 13 10 6 11 4 832 15 8 15 10 15
## 55 56 57 58 59 6 60 61 62 63 64 7 8 9 95 96 test
## ENSRNOG00000000001 14 16 21 26 14 18 24 32 33 30 30 14 15 13 0 0 0
## ENSRNOG00000000007 26 38 58 38 34 19 49 44 53 48 41 4 3 6 0 0 0
## ENSRNOG00000000008 25 5 20 12 12 28 22 27 15 18 21 14 14 25 0 0 0
## ENSRNOG00000000009 24 17 28 15 15 0 10 23 21 25 18 0 0 0 0 0 0
## ENSRNOG00000000010 24 24 17 27 27 0 25 27 26 30 32 0 2 0 0 0 0
## ENSRNOG00000000012 6 7 12 8 5 646 10 10 9 10 4 351 269 438 3 33 0
#dont forget gene names
g<-read.table("../ref2/Rattus_norvegicus.mRatBN7.2.106.gnames.txt",row.names=1)
g$gene_ID <- paste(rownames(g),g$V2,g$V3)
head(g)
## V2 V3
## ENSRNOG00000066169 na protein_coding
## ENSRNOG00000070168 Olr56 protein_coding
## ENSRNOG00000070901 Irgq protein_coding
## ENSRNOG00000018029 Doc2g protein_coding
## ENSRNOG00000031391 Ceacam16 protein_coding
## ENSRNOG00000055342 U7 snRNA
## gene_ID
## ENSRNOG00000066169 ENSRNOG00000066169 na protein_coding
## ENSRNOG00000070168 ENSRNOG00000070168 Olr56 protein_coding
## ENSRNOG00000070901 ENSRNOG00000070901 Irgq protein_coding
## ENSRNOG00000018029 ENSRNOG00000018029 Doc2g protein_coding
## ENSRNOG00000031391 ENSRNOG00000031391 Ceacam16 protein_coding
## ENSRNOG00000055342 ENSRNOG00000055342 U7 snRNA
g <- g[,ncol(g),drop=FALSE]
x<-merge(g,x,by=0)
x[,1]=NULL
rownames(x) <- x[,1]
x[,1]=NULL
x$test=NULL
head(x)
## 1 10 11 12 13 14 15 16 17
## ENSRNOG00000000001 Arsj protein_coding 18 32 15 16 31 18 12 15 49
## ENSRNOG00000000007 Gad1 protein_coding 8 5 10 6 12 1 6 3 9
## ENSRNOG00000000008 Alx4 protein_coding 6 46 46 16 25 44 39 23 73
## ENSRNOG00000000009 Tmco5b protein_coding 1 1 0 0 0 1 0 0 0
## ENSRNOG00000000010 Cbln1 protein_coding 0 0 1 1 0 1 0 1 1
## ENSRNOG00000000012 Tcf15 protein_coding 278 678 336 527 702 446 307 347 368
## 18 19 2 20 21 22 23 24 25
## ENSRNOG00000000001 Arsj protein_coding 20 20 22 16 16 18 24 29 20
## ENSRNOG00000000007 Gad1 protein_coding 8 19 3 5 21 5 8 2 12
## ENSRNOG00000000008 Alx4 protein_coding 40 54 21 30 64 11 38 14 35
## ENSRNOG00000000009 Tmco5b protein_coding 0 0 0 0 2 0 0 0 0
## ENSRNOG00000000010 Cbln1 protein_coding 0 1 4 2 1 6 3 3 0
## ENSRNOG00000000012 Tcf15 protein_coding 482 501 322 319 906 598 834 630 619
## 26 27 28 29 3 30 31 32 33 34
## ENSRNOG00000000001 Arsj protein_coding 12 27 16 16 16 10 24 26 14 12
## ENSRNOG00000000007 Gad1 protein_coding 5 11 10 5 11 9 9 6 34 21
## ENSRNOG00000000008 Alx4 protein_coding 44 62 29 31 32 34 28 22 14 10
## ENSRNOG00000000009 Tmco5b protein_coding 0 0 0 0 0 0 0 0 18 7
## ENSRNOG00000000010 Cbln1 protein_coding 0 0 2 3 1 0 4 0 23 11
## ENSRNOG00000000012 Tcf15 protein_coding 648 867 758 472 493 296 468 289 19 11
## 35 36 37 38 39 4 40 41 42 43 44 45
## ENSRNOG00000000001 Arsj protein_coding 30 13 28 35 22 13 24 16 17 29 27 36
## ENSRNOG00000000007 Gad1 protein_coding 41 34 37 42 28 6 17 25 18 44 35 41
## ENSRNOG00000000008 Alx4 protein_coding 17 6 17 25 13 18 16 6 8 40 15 17
## ENSRNOG00000000009 Tmco5b protein_coding 20 11 23 29 26 0 22 5 8 20 10 22
## ENSRNOG00000000010 Cbln1 protein_coding 24 16 30 18 12 0 21 17 14 24 13 20
## ENSRNOG00000000012 Tcf15 protein_coding 10 6 5 18 2 247 7 4 6 19 14 13
## 46 47 48 49 5 50 51 52 53 54 55 56
## ENSRNOG00000000001 Arsj protein_coding 14 8 26 25 19 19 37 31 31 20 14 16
## ENSRNOG00000000007 Gad1 protein_coding 38 41 32 40 8 49 52 48 33 42 26 38
## ENSRNOG00000000008 Alx4 protein_coding 9 31 6 19 25 17 25 18 13 14 25 5
## ENSRNOG00000000009 Tmco5b protein_coding 13 21 7 22 0 27 36 33 22 33 24 17
## ENSRNOG00000000010 Cbln1 protein_coding 25 21 13 18 0 25 37 16 24 23 24 24
## ENSRNOG00000000012 Tcf15 protein_coding 10 6 11 4 832 15 8 15 10 15 6 7
## 57 58 59 6 60 61 62 63 64 7 8
## ENSRNOG00000000001 Arsj protein_coding 21 26 14 18 24 32 33 30 30 14 15
## ENSRNOG00000000007 Gad1 protein_coding 58 38 34 19 49 44 53 48 41 4 3
## ENSRNOG00000000008 Alx4 protein_coding 20 12 12 28 22 27 15 18 21 14 14
## ENSRNOG00000000009 Tmco5b protein_coding 28 15 15 0 10 23 21 25 18 0 0
## ENSRNOG00000000010 Cbln1 protein_coding 17 27 27 0 25 27 26 30 32 0 2
## ENSRNOG00000000012 Tcf15 protein_coding 12 8 5 646 10 10 9 10 4 351 269
## 9 95 96
## ENSRNOG00000000001 Arsj protein_coding 13 0 0
## ENSRNOG00000000007 Gad1 protein_coding 6 0 0
## ENSRNOG00000000008 Alx4 protein_coding 25 0 0
## ENSRNOG00000000009 Tmco5b protein_coding 0 0 0
## ENSRNOG00000000010 Cbln1 protein_coding 0 0 0
## ENSRNOG00000000012 Tcf15 protein_coding 438 3 33
write.table(x,file="countmatrix_skeletal.tsv",quote=FALSE,sep="\t")
y <- x/colSums(x)*1000000
write.table(y,file="rpmmatrix_skeletal.tsv",quote=FALSE,sep="\t")
samplesheet <- read.table("samplesheet.tsv",header=TRUE)
samplesheet$UDI <- gsub("UDI_0","",samplesheet$UDI)
samplesheet$UDI <- gsub("UDI_","",samplesheet$UDI)
samplesheet$label <- paste(samplesheet$fraction,samplesheet$Group)
samplesheet <- samplesheet[order(samplesheet$UDI),]
samplesheet %>% kbl() %>% kable_paper("hover", full_width = F)
UDI | fraction | Group | RatID | label | |
---|---|---|---|---|---|
1 | 1 | wholetissue | T | 1 | wholetissue T |
10 | 10 | wholetissue | T | 10 | wholetissue T |
11 | 11 | wholetissue | S | 11 | wholetissue S |
12 | 12 | wholetissue | S | 12 | wholetissue S |
13 | 13 | wholetissue | T | 13 | wholetissue T |
14 | 14 | wholetissue | T | 14 | wholetissue T |
15 | 15 | wholetissue | S | 15 | wholetissue S |
16 | 16 | wholetissue | S | 16 | wholetissue S |
17 | 17 | wholetissue | T | 17 | wholetissue T |
18 | 18 | wholetissue | T | 18 | wholetissue T |
19 | 19 | wholetissue | S | 19 | wholetissue S |
2 | 2 | wholetissue | T | 2 | wholetissue T |
20 | 20 | wholetissue | S | 20 | wholetissue S |
21 | 21 | wholetissue | T | 21 | wholetissue T |
22 | 22 | wholetissue | T | 22 | wholetissue T |
23 | 23 | wholetissue | S | 23 | wholetissue S |
24 | 24 | wholetissue | S | 24 | wholetissue S |
25 | 25 | wholetissue | T | 25 | wholetissue T |
26 | 26 | wholetissue | T | 26 | wholetissue T |
27 | 27 | wholetissue | T | 27 | wholetissue T |
28 | 28 | wholetissue | T | 28 | wholetissue T |
29 | 29 | wholetissue | S | 29 | wholetissue S |
3 | 3 | wholetissue | S | 3 | wholetissue S |
30 | 30 | wholetissue | S | 30 | wholetissue S |
31 | 31 | wholetissue | S | 31 | wholetissue S |
32 | 32 | wholetissue | S | 32 | wholetissue S |
33 | 33 | mito | T | 1 | mito T |
34 | 34 | mito | T | 2 | mito T |
35 | 35 | mito | S | 3 | mito S |
36 | 36 | mito | S | 4 | mito S |
37 | 37 | mito | T | 5 | mito T |
38 | 38 | mito | T | 6 | mito T |
39 | 39 | mito | S | 7 | mito S |
4 | 4 | wholetissue | S | 4 | wholetissue S |
40 | 40 | mito | S | 8 | mito S |
41 | 41 | mito | T | 9 | mito T |
42 | 42 | mito | T | 10 | mito T |
43 | 43 | mito | S | 11 | mito S |
44 | 44 | mito | S | 12 | mito S |
45 | 45 | mito | T | 13 | mito T |
46 | 46 | mito | T | 14 | mito T |
47 | 47 | mito | S | 15 | mito S |
48 | 48 | mito | S | 16 | mito S |
49 | 49 | mito | T | 17 | mito T |
5 | 5 | wholetissue | T | 5 | wholetissue T |
50 | 50 | mito | T | 18 | mito T |
51 | 51 | mito | S | 19 | mito S |
52 | 52 | mito | S | 20 | mito S |
53 | 53 | mito | T | 21 | mito T |
54 | 54 | mito | T | 22 | mito T |
55 | 55 | mito | S | 23 | mito S |
56 | 56 | mito | S | 24 | mito S |
57 | 57 | mito | T | 25 | mito T |
58 | 58 | mito | T | 26 | mito T |
59 | 59 | mito | T | 27 | mito T |
6 | 6 | wholetissue | T | 6 | wholetissue T |
60 | 60 | mito | T | 28 | mito T |
61 | 61 | mito | S | 29 | mito S |
62 | 62 | mito | S | 30 | mito S |
63 | 63 | mito | S | 31 | mito S |
64 | 64 | mito | S | 32 | mito S |
7 | 7 | wholetissue | S | 7 | wholetissue S |
8 | 8 | wholetissue | S | 8 | wholetissue S |
9 | 9 | wholetissue | T | 9 | wholetissue T |
Sample 95 is a HUMAN mito control sample. Sample 96 is a RAT mito control sample. These should be excluded from main results.
ss <- samplesheet
ss <- ss[order(ss$UDI),]
colours = c('pink', 'lightblue','lightgreen','gray')
mds <- cmdscale(dist(t(x)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2, pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
col = colours[as.factor(ss$label)] , type = "p" ,
xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(x) )
legend('topright', col=colours, legend=levels(as.factor(ss$label)), pch = 16, cex = 1)
x <- x[,which(! colnames(x) %in% c("95","96"))]
colours = c('pink', 'lightblue','lightgreen','gray')
mds <- cmdscale(dist(t(x)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2, pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
col = colours[as.factor(ss$label)] , type = "p" ,
xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(x) )
legend('topright', col=colours, legend=levels(as.factor(ss$label)), pch = 16, cex = 1)
ss$nreads<-colSums(x)
par(mar=c(5,10,5,3))
barplot(colSums(x),horiz=TRUE,las=2,main="number of reads per sample",cex.names=0.5)
par(mai=c(1.02,0.82,0.82,0.42))
Here I’m quantifying the mitochondrial read fraction. That is the number of mt reads divided by the total number of reads. We can see that purity is highly variable.
par(mar=c(5,10,5,3))
mtgenes <- c("ENSRNOG00000029042",
"ENSRNOG00000029070",
"ENSRNOG00000029145",
"ENSRNOG00000029171",
"ENSRNOG00000029301",
"ENSRNOG00000029389",
"ENSRNOG00000029677",
"ENSRNOG00000029707",
"ENSRNOG00000029954",
"ENSRNOG00000029971",
"ENSRNOG00000030339",
"ENSRNOG00000030371",
"ENSRNOG00000030478",
"ENSRNOG00000030644",
"ENSRNOG00000030700",
"ENSRNOG00000031033",
"ENSRNOG00000031053",
"ENSRNOG00000031333",
"ENSRNOG00000031667",
"ENSRNOG00000031685",
"ENSRNOG00000031766",
"ENSRNOG00000031780",
"ENSRNOG00000031979",
"ENSRNOG00000032112",
"ENSRNOG00000032274",
"ENSRNOG00000032320",
"ENSRNOG00000032578",
"ENSRNOG00000032609",
"ENSRNOG00000032882",
"ENSRNOG00000032997",
"ENSRNOG00000033299",
"ENSRNOG00000033545",
"ENSRNOG00000033615",
"ENSRNOG00000033932",
"ENSRNOG00000033957",
"ENSRNOG00000034234",
"ENSRNOG00000043866")
mtcounts <- lapply(mtgenes, function(i) { x[grep(i,rownames(x)),] } )
mtcounts <- do.call(rbind,mtcounts)
mtfrac<- colSums(mtcounts)/colSums(x)
barplot(mtfrac,horiz=TRUE,las=2,main="Proportion mitochondrial reads",cex.names=1)
par(mai=c(1.02,0.82,0.82,0.42))
mylevels <- levels(as.factor(ss$label))
mylevels
## [1] "mito S" "mito T" "wholetissue S" "wholetissue T"
y <- x[,which(ss$label==mylevels[1])]
mitoS <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)
y <- x[,which(ss$label==mylevels[2])]
mitoT <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)
y <- x[,which(ss$label==mylevels[3])]
wholeS <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)
y <- x[,which(ss$label==mylevels[4])]
wholeT <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)
boxplot(mitoS,mitoT,wholeS,wholeT,names=mylevels,ylab="mito frac")
median(wholeS)
## [1] 0
median(wholeT)
## [1] 0
table(mitoS>0.4)
##
## FALSE
## 16
table(mitoT>0.4)
##
## FALSE
## 16
ss$mtfrac <- mtfrac
ss %>% kbl() %>% kable_paper("hover", full_width = F)
UDI | fraction | Group | RatID | label | nreads | mtfrac | |
---|---|---|---|---|---|---|---|
1 | 1 | wholetissue | T | 1 | wholetissue T | 22353545 | 0.2350623 |
10 | 10 | wholetissue | T | 10 | wholetissue T | 32594141 | 0.3531781 |
11 | 11 | wholetissue | S | 11 | wholetissue S | 28160771 | 0.3290185 |
12 | 12 | wholetissue | S | 12 | wholetissue S | 30053603 | 0.2640899 |
13 | 13 | wholetissue | T | 13 | wholetissue T | 29989340 | 0.2972082 |
14 | 14 | wholetissue | T | 14 | wholetissue T | 27775661 | 0.3282823 |
15 | 15 | wholetissue | S | 15 | wholetissue S | 25070009 | 0.3071025 |
16 | 16 | wholetissue | S | 16 | wholetissue S | 27766116 | 0.3024493 |
17 | 17 | wholetissue | T | 17 | wholetissue T | 30401193 | 0.3348082 |
18 | 18 | wholetissue | T | 18 | wholetissue T | 33702596 | 0.3547981 |
19 | 19 | wholetissue | S | 19 | wholetissue S | 30788467 | 0.3233271 |
2 | 2 | wholetissue | T | 2 | wholetissue T | 19477976 | 0.3181207 |
20 | 20 | wholetissue | S | 20 | wholetissue S | 30589099 | 0.3209945 |
21 | 21 | wholetissue | T | 21 | wholetissue T | 39401323 | 0.3400537 |
22 | 22 | wholetissue | T | 22 | wholetissue T | 27353327 | 0.3221241 |
23 | 23 | wholetissue | S | 23 | wholetissue S | 32055355 | 0.3547227 |
24 | 24 | wholetissue | S | 24 | wholetissue S | 28630316 | 0.2413714 |
25 | 25 | wholetissue | T | 25 | wholetissue T | 34339726 | 0.2938285 |
26 | 26 | wholetissue | T | 26 | wholetissue T | 28163757 | 0.2587561 |
27 | 27 | wholetissue | T | 27 | wholetissue T | 30543678 | 0.3380834 |
28 | 28 | wholetissue | T | 28 | wholetissue T | 30906624 | 0.2776614 |
29 | 29 | wholetissue | S | 29 | wholetissue S | 24309444 | 0.3591212 |
3 | 3 | wholetissue | S | 3 | wholetissue S | 23906716 | 0.3067514 |
30 | 30 | wholetissue | S | 30 | wholetissue S | 26615136 | 0.2724498 |
31 | 31 | wholetissue | S | 31 | wholetissue S | 27019886 | 0.3536612 |
32 | 32 | wholetissue | S | 32 | wholetissue S | 20876971 | 0.3177831 |
33 | 33 | mito | T | 1 | mito T | 5474018 | 0.8850587 |
34 | 34 | mito | T | 2 | mito T | 9988027 | 0.9542655 |
35 | 35 | mito | S | 3 | mito S | 1469458 | 0.4723449 |
36 | 36 | mito | S | 4 | mito S | 1168009 | 0.5294668 |
37 | 37 | mito | T | 5 | mito T | 1353729 | 0.4835828 |
38 | 38 | mito | T | 6 | mito T | 914913 | 0.1714841 |
39 | 39 | mito | S | 7 | mito S | 1780282 | 0.6982787 |
4 | 4 | wholetissue | S | 4 | wholetissue S | 25823475 | 0.2520651 |
40 | 40 | mito | S | 8 | mito S | 712067 | 0.2883577 |
41 | 41 | mito | T | 9 | mito T | 581457 | 0.1897888 |
42 | 42 | mito | T | 10 | mito T | 530397 | 0.1889811 |
43 | 43 | mito | S | 11 | mito S | 1700043 | 0.4096285 |
44 | 44 | mito | S | 12 | mito S | 720111 | 0.2030354 |
45 | 45 | mito | T | 13 | mito T | 971953 | 0.2654881 |
46 | 46 | mito | T | 14 | mito T | 1086442 | 0.4345745 |
47 | 47 | mito | S | 15 | mito S | 8344505 | 0.9222841 |
48 | 48 | mito | S | 16 | mito S | 1296403 | 0.5776151 |
49 | 49 | mito | T | 17 | mito T | 1010393 | 0.2873624 |
5 | 5 | wholetissue | T | 5 | wholetissue T | 30755504 | 0.3586038 |
50 | 50 | mito | T | 18 | mito T | 1316551 | 0.3568658 |
51 | 51 | mito | S | 19 | mito S | 1483811 | 0.2887012 |
52 | 52 | mito | S | 20 | mito S | 3085085 | 0.7437176 |
53 | 53 | mito | T | 21 | mito T | 1628001 | 0.5591495 |
54 | 54 | mito | T | 22 | mito T | 1252520 | 0.3879571 |
55 | 55 | mito | S | 23 | mito S | 888159 | 0.1293935 |
56 | 56 | mito | S | 24 | mito S | 2133695 | 0.6219164 |
57 | 57 | mito | T | 25 | mito T | 1841975 | 0.5667390 |
58 | 58 | mito | T | 26 | mito T | 3802593 | 0.7906639 |
59 | 59 | mito | T | 27 | mito T | 7532868 | 0.9057456 |
6 | 6 | wholetissue | T | 6 | wholetissue T | 26148398 | 0.3245408 |
60 | 60 | mito | T | 28 | mito T | 6001091 | 0.8726930 |
61 | 61 | mito | S | 29 | mito S | 1785865 | 0.5147013 |
62 | 62 | mito | S | 30 | mito S | 1474773 | 0.4122207 |
63 | 63 | mito | S | 31 | mito S | 1503193 | 0.4336855 |
64 | 64 | mito | S | 32 | mito S | 4091353 | 0.8123151 |
7 | 7 | wholetissue | S | 7 | wholetissue S | 25564135 | 0.2969021 |
8 | 8 | wholetissue | S | 8 | wholetissue S | 22385138 | 0.2206553 |
9 | 9 | wholetissue | T | 9 | wholetissue T | 24737507 | 0.3535222 |
mito <- subset(ss,fraction=="mito")
plot(mito$nreads,mito$mtfrac,pch=19,col="lightblue",xlab="No. reads", ylab="mtDNA proportion",cex=3)
text(mito$nreads,mito$mtfrac,labels=mito$RatID)
abline(h=0.4,v=6E6,col="red")
plot(mito$nreads,mito$mtfrac,pch=19,col="lightblue",xlab="No. reads", ylab="mtDNA proportion",cex=3)
text(mito$nreads,mito$mtfrac,labels=mito$Group)
abline(h=0.4,v=6E6,col="red")
run_de <- function(ss,xx){
y <- round(xx)
# MDS
colours = c('yellow', 'orange')
mds <- cmdscale(dist(t(y)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2 , pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
col = colours[as.factor(ss$trt)] , type = "p" ,
xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(y) )
legend('topright', col=colours, legend=c("ctrl","trt"), pch = 16, cex = 1.5)
# DE
dds <- DESeqDataSetFromMatrix(countData=y, colData = ss, design = ~ trt)
dds <- DESeq(dds)
de <- DESeq2::results(dds)
de <- de[order(de$pvalue),]
up <- rownames(subset(de, log2FoldChange>0 & padj<0.05 ))
dn <- rownames(subset(de, log2FoldChange<0 & padj<0.05 ))
str(up)
str(dn)
# MA plot
sig <-subset(de, padj < 0.05 )
GENESUP <- length(up)
GENESDN <- length(dn)
SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down")
ns <-subset(de, padj > 0.05 )
plot(log2(de$baseMean),de$log2FoldChange,
xlab="log2 basemean", ylab="log2 foldchange",
pch=19, cex=0.5, col="dark gray",
main="smear plot")
points(log2(sig$baseMean),sig$log2FoldChange,
pch=19, cex=0.5, col="red")
mtext(SUBHEADER)
# heatmap
yn <- y/colSums(y)*1000000
yf <- yn[which(rownames(yn) %in% rownames(de)[1:50]),]
mycols <- gsub("0","yellow",ss$trt)
mycols <- gsub("1","orange",mycols)
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2( as.matrix(yf), col=colfunc(25),scale="row",
ColSideColors =mycols ,trace="none",
margin = c(10,15), cexRow=0.6, cexCol=0.8 , main="Top 50 genes by p-val")
mtext("yellow=ctrl, orange=trt")
de <- merge(as.data.frame(de),yn,by=0)
rownames(de) <- de[,1]
de[,1]=NULL
return(de)
}
# covariate
run_de_cov <- function(ss,xx){
y <- round(xx)
# MDS
colours = c('yellow', 'orange')
mds <- cmdscale(dist(t(y)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2 , pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
col = colours[as.factor(ss$trt)] , type = "p" ,
xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(y) )
legend('topright', col=colours, legend=c("ctrl","trt"), pch = 16, cex = 1.5)
# DE
dds <- DESeqDataSetFromMatrix(countData=y, colData = ss, design = ~ mtfrac + trt)
dds <- DESeq(dds)
de <- DESeq2::results(dds)
de <- de[order(de$pvalue),]
up <- rownames(subset(de, log2FoldChange>0 & padj<0.05 ))
dn <- rownames(subset(de, log2FoldChange<0 & padj<0.05 ))
str(up)
str(dn)
# MA plot
sig <-subset(de, padj < 0.05 )
GENESUP <- length(up)
GENESDN <- length(dn)
SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down")
ns <-subset(de, padj > 0.05 )
plot(log2(de$baseMean),de$log2FoldChange,
xlab="log2 basemean", ylab="log2 foldchange",
pch=19, cex=0.5, col="dark gray",
main="smear plot")
points(log2(sig$baseMean),sig$log2FoldChange,
pch=19, cex=0.5, col="red")
mtext(SUBHEADER)
# heatmap
yn <- y/colSums(y)*1000000
yf <- yn[which(rownames(yn) %in% rownames(de)[1:50]),]
mycols <- gsub("0","yellow",ss$trt)
mycols <- gsub("1","orange",mycols)
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2( as.matrix(yf), col=colfunc(25),scale="row",
ColSideColors =mycols ,trace="none",
margin = c(10,15), cexRow=0.6, cexCol=0.8 , main="Top 50 genes by p-val")
mtext("yellow=ctrl, orange=trt")
de <- merge(as.data.frame(de),yn,by=0)
rownames(de) <- de[,1]
de[,1]=NULL
return(de)
}
Whole tissue S versus T
Mito fraction S versus T
Whole versus mito fraction in S
Whole versus mito fraction in T
ss1 <- subset(samplesheet,fraction=="wholetissue")
ss1$trt <- grepl("T",ss1$Group)*1
x1 <- x[,which(colnames(x) %in% rownames(ss1))]
ss2 <- subset(samplesheet,fraction=="mito")
ss2$trt <- grepl("T",ss2$Group)*1
x2 <- x[,which(colnames(x) %in% rownames(ss2))]
ss3 <- subset(samplesheet,Group=="S")
ss3$trt <- grepl("mito",ss3$fraction)*1
x3 <- x[,which(colnames(x) %in% rownames(ss3))]
ss4 <- subset(samplesheet,Group=="T")
ss4$trt <- grepl("mito",ss4$fraction)*1
x4 <- x[,which(colnames(x) %in% rownames(ss4))]
ss5 <- subset(mito,nreads>6E6 & mtfrac>0.4)
ss5$trt <- grepl("T",ss5$Group)*1
x5 <- x[,which(colnames(x) %in% rownames(ss5))]
Here, were using DESeq2 to perform differential expression analysis for the specified contrasts. The run_de function does the analysis and generate the charts. Here we actually run the analysis.
Whole tissue S versus T: 1 DEG
Mito fraction S versus T: 0 DEGs
Whole versus mito fraction in S: 22754 DEGs
Whole versus mito fraction in T: 22406 DEGs
These results suggest that:
The differences between S and T are very subtle.
Intra-group variation is fairly large.
ss1 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI | fraction | Group | RatID | label | trt | |
---|---|---|---|---|---|---|
1 | 1 | wholetissue | T | 1 | wholetissue T | 1 |
10 | 10 | wholetissue | T | 10 | wholetissue T | 1 |
11 | 11 | wholetissue | S | 11 | wholetissue S | 0 |
12 | 12 | wholetissue | S | 12 | wholetissue S | 0 |
13 | 13 | wholetissue | T | 13 | wholetissue T | 1 |
14 | 14 | wholetissue | T | 14 | wholetissue T | 1 |
15 | 15 | wholetissue | S | 15 | wholetissue S | 0 |
16 | 16 | wholetissue | S | 16 | wholetissue S | 0 |
17 | 17 | wholetissue | T | 17 | wholetissue T | 1 |
18 | 18 | wholetissue | T | 18 | wholetissue T | 1 |
19 | 19 | wholetissue | S | 19 | wholetissue S | 0 |
2 | 2 | wholetissue | T | 2 | wholetissue T | 1 |
20 | 20 | wholetissue | S | 20 | wholetissue S | 0 |
21 | 21 | wholetissue | T | 21 | wholetissue T | 1 |
22 | 22 | wholetissue | T | 22 | wholetissue T | 1 |
23 | 23 | wholetissue | S | 23 | wholetissue S | 0 |
24 | 24 | wholetissue | S | 24 | wholetissue S | 0 |
25 | 25 | wholetissue | T | 25 | wholetissue T | 1 |
26 | 26 | wholetissue | T | 26 | wholetissue T | 1 |
27 | 27 | wholetissue | T | 27 | wholetissue T | 1 |
28 | 28 | wholetissue | T | 28 | wholetissue T | 1 |
29 | 29 | wholetissue | S | 29 | wholetissue S | 0 |
3 | 3 | wholetissue | S | 3 | wholetissue S | 0 |
30 | 30 | wholetissue | S | 30 | wholetissue S | 0 |
31 | 31 | wholetissue | S | 31 | wholetissue S | 0 |
32 | 32 | wholetissue | S | 32 | wholetissue S | 0 |
4 | 4 | wholetissue | S | 4 | wholetissue S | 0 |
5 | 5 | wholetissue | T | 5 | wholetissue T | 1 |
6 | 6 | wholetissue | T | 6 | wholetissue T | 1 |
7 | 7 | wholetissue | S | 7 | wholetissue S | 0 |
8 | 8 | wholetissue | S | 8 | wholetissue S | 0 |
9 | 9 | wholetissue | T | 9 | wholetissue T | 1 |
de1 <- run_de(ss1,x1)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 214 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## chr [1:15] "ENSRNOG00000019961 Tcte1 protein_coding" ...
## chr "ENSRNOG00000016581 Serpinb1a protein_coding"
as.data.frame(de1[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 1 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 2 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 3 | 30 | 31 | 32 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000000001 Arsj protein_coding | 19.5250941 | 0.1851575 | 0.1862240 | 0.9942731 | 0.3200899 | 0.7983311 | 0.8052414 | 1.4315403 | 0.6710345 | 0.7157701 | 1.3868046 | 0.8052414 | 0.5368276 | 0.6710345 | 2.1920460 | 0.8947127 | 0.8947127 | 0.9841839 | 0.7157701 | 0.7157701 | 0.8052414 | 1.0736552 | 1.2973334 | 0.8947127 | 0.5368276 | 1.2078621 | 0.7157701 | 0.7157701 | 0.7157701 | 0.4473563 | 1.0736552 | 1.1631265 | 0.5815632 | 0.8499770 | 0.8052414 | 0.6262989 | 0.6710345 | 0.5815632 |
ENSRNOG00000000007 Gad1 protein_coding | 7.6926925 | 0.1888669 | 0.2841229 | 0.6647367 | 0.5062189 | 0.8818083 | 0.2454429 | 0.1534018 | 0.3068036 | 0.1840822 | 0.3681643 | 0.0306804 | 0.1840822 | 0.0920411 | 0.2761232 | 0.2454429 | 0.5829269 | 0.0920411 | 0.1534018 | 0.6442876 | 0.1534018 | 0.2454429 | 0.0613607 | 0.3681643 | 0.1534018 | 0.3374840 | 0.3068036 | 0.1534018 | 0.3374840 | 0.2761232 | 0.2761232 | 0.1840822 | 0.1840822 | 0.2454429 | 0.5829269 | 0.1227214 | 0.0920411 | 0.1840822 |
ENSRNOG00000000008 Alx4 protein_coding | 31.2722329 | 0.1822232 | 0.2237965 | 0.8142362 | 0.4155096 | 0.8440259 | 0.2130623 | 1.6334780 | 1.6334780 | 0.5681663 | 0.8877598 | 1.5624572 | 1.3849053 | 0.8167390 | 2.5922586 | 1.4204157 | 1.9175611 | 0.7457182 | 1.0653117 | 2.2726650 | 0.3906143 | 1.3493949 | 0.4971455 | 1.2428637 | 1.5624572 | 2.2016443 | 1.0298014 | 1.1008221 | 1.1363325 | 1.2073533 | 0.9942910 | 0.7812286 | 0.6391870 | 0.8877598 | 0.9942910 | 0.4971455 | 0.4971455 | 0.8877598 |
ENSRNOG00000000009 Tmco5b protein_coding | 0.1412217 | 0.7722730 | 2.0757455 | 0.3720461 | 0.7098585 | NA | 0.0332739 | 0.0332739 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0332739 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0665478 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
ENSRNOG00000000010 Cbln1 protein_coding | 1.1882585 | -0.5604697 | 0.7603507 | -0.7371199 | 0.4610494 | 0.8623395 | 0.0000000 | 0.0000000 | 0.0333452 | 0.0333452 | 0.0000000 | 0.0333452 | 0.0000000 | 0.0333452 | 0.0333452 | 0.0000000 | 0.0333452 | 0.1333807 | 0.0666904 | 0.0333452 | 0.2000711 | 0.1000355 | 0.1000355 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0666904 | 0.1000355 | 0.0333452 | 0.0000000 | 0.1333807 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0666904 | 0.0000000 |
ENSRNOG00000000012 Tcf15 protein_coding | 488.8633289 | 0.3824149 | 0.1242079 | 3.0788299 | 0.0020782 | 0.2114262 | 10.0087627 | 24.4098601 | 12.0969218 | 18.9734459 | 25.2739260 | 16.0572236 | 11.0528423 | 12.4929520 | 13.2490096 | 17.3533224 | 18.0373745 | 11.5928834 | 11.4848752 | 32.6184857 | 21.5296406 | 30.0262881 | 22.6817284 | 22.2856983 | 23.3297778 | 31.2143787 | 27.2900796 | 16.9932950 | 17.7493526 | 10.6568121 | 16.8492840 | 10.4047929 | 8.8926777 | 29.9542826 | 23.2577723 | 12.6369630 | 9.6847380 | 15.7692017 |
ENSRNOG00000000017 Steap1 protein_coding | 0.6812740 | -1.6951967 | 1.0207209 | -1.6607838 | 0.0967569 | NA | 0.0000000 | 0.0000000 | 0.0797766 | 0.0797766 | 0.0398883 | 0.0000000 | 0.0000000 | 0.0000000 | 0.1196649 | 0.0000000 | 0.0398883 | 0.0398883 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0797766 | 0.1595532 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.1196649 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.1196649 | 0.0000000 |
ENSRNOG00000000021 AABR07061902.1 protein_coding | 0.0286358 | 0.0509230 | 2.9741591 | 0.0171218 | 0.9863394 | NA | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0360151 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
ENSRNOG00000000024 Hebp1 protein_coding | 59.0108585 | 0.0369259 | 0.0997940 | 0.3700210 | 0.7113668 | 0.9420024 | 1.3157378 | 3.0261970 | 2.5656888 | 1.9407133 | 2.7959429 | 1.7104592 | 1.6117789 | 1.7104592 | 2.4999019 | 2.0065002 | 1.8749264 | 1.1841641 | 2.4341150 | 2.4999019 | 2.4670084 | 2.6314757 | 2.4341150 | 1.8749264 | 2.1380740 | 2.5656888 | 2.4012216 | 1.6775657 | 1.7762461 | 1.5788854 | 2.0065002 | 1.0525903 | 1.2828444 | 1.8091395 | 2.2367543 | 2.2696478 | 1.2170575 | 1.2828444 |
ENSRNOG00000000033 Tmcc2 protein_coding | 1002.6860405 | 0.0004456 | 0.0798111 | 0.0055826 | 0.9955458 | 0.9989304 | 31.4219118 | 29.8790040 | 23.0842752 | 35.4275380 | 33.9143014 | 29.3745918 | 26.3481187 | 29.0185361 | 31.3922405 | 35.3978667 | 30.0570318 | 18.9302925 | 34.1220006 | 36.3770197 | 32.1933658 | 24.8052109 | 39.7595485 | 40.2342894 | 36.1989919 | 39.7298772 | 39.1364511 | 25.0129100 | 27.5052996 | 33.2615327 | 23.3809882 | 14.7466385 | 32.9054771 | 27.8910266 | 27.8020126 | 31.8669814 | 29.9086753 | 18.9896351 |
ENSRNOG00000000034 Nuak2 protein_coding | 59.9809533 | 0.1199926 | 0.1371948 | 0.8746146 | 0.3817836 | 0.8278052 | 1.9812614 | 2.6958146 | 2.3385380 | 2.1436598 | 2.7607740 | 1.7214238 | 1.7863832 | 1.6239847 | 2.0137411 | 1.2342284 | 1.7539035 | 1.2667081 | 1.3641472 | 1.9487817 | 2.4034974 | 3.3454085 | 3.1505304 | 2.8257334 | 2.2735786 | 3.7026852 | 1.3316675 | 1.5265456 | 1.3316675 | 1.0718299 | 2.1436598 | 1.2342284 | 1.4615862 | 2.9881319 | 1.7539035 | 2.1436598 | 1.0393502 | 1.7539035 |
ENSRNOG00000000035 Tmed11 protein_coding | 0.0000000 | NA | NA | NA | NA | NA | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
ENSRNOG00000000036 Klhdc8a protein_coding | 2.5911505 | -0.2780132 | 0.5489821 | -0.5064157 | 0.6125648 | 0.9165793 | 0.0326914 | 0.2288397 | 0.0000000 | 0.1307655 | 0.0326914 | 0.1961483 | 0.0653828 | 0.0000000 | 0.2615311 | 0.0000000 | 0.0653828 | 0.0000000 | 0.0000000 | 0.0653828 | 0.0980742 | 0.0653828 | 0.0326914 | 0.1634569 | 0.0653828 | 0.0653828 | 0.0326914 | 0.0980742 | 0.1961483 | 0.0980742 | 0.1307655 | 0.0326914 | 0.0326914 | 0.0000000 | 0.0000000 | 0.0653828 | 0.3596052 | 0.0653828 |
ENSRNOG00000000040 RGD1304622 protein_coding | 126.7630749 | -0.0264477 | 0.0800284 | -0.3304793 | 0.7410379 | 0.9488852 | 2.9186837 | 4.2891961 | 3.0709629 | 4.1876766 | 3.9592579 | 3.0963427 | 1.9288692 | 3.7308392 | 3.1978622 | 3.7815989 | 2.8425441 | 2.1065283 | 3.7562190 | 3.7815989 | 2.9186837 | 2.7410247 | 4.5429947 | 3.1724823 | 3.4262809 | 3.7815989 | 3.4262809 | 2.6648851 | 2.9694434 | 3.2486219 | 3.0202032 | 1.8781095 | 3.5278003 | 4.1876766 | 3.6546996 | 3.3755212 | 3.0202032 | 2.5633657 |
ENSRNOG00000000041 Slc26a1 protein_coding | 1.2304535 | 2.0624148 | 1.0491798 | 1.9657400 | 0.0493286 | 0.5348888 | 0.4021449 | 0.0365586 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0365586 | 0.0000000 | 0.0365586 | 0.0000000 | 0.0365586 | 0.0731172 | 0.2924690 | 0.0000000 | 0.0000000 | 0.1096759 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0365586 | 0.0000000 | 0.0000000 | 0.1096759 | 0.0365586 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0365586 | 1.0602001 | 0.0000000 | 0.0000000 |
ENSRNOG00000000042 Xpr1 protein_coding | 469.5901686 | -0.0828081 | 0.0473421 | -1.7491414 | 0.0802666 | 0.5971745 | 14.4437645 | 16.0035663 | 16.2843307 | 16.5962910 | 15.7228020 | 14.0694121 | 12.9151588 | 14.5997447 | 15.7228020 | 16.3155267 | 17.3449959 | 10.2011037 | 15.1612734 | 20.6517757 | 15.7539980 | 15.2236654 | 18.3120730 | 17.5321721 | 15.9723703 | 15.8787822 | 17.1266236 | 12.1352579 | 13.1335310 | 15.0676853 | 12.2912381 | 13.1647271 | 14.5373527 | 12.7903747 | 13.1335310 | 13.9446280 | 12.3536302 | 10.9498085 |
ENSRNOG00000000043 Idua protein_coding | 357.0035160 | -0.0150644 | 0.0628613 | -0.2396445 | 0.8106058 | 0.9641349 | 10.4085474 | 13.1678602 | 13.8664205 | 14.4601967 | 15.1238289 | 11.7358118 | 12.5391560 | 13.8314925 | 12.0501639 | 14.0759885 | 11.1769636 | 9.9544832 | 10.5133314 | 14.8094768 | 13.3425003 | 11.6659558 | 12.9582922 | 15.6477491 | 12.7836521 | 16.2764533 | 15.6128210 | 10.8975395 | 9.1860670 | 12.6788681 | 13.1329322 | 10.6181154 | 11.0372516 | 13.9362765 | 12.1549479 | 11.2118916 | 12.8185801 | 9.6401311 |
ENSRNOG00000000044 Tmem175 protein_coding | 263.6431323 | 0.0553128 | 0.0570255 | 0.9699666 | 0.3320631 | 0.8053578 | 6.6104197 | 9.3477741 | 8.7944790 | 7.7752513 | 8.2994256 | 7.8043721 | 6.9016276 | 7.6587682 | 7.8334929 | 8.1538216 | 9.2021701 | 5.0378969 | 6.2900910 | 11.9977661 | 7.7752513 | 9.4933780 | 8.9983246 | 11.1823839 | 7.3384395 | 10.2505186 | 9.8428275 | 6.4648157 | 5.5620712 | 7.7752513 | 6.7269028 | 5.9697623 | 6.9889900 | 7.8043721 | 7.5714058 | 6.2900910 | 6.0571246 | 7.1345939 |
ENSRNOG00000000047 Cd82 protein_coding | 143.2116013 | 0.0165392 | 0.0695378 | 0.2378447 | 0.8120016 | 0.9644264 | 4.4383283 | 5.7875801 | 5.5035271 | 6.7817657 | 5.2904873 | 4.4028217 | 4.2607952 | 4.0832620 | 7.1723385 | 5.3615006 | 4.4738349 | 3.7992090 | 5.0774476 | 8.1310175 | 5.2549807 | 7.1013253 | 6.2491663 | 5.2904873 | 4.8644078 | 6.4266994 | 5.8230867 | 4.2252886 | 5.6100470 | 4.3318084 | 4.6158614 | 3.5506626 | 4.1897819 | 6.6397392 | 4.6513681 | 5.0064343 | 3.7637024 | 4.1187687 |
ENSRNOG00000000048 Gak protein_coding | 638.5153786 | -0.0480836 | 0.0463336 | -1.0377698 | 0.2993773 | 0.7896194 | 16.6646597 | 23.2453996 | 22.3941596 | 23.1799196 | 24.9151396 | 17.8432997 | 15.9443797 | 20.5607196 | 20.5607196 | 27.0432395 | 21.1827796 | 12.3102398 | 21.4119596 | 26.9450195 | 24.3912996 | 25.3080196 | 30.9392995 | 26.8140595 | 23.3108796 | 24.5549996 | 25.6354195 | 17.0575397 | 17.5486397 | 18.5963197 | 22.1322396 | 16.0753397 | 17.6795997 | 21.8375796 | 20.1678396 | 21.5429196 | 19.5785197 | 16.4027397 |
write.table(de1,file="de1.tsv",quote=FALSE,sep="\t")
ss2 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI | fraction | Group | RatID | label | trt | |
---|---|---|---|---|---|---|
33 | 33 | mito | T | 1 | mito T | 1 |
34 | 34 | mito | T | 2 | mito T | 1 |
35 | 35 | mito | S | 3 | mito S | 0 |
36 | 36 | mito | S | 4 | mito S | 0 |
37 | 37 | mito | T | 5 | mito T | 1 |
38 | 38 | mito | T | 6 | mito T | 1 |
39 | 39 | mito | S | 7 | mito S | 0 |
40 | 40 | mito | S | 8 | mito S | 0 |
41 | 41 | mito | T | 9 | mito T | 1 |
42 | 42 | mito | T | 10 | mito T | 1 |
43 | 43 | mito | S | 11 | mito S | 0 |
44 | 44 | mito | S | 12 | mito S | 0 |
45 | 45 | mito | T | 13 | mito T | 1 |
46 | 46 | mito | T | 14 | mito T | 1 |
47 | 47 | mito | S | 15 | mito S | 0 |
48 | 48 | mito | S | 16 | mito S | 0 |
49 | 49 | mito | T | 17 | mito T | 1 |
50 | 50 | mito | T | 18 | mito T | 1 |
51 | 51 | mito | S | 19 | mito S | 0 |
52 | 52 | mito | S | 20 | mito S | 0 |
53 | 53 | mito | T | 21 | mito T | 1 |
54 | 54 | mito | T | 22 | mito T | 1 |
55 | 55 | mito | S | 23 | mito S | 0 |
56 | 56 | mito | S | 24 | mito S | 0 |
57 | 57 | mito | T | 25 | mito T | 1 |
58 | 58 | mito | T | 26 | mito T | 1 |
59 | 59 | mito | T | 27 | mito T | 1 |
60 | 60 | mito | T | 28 | mito T | 1 |
61 | 61 | mito | S | 29 | mito S | 0 |
62 | 62 | mito | S | 30 | mito S | 0 |
63 | 63 | mito | S | 31 | mito S | 0 |
64 | 64 | mito | S | 32 | mito S | 0 |
de2 <- run_de(ss2,x2)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 7 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## chr(0)
## chr(0)
as.data.frame(de2[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000000001 Arsj protein_coding | 22.672617 | -0.0672219 | 0.1464715 | -0.4589421 | 0.6462757 | 0.9992526 | 2.557536 | 2.1921740 | 5.480435 | 2.374855 | 5.115073 | 6.393841 | 4.018986 | 4.384348 | 2.922899 | 3.105580 | 5.297754 | 4.932391 | 6.576522 | 2.557536 | 1.461449 | 4.749710 | 4.567029 | 3.470942 | 6.759203 | 5.663116 | 5.663116 | 3.653623 | 2.557536 | 2.922899 | 3.836304 | 4.749710 | 2.557536 | 4.384348 | 5.845797 | 6.028479 | 5.480435 | 5.480435 |
ENSRNOG00000000007 Gad1 protein_coding | 36.450485 | 0.0696246 | 0.0996736 | 0.6985256 | 0.4848485 | 0.9992526 | 3.404076 | 2.1025173 | 4.104915 | 3.404076 | 3.704435 | 4.205035 | 2.803357 | 1.702038 | 2.502997 | 1.802158 | 4.405274 | 3.504196 | 4.104915 | 3.804555 | 4.104915 | 3.203836 | 4.004795 | 4.905874 | 5.206233 | 4.805754 | 3.303956 | 4.205035 | 2.603117 | 3.804555 | 5.806953 | 3.804555 | 3.404076 | 4.905874 | 4.405274 | 5.306353 | 4.805754 | 4.104915 |
ENSRNOG00000000008 Alx4 protein_coding | 15.715072 | -0.2137098 | 0.1801934 | -1.1860019 | 0.2356216 | 0.9992526 | 9.527322 | 6.8052302 | 11.568891 | 4.083138 | 11.568891 | 17.013076 | 8.846799 | 10.888368 | 4.083138 | 5.444184 | 27.220921 | 10.207845 | 11.568891 | 6.124707 | 21.096214 | 4.083138 | 12.929937 | 11.568891 | 17.013076 | 12.249414 | 8.846799 | 9.527322 | 17.013076 | 3.402615 | 13.610461 | 8.166276 | 8.166276 | 14.971507 | 18.374122 | 10.207845 | 12.249414 | 14.290983 |
ENSRNOG00000000009 Tmco5b protein_coding | 18.583695 | -0.0666880 | 0.1629263 | -0.4093139 | 0.6823093 | 0.9992526 | 15.410840 | 5.9931045 | 17.123156 | 9.417736 | 19.691629 | 24.828576 | 22.260102 | 18.835471 | 4.280789 | 6.849262 | 17.123156 | 8.561578 | 18.835471 | 11.130051 | 17.979313 | 5.993105 | 18.835471 | 23.116260 | 30.821680 | 28.253207 | 18.835471 | 28.253207 | 20.547787 | 14.554682 | 23.972418 | 12.842367 | 12.842367 | 8.561578 | 19.691629 | 17.979313 | 21.403945 | 15.410840 |
ENSRNOG00000000010 Cbln1 protein_coding | 21.097175 | 0.0720593 | 0.1289348 | 0.5588821 | 0.5762422 | 0.9992526 | 16.990107 | 8.1257032 | 17.728807 | 11.819205 | 22.161009 | 13.296605 | 8.864403 | 15.512706 | 12.557905 | 10.341804 | 17.728807 | 9.603104 | 14.774006 | 18.467507 | 15.512706 | 9.603104 | 13.296605 | 18.467507 | 27.331911 | 11.819205 | 17.728807 | 16.990107 | 17.728807 | 17.728807 | 12.557905 | 19.944908 | 19.944908 | 18.467507 | 19.944908 | 19.206207 | 22.161009 | 23.638409 |
ENSRNOG00000000012 Tcf15 protein_coding | 9.386898 | 0.3250874 | 0.2209877 | 1.4710658 | 0.1412733 | 0.9992526 | 20.767002 | 12.0230011 | 10.930001 | 6.558001 | 5.465001 | 19.674002 | 2.186000 | 7.651001 | 4.372000 | 6.558001 | 20.767002 | 15.302001 | 14.209001 | 10.930001 | 6.558001 | 12.023001 | 4.372000 | 16.395001 | 8.744001 | 16.395001 | 10.930001 | 16.395001 | 6.558001 | 7.651001 | 13.116001 | 8.744001 | 5.465001 | 10.930001 | 10.930001 | 9.837001 | 10.930001 | 4.372000 |
ENSRNOG00000000017 Steap1 protein_coding | 9.063332 | -0.2294720 | 0.2102640 | -1.0913522 | 0.2751180 | 0.9992526 | 6.178796 | 2.2468351 | 8.425631 | 5.617088 | 11.234175 | 3.370253 | 2.246835 | 5.055379 | 3.931961 | 3.931961 | 9.549049 | 5.617088 | 6.740505 | 3.370253 | 4.493670 | 4.493670 | 6.740505 | 3.370253 | 7.302214 | 3.931961 | 3.931961 | 2.246835 | 6.178796 | 7.863923 | 6.178796 | 1.685126 | 3.370253 | 5.055379 | 5.617088 | 3.370253 | 6.740505 | 8.425631 |
ENSRNOG00000000021 AABR07061902.1 protein_coding | 7.566953 | 0.1781270 | 0.2546045 | 0.6996223 | 0.4841632 | 0.9992526 | 4.213087 | 5.6174489 | 21.065433 | 7.021811 | 21.065433 | 11.234898 | 14.043622 | 14.043622 | 11.234898 | 5.617449 | 23.874158 | 9.830536 | 16.852347 | 11.234898 | 4.213087 | 8.426173 | 12.639260 | 9.830536 | 16.852347 | 8.426173 | 4.213087 | 12.639260 | 8.426173 | 5.617449 | 18.256709 | 21.065433 | 11.234898 | 2.808724 | 15.447985 | 8.426173 | 7.021811 | 0.000000 |
ENSRNOG00000000024 Hebp1 protein_coding | 9.559144 | -0.2825425 | 0.1915226 | -1.4752432 | 0.1401472 | 0.9992526 | 8.599088 | 10.3189058 | 15.478359 | 6.879270 | 10.318906 | 12.038723 | 12.038723 | 12.038723 | 15.478359 | 5.159453 | 39.555805 | 18.917994 | 22.357629 | 15.478359 | 12.038723 | 15.478359 | 8.599088 | 18.917994 | 17.198176 | 18.917994 | 10.318906 | 27.517082 | 24.077447 | 25.797265 | 18.917994 | 18.917994 | 17.198176 | 18.917994 | 25.797265 | 25.797265 | 30.956717 | 18.917994 |
ENSRNOG00000000033 Tmcc2 protein_coding | 35.716146 | 0.0056460 | 0.1023698 | 0.0551533 | 0.9560163 | 0.9992526 | 58.446786 | 43.3637445 | 69.759067 | 67.873687 | 90.498249 | 77.300588 | 49.019885 | 65.988307 | 35.822224 | 60.332166 | 98.039770 | 65.988307 | 71.644447 | 73.529828 | 52.790645 | 49.019885 | 62.217546 | 86.727489 | 115.008192 | 71.644447 | 73.529828 | 75.415208 | 65.988307 | 60.332166 | 81.071348 | 79.185968 | 58.446786 | 41.478364 | 86.727489 | 67.873687 | 103.695911 | 77.300588 |
ENSRNOG00000000034 Nuak2 protein_coding | 33.921616 | 0.0656914 | 0.1042057 | 0.6304015 | 0.5284319 | 0.9992526 | 19.999494 | 14.1172900 | 18.234833 | 13.529070 | 15.881951 | 31.763902 | 14.705510 | 10.587967 | 12.940849 | 9.999747 | 32.352123 | 18.234833 | 20.587715 | 19.411274 | 17.058392 | 12.940849 | 19.411274 | 26.469919 | 33.528564 | 29.411021 | 14.705510 | 27.058139 | 24.705257 | 21.175935 | 23.528817 | 27.646359 | 23.528817 | 22.352376 | 24.705257 | 31.763902 | 20.587715 | 22.352376 |
ENSRNOG00000000035 Tmed11 protein_coding | 4.302859 | 0.2769968 | 0.2775349 | 0.9980611 | 0.3182497 | 0.9992526 | 6.943374 | 8.3320488 | 6.943374 | 6.943374 | 4.166024 | 2.777350 | 5.554699 | 5.554699 | 2.777350 | 5.554699 | 5.554699 | 1.388675 | 8.332049 | 4.166024 | 4.166024 | 2.777350 | 8.332049 | 13.886748 | 9.720724 | 6.943374 | 5.554699 | 6.943374 | 6.943374 | 5.554699 | 9.720724 | 2.777350 | 5.554699 | 6.943374 | 6.943374 | 5.554699 | 5.554699 | 6.943374 |
ENSRNOG00000000036 Klhdc8a protein_coding | 30.737847 | -0.0251103 | 0.1196827 | -0.2098075 | 0.8338179 | 0.9992526 | 31.894546 | 14.4039887 | 23.663696 | 28.807977 | 23.663696 | 45.269679 | 26.750265 | 14.403989 | 23.663696 | 13.375132 | 79.221938 | 34.981115 | 30.865690 | 26.750265 | 29.836834 | 18.519414 | 40.125397 | 36.009972 | 56.587098 | 31.894546 | 45.269679 | 34.981115 | 33.952259 | 37.038828 | 42.183110 | 38.067684 | 32.923403 | 28.807977 | 38.067684 | 43.211966 | 44.240822 | 28.807977 |
ENSRNOG00000000040 RGD1304622 protein_coding | 50.075230 | -0.0891120 | 0.1078258 | -0.8264443 | 0.4085521 | 0.9992526 | 55.226142 | 20.2495853 | 47.862656 | 48.783092 | 41.419606 | 44.180914 | 27.613071 | 37.737864 | 34.056121 | 33.135685 | 86.520956 | 38.658299 | 52.464835 | 35.896992 | 55.226142 | 48.783092 | 49.703528 | 43.260478 | 84.680084 | 33.135685 | 23.931328 | 56.146577 | 49.703528 | 37.737864 | 68.112242 | 49.703528 | 57.067013 | 46.021785 | 61.669192 | 57.067013 | 59.828320 | 54.305706 |
ENSRNOG00000000041 Slc26a1 protein_coding | 30.023635 | -0.0378155 | 0.1162928 | -0.3251753 | 0.7450484 | 0.9992526 | 3.834859 | 0.8388754 | 5.632449 | 2.636466 | 3.715020 | 4.194377 | 2.636466 | 2.876144 | 2.756305 | 2.636466 | 4.793574 | 2.516626 | 4.673734 | 3.235662 | 4.553895 | 3.235662 | 2.756305 | 5.153092 | 7.669718 | 3.235662 | 4.194377 | 2.995984 | 4.074538 | 2.756305 | 4.434056 | 5.153092 | 2.995984 | 3.595180 | 4.793574 | 5.153092 | 4.074538 | 3.595180 |
ENSRNOG00000000042 Xpr1 protein_coding | 37.987794 | 0.1199608 | 0.1148738 | 1.0442837 | 0.2963542 | 0.9992526 | 17.741397 | 19.2841269 | 29.311873 | 28.540508 | 33.168698 | 33.168698 | 20.055492 | 17.741397 | 21.598222 | 16.970032 | 40.110984 | 26.226413 | 26.997778 | 25.455047 | 21.598222 | 18.512762 | 33.940063 | 39.339619 | 46.281905 | 29.311873 | 33.940063 | 40.882349 | 30.083238 | 59.395111 | 32.397333 | 31.625968 | 26.226413 | 58.623746 | 35.482793 | 37.796889 | 33.940063 | 20.826857 |
ENSRNOG00000000043 Idua protein_coding | 30.218199 | 0.0641140 | 0.1209170 | 0.5302316 | 0.5959514 | 0.9992526 | 29.691417 | 23.7531337 | 31.670845 | 23.753134 | 33.650273 | 30.681131 | 27.711989 | 21.773706 | 23.753134 | 22.763420 | 57.403406 | 31.670845 | 39.588556 | 36.619414 | 27.711989 | 23.753134 | 28.701703 | 43.547412 | 55.423979 | 14.845709 | 25.732561 | 28.701703 | 30.681131 | 20.783992 | 31.670845 | 30.681131 | 24.742848 | 27.711989 | 42.557698 | 25.732561 | 47.506267 | 26.722275 |
ENSRNOG00000000044 Tmem175 protein_coding | 24.418439 | -0.0405021 | 0.1332847 | -0.3038768 | 0.7612217 | 0.9992526 | 15.191208 | 18.9890099 | 15.191208 | 19.748570 | 17.469889 | 18.229450 | 19.748570 | 13.672087 | 12.152966 | 4.557362 | 32.661097 | 9.114725 | 17.469889 | 15.950768 | 22.027251 | 20.508131 | 21.267691 | 23.546372 | 31.901537 | 15.191208 | 18.229450 | 24.305933 | 26.584614 | 12.912527 | 29.622856 | 15.950768 | 23.546372 | 14.431648 | 23.546372 | 25.065493 | 21.267691 | 17.469889 |
ENSRNOG00000000047 Cd82 protein_coding | 46.149014 | 0.0543979 | 0.1009968 | 0.5386105 | 0.5901556 | 0.9992526 | 31.675193 | 9.4351639 | 33.023074 | 22.240029 | 36.392775 | 37.066715 | 24.935790 | 27.631552 | 20.892149 | 21.566089 | 55.937043 | 16.174567 | 28.305492 | 28.305492 | 29.653372 | 24.261850 | 42.458238 | 50.545521 | 47.849760 | 28.979432 | 45.153999 | 33.697014 | 36.392775 | 45.153999 | 43.806118 | 32.349133 | 28.979432 | 21.566089 | 32.349133 | 45.153999 | 36.392775 | 33.023074 |
ENSRNOG00000000048 Gak protein_coding | 94.890645 | -0.0647427 | 0.0736958 | -0.8785128 | 0.3796655 | 0.9992526 | 21.717392 | 18.4759901 | 33.062298 | 28.524336 | 28.524336 | 30.469177 | 18.475990 | 22.041532 | 23.338093 | 16.855289 | 50.565868 | 22.365672 | 35.655420 | 30.145036 | 31.117457 | 25.931214 | 36.303700 | 49.593447 | 53.807269 | 38.248541 | 27.227775 | 32.089878 | 41.165803 | 33.062298 | 39.545102 | 39.869242 | 23.013953 | 31.117457 | 46.352045 | 40.841662 | 32.089878 | 37.276120 |
write.table(de2,file="de2.tsv",quote=FALSE,sep="\t")
ss3 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI | fraction | Group | RatID | label | trt | |
---|---|---|---|---|---|---|
11 | 11 | wholetissue | S | 11 | wholetissue S | 0 |
12 | 12 | wholetissue | S | 12 | wholetissue S | 0 |
15 | 15 | wholetissue | S | 15 | wholetissue S | 0 |
16 | 16 | wholetissue | S | 16 | wholetissue S | 0 |
19 | 19 | wholetissue | S | 19 | wholetissue S | 0 |
20 | 20 | wholetissue | S | 20 | wholetissue S | 0 |
23 | 23 | wholetissue | S | 23 | wholetissue S | 0 |
24 | 24 | wholetissue | S | 24 | wholetissue S | 0 |
29 | 29 | wholetissue | S | 29 | wholetissue S | 0 |
3 | 3 | wholetissue | S | 3 | wholetissue S | 0 |
30 | 30 | wholetissue | S | 30 | wholetissue S | 0 |
31 | 31 | wholetissue | S | 31 | wholetissue S | 0 |
32 | 32 | wholetissue | S | 32 | wholetissue S | 0 |
35 | 35 | mito | S | 3 | mito S | 1 |
36 | 36 | mito | S | 4 | mito S | 1 |
39 | 39 | mito | S | 7 | mito S | 1 |
4 | 4 | wholetissue | S | 4 | wholetissue S | 0 |
40 | 40 | mito | S | 8 | mito S | 1 |
43 | 43 | mito | S | 11 | mito S | 1 |
44 | 44 | mito | S | 12 | mito S | 1 |
47 | 47 | mito | S | 15 | mito S | 1 |
48 | 48 | mito | S | 16 | mito S | 1 |
51 | 51 | mito | S | 19 | mito S | 1 |
52 | 52 | mito | S | 20 | mito S | 1 |
55 | 55 | mito | S | 23 | mito S | 1 |
56 | 56 | mito | S | 24 | mito S | 1 |
61 | 61 | mito | S | 29 | mito S | 1 |
62 | 62 | mito | S | 30 | mito S | 1 |
63 | 63 | mito | S | 31 | mito S | 1 |
64 | 64 | mito | S | 32 | mito S | 1 |
7 | 7 | wholetissue | S | 7 | wholetissue S | 0 |
8 | 8 | wholetissue | S | 8 | wholetissue S | 0 |
de3 <- run_de(ss3,x3)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 211 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## chr [1:21698] "ENSRNOG00000000500 Scube3 protein_coding" ...
## chr [1:6568] "ENSRNOG00000000130 Dnajb5 protein_coding" ...
as.data.frame(de3[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 11 | 12 | 15 | 16 | 19 | 20 | 23 | 24 | 29 | 3 | 30 | 31 | 32 | 35 | 36 | 39 | 4 | 40 | 43 | 44 | 47 | 48 | 51 | 52 | 55 | 56 | 61 | 62 | 63 | 64 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000000001 Arsj protein_coding | 37.304995 | 3.4533016 | 0.1594917 | 21.651916 | 0.0000000 | 0.0000000 | 0.5326559 | 0.5681663 | 0.4261247 | 0.5326559 | 0.7102078 | 0.5681663 | 0.8522494 | 1.0298014 | 0.5681663 | 0.5681663 | 0.3551039 | 0.8522494 | 0.9232702 | 1.0653117 | 0.4616351 | 0.7812286 | 0.4616351 | 0.8522494 | 1.0298014 | 0.9587806 | 0.2840831 | 0.9232702 | 1.3138845 | 1.1008221 | 0.4971455 | 0.5681663 | 1.1363325 | 1.1718429 | 1.0653117 | 1.0653117 | 0.4971455 | 0.5326559 |
ENSRNOG00000000007 Gad1 protein_coding | 53.747696 | 5.4076584 | 0.1734495 | 31.177140 | 0.0000000 | 0.0000000 | 0.3327388 | 0.1996433 | 0.1996433 | 0.0998216 | 0.6322037 | 0.1663694 | 0.2661910 | 0.0665478 | 0.1663694 | 0.3660127 | 0.2994649 | 0.2994649 | 0.1996433 | 1.3642291 | 1.1313119 | 0.9316687 | 0.1996433 | 0.5656560 | 1.4640507 | 1.1645858 | 1.3642291 | 1.0647642 | 1.7302418 | 1.5971463 | 0.8651209 | 1.2644075 | 1.4640507 | 1.7635157 | 1.5971463 | 1.3642291 | 0.1330955 | 0.0998216 |
ENSRNOG00000000008 Alx4 protein_coding | 29.781602 | 2.3063794 | 0.2158722 | 10.684006 | 0.0000000 | 0.0000000 | 1.8348617 | 0.6382128 | 1.5556436 | 0.9174309 | 2.1539681 | 1.1966490 | 1.5157553 | 0.5584362 | 1.2365373 | 1.2764255 | 1.3562021 | 1.1168724 | 0.8775426 | 0.6781011 | 0.2393298 | 0.5185479 | 0.7179894 | 0.6382128 | 1.5955319 | 0.5983245 | 1.2365373 | 0.2393298 | 0.9972075 | 0.7179894 | 0.9972075 | 0.1994415 | 1.0769841 | 0.5983245 | 0.7179894 | 0.8376543 | 0.5584362 | 0.5584362 |
ENSRNOG00000000009 Tmco5b protein_coding | 28.271135 | 9.7504099 | 0.5327924 | 18.300580 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.7203024 | 0.3961663 | 0.9363931 | 0.0000000 | 0.7923326 | 0.7203024 | 0.3601512 | 0.7563175 | 0.2521058 | 1.2965443 | 1.1884990 | 0.8643629 | 0.6122570 | 0.8283478 | 0.7563175 | 0.9003780 | 0.6482722 | 0.0000000 | 0.0000000 |
ENSRNOG00000000010 Cbln1 protein_coding | 30.268375 | 6.9617446 | 0.3286441 | 21.183236 | 0.0000000 | 0.0000000 | 0.0324797 | 0.0324797 | 0.0000000 | 0.0324797 | 0.0324797 | 0.0649594 | 0.0974391 | 0.0974391 | 0.0974391 | 0.0324797 | 0.0000000 | 0.1299188 | 0.0000000 | 0.7795127 | 0.5196751 | 0.3897563 | 0.0000000 | 0.6820736 | 0.7795127 | 0.4222360 | 0.6820736 | 0.4222360 | 1.2017487 | 0.5196751 | 0.7795127 | 0.7795127 | 0.8769517 | 0.8444721 | 0.9743908 | 1.0393502 | 0.0000000 | 0.0649594 |
ENSRNOG00000000012 Tcf15 protein_coding | 84.666617 | -2.5799513 | 0.1776731 | -14.520777 | 0.0000000 | 0.0000000 | 10.9843052 | 17.2283597 | 10.0362551 | 11.3439105 | 16.3783837 | 10.4285517 | 27.2646148 | 20.5955723 | 15.4303335 | 16.1168526 | 9.6766498 | 15.2995680 | 9.4478101 | 0.3269138 | 0.1961483 | 0.0653828 | 8.0747720 | 0.2288397 | 0.6211363 | 0.4576794 | 0.1961483 | 0.3596052 | 0.2615311 | 0.4903708 | 0.1961483 | 0.2288397 | 0.3269138 | 0.2942225 | 0.3269138 | 0.1307655 | 11.4746760 | 8.7939825 |
ENSRNOG00000000017 Steap1 protein_coding | 14.467609 | 6.2530996 | 0.3885924 | 16.091667 | 0.0000000 | 0.0000000 | 0.0623921 | 0.0623921 | 0.0000000 | 0.0000000 | 0.0311960 | 0.0000000 | 0.0623921 | 0.1247841 | 0.0000000 | 0.0935881 | 0.0000000 | 0.0000000 | 0.0000000 | 0.4679405 | 0.3119604 | 0.1247841 | 0.0000000 | 0.2807643 | 0.5303326 | 0.3119604 | 0.2495683 | 0.2495683 | 0.4055485 | 0.2183723 | 0.3431564 | 0.4367445 | 0.3119604 | 0.1871762 | 0.3743524 | 0.4679405 | 0.0000000 | 0.0935881 |
ENSRNOG00000000021 AABR07061902.1 protein_coding | 10.504602 | 8.3140537 | 0.5796121 | 14.344169 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.5239202 | 0.1746401 | 0.3492801 | 0.0000000 | 0.3492801 | 0.5937762 | 0.2444961 | 0.1047840 | 0.2095681 | 0.4191361 | 0.2095681 | 0.2095681 | 0.1397120 | 0.3842081 | 0.2095681 | 0.1746401 | 0.0000000 | 0.0000000 | 0.0000000 |
ENSRNOG00000000024 Hebp1 protein_coding | 25.248485 | 0.6360841 | 0.1401613 | 4.538228 | 0.0000057 | 0.0000066 | 3.2086295 | 2.4270403 | 2.0156775 | 2.1390864 | 2.3447677 | 3.0440844 | 3.2909021 | 3.0440844 | 2.0979501 | 2.2213589 | 1.9745413 | 2.5093128 | 1.3163608 | 0.3702265 | 0.1645451 | 0.2879539 | 1.6043148 | 0.2879539 | 0.9461344 | 0.4524990 | 0.2879539 | 0.3702265 | 0.4113628 | 0.4524990 | 0.5759079 | 0.6170441 | 0.6170441 | 0.6170441 | 0.7404530 | 0.4524990 | 2.8384031 | 1.5220422 |
ENSRNOG00000000033 Tmcc2 protein_coding | 223.839246 | -1.7211422 | 0.1031026 | -16.693497 | 0.0000000 | 0.0000000 | 32.5431565 | 49.9441245 | 37.1443740 | 40.9090065 | 42.3730302 | 48.1036375 | 34.9692530 | 56.0511950 | 35.2620577 | 38.7757147 | 46.8905892 | 32.9614490 | 20.7891372 | 1.5476822 | 1.5058530 | 1.0875605 | 46.3886382 | 1.4640237 | 2.1751210 | 1.4640237 | 1.1712190 | 1.0875605 | 2.5515842 | 1.5895115 | 1.4640237 | 1.3385360 | 1.9241455 | 1.5058530 | 2.3006087 | 1.7149992 | 44.9246145 | 42.1638840 |
ENSRNOG00000000034 Nuak2 protein_coding | 58.253462 | 2.3100060 | 0.1188663 | 19.433646 | 0.0000000 | 0.0000000 | 2.7052276 | 2.4797919 | 2.0664933 | 1.8786303 | 2.0289207 | 1.5780494 | 3.8699783 | 3.6445427 | 1.7659124 | 1.5404768 | 1.2398960 | 2.4797919 | 1.4277590 | 1.1647508 | 0.8641699 | 0.9393151 | 1.6907672 | 0.6763069 | 2.0664933 | 1.1647508 | 1.0896056 | 0.8265973 | 2.1416385 | 1.8786303 | 1.5780494 | 1.3526138 | 1.5780494 | 2.0289207 | 1.3150412 | 1.4277590 | 2.4797919 | 1.2023234 |
ENSRNOG00000000035 Tmed11 protein_coding | 5.675573 | 7.4293401 | 0.5638962 | 13.175013 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.1850489 | 0.1850489 | 0.1480391 | 0.0000000 | 0.1480391 | 0.1480391 | 0.0370098 | 0.1110293 | 0.0740196 | 0.2590685 | 0.1850489 | 0.1850489 | 0.1480391 | 0.1850489 | 0.1480391 | 0.1480391 | 0.1850489 | 0.0000000 | 0.0000000 |
ENSRNOG00000000036 Klhdc8a protein_coding | 45.871215 | 6.6164374 | 0.2618623 | 25.266854 | 0.0000000 | 0.0000000 | 0.0000000 | 0.1915987 | 0.0957993 | 0.0000000 | 0.0957993 | 0.0000000 | 0.0957993 | 0.0478997 | 0.1436990 | 0.2873980 | 0.1436990 | 0.1915987 | 0.0478997 | 1.1016924 | 1.3411907 | 1.2453914 | 0.0478997 | 0.6705954 | 3.6882745 | 1.6285887 | 1.3890904 | 0.8621940 | 2.6344818 | 1.4848897 | 1.5806891 | 1.7243881 | 1.7722878 | 2.0117861 | 2.0596858 | 1.3411907 | 0.0957993 | 0.5268964 |
ENSRNOG00000000040 RGD1304622 protein_coding | 97.528259 | 1.7879746 | 0.0994641 | 17.976074 | 0.0000000 | 0.0000000 | 82.3432858 | 112.2862988 | 51.7197497 | 100.0368843 | 76.2185786 | 100.7174074 | 73.4964865 | 121.8136211 | 71.4549174 | 79.6211937 | 87.1069469 | 80.9822397 | 50.3587037 | 35.3871972 | 36.0677202 | 20.4156907 | 94.5927002 | 27.9014439 | 63.9691641 | 28.5819670 | 40.8313814 | 36.0677202 | 62.6081181 | 24.4988288 | 36.7482432 | 27.9014439 | 45.5950425 | 42.1924274 | 44.2339965 | 40.1508583 | 90.5095620 | 80.9822397 |
ENSRNOG00000000041 Slc26a1 protein_coding | 46.021902 | 5.0993352 | 0.8887539 | 5.737623 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.8561578 | 1.7123156 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 2.5684734 | 0.8561578 | 0.0000000 | 0.0000000 | 40.2394160 | 18.8354713 | 18.8354713 | 0.0000000 | 20.5477869 | 34.2463115 | 17.9793135 | 32.5339959 | 23.1162602 | 54.7940983 | 23.1162602 | 29.1093647 | 19.6916291 | 34.2463115 | 36.8147848 | 29.1093647 | 25.6847336 | 24.8285758 | 0.0000000 |
ENSRNOG00000000042 Xpr1 protein_coding | 136.048749 | -0.6202520 | 0.0810839 | -7.649512 | 0.0000000 | 0.0000000 | 293.2119743 | 298.8290619 | 232.5474279 | 262.8797011 | 312.3100722 | 272.9904588 | 274.1138763 | 329.7230439 | 218.5047088 | 236.4793892 | 271.3053325 | 221.3132526 | 237.0410980 | 21.3449330 | 20.7832242 | 14.6044278 | 261.7562836 | 12.9193015 | 29.2088557 | 19.0980979 | 15.7278454 | 13.4810103 | 33.7025258 | 21.3449330 | 21.9066418 | 43.2515748 | 25.8386031 | 27.5237294 | 24.7151856 | 15.1661366 | 251.0838171 | 222.4366701 |
ENSRNOG00000000043 Idua protein_coding | 104.427192 | -0.5102974 | 0.1039698 | -4.908131 | 0.0000009 | 0.0000011 | 15.3736087 | 16.0319244 | 13.9020794 | 15.3348842 | 12.3918257 | 11.6560610 | 12.9339680 | 14.3667729 | 12.0820300 | 10.1845317 | 14.0569772 | 14.5603951 | 11.7722344 | 1.2391826 | 0.9293869 | 1.0842847 | 12.2369278 | 0.8519380 | 2.2460184 | 1.2391826 | 1.0842847 | 0.9293869 | 2.1685695 | 0.5808668 | 1.2004581 | 0.8132136 | 1.6651516 | 1.0068358 | 1.8587738 | 1.0455603 | 12.4305501 | 14.2118750 |
ENSRNOG00000000044 Tmem175 protein_coding | 80.633148 | -0.2929697 | 0.0950278 | -3.082989 | 0.0020493 | 0.0022562 | 424.1173934 | 374.9647154 | 332.8338485 | 369.3472665 | 443.7784647 | 303.3422417 | 457.8220870 | 433.9479291 | 311.7684151 | 268.2331859 | 374.9647154 | 324.4076751 | 287.8942571 | 28.0872446 | 36.5134180 | 36.5134180 | 337.0469352 | 25.2785201 | 60.3875759 | 16.8523468 | 40.7265047 | 37.9177802 | 58.9832137 | 28.0872446 | 49.1526780 | 23.8741579 | 43.5352291 | 46.3439536 | 39.3221424 | 32.3003313 | 303.3422417 | 292.1073438 |
ENSRNOG00000000047 Cd82 protein_coding | 90.873373 | 1.4571363 | 0.0810879 | 17.969842 | 0.0000000 | 0.0000000 | 91.1741644 | 112.3500994 | 70.5864499 | 67.6453478 | 74.1157724 | 84.1155194 | 117.6440831 | 103.5267931 | 69.9982295 | 92.9388257 | 71.7628907 | 76.4686540 | 58.8220416 | 28.8228004 | 19.4112737 | 21.7641554 | 69.4100090 | 24.1170370 | 48.8222945 | 14.1172900 | 25.8816983 | 21.1759350 | 41.7636495 | 25.2934779 | 31.7639024 | 39.4107678 | 28.2345799 | 39.4107678 | 31.7639024 | 28.8228004 | 82.9390786 | 62.3513641 |
ENSRNOG00000000048 Gak protein_coding | 253.154440 | 0.3647060 | 0.0575672 | 6.335312 | 0.0000000 | 0.0000000 | 949.8535642 | 983.1817595 | 676.2846283 | 872.0877754 | 898.4725966 | 908.1933202 | 1073.4456216 | 1312.2976874 | 723.4995716 | 744.3296936 | 788.7672873 | 938.7441658 | 681.8393275 | 141.6448298 | 122.2033825 | 79.1544637 | 749.8843928 | 94.4298865 | 216.6332690 | 95.8185613 | 133.3127809 | 111.0939841 | 230.5200171 | 163.8636266 | 176.3616998 | 141.6448298 | 198.5804966 | 174.9730250 | 137.4788054 | 159.6976022 | 913.7480194 | 830.4275313 |
write.table(de3,file="de3.tsv",quote=FALSE,sep="\t")
ss4 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI | fraction | Group | RatID | label | trt | |
---|---|---|---|---|---|---|
1 | 1 | wholetissue | T | 1 | wholetissue T | 0 |
10 | 10 | wholetissue | T | 10 | wholetissue T | 0 |
13 | 13 | wholetissue | T | 13 | wholetissue T | 0 |
14 | 14 | wholetissue | T | 14 | wholetissue T | 0 |
17 | 17 | wholetissue | T | 17 | wholetissue T | 0 |
18 | 18 | wholetissue | T | 18 | wholetissue T | 0 |
2 | 2 | wholetissue | T | 2 | wholetissue T | 0 |
21 | 21 | wholetissue | T | 21 | wholetissue T | 0 |
22 | 22 | wholetissue | T | 22 | wholetissue T | 0 |
25 | 25 | wholetissue | T | 25 | wholetissue T | 0 |
26 | 26 | wholetissue | T | 26 | wholetissue T | 0 |
27 | 27 | wholetissue | T | 27 | wholetissue T | 0 |
28 | 28 | wholetissue | T | 28 | wholetissue T | 0 |
33 | 33 | mito | T | 1 | mito T | 1 |
34 | 34 | mito | T | 2 | mito T | 1 |
37 | 37 | mito | T | 5 | mito T | 1 |
38 | 38 | mito | T | 6 | mito T | 1 |
41 | 41 | mito | T | 9 | mito T | 1 |
42 | 42 | mito | T | 10 | mito T | 1 |
45 | 45 | mito | T | 13 | mito T | 1 |
46 | 46 | mito | T | 14 | mito T | 1 |
49 | 49 | mito | T | 17 | mito T | 1 |
5 | 5 | wholetissue | T | 5 | wholetissue T | 0 |
50 | 50 | mito | T | 18 | mito T | 1 |
53 | 53 | mito | T | 21 | mito T | 1 |
54 | 54 | mito | T | 22 | mito T | 1 |
57 | 57 | mito | T | 25 | mito T | 1 |
58 | 58 | mito | T | 26 | mito T | 1 |
59 | 59 | mito | T | 27 | mito T | 1 |
6 | 6 | wholetissue | T | 6 | wholetissue T | 0 |
60 | 60 | mito | T | 28 | mito T | 1 |
9 | 9 | wholetissue | T | 9 | wholetissue T | 0 |
de4 <- run_de(ss4,x4)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 72 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## chr [1:21715] "ENSRNOG00000000156 Megf6 protein_coding" ...
## chr [1:6579] "ENSRNOG00000000383 Mypn protein_coding" ...
as.data.frame(de4[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 1 | 10 | 13 | 14 | 17 | 18 | 2 | 21 | 22 | 25 | 26 | 27 | 28 | 33 | 34 | 37 | 38 | 41 | 42 | 45 | 46 | 49 | 5 | 50 | 53 | 54 | 57 | 58 | 59 | 6 | 60 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000000001 Arsj protein_coding | 35.970770 | 3.1974984 | 0.1744971 | 18.324079 | 0.0000000 | 0.0000000 | 0.8052414 | 1.4315403 | 1.3868046 | 0.8052414 | 2.1920460 | 0.8947127 | 0.9841839 | 0.7157701 | 0.8052414 | 0.8947127 | 0.5368276 | 1.2078621 | 0.7157701 | 0.6262989 | 0.5368276 | 1.2525977 | 1.5657472 | 0.7157701 | 0.7605058 | 1.6104828 | 0.6262989 | 1.1183908 | 0.8499770 | 0.8499770 | 1.3868046 | 0.8947127 | 0.9394483 | 1.1631265 | 0.6262989 | 0.8052414 | 1.0736552 | 0.5815632 |
ENSRNOG00000000007 Gad1 protein_coding | 55.872777 | 5.2656174 | 0.1554311 | 33.877510 | 0.0000000 | 0.0000000 | 0.2454429 | 0.1534018 | 0.3681643 | 0.0306804 | 0.2761232 | 0.2454429 | 0.0920411 | 0.6442876 | 0.1534018 | 0.3681643 | 0.1534018 | 0.3374840 | 0.3068036 | 1.0431323 | 0.6442876 | 1.1351733 | 1.2885751 | 0.7670090 | 0.5522465 | 1.2578948 | 1.1658537 | 1.2272144 | 0.2454429 | 1.5033377 | 1.0124519 | 1.2885751 | 1.7794609 | 1.1658537 | 1.0431323 | 0.5829269 | 1.5033377 | 0.1840822 |
ENSRNOG00000000008 Alx4 protein_coding | 26.988602 | 1.9097179 | 0.2097035 | 9.106752 | 0.0000000 | 0.0000000 | 0.2000711 | 1.5338784 | 0.8336295 | 1.4671880 | 2.4341983 | 1.3338073 | 0.7002488 | 2.1340916 | 0.3667970 | 1.1670814 | 1.4671880 | 2.0674013 | 0.9670103 | 0.4668325 | 0.3334518 | 0.5668681 | 0.8336295 | 0.2000711 | 0.2667615 | 0.5668681 | 0.3001066 | 0.6335585 | 0.8336295 | 0.5668681 | 0.4334874 | 0.4668325 | 0.6669036 | 0.4001422 | 0.4001422 | 0.9336651 | 0.7335940 | 0.8336295 |
ENSRNOG00000000009 Tmco5b protein_coding | 26.299815 | 8.9045951 | 0.5349989 | 16.644137 | 0.0000000 | 0.0000000 | 0.0360027 | 0.0360027 | 0.0000000 | 0.0360027 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0720055 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.6480494 | 0.2520192 | 0.8280631 | 1.0440796 | 0.1800137 | 0.2880219 | 0.7920604 | 0.4680357 | 0.7920604 | 0.0000000 | 0.9720741 | 0.7920604 | 1.1880905 | 1.0080768 | 0.5400412 | 0.5400412 | 0.0000000 | 0.3600274 | 0.0000000 |
ENSRNOG00000000010 Cbln1 protein_coding | 32.075967 | 7.7195551 | 0.3915108 | 19.717349 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0328934 | 0.0328934 | 0.0000000 | 0.1315738 | 0.0328934 | 0.1973607 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0657869 | 0.7565493 | 0.3618279 | 0.9868034 | 0.5920820 | 0.5591886 | 0.4605082 | 0.6578689 | 0.8223361 | 0.5920820 | 0.0000000 | 0.8223361 | 0.7894427 | 0.7565493 | 0.5591886 | 0.8881230 | 0.8881230 | 0.0000000 | 0.8223361 | 0.0000000 |
ENSRNOG00000000012 Tcf15 protein_coding | 110.022720 | -2.6384953 | 0.1656088 | -15.932099 | 0.0000000 | 0.0000000 | 8.2486227 | 20.1171447 | 20.8292560 | 13.2334020 | 10.9190402 | 14.3015689 | 9.5541602 | 26.8822022 | 17.7434403 | 18.3665377 | 19.2270055 | 25.7250213 | 22.4908491 | 0.5637548 | 0.3263844 | 0.1483565 | 0.5340835 | 0.1186852 | 0.1780278 | 0.3857270 | 0.2967130 | 0.1186852 | 24.6865256 | 0.4450696 | 0.2967130 | 0.4450696 | 0.3560557 | 0.2373704 | 0.1483565 | 19.1676629 | 0.2967130 | 12.9960315 |
ENSRNOG00000000017 Steap1 protein_coding | 12.370744 | 7.7704079 | 0.5621036 | 13.823801 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0513400 | 0.0000000 | 0.1540201 | 0.0000000 | 0.0513400 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.5647404 | 0.2053601 | 1.0268007 | 0.3080402 | 0.3593803 | 0.3593803 | 0.6160804 | 0.3080402 | 0.6160804 | 0.0000000 | 0.3080402 | 0.3593803 | 0.2053601 | 0.5647404 | 0.1540201 | 0.3080402 | 0.0000000 | 0.4620603 | 0.0000000 |
ENSRNOG00000000021 AABR07061902.1 protein_coding | 11.716808 | 8.4363830 | 0.5602052 | 15.059452 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0253799 | 0.0000000 | 0.0000000 | 0.0761396 | 0.1015194 | 0.3806979 | 0.2030389 | 0.2030389 | 0.1015194 | 0.3045583 | 0.2030389 | 0.2284187 | 0.0000000 | 0.1776590 | 0.0761396 | 0.2284187 | 0.3299382 | 0.3806979 | 0.2030389 | 0.0000000 | 0.0507597 | 0.0000000 |
ENSRNOG00000000024 Hebp1 protein_coding | 22.989227 | 0.3159324 | 0.1566626 | 2.016642 | 0.0437329 | 0.0464945 | 1.4623450 | 3.3633934 | 3.1074830 | 1.9010485 | 2.7784554 | 2.2300761 | 1.3161105 | 2.7784554 | 2.7418968 | 2.0838416 | 2.3763106 | 2.8515727 | 2.6687796 | 0.1827931 | 0.2193517 | 0.2193517 | 0.2559104 | 0.3290276 | 0.1096759 | 0.4752621 | 0.3290276 | 0.1827931 | 2.0107243 | 0.4021449 | 0.2193517 | 0.5849380 | 0.4021449 | 0.4021449 | 0.3655862 | 2.4859864 | 0.4021449 | 1.4257863 |
ENSRNOG00000000033 Tmcc2 protein_coding | 224.124493 | -1.7154163 | 0.0849979 | -20.181865 | 0.0000000 | 0.0000000 | 30.8389182 | 29.3246370 | 33.2850647 | 28.8295836 | 30.8097974 | 34.7411042 | 18.5790650 | 35.7020903 | 31.5960587 | 39.4877932 | 35.5273656 | 38.9927398 | 38.4103239 | 0.9027445 | 0.6697782 | 1.3977980 | 1.1939525 | 0.5532950 | 0.9318653 | 1.1065901 | 1.1357109 | 0.9609861 | 27.3735440 | 1.3395564 | 1.1357109 | 1.1648317 | 1.2521940 | 1.2230732 | 0.9027445 | 27.2861816 | 0.6406574 | 18.6373065 |
ENSRNOG00000000034 Nuak2 protein_coding | 61.810761 | 2.2596789 | 0.1269558 | 17.798942 | 0.0000000 | 0.0000000 | 2.1659042 | 2.9470500 | 3.0180633 | 1.8818512 | 2.2014108 | 1.3492518 | 1.3847584 | 2.1303976 | 2.6274904 | 3.0890765 | 2.4854639 | 4.0477554 | 1.4557717 | 1.2072253 | 0.8521590 | 0.9586789 | 1.9173578 | 0.7811458 | 0.6036127 | 1.2427319 | 1.1717187 | 1.1717187 | 3.2666096 | 1.5977982 | 0.8876657 | 1.6333048 | 1.4202651 | 1.6688114 | 1.4202651 | 1.9173578 | 1.3492518 | 1.9173578 |
ENSRNOG00000000035 Tmed11 protein_coding | 6.960863 | 7.8382465 | 0.5684970 | 13.787667 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.1637000 | 0.1964400 | 0.0982200 | 0.0654800 | 0.0654800 | 0.1309600 | 0.1964400 | 0.0982200 | 0.1964400 | 0.0000000 | 0.3274000 | 0.1309600 | 0.1637000 | 0.2291800 | 0.0654800 | 0.1309600 | 0.0000000 | 0.1637000 | 0.0000000 |
ENSRNOG00000000036 Klhdc8a protein_coding | 45.197897 | 6.8182015 | 0.2539232 | 26.851427 | 0.0000000 | 0.0000000 | 0.0323555 | 0.2264887 | 0.0323555 | 0.1941331 | 0.2588442 | 0.0000000 | 0.0000000 | 0.0647110 | 0.0970666 | 0.1617776 | 0.0647110 | 0.0647110 | 0.0323555 | 1.0030212 | 0.4529773 | 0.7441770 | 1.4236430 | 0.7441770 | 0.4206218 | 0.9706657 | 0.8412436 | 1.2618654 | 0.0000000 | 1.1324433 | 1.4236430 | 1.1000878 | 1.3265765 | 1.1971544 | 1.0353768 | 0.0000000 | 0.9059547 | 0.0647110 |
ENSRNOG00000000040 RGD1304622 protein_coding | 92.744370 | 1.7260883 | 0.0903456 | 19.105390 | 0.0000000 | 0.0000000 | 21.0083343 | 30.8731173 | 28.4982622 | 22.2871025 | 23.0178271 | 27.2194940 | 15.1625369 | 27.2194940 | 21.0083343 | 22.8351460 | 24.6619576 | 27.2194940 | 24.6619576 | 10.9608701 | 4.0189857 | 8.2206525 | 8.7686960 | 6.7592032 | 6.5765220 | 10.4128266 | 7.1245655 | 9.8647831 | 30.1423927 | 8.5860149 | 4.7497104 | 11.1435512 | 13.5184064 | 9.8647831 | 11.3262324 | 26.3060881 | 9.1340584 | 18.4507979 |
ENSRNOG00000000041 Slc26a1 protein_coding | 43.746306 | 7.1829272 | 0.4404495 | 16.308173 | 0.0000000 | 0.0000000 | 1.1013186 | 0.1001199 | 0.0000000 | 0.1001199 | 0.0000000 | 0.1001199 | 0.8009590 | 0.0000000 | 0.3003596 | 0.0000000 | 0.0000000 | 0.1001199 | 0.0000000 | 3.2038360 | 0.7008391 | 3.1037161 | 3.5041956 | 2.3027571 | 2.2026372 | 3.9046751 | 2.7032366 | 2.3027571 | 0.0000000 | 4.3051546 | 3.5041956 | 2.5029968 | 3.7044353 | 4.3051546 | 2.5029968 | 0.1001199 | 3.0035962 | 0.0000000 |
ENSRNOG00000000042 Xpr1 protein_coding | 136.192281 | -0.4154707 | 0.0772851 | -5.375817 | 0.0000001 | 0.0000001 | 342.0182326 | 378.9532469 | 372.3049443 | 333.1538292 | 372.3049443 | 386.3402498 | 241.5549937 | 489.0195896 | 373.0436446 | 415.1495610 | 378.2145466 | 375.9984458 | 405.5464572 | 16.9901066 | 18.4675072 | 31.7641123 | 31.7641123 | 20.6836080 | 16.2514063 | 25.8545100 | 24.3771095 | 32.5028126 | 302.8671174 | 37.6737146 | 32.5028126 | 39.1511152 | 31.0254120 | 30.2867117 | 25.1158097 | 310.9928206 | 56.1412218 | 259.2838005 |
ENSRNOG00000000043 Idua protein_coding | 106.370254 | -0.4333749 | 0.0795492 | -5.447883 | 0.0000001 | 0.0000001 | 325.7140296 | 412.0610375 | 473.2690431 | 367.2480334 | 377.0850343 | 440.4790401 | 311.5050283 | 463.4320422 | 417.5260380 | 489.6640446 | 400.0380364 | 509.3380463 | 488.5710445 | 32.7900030 | 26.2320024 | 37.1620034 | 33.8830031 | 26.2320024 | 25.1390023 | 43.7200040 | 40.4410037 | 31.6970029 | 436.1070397 | 48.0920044 | 28.4180026 | 31.6970029 | 34.9760032 | 33.8830031 | 27.3250025 | 380.3640346 | 30.6040028 | 301.6680275 |
ENSRNOG00000000044 Tmem175 protein_coding | 81.215109 | -0.3851394 | 0.0923749 | -4.169308 | 0.0000306 | 0.0000351 | 390.3986021 | 552.0614594 | 490.1480247 | 460.9111250 | 462.6309426 | 481.5489366 | 297.5284501 | 708.5648638 | 459.1913074 | 660.4099701 | 433.3940429 | 605.3758059 | 581.2983591 | 34.3963526 | 42.9954408 | 39.5558055 | 41.2756231 | 27.5170821 | 10.3189058 | 39.5558055 | 36.1161702 | 48.1548937 | 460.9111250 | 53.3143465 | 41.2756231 | 55.0341642 | 67.0728876 | 36.1161702 | 53.3143465 | 447.1525839 | 32.6765350 | 421.3553195 |
ENSRNOG00000000047 Cd82 protein_coding | 93.529245 | 1.4943004 | 0.0893353 | 16.726871 | 0.0000000 | 0.0000000 | 235.6725245 | 307.3169720 | 280.9216493 | 233.7871443 | 380.8467997 | 284.6924096 | 201.7356810 | 431.7520650 | 279.0362691 | 280.9216493 | 258.2970869 | 341.2538155 | 309.2023522 | 88.6128692 | 26.3953227 | 101.8105306 | 103.6959108 | 58.4467861 | 60.3321663 | 79.1859682 | 79.1859682 | 118.7789524 | 352.5660967 | 141.4035147 | 126.3204732 | 94.2690098 | 122.5497128 | 90.4982494 | 81.0713484 | 246.9848057 | 60.3321663 | 218.7041028 |
ENSRNOG00000000048 Gak protein_coding | 243.747442 | 0.3480978 | 0.0599274 | 5.808657 | 0.0000000 | 0.0000000 | 523.6878738 | 730.4879968 | 782.9596699 | 560.7267018 | 646.1217775 | 849.8353315 | 386.8499814 | 846.7487625 | 766.4979685 | 842.6333372 | 732.5457095 | 771.6422502 | 805.5945092 | 68.9333744 | 58.6448110 | 90.5393574 | 96.7124954 | 74.0776560 | 53.5005293 | 113.1741967 | 95.6836390 | 115.2319094 | 686.2471745 | 157.4150190 | 86.4239320 | 101.8567770 | 125.5204727 | 126.5493290 | 73.0487997 | 633.7755015 | 98.7702080 | 515.4570231 |
write.table(de4,file="de4.tsv",quote=FALSE,sep="\t")
Here we are going to exclude the mito samples with < 40% mito reads. Contrast 1 is not repeated.
Mito fraction S versus T: 0 DEGs
Whole versus mito fraction in S: 20 DEGs
Whole versus mito fraction in T: 0 DEGs
Mito fraction S versus T taking into consideration the mitofrac: 1 DEG
ss0 <- subset(ss, fraction=="mito" & mtfrac>0.4)
ss <- subset(ss, fraction!="mito")
ss <- rbind(ss,ss0)
ss2 <- subset(ss,fraction=="mito")
ss2$trt <- grepl("T",ss2$Group)*1
x2 <- x[,which(colnames(x) %in% rownames(ss2))]
ss3 <- subset(ss,Group=="S")
ss3$trt <- grepl("mito",ss3$fraction)*1
x3 <- x[,which(colnames(x) %in% rownames(ss3))]
ss4 <- subset(ss,Group=="T")
ss4$trt <- grepl("mito",ss4$fraction)*1
x4 <- x[,which(colnames(x) %in% rownames(ss4))]
ss2 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI | fraction | Group | RatID | label | nreads | mtfrac | trt | |
---|---|---|---|---|---|---|---|---|
33 | 33 | mito | T | 1 | mito T | 5474018 | 0.8850587 | 1 |
34 | 34 | mito | T | 2 | mito T | 9988027 | 0.9542655 | 1 |
35 | 35 | mito | S | 3 | mito S | 1469458 | 0.4723449 | 0 |
36 | 36 | mito | S | 4 | mito S | 1168009 | 0.5294668 | 0 |
37 | 37 | mito | T | 5 | mito T | 1353729 | 0.4835828 | 1 |
39 | 39 | mito | S | 7 | mito S | 1780282 | 0.6982787 | 0 |
43 | 43 | mito | S | 11 | mito S | 1700043 | 0.4096285 | 0 |
46 | 46 | mito | T | 14 | mito T | 1086442 | 0.4345745 | 1 |
47 | 47 | mito | S | 15 | mito S | 8344505 | 0.9222841 | 0 |
48 | 48 | mito | S | 16 | mito S | 1296403 | 0.5776151 | 0 |
52 | 52 | mito | S | 20 | mito S | 3085085 | 0.7437176 | 0 |
53 | 53 | mito | T | 21 | mito T | 1628001 | 0.5591495 | 1 |
56 | 56 | mito | S | 24 | mito S | 2133695 | 0.6219164 | 0 |
57 | 57 | mito | T | 25 | mito T | 1841975 | 0.5667390 | 1 |
58 | 58 | mito | T | 26 | mito T | 3802593 | 0.7906639 | 1 |
59 | 59 | mito | T | 27 | mito T | 7532868 | 0.9057456 | 1 |
60 | 60 | mito | T | 28 | mito T | 6001091 | 0.8726930 | 1 |
61 | 61 | mito | S | 29 | mito S | 1785865 | 0.5147013 | 0 |
62 | 62 | mito | S | 30 | mito S | 1474773 | 0.4122207 | 0 |
63 | 63 | mito | S | 31 | mito S | 1503193 | 0.4336855 | 0 |
64 | 64 | mito | S | 32 | mito S | 4091353 | 0.8123151 | 0 |
de2 <- run_de(ss2,x2)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## chr(0)
## chr(0)
as.data.frame(de2[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 33 | 34 | 35 | 36 | 37 | 39 | 43 | 46 | 47 | 48 | 52 | 53 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000000001 Arsj protein_coding | 21.954498 | -0.1611982 | 0.1860877 | -0.8662486 | 0.3863539 | 0.9770360 | 2.5575363 | 6.7405052 | 9.7242053 | 1.7257703 | 6.8437018 | 16.2514063 | 22.3695872 | 3.6816983 | 5.322005 | 22.2601024 | 3.7150196 | 16.8297615 | 10.8491273 | 14.290983 | 23.931328 | 6.561388 | 13.438866 | 3.203836 | 19.411274 | 18.4275071 | 4.9990910 |
ENSRNOG00000000007 Gad1 protein_coding | 38.259273 | 0.0157898 | 0.1278073 | 0.1235441 | 0.9016762 | 0.9989235 | 3.4040757 | 12.3526287 | 25.1842597 | 5.6656365 | 6.7592032 | 15.7278454 | 14.2621678 | 5.0445594 | 10.021135 | 23.6384092 | 37.0255237 | 8.6782887 | 25.2795217 | 49.657152 | 4.553895 | 18.458448 | 33.225452 | 29.943013 | 48.783092 | 22.4961862 | 22.9580623 |
ENSRNOG00000000008 Alx4 protein_coding | 15.586120 | -0.1843950 | 0.2540039 | -0.7259532 | 0.4678675 | 0.9821127 | 9.5273223 | 9.2043570 | 7.9673993 | 3.3597164 | 1.7020378 | 7.6468654 | 24.5700095 | 1.4997273 | 5.663116 | 3.3702526 | 5.8345232 | 1.7257703 | 1.2220896 | 14.774006 | 9.256381 | 3.155741 | 14.635513 | 23.116260 | 1.797590 | 9.7721196 | 14.2394796 |
ENSRNOG00000000009 Tmco5b protein_coding | 17.958991 | -0.1490540 | 0.2098614 | -0.7102501 | 0.4775491 | 0.9828999 | 15.4108402 | 0.8388754 | 10.8579107 | 7.4587750 | 15.6520295 | 23.9313281 | 9.3734109 | 7.2793856 | 2.102517 | 4.1175429 | 20.2702578 | 3.6660001 | 3.1055799 | 15.727845 | 4.862103 | 1.991273 | 2.444179 | 16.990107 | 16.198667 | 6.5744612 | 11.9745103 |
ENSRNOG00000000010 Cbln1 protein_coding | 21.660571 | 0.2118931 | 0.1682983 | 1.2590325 | 0.2080186 | 0.9691549 | 16.9901066 | 8.4850158 | 6.3114827 | 10.6440091 | 25.6847336 | 1.4380721 | 13.0294928 | 16.9517614 | 14.290983 | 11.9656641 | 7.4987287 | 13.4388658 | 2.4028770 | 9.999747 | 16.584756 | 4.499182 | 4.567029 | 15.166137 | 8.427645 | 3.9825469 | 7.8213735 |
ENSRNOG00000000012 Tcf15 protein_coding | 9.262726 | 0.3178989 | 0.2847919 | 1.1162498 | 0.2643152 | 0.9712115 | 10.6724665 | 3.5655420 | 1.3275156 | 1.4665075 | 3.6935014 | 1.5427302 | 4.9965905 | 6.6525057 | 5.136947 | 1.3182328 | 8.1434330 | 6.7807046 | 4.7636612 | 11.045228 | 3.749364 | 2.799764 | 1.001199 | 5.882204 | 5.528252 | 1.6663637 | 0.7307247 |
ENSRNOG00000000017 Steap1 protein_coding | 9.219725 | -0.1566629 | 0.2798756 | -0.5597590 | 0.5756438 | 0.9947511 | 6.4704246 | 2.4570009 | 2.4995455 | 1.8268117 | 11.2341753 | 1.2965607 | 2.2567766 | 1.4665075 | 5.909602 | 6.1709206 | 1.8408491 | 4.6567540 | 11.9862090 | 1.318233 | 1.628687 | 4.068423 | 6.124707 | 9.204357 | 2.812023 | 6.7194329 | 1.5017981 |
ENSRNOG00000000021 AABR07061902.1 protein_coding | 7.215800 | 0.2243939 | 0.3701817 | 0.6061723 | 0.5444004 | 0.9931259 | 2.7613071 | 1.8746822 | 8.3992911 | 0.5005994 | 8.8233062 | 6.1425024 | 2.8328182 | 1.4614493 | 1.685126 | 1.9448411 | 0.7965094 | 0.7332538 | 2.9548011 | 10.027746 | 3.944677 | 5.322005 | 1.712316 | 1.318233 | 3.257373 | 3.3903523 | 0.0000000 |
ENSRNOG00000000024 Hebp1 protein_coding | 9.716458 | -0.3710322 | 0.2496551 | -1.4861792 | 0.1372317 | 0.9527937 | 0.5991967 | 3.2573732 | 6.1026341 | 2.7220921 | 5.5226142 | 3.2806938 | 12.8789130 | 0.9010789 | 4.117543 | 5.5282521 | 1.8330000 | 1.0960870 | 8.4256314 | 3.565542 | 1.460267 | 2.444179 | 8.125703 | 11.570476 | 3.944677 | 11.9745103 | 9.4177357 |
ENSRNOG00000000033 Tmcc2 protein_coding | 35.369665 | 0.0426072 | 0.1377696 | 0.3092642 | 0.7571206 | 0.9989235 | 23.9123174 | 6.0485043 | 24.6142711 | 30.8216803 | 5.7522885 | 14.1152839 | 35.2596637 | 26.5403979 | 25.772199 | 12.1854342 | 21.2782041 | 3.9046751 | 18.8230533 | 26.412760 | 6.998727 | 5.663116 | 12.357593 | 14.910448 | 4.779056 | 13.4429857 | 30.2867117 |
ENSRNOG00000000034 Nuak2 protein_coding | 34.038444 | 0.0460973 | 0.1384433 | 0.3329689 | 0.7391577 | 0.9989235 | 11.0207660 | 3.1860375 | 7.5769556 | 16.9901066 | 20.8268571 | 6.5744612 | 36.5887813 | 28.2532070 | 3.475341 | 11.9437017 | 33.9035228 | 17.0130756 | 33.1356851 | 18.746822 | 26.317779 | 4.004795 | 22.352376 | 25.798510 | 8.998364 | 6.3938409 | 21.3449330 |
ENSRNOG00000000035 Tmed11 protein_coding | 4.232297 | 0.2003516 | 0.3653643 | 0.5483613 | 0.5834438 | 0.9959132 | 3.0712512 | 0.9998182 | 0.9134058 | 2.8085438 | 0.9724205 | 0.5310063 | 0.9776717 | 2.2161009 | 2.314095 | 0.5259569 | 3.3262528 | 3.4246311 | 0.4793574 | 3.800269 | 1.356141 | 2.722092 | 4.602178 | 2.343353 | 2.239811 | 0.4004795 | 2.9411021 |
ENSRNOG00000000036 Klhdc8a protein_coding | 31.161089 | -0.0394331 | 0.1598930 | -0.2466218 | 0.8052009 | 0.9989235 | 14.5287869 | 7.8393384 | 2.3027571 | 16.4701716 | 14.1277554 | 4.3325455 | 14.0664499 | 14.6044278 | 9.400065 | 2.3895281 | 7.5769556 | 32.5028126 | 27.7691428 | 10.782116 | 24.614271 | 27.397049 | 3.355502 | 20.087135 | 28.478959 | 29.2624900 | 25.7721995 |
ENSRNOG00000000040 RGD1304622 protein_coding | 50.406120 | -0.1011744 | 0.1538829 | -0.6574764 | 0.5108747 | 0.9847052 | 32.5737320 | 14.9175500 | 35.3871972 | 48.7830920 | 21.0901746 | 16.7985822 | 9.4112681 | 22.9405962 | 36.855014 | 8.8317274 | 6.5765220 | 14.6044278 | 13.2897473 | 9.823616 | 13.198568 | 45.799418 | 38.568254 | 17.619556 | 41.245535 | 55.6502561 | 7.0705213 |
ENSRNOG00000000041 Slc26a1 protein_coding | 29.927087 | -0.0276829 | 0.1548625 | -0.1787579 | 0.8581278 | 0.9989235 | 8.4153103 | 4.6567540 | 40.2394160 | 2.6364656 | 16.8297615 | 14.9175500 | 27.2209209 | 24.8517638 | 17.809481 | 15.1187240 | 2.7032366 | 20.5877145 | 14.1277554 | 6.165546 | 7.855290 | 14.042719 | 9.724205 | 5.310062 | 10.509971 | 25.1158097 | 23.1409523 |
ENSRNOG00000000042 Xpr1 protein_coding | 38.502690 | 0.1192935 | 0.1623686 | 0.7347079 | 0.4625174 | 0.9820810 | 3.0532859 | 6.1104481 | 28.0706109 | 28.5405079 | 11.3080732 | 17.2965148 | 44.5202049 | 3.9546983 | 15.201075 | 16.2736909 | 25.8598749 | 40.4991707 | 36.0876320 | 23.518015 | 4.104915 | 19.999494 | 46.683018 | 7.665273 | 8.951377 | 24.7151856 | 8.7517848 |
ENSRNOG00000000043 Idua protein_coding | 29.604229 | 0.0817579 | 0.1676953 | 0.4875384 | 0.6258769 | 0.9960496 | 4.9990910 | 4.3843480 | 17.9746804 | 7.7793643 | 4.5135531 | 6.8437018 | 42.8446166 | 28.5405079 | 7.363397 | 15.9660137 | 12.8423668 | 3.1158229 | 11.4008062 | 21.698255 | 21.096214 | 23.010892 | 13.122775 | 24.077968 | 2.603117 | 28.2345799 | 16.5847564 |
ENSRNOG00000000044 Tmem175 protein_coding | 25.636539 | 0.0135423 | 0.1760225 | 0.0769350 | 0.9386753 | 0.9989235 | 11.1990548 | 2.5029968 | 11.7644083 | 15.9705062 | 3.8326364 | 4.7497104 | 24.1534768 | 6.8069437 | 3.849795 | 6.5992839 | 14.7740057 | 18.5127618 | 4.4706336 | 25.944772 | 17.979313 | 3.715020 | 10.315015 | 21.020184 | 22.457260 | 25.7721995 | 10.7794226 |
ENSRNOG00000000047 Cd82 protein_coding | 46.089148 | -0.0218677 | 0.1348713 | -0.1621376 | 0.8711975 | 0.9989235 | 31.8693114 | 9.5273223 | 45.1013492 | 15.4661280 | 30.2374480 | 3.7044353 | 48.8222945 | 25.7985100 | 7.332000 | 6.5765220 | 24.1534768 | 21.7173919 | 8.8943547 | 15.887165 | 35.457614 | 33.168698 | 8.415310 | 31.932027 | 57.362572 | 6.4713245 | 26.6018811 |
ENSRNOG00000000048 Gak protein_coding | 94.626970 | -0.1295233 | 0.0951233 | -1.3616358 | 0.1733129 | 0.9644552 | 44.5717882 | 48.8009938 | 12.2236130 | 47.7748069 | 59.6702001 | 38.7898123 | 143.5879688 | 43.5863607 | 53.755463 | 8.0095899 | 69.4100090 | 51.5970199 | 16.9969094 | 22.287102 | 69.090178 | 23.013953 | 12.744150 | 34.951763 | 93.076236 | 76.3651426 | 30.2425214 |
write.table(de2,file="de2b.tsv",quote=FALSE,sep="\t")
ss3 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI | fraction | Group | RatID | label | nreads | mtfrac | trt | |
---|---|---|---|---|---|---|---|---|
11 | 11 | wholetissue | S | 11 | wholetissue S | 28160771 | 0.3290185 | 0 |
12 | 12 | wholetissue | S | 12 | wholetissue S | 30053603 | 0.2640899 | 0 |
15 | 15 | wholetissue | S | 15 | wholetissue S | 25070009 | 0.3071025 | 0 |
16 | 16 | wholetissue | S | 16 | wholetissue S | 27766116 | 0.3024493 | 0 |
19 | 19 | wholetissue | S | 19 | wholetissue S | 30788467 | 0.3233271 | 0 |
20 | 20 | wholetissue | S | 20 | wholetissue S | 30589099 | 0.3209945 | 0 |
23 | 23 | wholetissue | S | 23 | wholetissue S | 32055355 | 0.3547227 | 0 |
24 | 24 | wholetissue | S | 24 | wholetissue S | 28630316 | 0.2413714 | 0 |
29 | 29 | wholetissue | S | 29 | wholetissue S | 24309444 | 0.3591212 | 0 |
3 | 3 | wholetissue | S | 3 | wholetissue S | 23906716 | 0.3067514 | 0 |
30 | 30 | wholetissue | S | 30 | wholetissue S | 26615136 | 0.2724498 | 0 |
31 | 31 | wholetissue | S | 31 | wholetissue S | 27019886 | 0.3536612 | 0 |
32 | 32 | wholetissue | S | 32 | wholetissue S | 20876971 | 0.3177831 | 0 |
4 | 4 | wholetissue | S | 4 | wholetissue S | 25823475 | 0.2520651 | 0 |
7 | 7 | wholetissue | S | 7 | wholetissue S | 25564135 | 0.2969021 | 0 |
8 | 8 | wholetissue | S | 8 | wholetissue S | 22385138 | 0.2206553 | 0 |
35 | 35 | mito | S | 3 | mito S | 1469458 | 0.4723449 | 1 |
36 | 36 | mito | S | 4 | mito S | 1168009 | 0.5294668 | 1 |
39 | 39 | mito | S | 7 | mito S | 1780282 | 0.6982787 | 1 |
43 | 43 | mito | S | 11 | mito S | 1700043 | 0.4096285 | 1 |
47 | 47 | mito | S | 15 | mito S | 8344505 | 0.9222841 | 1 |
48 | 48 | mito | S | 16 | mito S | 1296403 | 0.5776151 | 1 |
52 | 52 | mito | S | 20 | mito S | 3085085 | 0.7437176 | 1 |
56 | 56 | mito | S | 24 | mito S | 2133695 | 0.6219164 | 1 |
61 | 61 | mito | S | 29 | mito S | 1785865 | 0.5147013 | 1 |
62 | 62 | mito | S | 30 | mito S | 1474773 | 0.4122207 | 1 |
63 | 63 | mito | S | 31 | mito S | 1503193 | 0.4336855 | 1 |
64 | 64 | mito | S | 32 | mito S | 4091353 | 0.8123151 | 1 |
de3 <- run_de(ss3,x3)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 547 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## chr [1:8730] "ENSRNOG00000065610 na lncRNA" "ENSRNOG00000066930 na lncRNA" ...
## chr [1:4758] "ENSRNOG00000028837 AC128207.1 protein_coding" ...
as.data.frame(de3[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 11 | 12 | 15 | 16 | 19 | 20 | 23 | 24 | 29 | 3 | 30 | 31 | 32 | 35 | 36 | 39 | 4 | 43 | 47 | 48 | 52 | 56 | 61 | 62 | 63 | 64 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000000001 Arsj protein_coding | 37.382998 | 1.6058722 | 0.5519473 | 2.9094664 | 0.0036205 | 0.0150348 | 0.5326559 | 0.7663947 | 7.9830068 | 0.6170441 | 6.4828036 | 0.5196751 | 0.9293869 | 1.0298014 | 0.7663947 | 10.6440091 | 0.4113628 | 7.7793643 | 0.8444721 | 1.1617337 | 0.4616351 | 1.0537927 | 8.6482574 | 1.1929520 | 2.5931214 | 0.8444721 | 1.2004581 | 0.5681663 | 1.532789 | 21.9532688 | 1.2340883 | 9.7242053 | 0.4547157 | 0.5808668 |
ENSRNOG00000000007 Gad1 protein_coding | 56.810911 | 1.9271602 | 0.7899382 | 2.4396343 | 0.0147021 | 0.0364680 | 0.3327388 | 4.0831381 | 1.4665075 | 0.1254877 | 8.9047404 | 0.1634569 | 4.7057633 | 0.0665478 | 3.4026151 | 2.6885971 | 0.3764632 | 4.2180349 | 0.1961483 | 24.1170370 | 1.1313119 | 19.0546446 | 1.4665075 | 1.8404870 | 19.2154924 | 1.0461243 | 28.2345799 | 1.2644075 | 29.943013 | 12.9541499 | 2.0078040 | 19.2154924 | 0.1307655 | 1.7646612 |
ENSRNOG00000000008 Alx4 protein_coding | 30.190271 | 1.3646831 | 0.4286220 | 3.1838850 | 0.0014531 | 0.0090983 | 1.8348617 | 13.6985246 | 1.5255748 | 0.8641699 | 30.2374480 | 0.9358811 | 4.5538950 | 0.5584362 | 26.5408914 | 1.2517537 | 1.2774686 | 15.6786767 | 0.6863128 | 2.0372688 | 0.2393298 | 11.1300512 | 0.7041114 | 1.5029042 | 17.3585349 | 0.1871762 | 2.1571082 | 0.1994415 | 23.116260 | 0.5867595 | 0.6763069 | 11.7590075 | 0.4367445 | 1.6777508 |
ENSRNOG00000000009 Tmco5b protein_coding | 27.186272 | 1.7606833 | 1.7173770 | 1.0252165 | 0.3052610 | 0.3429545 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 15.4273015 | 0.3961663 | 14.6044278 | 0.0000000 | 0.7401956 | 14.2394796 | 0.2444961 | 25.4550475 | 0.6122570 | 12.919301 | 0.9381224 | 0.9252445 | 12.2052682 | 0.0000000 | 0.0000000 |
ENSRNOG00000000010 Cbln1 protein_coding | 29.492568 | 2.1595541 | 1.0377306 | 2.0810353 | 0.0374307 | 0.0736637 | 0.0324797 | 0.0387245 | 0.0000000 | 0.0478997 | 0.6652506 | 0.0822726 | 0.9724205 | 0.0974391 | 0.1161734 | 0.0355104 | 0.0000000 | 2.6610023 | 0.0000000 | 7.7793643 | 0.5196751 | 0.4646935 | 0.0000000 | 1.1495921 | 13.9702620 | 0.5347716 | 5.1862428 | 0.7795127 | 1.045560 | 0.9232702 | 1.4369901 | 21.2880182 | 0.0000000 | 0.6482804 |
ENSRNOG00000000012 Tcf15 protein_coding | 107.992711 | -1.3915410 | 0.4060606 | -3.4269297 | 0.0006104 | 0.0058963 | 10.9843052 | 309.9921590 | 10.2150814 | 236.1414889 | 122.4533791 | 13.3435307 | 390.8712351 | 20.5955723 | 277.6400362 | 16.4040232 | 201.4348147 | 114.3875877 | 12.0886532 | 4.6867055 | 0.1961483 | 1.1764408 | 8.2186485 | 12.9299374 | 1.4665075 | 0.4601217 | 7.0300582 | 0.2288397 | 5.882204 | 0.2994649 | 6.8052302 | 0.9776717 | 14.6820667 | 126.0723768 |
ENSRNOG00000000017 Steap1 protein_coding | 14.129584 | 1.9332698 | 1.1110711 | 1.7400054 | 0.0818581 | 0.1351054 | 0.0623921 | 0.2396787 | 0.0000000 | 0.0000000 | 0.0391173 | 0.0000000 | 1.1199055 | 0.1247841 | 0.0000000 | 0.1196649 | 0.0000000 | 0.0000000 | 0.0000000 | 8.3992911 | 0.3119604 | 0.4793574 | 0.0000000 | 14.5546824 | 0.3129384 | 0.3005808 | 3.9196692 | 0.4367445 | 1.198393 | 0.2393298 | 10.2738934 | 0.5867595 | 0.0000000 | 1.6798582 |
ENSRNOG00000000021 AABR07061902.1 protein_coding | 9.742919 | 1.0559034 | 1.7466523 | 0.6045298 | 0.5454915 | 0.5674987 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 10.1710568 | 0.1746401 | 7.7136508 | 0.0000000 | 9.5490490 | 0.1340175 | 0.2220587 | 4.0684227 | 0.1397120 | 8.485016 | 0.2160907 | 2.8085438 | 0.0000000 | 0.0000000 | 0.0000000 |
ENSRNOG00000000024 Hebp1 protein_coding | 28.538572 | 0.4621016 | 0.1739104 | 2.6571248 | 0.0078810 | 0.0238609 | 3.2086295 | 19.1242705 | 1.5915050 | 2.0136717 | 2.0240923 | 3.5445755 | 53.2200456 | 3.0440844 | 16.5311491 | 1.7539035 | 1.8587738 | 2.1661339 | 1.5327894 | 5.9872551 | 0.1645451 | 2.2689812 | 1.2667081 | 0.8906625 | 0.2485727 | 0.4310970 | 7.3177563 | 0.6170441 | 4.862103 | 0.4871954 | 0.6970402 | 0.3906143 | 3.3050772 | 24.6142711 |
ENSRNOG00000000033 Tmcc2 protein_coding | 277.956987 | -0.6604479 | 0.3106153 | -2.1262567 | 0.0334819 | 0.0676945 | 32.5431565 | 559.5926316 | 29.0299495 | 575.2795665 | 33.7064411 | 782.6014762 | 204.3333831 | 56.0511950 | 395.0892700 | 30.3049135 | 659.3950859 | 26.2198180 | 338.2199423 | 9.0434631 | 1.5058530 | 12.1854342 | 36.2547455 | 30.5874616 | 0.9316687 | 17.6935986 | 9.2878811 | 1.3385360 | 21.558845 | 1.1768898 | 32.3521229 | 1.3642291 | 730.8817265 | 246.3732658 |
ENSRNOG00000000034 Nuak2 protein_coding | 61.087509 | 1.3861424 | 0.3695315 | 3.7510801 | 0.0001761 | 0.0031598 | 2.7052276 | 36.9568808 | 1.7157820 | 5.9919672 | 2.1539681 | 35.9586270 | 4.0290821 | 3.6445427 | 26.3177788 | 1.2790375 | 3.9546983 | 2.6326277 | 32.5339959 | 1.2126364 | 0.8641699 | 13.9988185 | 1.4038216 | 6.5911639 | 1.1567607 | 18.8354713 | 1.9558651 | 1.3526138 | 23.518015 | 1.6845859 | 4.1943770 | 1.5157553 | 56.5064139 | 1.2517537 |
ENSRNOG00000000035 Tmed11 protein_coding | 5.671059 | 1.5646015 | 1.5262539 | 1.0251253 | 0.3053041 | 0.3429772 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.2233625 | 0.1850489 | 2.7122818 | 0.0000000 | 3.0854603 | 0.1080454 | 1.1234175 | 0.2233625 | 0.1480391 | 3.390352 | 0.1397120 | 3.0854603 | 0.1800756 | 0.0000000 | 0.0000000 |
ENSRNOG00000000036 Klhdc8a protein_coding | 45.974588 | 2.1359588 | 0.9808878 | 2.1775772 | 0.0294375 | 0.0613353 | 0.0000000 | 2.6610023 | 0.0822726 | 0.0000000 | 0.0649594 | 0.0000000 | 0.0710208 | 0.0478997 | 1.9957517 | 0.2468177 | 0.9724205 | 0.1299188 | 0.0387245 | 0.8167390 | 1.3411907 | 17.2965148 | 0.0411363 | 24.9587937 | 0.9419111 | 0.6970402 | 1.1008221 | 1.7243881 | 24.614271 | 1.7277236 | 13.9380276 | 0.9094314 | 0.0774489 | 0.3906143 |
ENSRNOG00000000040 RGD1304622 protein_coding | 103.940290 | 1.0913142 | 0.2965219 | 3.6803833 | 0.0002329 | 0.0036382 | 82.3432858 | 40.3289572 | 3.1790230 | 68.8945702 | 3.6614351 | 87.0566215 | 3.5935791 | 121.8136211 | 25.6638819 | 4.8940222 | 59.9898298 | 3.8902748 | 43.5283108 | 1.7302418 | 36.0677202 | 7.3325377 | 5.8142657 | 44.0550313 | 1.9614831 | 31.1756820 | 1.1978597 | 27.9014439 | 16.376001 | 2.5934135 | 30.4635855 | 1.9287917 | 78.2333153 | 3.9595918 |
ENSRNOG00000000041 Slc26a1 protein_coding | 44.439600 | 1.9099061 | 1.3612930 | 1.4030088 | 0.1606142 | 0.2193057 | 0.0000000 | 0.0000000 | 0.0000000 | 0.5599527 | 0.0623921 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.1127178 | 0.5599527 | 0.0000000 | 0.0000000 | 1.8747500 | 18.8354713 | 0.8605807 | 0.0000000 | 22.3981096 | 1.1854494 | 3.2356623 | 1.0769841 | 19.6916291 | 1.564692 | 1.6156220 | 19.0383932 | 0.9358811 | 3.4753410 | 0.0000000 |
ENSRNOG00000000042 Xpr1 protein_coding | 163.194639 | -0.2981857 | 0.1402995 | -2.1253510 | 0.0335573 | 0.0677922 | 293.2119743 | 23.7657682 | 15.3220484 | 317.3369732 | 19.4199743 | 374.8834275 | 17.5753786 | 329.7230439 | 17.3776012 | 15.5811168 | 327.5080300 | 13.7616364 | 325.5160625 | 1.3685746 | 20.7832242 | 1.1614849 | 17.2465569 | 35.2596637 | 0.9779843 | 18.5127618 | 1.3685746 | 43.2515748 | 2.054935 | 1.8134792 | 29.8351000 | 0.9430563 | 344.8001894 | 14.2619875 |
ENSRNOG00000000043 Idua protein_coding | 122.810154 | -0.2686653 | 0.1535189 | -1.7500474 | 0.0801101 | 0.1328574 | 15.3736087 | 14.7013020 | 17.1959812 | 263.4392257 | 13.1636083 | 97.5661935 | 10.8482179 | 14.3667729 | 11.0792421 | 12.5976129 | 241.4859569 | 15.4672398 | 98.5386140 | 1.0393502 | 0.9293869 | 0.9942910 | 15.1362954 | 38.5845331 | 1.1518157 | 7.7793643 | 0.4871954 | 0.8132136 | 1.526947 | 1.2453914 | 31.9320274 | 1.1106795 | 104.0489970 | 11.9200479 |
ENSRNOG00000000044 Tmem175 protein_coding | 95.444315 | -0.1834256 | 0.1051493 | -1.7444303 | 0.0810841 | 0.1341243 | 177.6425655 | 8.8841261 | 161.2839564 | 64.2819136 | 13.2180430 | 101.2328379 | 10.6573914 | 181.7601084 | 7.3868015 | 129.9798973 | 65.2595853 | 9.6625567 | 96.0774619 | 0.6538277 | 15.2937308 | 0.8651209 | 163.3255255 | 10.5099707 | 1.2130482 | 12.6541047 | 0.6538277 | 9.9997471 | 1.031490 | 22.4572598 | 6.8437018 | 0.9620727 | 101.2328379 | 6.7998080 |
ENSRNOG00000000047 Cd82 protein_coding | 99.321535 | 0.8880817 | 0.2440332 | 3.6391832 | 0.0002735 | 0.0039336 | 18.5750982 | 7.6186650 | 102.7389344 | 4.4984898 | 4.7341483 | 80.0732418 | 6.2392071 | 21.0917244 | 4.7467075 | 135.2729303 | 4.7723109 | 4.8844387 | 55.9952740 | 1.5286058 | 3.9546983 | 1.4758670 | 101.0266188 | 3.2467361 | 1.6531946 | 20.1582986 | 1.3414295 | 8.0292360 | 1.914638 | 57.3625717 | 2.1123343 | 1.8410577 | 78.9533363 | 3.3067798 |
ENSRNOG00000000048 Gak protein_coding | 288.809504 | 0.2798440 | 0.0760348 | 3.6804724 | 0.0002328 | 0.0036382 | 527.6137127 | 25.4987050 | 273.5521676 | 28.0543278 | 23.9453268 | 443.4580780 | 26.9993527 | 728.9399978 | 18.7638775 | 301.0758970 | 25.3739780 | 25.0186104 | 332.9325937 | 3.5626571 | 67.8801268 | 2.0528618 | 303.3227320 | 6.9689095 | 3.5529388 | 54.2456364 | 4.1215053 | 78.6792379 | 5.150162 | 70.7753041 | 4.4225772 | 4.2561245 | 446.1703598 | 20.8869507 |
write.table(de3,file="de3b.tsv",quote=FALSE,sep="\t")
ss4 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI | fraction | Group | RatID | label | nreads | mtfrac | trt | |
---|---|---|---|---|---|---|---|---|
1 | 1 | wholetissue | T | 1 | wholetissue T | 22353545 | 0.2350623 | 0 |
10 | 10 | wholetissue | T | 10 | wholetissue T | 32594141 | 0.3531781 | 0 |
13 | 13 | wholetissue | T | 13 | wholetissue T | 29989340 | 0.2972082 | 0 |
14 | 14 | wholetissue | T | 14 | wholetissue T | 27775661 | 0.3282823 | 0 |
17 | 17 | wholetissue | T | 17 | wholetissue T | 30401193 | 0.3348082 | 0 |
18 | 18 | wholetissue | T | 18 | wholetissue T | 33702596 | 0.3547981 | 0 |
2 | 2 | wholetissue | T | 2 | wholetissue T | 19477976 | 0.3181207 | 0 |
21 | 21 | wholetissue | T | 21 | wholetissue T | 39401323 | 0.3400537 | 0 |
22 | 22 | wholetissue | T | 22 | wholetissue T | 27353327 | 0.3221241 | 0 |
25 | 25 | wholetissue | T | 25 | wholetissue T | 34339726 | 0.2938285 | 0 |
26 | 26 | wholetissue | T | 26 | wholetissue T | 28163757 | 0.2587561 | 0 |
27 | 27 | wholetissue | T | 27 | wholetissue T | 30543678 | 0.3380834 | 0 |
28 | 28 | wholetissue | T | 28 | wholetissue T | 30906624 | 0.2776614 | 0 |
5 | 5 | wholetissue | T | 5 | wholetissue T | 30755504 | 0.3586038 | 0 |
6 | 6 | wholetissue | T | 6 | wholetissue T | 26148398 | 0.3245408 | 0 |
9 | 9 | wholetissue | T | 9 | wholetissue T | 24737507 | 0.3535222 | 0 |
33 | 33 | mito | T | 1 | mito T | 5474018 | 0.8850587 | 1 |
34 | 34 | mito | T | 2 | mito T | 9988027 | 0.9542655 | 1 |
37 | 37 | mito | T | 5 | mito T | 1353729 | 0.4835828 | 1 |
46 | 46 | mito | T | 14 | mito T | 1086442 | 0.4345745 | 1 |
53 | 53 | mito | T | 21 | mito T | 1628001 | 0.5591495 | 1 |
57 | 57 | mito | T | 25 | mito T | 1841975 | 0.5667390 | 1 |
58 | 58 | mito | T | 26 | mito T | 3802593 | 0.7906639 | 1 |
59 | 59 | mito | T | 27 | mito T | 7532868 | 0.9057456 | 1 |
60 | 60 | mito | T | 28 | mito T | 6001091 | 0.8726930 | 1 |
de4 <- run_de(ss4,x4)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 420 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## chr [1:661] "ENSRNOG00000006049 Rfx1 protein_coding" ...
## chr [1:77] "ENSRNOG00000001052 Slc25a30 protein_coding" ...
as.data.frame(de4[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 1 | 10 | 13 | 14 | 17 | 18 | 2 | 21 | 22 | 25 | 26 | 27 | 28 | 33 | 34 | 37 | 46 | 5 | 53 | 57 | 58 | 59 | 6 | 60 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000000001 Arsj protein_coding | 35.629246 | 1.3761157 | 0.5839760 | 2.3564594 | 0.0184501 | 0.1006368 | 0.8052414 | 1.1362120 | 8.1523318 | 0.5340835 | 36.1963140 | 0.8947127 | 0.7811458 | 4.2076551 | 0.5340835 | 14.7740057 | 0.5368276 | 0.9586789 | 4.2076551 | 0.4153983 | 8.8644034 | 1.2525977 | 0.4970928 | 4.9965905 | 0.9198105 | 15.5127060 | 1.1631265 | 0.4970928 | 4.7336120 | 0.7121113 | 9.6031037 |
ENSRNOG00000000007 Gad1 protein_coding | 57.291868 | 1.9204448 | 0.8808192 | 2.1802941 | 0.0292357 | 0.1181549 | 0.2454429 | 0.1637000 | 1.5930188 | 0.0513400 | 8.2839213 | 0.2454429 | 0.0982200 | 2.7877828 | 0.2567002 | 11.0452284 | 0.1534018 | 0.3601400 | 1.3275156 | 1.7455612 | 19.3291496 | 1.1351733 | 1.2441200 | 1.0620125 | 1.6942212 | 53.3852705 | 1.1658537 | 1.1131600 | 2.5222797 | 2.5156618 | 5.5226142 |
ENSRNOG00000000008 Alx4 protein_coding | 30.766047 | 0.7797296 | 0.4527809 | 1.7220903 | 0.0850532 | 0.1942579 | 0.2000711 | 1.4883541 | 0.9560815 | 1.1167138 | 2.3735589 | 1.3338073 | 0.6794660 | 2.4475687 | 0.2791784 | 1.1380077 | 1.4671880 | 2.0060425 | 1.1090546 | 0.3553180 | 0.3251451 | 0.5668681 | 0.2911997 | 0.9560815 | 0.3299382 | 0.6502901 | 0.4001422 | 0.3882663 | 1.0708113 | 0.5583569 | 0.8128626 |
ENSRNOG00000000009 Tmco5b protein_coding | 24.107869 | 1.7255317 | 1.7108656 | 1.0085723 | 0.3131798 | 0.4214014 | 0.0360027 | 0.1826812 | 0.0000000 | 0.0365586 | 0.0000000 | 0.0000000 | 0.0000000 | 0.3332727 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.6580552 | 4.2997517 | 0.8280631 | 2.3748552 | 0.0000000 | 0.8042897 | 17.1990066 | 0.5400412 | 2.7402175 | 0.0000000 | 0.3655862 | 0.0000000 |
ENSRNOG00000000010 Cbln1 protein_coding | 34.054233 | 1.7828863 | 1.5589297 | 1.1436605 | 0.2527645 | 0.3745620 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0291208 | 0.5428955 | 0.0000000 | 0.4004795 | 0.0404244 | 0.1747247 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0808489 | 0.6697782 | 5.9718509 | 0.9868034 | 2.5029968 | 0.0000000 | 0.6988990 | 9.2292241 | 0.8881230 | 2.7032366 | 0.0000000 | 0.7280198 | 0.0000000 |
ENSRNOG00000000012 Tcf15 protein_coding | 180.539920 | -0.7432341 | 0.4705600 | -1.5794672 | 0.1142289 | 0.2309516 | 8.2486227 | 500.8387942 | 31.4044148 | 15.8359554 | 96.7760683 | 14.3015689 | 237.8614922 | 40.5304841 | 21.2329626 | 162.7836584 | 19.2270055 | 640.4531483 | 33.9096103 | 0.6746259 | 2.8927629 | 0.1483565 | 7.3870029 | 37.2200472 | 0.3550663 | 3.1557414 | 0.2373704 | 3.6935014 | 28.8992193 | 0.3550663 | 115.1845596 |
ENSRNOG00000000017 Steap1 protein_coding | 12.487775 | 0.9320222 | 1.7524382 | 0.5318431 | 0.5948346 | 0.6349797 | 0.0000000 | 0.0000000 | 0.0306804 | 0.0000000 | 0.3982547 | 0.0000000 | 0.9204357 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.3601400 | 0.5310063 | 1.0268007 | 5.5226142 | 0.0000000 | 0.2291800 | 1.4602672 | 0.1540201 | 5.5226142 | 0.0000000 | 0.2946600 | 0.0000000 |
ENSRNOG00000000021 AABR07061902.1 protein_coding | 11.214462 | 1.8176431 | 1.9513598 | 0.9314751 | 0.3516079 | 0.4482125 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0253799 | 0.0000000 | 0.0000000 | 0.0970666 | 0.1529730 | 0.3806979 | 0.2601160 | 0.0000000 | 0.0970666 | 0.4971624 | 0.3806979 | 0.2601160 | 0.0000000 | 0.0647110 | 0.0000000 |
ENSRNOG00000000024 Hebp1 protein_coding | 30.006590 | 0.0991046 | 0.1734657 | 0.5713212 | 0.5677819 | 0.6120443 | 1.4623450 | 56.5110218 | 3.0602332 | 9.4994207 | 12.6643639 | 2.2300761 | 22.1130085 | 2.7362085 | 13.7010876 | 9.4982729 | 2.3763106 | 47.9115185 | 2.6282003 | 0.9134058 | 0.9998182 | 0.2193517 | 5.5282521 | 1.9801509 | 1.0960870 | 1.8330000 | 0.4021449 | 6.1425024 | 2.4481866 | 2.0094928 | 6.4988183 |
ENSRNOG00000000033 Tmcc2 protein_coding | 350.908906 | -0.8779014 | 0.2868408 | -3.0605879 | 0.0022090 | 0.0555430 | 30.8389182 | 546.6958021 | 37.5972088 | 99.1186748 | 42.7690632 | 34.7411042 | 346.3673503 | 40.3273648 | 108.6300628 | 54.8155479 | 35.5273656 | 726.9371191 | 43.3864553 | 3.1037161 | 0.9297622 | 1.3977980 | 21.1729258 | 30.9198392 | 3.9046751 | 1.7382512 | 1.2230732 | 16.8297615 | 30.8211589 | 2.2026372 | 25.8716450 |
ENSRNOG00000000034 Nuak2 protein_coding | 68.826907 | 1.1665124 | 0.4264896 | 2.7351486 | 0.0062352 | 0.0729163 | 2.1659042 | 21.8272111 | 2.5220609 | 39.1511152 | 2.7736093 | 1.3492518 | 10.2561594 | 1.7802783 | 54.6638212 | 3.8920001 | 2.4854639 | 29.9795429 | 1.2165235 | 25.1158097 | 1.0736552 | 0.9586789 | 8.6782887 | 2.7297600 | 18.4675072 | 1.7894253 | 1.6688114 | 10.5191379 | 1.6022505 | 28.0706109 | 2.4157242 |
ENSRNOG00000000035 Tmed11 protein_coding | 6.673576 | 1.3150727 | 2.0391199 | 0.6449217 | 0.5189779 | 0.5708222 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 4.6021785 | 0.1840822 | 0.0982200 | 0.3982547 | 0.0000000 | 3.6817428 | 0.2147625 | 0.0654800 | 0.5310063 | 0.0000000 | 4.6021785 | 0.0000000 |
ENSRNOG00000000036 Klhdc8a protein_coding | 44.759178 | 2.1376054 | 1.1836045 | 1.8060132 | 0.0709163 | 0.1762416 | 0.0323555 | 0.2677028 | 0.0253799 | 0.1950870 | 0.2667615 | 0.0000000 | 0.0000000 | 0.0507597 | 0.0975435 | 0.1667259 | 0.0647110 | 0.0764865 | 0.0253799 | 1.0079497 | 0.4668325 | 0.7441770 | 0.9943248 | 0.0000000 | 1.4306382 | 1.3671525 | 1.1971544 | 1.2237843 | 0.0000000 | 0.9104062 | 0.0666904 |
ENSRNOG00000000040 RGD1304622 protein_coding | 106.644402 | 0.8961277 | 0.3311529 | 2.7060842 | 0.0068082 | 0.0752479 | 21.0083343 | 28.1615460 | 5.7031454 | 74.9385289 | 4.5363457 | 27.2194940 | 13.8308184 | 5.4472350 | 70.6387772 | 4.5003429 | 24.6619576 | 24.8288186 | 4.9354143 | 36.8550142 | 0.7920604 | 8.2206525 | 6.4988183 | 6.0321730 | 15.9705062 | 2.6642030 | 9.8647831 | 10.3314547 | 5.2644419 | 30.7125118 | 3.6362771 |
ENSRNOG00000000041 Slc26a1 protein_coding | 42.451276 | 2.0868257 | 1.4331467 | 1.4561144 | 0.1453610 | 0.2671025 | 1.1013186 | 0.0404244 | 0.0000000 | 0.5428955 | 0.0000000 | 0.1001199 | 0.3233956 | 0.0000000 | 1.6286866 | 0.0000000 | 0.0000000 | 0.0404244 | 0.0000000 | 17.3726571 | 0.2302541 | 3.1037161 | 1.0914600 | 0.0000000 | 19.0013437 | 1.2170575 | 4.3051546 | 1.0106111 | 0.0291208 | 16.2868660 | 0.0000000 |
ENSRNOG00000000042 Xpr1 protein_coding | 194.044688 | -0.2099177 | 0.1078470 | -1.9464406 | 0.0516018 | 0.1502819 | 342.0182326 | 22.9493801 | 17.8953397 | 118.6032794 | 14.9543376 | 386.3402498 | 14.6285522 | 23.5053867 | 132.8041155 | 16.6752733 | 378.2145466 | 22.7704375 | 19.4931379 | 6.0485043 | 0.7417826 | 31.7641123 | 1.4762759 | 14.5577169 | 11.5710516 | 1.2461948 | 30.2867117 | 1.5210115 | 14.9482897 | 19.9863619 | 10.4146280 |
ENSRNOG00000000043 Idua protein_coding | 150.095911 | -0.2251701 | 0.1069270 | -2.1058309 | 0.0352190 | 0.1273399 | 274.2898378 | 11.5664960 | 14.1764197 | 44.6045251 | 17.7123126 | 370.9355861 | 8.7439028 | 13.8817598 | 50.7110970 | 23.0003364 | 336.8794653 | 14.2970480 | 14.6347797 | 3.9825469 | 1.2321609 | 31.2948137 | 1.1351733 | 13.0632598 | 3.4515406 | 1.6428812 | 28.5335066 | 0.7670090 | 11.3935198 | 3.7170438 | 14.1698501 |
ENSRNOG00000000044 Tmem175 protein_coding | 117.276824 | -0.1311654 | 0.1088068 | -1.2054886 | 0.2280147 | 0.3524287 | 7.3807927 | 10.7038034 | 9.2213242 | 10.2491939 | 6.8271819 | 9.1040615 | 5.7687165 | 13.3304757 | 10.2109506 | 9.7458656 | 8.1936554 | 11.7375041 | 10.9361670 | 0.7648652 | 0.6344965 | 0.7478336 | 0.7002488 | 8.6712803 | 0.9178383 | 0.9898145 | 0.6828046 | 1.0337006 | 8.4124361 | 0.7266220 | 6.2180653 |
ENSRNOG00000000047 Cd82 protein_coding | 108.242117 | 0.8122696 | 0.2812947 | 2.8876105 | 0.0038818 | 0.0640084 | 76.7812796 | 5.8684472 | 27.2194940 | 20.6629095 | 7.3848421 | 92.7517858 | 3.8522936 | 41.8339874 | 24.6621823 | 5.4472350 | 84.1522825 | 6.5164966 | 29.9597115 | 7.8319092 | 0.5118207 | 33.1695128 | 1.5121152 | 34.1613784 | 11.1646366 | 2.3763106 | 29.4840114 | 1.5481180 | 23.9312330 | 5.3323637 | 4.2408004 |
ENSRNOG00000000048 Gak protein_coding | 316.310469 | 0.1641226 | 0.0831985 | 1.9726633 | 0.0485339 | 0.1458256 | 276.3338265 | 23.3543467 | 76.1912238 | 22.0313227 | 18.2878570 | 448.4317105 | 12.3679357 | 82.3986559 | 30.1162118 | 23.8499282 | 386.5416197 | 24.6700845 | 78.3938610 | 2.7084378 | 1.6598851 | 47.7748069 | 3.0590905 | 66.7799556 | 3.3956534 | 3.5527366 | 66.7761506 | 2.3354347 | 61.6738421 | 3.8807468 | 14.5895165 |
write.table(de4,file="de4b.tsv",quote=FALSE,sep="\t")
ss5 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI | fraction | Group | RatID | label | nreads | mtfrac | trt | |
---|---|---|---|---|---|---|---|---|
34 | 34 | mito | T | 2 | mito T | 9988027 | 0.9542655 | 1 |
47 | 47 | mito | S | 15 | mito S | 8344505 | 0.9222841 | 0 |
59 | 59 | mito | T | 27 | mito T | 7532868 | 0.9057456 | 1 |
60 | 60 | mito | T | 28 | mito T | 6001091 | 0.8726930 | 1 |
de5 <- run_de_cov(ss5,x5)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## -- note: fitType='parametric', but the dispersion trend was not well captured by the
## function: y = a/x + b, and a local regression fit was automatically substituted.
## specify fitType='local' or 'mean' to avoid this message next time.
## final dispersion estimates
## fitting model and testing
## chr [1:43] "ENSRNOG00000058403 AABR07060960.1 snoRNA" ...
## chr(0)
as.data.frame(de5[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 34 | 47 | 59 | 60 | |
---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000000001 Arsj protein_coding | 13.879255 | 0.9925647 | 1.0906845 | 0.9100383 | 0.3628023 | 0.9999545 | 1.2014385 | 0.8009590 | 1.4016782 | 2.4028770 |
ENSRNOG00000000007 Gad1 protein_coding | 34.371879 | -0.3771957 | 0.6771853 | -0.5570051 | 0.5775240 | 0.9999545 | 2.5166262 | 4.9134131 | 4.0745377 | 5.8721278 |
ENSRNOG00000000008 Alx4 protein_coding | 17.989689 | -1.1840777 | 0.9112336 | -1.2994228 | 0.1937989 | 0.9999545 | 1.3275156 | 4.1152984 | 1.5930188 | 2.9205344 |
ENSRNOG00000000009 Tmco5b protein_coding | 12.807227 | -0.9773889 | 1.0669809 | -0.9160322 | 0.3596500 | 0.9999545 | 1.1664546 | 3.4993637 | 2.4995455 | 1.6663637 |
ENSRNOG00000000010 Cbln1 protein_coding | 19.779707 | -0.1423100 | 0.8830251 | -0.1611619 | 0.8719659 | 0.9999545 | 1.1013186 | 2.1025173 | 2.7032366 | 2.5029968 |
ENSRNOG00000000012 Tcf15 protein_coding | 8.299133 | 0.6973686 | 1.4115390 | 0.4940484 | 0.6212720 | 0.9999545 | 1.3182328 | 0.7190361 | 0.5991967 | 1.1983934 |
ENSRNOG00000000017 Steap1 protein_coding | 6.422884 | -0.4558564 | 1.5567867 | -0.2928188 | 0.7696606 | 0.9999545 | 0.5310063 | 1.0620125 | 0.7965094 | 1.1947641 |
ENSRNOG00000000021 AABR07061902.1 protein_coding | 4.255812 | 0.7945281 | 2.1190525 | 0.3749450 | 0.7077014 | 0.9999545 | 0.6665455 | 0.4999091 | 1.3330909 | 0.3332727 |
ENSRNOG00000000024 Hebp1 protein_coding | 8.136685 | 0.3088650 | 1.3782218 | 0.2241040 | 0.8226764 | 0.9999545 | 0.6007192 | 0.7008391 | 1.0011987 | 1.1013186 |
ENSRNOG00000000033 Tmcc2 protein_coding | 25.874495 | -0.0337981 | 0.7719970 | -0.0437800 | 0.9650797 | 0.9999545 | 2.7563049 | 3.3555016 | 3.7150196 | 2.6364656 |
ENSRNOG00000000034 Nuak2 protein_coding | 31.605287 | 0.2181646 | 0.7102859 | 0.3071504 | 0.7587289 | 0.9999545 | 3.1860375 | 3.8497953 | 5.3100625 | 5.0445594 |
ENSRNOG00000000035 Tmed11 protein_coding | 4.650448 | 0.9026108 | 1.9776182 | 0.4564131 | 0.6480929 | 0.9999545 | 0.9998182 | 0.4999091 | 0.6665455 | 0.8331818 |
ENSRNOG00000000036 Klhdc8a protein_coding | 24.455051 | -0.3306512 | 0.7980813 | -0.4143077 | 0.6786488 | 0.9999545 | 1.4016782 | 2.9034763 | 3.2038360 | 2.8033565 |
ENSRNOG00000000040 RGD1304622 protein_coding | 45.725955 | -0.5753018 | 0.6168786 | -0.9326013 | 0.3510259 | 0.9999545 | 2.6364656 | 7.1903606 | 7.4300393 | 5.9919672 |
ENSRNOG00000000041 Slc26a1 protein_coding | 23.123348 | -1.2829039 | 0.8238276 | -1.5572480 | 0.1194116 | 0.9999545 | 0.9292609 | 5.0445594 | 3.3187891 | 3.9825469 |
ENSRNOG00000000042 Xpr1 protein_coding | 37.892972 | 0.4437841 | 0.6900713 | 0.6430989 | 0.5201599 | 0.9999545 | 4.1659092 | 4.6658183 | 5.6656365 | 12.6643639 |
ENSRNOG00000000043 Idua protein_coding | 26.080652 | -0.0367088 | 0.7679198 | -0.0478030 | 0.9618733 | 0.9999545 | 2.4028770 | 2.8033565 | 2.5029968 | 2.8033565 |
ENSRNOG00000000044 Tmem175 protein_coding | 26.208470 | -0.0663783 | 0.7689298 | -0.0863255 | 0.9312076 | 0.9999545 | 2.9959836 | 3.4753410 | 3.7150196 | 2.2769475 |
ENSRNOG00000000047 Cd82 protein_coding | 31.338805 | -0.7236387 | 0.7314654 | -0.9893001 | 0.3225164 | 0.9999545 | 1.8585219 | 5.8410688 | 5.7083172 | 4.2480500 |
ENSRNOG00000000048 Gak protein_coding | 77.552594 | -0.3757874 | 0.4839096 | -0.7765653 | 0.4374153 | 0.9999545 | 9.4982729 | 15.9970912 | 11.8311820 | 15.9970912 |
write.table(de5,file="de5b.tsv",quote=FALSE,sep="\t")
# high
high <- x[which(colnames(x) %in% subset(mito,mtfrac>0.6)$RatID )]
high <- high/colSums(high)*1000000
high$mean <- rowMeans(high)
head(high[order(-high$mean),],20) %>% kbl() %>% kable_paper("hover", full_width = F)
1 | 15 | 2 | 20 | 24 | 26 | 27 | 28 | 32 | 7 | mean | |
---|---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000043866 AY172581.24 Mt_rRNA | 94682.78429 | 150009.221 | 104054.600 | 215428.646 | 140492.986 | 146753.133 | 212385.671 | 170947.895 | 135245.777 | 139515.369 | 150951.608 |
ENSRNOG00000030478 AY172581.9 Mt_rRNA | 65586.97579 | 90635.554 | 63821.561 | 125909.740 | 88687.784 | 92318.268 | 122501.280 | 104777.474 | 85580.230 | 89331.918 | 92915.079 |
ENSRNOG00000069271 Ttn protein_coding | 59601.46129 | 68025.573 | 44342.954 | 80628.887 | 86504.771 | 80265.162 | 55496.241 | 68918.833 | 82118.699 | 57774.340 | 68367.692 |
ENSRNOG00000049695 Myh4 protein_coding | 75056.90932 | 50916.040 | 29081.070 | 71544.849 | 75531.599 | 62216.396 | 28406.546 | 70644.768 | 30227.510 | 60595.758 | 55422.144 |
ENSRNOG00000017786 Acta1 protein_coding | 28957.84068 | 31772.665 | 24726.001 | 29042.431 | 28878.279 | 34457.537 | 34758.970 | 41810.807 | 18510.875 | 29637.872 | 30255.328 |
ENSRNOG00000034234 Mt-co1 protein_coding | 18182.96382 | 26811.615 | 30763.300 | 24765.916 | 20807.909 | 22750.709 | 37794.658 | 28969.747 | 18940.098 | 29843.296 | 25963.021 |
ENSRNOG00000006783 Neb protein_coding | 15534.85751 | 15830.975 | 13376.226 | 16532.799 | 16618.670 | 18201.406 | 15552.847 | 17875.586 | 15404.206 | 13666.747 | 15859.432 |
ENSRNOG00000047124 AABR07005775.1 protein_coding | 15960.38518 | 13545.029 | 7877.141 | 18413.835 | 20063.934 | 18357.034 | 14099.716 | 20942.992 | 7469.084 | 14559.349 | 15128.850 |
ENSRNOG00000065740 Myh2 protein_coding | 1865.85095 | 9661.681 | 9632.572 | 13552.589 | 9840.961 | 16110.093 | 27439.915 | 15396.210 | 8463.662 | 9408.113 | 12137.165 |
ENSRNOG00000016837 Ckm protein_coding | 10450.89374 | 10599.797 | 7271.796 | 10168.365 | 11130.590 | 11733.622 | 10861.783 | 15001.151 | 6294.294 | 11137.252 | 10464.954 |
ENSRNOG00000018184 Tpm1 protein_coding | 14317.86342 | 9205.217 | 6630.771 | 12278.945 | 12191.873 | 10924.595 | 5136.314 | 12453.399 | 5750.341 | 12296.195 | 10118.551 |
ENSRNOG00000020332 Tnnt3 protein_coding | 10081.49123 | 8755.197 | 6353.795 | 9793.710 | 9970.412 | 9351.069 | 7095.138 | 10774.264 | 5529.059 | 10335.599 | 8803.974 |
ENSRNOG00000016983 Myh7 protein_coding | 34.96676 | 8904.357 | 14843.149 | 5629.169 | 4111.660 | 9149.747 | 20893.548 | 8260.921 | 11409.318 | 4151.608 | 8738.844 |
ENSRNOG00000029707 Mt-nd4 protein_coding | 7365.53210 | 9067.599 | 10770.911 | 7901.960 | 6369.842 | 7000.345 | 11290.718 | 9245.498 | 6001.541 | 10110.423 | 8512.437 |
ENSRNOG00000017645 Mylpf protein_coding | 10032.76726 | 8433.063 | 7113.367 | 9993.543 | 8025.269 | 6852.201 | 4942.351 | 9460.634 | 5316.877 | 11071.684 | 8124.176 |
ENSRNOG00000031766 Mt-cyb protein_coding | 6600.78850 | 8192.381 | 10356.158 | 7433.524 | 6370.426 | 7227.548 | 10273.449 | 8982.966 | 5473.053 | 8597.043 | 7950.734 |
ENSRNOG00000020557 Ryr1 protein_coding | 6877.07475 | 6956.928 | 3852.678 | 6634.966 | 8412.491 | 8784.065 | 6074.160 | 9280.184 | 4405.520 | 6374.873 | 6765.294 |
ENSRNOG00000023803 Cmya5 protein_coding | 5672.94939 | 5545.919 | 3160.947 | 6048.339 | 6897.936 | 6174.794 | 4906.315 | 6867.519 | 3937.832 | 5349.196 | 5456.175 |
ENSRNOG00000031979 Mt-atp6 protein_coding | 4067.10247 | 6027.343 | 5879.513 | 5379.106 | 4245.074 | 4709.750 | 6912.855 | 6037.608 | 4124.672 | 6580.841 | 5396.386 |
ENSRNOG00000058068 Obscn protein_coding | 4199.20835 | 4938.982 | 2724.337 | 4224.806 | 5894.355 | 6190.996 | 5059.351 | 6229.376 | 3621.846 | 4577.284 | 4766.054 |
# med
med <- x[which(colnames(x) %in% subset(mito,mtfrac<0.6 & mtfrac > 0.3)$RatID )]
med <- med/colSums(med)*1000000
med$mean <- rowMeans(med)
head(med[order(-med$mean),],20) %>% kbl() %>% kable_paper("hover", full_width = F)
11 | 14 | 16 | 18 | 21 | 22 | 25 | 29 | 3 | 30 | 31 | 4 | 5 | mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000030478 AY172581.9 Mt_rRNA | 145096.173 | 121452.685 | 111027.988 | 154442.242 | 210917.201 | 111294.598 | 124266.392 | 116839.486 | 105031.494 | 119309.763 | 99219.105 | 88165.787 | 155818.030 | 127913.919 |
ENSRNOG00000043866 AY172581.24 Mt_rRNA | 137369.699 | 83494.709 | 108521.774 | 193082.418 | 217162.951 | 121757.547 | 128802.422 | 106172.671 | 108134.183 | 75711.961 | 105691.354 | 87757.079 | 136185.734 | 123834.192 |
ENSRNOG00000069271 Ttn protein_coding | 62241.797 | 74560.825 | 97344.143 | 76348.934 | 111391.264 | 83840.653 | 118473.654 | 50725.603 | 48863.658 | 87257.552 | 68894.933 | 75841.316 | 45199.100 | 76998.726 |
ENSRNOG00000049695 Myh4 protein_coding | 32275.784 | 34743.415 | 44333.784 | 31826.824 | 56469.184 | 35765.457 | 48358.589 | 23968.058 | 40562.014 | 51707.271 | 20354.266 | 62303.468 | 22871.902 | 38887.694 |
ENSRNOG00000034234 Mt-co1 protein_coding | 43692.196 | 25548.025 | 33131.633 | 35920.766 | 46831.735 | 25855.465 | 35938.552 | 28001.687 | 24628.768 | 21060.797 | 25945.093 | 23033.283 | 52121.574 | 32439.198 |
ENSRNOG00000017786 Acta1 protein_coding | 28723.981 | 18198.348 | 24523.413 | 25639.578 | 32919.327 | 18664.128 | 27014.942 | 19980.229 | 24454.731 | 21644.116 | 16921.219 | 24872.650 | 25989.488 | 23811.242 |
ENSRNOG00000006783 Neb protein_coding | 17802.368 | 18803.206 | 17518.458 | 26266.144 | 19286.438 | 13079.319 | 24375.362 | 14094.360 | 15811.509 | 13696.215 | 14509.970 | 21647.009 | 18834.666 | 18132.694 |
ENSRNOG00000047124 AABR07005775.1 protein_coding | 9418.063 | 14146.395 | 9002.388 | 13332.248 | 20909.696 | 18060.699 | 20815.749 | 9165.848 | 10825.932 | 15429.228 | 8380.789 | 11951.097 | 10291.338 | 13209.959 |
ENSRNOG00000065740 Myh2 protein_coding | 11523.242 | 12056.458 | 7986.570 | 14721.398 | 11664.391 | 10004.749 | 12208.757 | 10018.991 | 5660.310 | 6798.883 | 11087.765 | 3941.840 | 21450.500 | 10701.835 |
ENSRNOG00000016837 Ckm protein_coding | 8892.157 | 10617.143 | 11931.659 | 6648.355 | 11105.730 | 8048.955 | 12757.294 | 8396.200 | 10039.359 | 9922.126 | 8326.240 | 8720.337 | 7905.593 | 9485.473 |
ENSRNOG00000016983 Myh7 protein_coding | 16133.752 | 9364.955 | 9398.950 | 11555.330 | 9617.398 | 3055.479 | 9370.523 | 10019.780 | 5228.963 | 9284.797 | 7479.456 | 3045.475 | 11546.356 | 8853.939 |
ENSRNOG00000029707 Mt-nd4 protein_coding | 7812.854 | 8518.652 | 9262.162 | 5074.144 | 8492.759 | 5536.513 | 8397.306 | 8905.864 | 5577.157 | 5504.283 | 7677.849 | 4618.528 | 8675.682 | 7234.904 |
ENSRNOG00000031979 Mt-atp6 protein_coding | 7932.953 | 8698.326 | 8622.431 | 7462.200 | 8533.314 | 4825.153 | 8278.297 | 5820.518 | 4904.993 | 5727.293 | 7352.659 | 6136.751 | 7618.196 | 7070.237 |
ENSRNOG00000020332 Tnnt3 protein_coding | 5780.097 | 6653.988 | 8099.445 | 4650.377 | 8504.424 | 7261.610 | 8837.684 | 5214.101 | 6529.541 | 6099.396 | 5588.925 | 7070.120 | 5083.436 | 6567.165 |
ENSRNOG00000031766 Mt-cyb protein_coding | 6906.223 | 6746.857 | 7068.046 | 5724.915 | 6474.664 | 5385.506 | 7642.408 | 6726.645 | 3338.670 | 5271.306 | 6280.022 | 5463.026 | 10395.043 | 6417.179 |
ENSRNOG00000018184 Tpm1 protein_coding | 5637.996 | 5927.120 | 4035.550 | 6442.259 | 9457.635 | 8373.212 | 7734.854 | 4339.390 | 7121.555 | 6489.390 | 3846.682 | 9099.744 | 4145.448 | 6357.756 |
ENSRNOG00000017645 Mylpf protein_coding | 5376.001 | 3801.661 | 3891.718 | 4756.865 | 7401.586 | 5135.412 | 3662.440 | 5090.464 | 8296.443 | 5904.575 | 5832.088 | 9177.553 | 4900.879 | 5632.899 |
ENSRNOG00000015155 Tnnc2 protein_coding | 5849.130 | 5584.517 | 6060.320 | 3263.799 | 6457.524 | 4545.012 | 5400.491 | 4750.574 | 6748.189 | 4475.004 | 5152.782 | 6297.400 | 5379.675 | 5381.878 |
ENSRNOG00000058068 Obscn protein_coding | 3636.692 | 4813.843 | 6019.366 | 6218.383 | 8180.442 | 3438.463 | 7367.493 | 4489.791 | 4084.208 | 6387.267 | 3902.310 | 4202.402 | 4465.391 | 5169.696 |
ENSRNOG00000020557 Ryr1 protein_coding | 4119.409 | 4815.463 | 6062.903 | 4455.103 | 5844.179 | 5293.179 | 8230.124 | 4460.859 | 2878.837 | 6427.246 | 4159.975 | 6328.305 | 3863.552 | 5149.164 |
# low
low <- x[which(colnames(x) %in% subset(mito,mtfrac<0.3)$RatID )]
low <- low/colSums(low)*1000000
low$mean <- rowMeans(low)
head(low[order(-low$mean),],20) %>% kbl() %>% kable_paper("hover", full_width = F)
10 | 12 | 13 | 17 | 19 | 23 | 6 | 8 | 9 | mean | |
---|---|---|---|---|---|---|---|---|---|---|
ENSRNOG00000030478 AY172581.9 Mt_rRNA | 168395.425 | 93179.371 | 97805.063 | 135794.378 | 140435.707 | 183670.564 | 108069.801 | 85452.902 | 100148.372 | 123661.287 |
ENSRNOG00000043866 AY172581.24 Mt_rRNA | 138016.929 | 112963.823 | 109505.278 | 179749.662 | 128139.281 | 173566.884 | 102244.649 | 59991.917 | 99581.427 | 122639.983 |
ENSRNOG00000069271 Ttn protein_coding | 58854.313 | 98810.827 | 68381.066 | 91817.377 | 85235.585 | 69612.296 | 57264.535 | 98383.944 | 52659.058 | 75668.778 |
ENSRNOG00000049695 Myh4 protein_coding | 23359.215 | 66938.152 | 36668.016 | 28555.439 | 37161.248 | 23037.404 | 31270.137 | 53197.836 | 37690.364 | 37541.979 |
ENSRNOG00000034234 Mt-co1 protein_coding | 42774.320 | 27999.239 | 38469.661 | 26058.793 | 35413.720 | 33640.292 | 36566.296 | 13226.186 | 31541.344 | 31743.317 |
ENSRNOG00000017786 Acta1 protein_coding | 25814.969 | 27509.480 | 30732.246 | 20018.413 | 25884.853 | 23444.508 | 24997.507 | 18817.306 | 18810.129 | 24003.268 |
ENSRNOG00000006783 Neb protein_coding | 18021.521 | 14724.425 | 16268.982 | 20283.724 | 22314.598 | 18791.010 | 20514.415 | 16972.623 | 16701.764 | 18288.118 |
ENSRNOG00000047124 AABR07005775.1 protein_coding | 11201.986 | 15961.438 | 17469.895 | 11362.449 | 17040.763 | 9746.084 | 9360.639 | 11621.366 | 8954.201 | 12524.314 |
ENSRNOG00000065740 Myh2 protein_coding | 17891.981 | 5017.008 | 11052.845 | 13087.642 | 12983.468 | 18003.206 | 12255.988 | 2936.636 | 9359.731 | 11398.723 |
ENSRNOG00000016983 Myh7 protein_coding | 20103.144 | 5635.703 | 9495.943 | 12735.553 | 12169.294 | 15672.297 | 8768.232 | 2090.322 | 8426.910 | 10566.377 |
ENSRNOG00000016837 Ckm protein_coding | 9073.717 | 11993.347 | 10920.554 | 8321.963 | 7644.216 | 10535.026 | 8006.034 | 11584.595 | 8054.574 | 9570.447 |
ENSRNOG00000029707 Mt-nd4 protein_coding | 9423.529 | 6359.732 | 6864.719 | 5094.863 | 5997.423 | 7026.463 | 8753.084 | 3412.794 | 10373.438 | 7034.005 |
ENSRNOG00000031979 Mt-atp6 protein_coding | 11286.465 | 6266.632 | 6736.333 | 4950.187 | 5523.764 | 7549.296 | 6562.665 | 4385.767 | 7356.257 | 6735.263 |
ENSRNOG00000020332 Tnnt3 protein_coding | 5970.155 | 10596.406 | 7103.965 | 6585.344 | 5921.730 | 4776.503 | 5133.058 | 6762.151 | 6591.723 | 6604.559 |
ENSRNOG00000031766 Mt-cyb protein_coding | 8744.574 | 7827.157 | 6741.676 | 6704.192 | 5352.134 | 5742.873 | 5588.333 | 3237.582 | 7404.278 | 6371.422 |
ENSRNOG00000018184 Tpm1 protein_coding | 4551.704 | 7557.616 | 6216.840 | 6004.738 | 6549.235 | 4314.166 | 6638.646 | 6883.283 | 5070.842 | 5976.341 |
ENSRNOG00000015155 Tnnc2 protein_coding | 7425.328 | 8285.004 | 7999.755 | 3587.545 | 3605.801 | 3738.595 | 4173.510 | 5566.039 | 5125.421 | 5500.778 |
ENSRNOG00000058068 Obscn protein_coding | 4969.155 | 7213.750 | 6094.532 | 6803.979 | 5212.493 | 6293.844 | 4243.764 | 4779.110 | 3443.980 | 5450.512 |
ENSRNOG00000020557 Ryr1 protein_coding | 5336.633 | 6114.790 | 5124.541 | 4207.971 | 5089.772 | 5326.215 | 4083.751 | 8176.809 | 3519.566 | 5220.005 |
ENSRNOG00000017645 Mylpf protein_coding | 4537.027 | 9098.033 | 6005.667 | 4879.309 | 3714.394 | 4580.656 | 4583.242 | 5005.317 | 4277.382 | 5186.781 |
Here we are doing a gene set analysis with my R package called mitch. I’m using gene sets downloaded from Reactome 5th Dec 2020.
We lost 46% of genes after converting from rat to human.
There were 259 differentially regulated gene sets (FDR<0.05). Of these 81 were downregulated and 178 were upregulated.
#download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip",
# destfile="ReactomePathways.gmt.zip")
#unzip("ReactomePathways.gmt.zip")
genesets<-gmt_import("ReactomePathways.gmt")
# i need to get some data from biomart to link rat and human gene IDs
mart <- read.table("mart_export.txt",header=TRUE,sep="\t")
gt <- mart[,c("Gene.stable.ID","Human.gene.name")]
rownames(de1) <- sapply( strsplit(rownames(de1)," ") , "[[", 1)
m <- mitch_import(as.data.frame(de1),"DESeq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 30560
## Note: no. genes in output = 16477
## Note: estimated proportion of input genes in output = 0.539
res<-mitch_calc(m,genesets,priority="significance")
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
nrow(subset(res$enrichment_result,p.adjustANOVA<0.05))
## [1] 79
head(res$enrichment_result,20) %>% kbl() %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
648 | Major pathway of rRNA processing in the nucleolus and cytosol | 148 | 0 | -0.3703409 | 0e+00 |
1073 | SRP-dependent cotranslational protein targeting to membrane | 83 | 0 | -0.4837848 | 0e+00 |
1396 | rRNA processing in the nucleus and cytosol | 155 | 0 | -0.3544727 | 0e+00 |
1040 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 72 | 0 | -0.4845863 | 0e+00 |
833 | Peptide chain elongation | 60 | 0 | -0.5268776 | 0e+00 |
365 | Eukaryotic Translation Termination | 63 | 0 | -0.5137803 | 0e+00 |
1353 | Viral mRNA Translation | 60 | 0 | -0.5255518 | 0e+00 |
1093 | Selenocysteine synthesis | 63 | 0 | -0.5121886 | 0e+00 |
655 | Metabolism | 1845 | 0 | 0.0996703 | 0e+00 |
363 | Eukaryotic Translation Elongation | 63 | 0 | -0.5089374 | 0e+00 |
149 | Cap-dependent Translation Initiation | 87 | 0 | -0.4225923 | 0e+00 |
364 | Eukaryotic Translation Initiation | 87 | 0 | -0.4225923 | 0e+00 |
765 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 65 | 0 | -0.4809773 | 0e+00 |
456 | GTP hydrolysis and joining of the 60S ribosomal subunit | 81 | 0 | -0.4309866 | 0e+00 |
415 | Formation of a pool of free 40S subunits | 71 | 0 | -0.4562587 | 0e+00 |
610 | L13a-mediated translational silencing of Ceruloplasmin expression | 79 | 0 | -0.4307186 | 0e+00 |
1265 | The citric acid (TCA) cycle and respiratory electron transport | 150 | 0 | 0.3094620 | 0e+00 |
764 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 83 | 0 | -0.4089984 | 0e+00 |
766 | Nonsense-Mediated Decay (NMD) | 83 | 0 | -0.4089984 | 0e+00 |
1394 | rRNA processing | 176 | 0 | -0.2645996 | 1e-07 |
mitch_barplot <- function(res){
sig <- head(subset(res$enrichment_result,p.adjustANOVA<0.05),30)
sig <- sig[order(sig$s.dist),]
par(mar=c(3,25,1,1)); barplot(sig$s.dist,horiz=TRUE,las=2,cex.names = 0.6,cex.axis = 0.6,
names.arg=sig$set,main="Enrichment score") ;grid()
}
mitch_barplot(res)
nrow(subset(res$enrichment_result,p.adjustANOVA<0.05&s.dist<0))
## [1] 51
nrow(subset(res$enrichment_result,p.adjustANOVA<0.05&s.dist>0))
## [1] 28
unlink("skeletal_mitch1.html")
mitch_report(res,outfile="skeletal_mitch1.html")
## Dataset saved as " /tmp/RtmpwUhoHt/skeletal_mitch1.rds ".
##
##
## processing file: mitch.Rmd
##
|
| | 0%
|
|.. | 3%
## inline R code fragments
##
##
|
|.... | 6%
## label: checklibraries (with options)
## List of 1
## $ echo: logi FALSE
##
##
|
|...... | 9%
## ordinary text without R code
##
##
|
|........ | 12%
## label: peek (with options)
## List of 1
## $ echo: logi FALSE
##
##
|
|.......... | 15%
## ordinary text without R code
##
##
|
|............ | 18%
## label: metrics (with options)
## List of 1
## $ echo: logi FALSE
##
##
|
|.............. | 21%
## ordinary text without R code
##
##
|
|................ | 24%
## label: scatterplot (with options)
## List of 5
## $ echo : logi FALSE
## $ fig.height: num 6
## $ fig.width : num 6.5
## $ message : logi FALSE
## $ warning : logi FALSE
##
|
|................... | 26%
## ordinary text without R code
##
##
|
|..................... | 29%
## label: contourplot (with options)
## List of 5
## $ echo : logi FALSE
## $ fig.height: num 6
## $ fig.width : num 6.5
## $ warning : logi FALSE
## $ message : logi FALSE
## Contour plot does not apply to unidimensional analysis.
##
|
|....................... | 32%
## ordinary text without R code
##
##
|
|......................... | 35%
## label: input_geneset_metrics1 (with options)
## List of 2
## $ results: chr "asis"
## $ echo : logi FALSE
##
##
|
|........................... | 38%
## ordinary text without R code
##
##
|
|............................. | 41%
## label: input_geneset_metrics2 (with options)
## List of 5
## $ results : chr "asis"
## $ echo : logi FALSE
## $ fig.height: num 7
## $ fig.width : num 7
## $ fig.show : chr "all"
##
|
|............................... | 44%
## ordinary text without R code
##
##
|
|................................. | 47%
## label: input_geneset_metrics3 (with options)
## List of 5
## $ results : chr "asis"
## $ echo : logi FALSE
## $ message : logi FALSE
## $ fig.height: num 7
## $ fig.width : num 7
##
|
|................................... | 50%
## ordinary text without R code
##
##
|
|..................................... | 53%
## label: echart1d (with options)
## List of 6
## $ results : chr "asis"
## $ echo : logi FALSE
## $ fig.height: num 7
## $ fig.width : num 7
## $ fig.show : chr "all"
## $ message : logi FALSE
##
##
|
|....................................... | 56%
## label: echart2d (with options)
## List of 6
## $ results : chr "asis"
## $ echo : logi FALSE
## $ fig.height: num 7
## $ fig.width : num 7
## $ fig.show : chr "all"
## $ message : logi FALSE
##
##
|
|......................................... | 59%
## ordinary text without R code
##
##
|
|........................................... | 62%
## label: heatmap (with options)
## List of 6
## $ results : chr "asis"
## $ echo : logi FALSE
## $ fig.height: num 10
## $ fig.width : num 7
## $ fig.show : chr "all"
## $ message : logi FALSE
##
##
|
|............................................. | 65%
## ordinary text without R code
##
##
|
|............................................... | 68%
## label: effectsize (with options)
## List of 6
## $ results : chr "asis"
## $ echo : logi FALSE
## $ fig.height: num 7
## $ fig.width : num 7
## $ fig.show : chr "all"
## $ message : logi FALSE
##
##
|
|................................................. | 71%
## ordinary text without R code
##
##
|
|................................................... | 74%
## label: results_table (with options)
## List of 2
## $ results: chr "asis"
## $ echo : logi FALSE
##
##
|
|...................................................... | 76%
## ordinary text without R code
##
##
|
|........................................................ | 79%
## label: results_table_complete (with options)
## List of 2
## $ results: chr "asis"
## $ echo : logi FALSE
##
##
|
|.......................................................... | 82%
## ordinary text without R code
##
##
|
|............................................................ | 85%
## label: detailed_geneset_reports1d (with options)
## List of 7
## $ results : chr "asis"
## $ echo : logi FALSE
## $ fig.height: num 6
## $ fig.width : num 6
## $ out.width : chr "80%"
## $ comment : logi NA
## $ message : logi FALSE
##
|
|.............................................................. | 88%
## ordinary text without R code
##
##
|
|................................................................ | 91%
## label: detailed_geneset_reports2d (with options)
## List of 7
## $ results : chr "asis"
## $ echo : logi FALSE
## $ fig.height: num 5
## $ fig.width : num 6
## $ out.width : chr "80%"
## $ comment : logi NA
## $ message : logi FALSE
##
##
|
|.................................................................. | 94%
## ordinary text without R code
##
##
|
|.................................................................... | 97%
## label: session_info (with options)
## List of 3
## $ include: logi TRUE
## $ echo : logi TRUE
## $ results: chr "markup"
##
##
|
|......................................................................| 100%
## ordinary text without R code
## output file: /media/mdz/bfx6/bfx/adam_trewin/aln/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /media/mdz/bfx6/bfx/adam_trewin/aln/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpwUhoHt/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --standalone --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --include-in-header /tmp/RtmpwUhoHt/rmarkdown-str157dc2eb76f80.html --mathjax --variable 'mathjax-url:https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'
##
## Output created: /tmp/RtmpwUhoHt/mitch_report.html
## [1] TRUE
sessionInfo()
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] pkgload_1.2.4 GGally_2.1.2
## [3] ggplot2_3.3.5 beeswarm_0.4.0
## [5] gtools_3.9.2 tibble_3.1.6
## [7] dplyr_1.0.8 echarts4r_0.4.3
## [9] kableExtra_1.3.4 gplots_3.1.1
## [11] mitch_1.5.1 DESeq2_1.32.0
## [13] SummarizedExperiment_1.22.0 Biobase_2.52.0
## [15] MatrixGenerics_1.4.3 matrixStats_0.61.0
## [17] GenomicRanges_1.44.0 GenomeInfoDb_1.28.4
## [19] IRanges_2.26.0 S4Vectors_0.30.0
## [21] BiocGenerics_0.38.0 reshape2_1.4.4
##
## loaded via a namespace (and not attached):
## [1] colorspace_2.0-3 ellipsis_0.3.2 rprojroot_2.0.2
## [4] XVector_0.32.0 rstudioapi_0.13 bit64_4.0.5
## [7] AnnotationDbi_1.54.1 fansi_1.0.2 xml2_1.3.3
## [10] splines_4.2.0 cachem_1.0.6 geneplotter_1.70.0
## [13] knitr_1.37 jsonlite_1.7.3 annotate_1.70.0
## [16] png_0.1-7 shiny_1.7.1 compiler_4.2.0
## [19] httr_1.4.2 assertthat_0.2.1 Matrix_1.4-1
## [22] fastmap_1.1.0 cli_3.2.0 later_1.3.0
## [25] htmltools_0.5.2 tools_4.2.0 gtable_0.3.0
## [28] glue_1.6.1 GenomeInfoDbData_1.2.6 Rcpp_1.0.8
## [31] jquerylib_0.1.4 vctrs_0.3.8 Biostrings_2.60.2
## [34] svglite_2.1.0 xfun_0.29 stringr_1.4.0
## [37] brio_1.1.3 testthat_3.1.2 rvest_1.0.2
## [40] mime_0.12 lifecycle_1.0.1 XML_3.99-0.8
## [43] zlibbioc_1.38.0 MASS_7.3-57 scales_1.1.1
## [46] promises_1.2.0.1 RColorBrewer_1.1-2 yaml_2.3.5
## [49] memoise_2.0.1 gridExtra_2.3 sass_0.4.0
## [52] reshape_0.8.8 stringi_1.7.6 RSQLite_2.2.10
## [55] highr_0.9 genefilter_1.74.0 desc_1.4.0
## [58] caTools_1.18.2 BiocParallel_1.26.2 rlang_1.0.1
## [61] pkgconfig_2.0.3 systemfonts_1.0.4 bitops_1.0-7
## [64] evaluate_0.15 lattice_0.20-45 purrr_0.3.4
## [67] htmlwidgets_1.5.4 bit_4.0.4 tidyselect_1.1.2
## [70] plyr_1.8.6 magrittr_2.0.2 R6_2.5.1
## [73] generics_0.1.2 DelayedArray_0.18.0 DBI_1.1.2
## [76] pillar_1.7.0 withr_2.4.3 survival_3.2-13
## [79] KEGGREST_1.32.0 RCurl_1.98-1.6 crayon_1.5.0
## [82] KernSmooth_2.23-20 utf8_1.2.2 rmarkdown_2.11
## [85] locfit_1.5-9.4 grid_4.2.0 blob_1.2.2
## [88] digest_0.6.29 webshot_0.5.2 xtable_1.8-4
## [91] httpuv_1.6.5 munsell_0.5.0 viridisLite_0.4.0
## [94] bslib_0.3.1