Methods

Rats were kept in sedentary conditions or were trained. RNA was isolated from whole cell and mito fractions. Libraries were generated by the Deakin Genomics Facility and sequenced on the NovaSeq system.

Fastqc and MultiQC were run to summarise the QC checks that were done.

Reads were then were mapped to the rat genome (Ensembl version 99) with Kallisto then imported to R for analysis with DESeq2. Pathway level analysis was then done using mitch with Reactome gene sets.

Read counts

Import the Kallisto transcript counts. We can also include some info out of the Ensembl GTF file including gene name and gene class.

# libraries
library("reshape2")
library("DESeq2")
library("mitch")
library("gplots")
library("kableExtra")

# import the 3 column table
tmp<-read.table("3col.tsv.gz",header=F)

# convert the 3 col table into a standard count matrix 
x<-as.matrix(acast(tmp, V2~V1, value.var="V3"))
# tidy up the column headers
colnames(x)<-sapply(strsplit(colnames(x),"_"),"[[",1)
head(x)
##                             1        10       11        12        13       14
## ENSRNOT00000000008.4   0.0000   5.17195  10.0000   6.12831   5.26551   3.0000
## ENSRNOT00000000009.5  10.0209  47.86210  53.7012  35.32830  34.89250  51.1897
## ENSRNOT00000000010.5   1.0000   1.00000   0.0000   0.00000   0.00000   0.0000
## ENSRNOT00000000011.5   0.0000   0.00000   1.0000   1.00000   0.00000   1.0000
## ENSRNOT00000000013.5 299.6020 674.72100 346.8700 553.52400 741.68800 466.5910
## ENSRNOT00000000018.7   0.0000   0.00000   2.0000   2.00000   1.00000   0.0000
##                             15       16      17        18       19        2
## ENSRNOT00000000008.4   3.90088   0.0000   0.000   4.07072  16.4054   1.3407
## ENSRNOT00000000009.5  49.16160  27.3429  83.000  51.24440  63.8893  23.2207
## ENSRNOT00000000010.5   0.00000   0.0000   0.000   0.00000   0.0000   0.0000
## ENSRNOT00000000011.5   0.00000   1.0000   1.000   0.00000   1.0000   4.0000
## ENSRNOT00000000013.5 341.29800 372.3020 416.936 509.46900 513.9120 320.8710
## ENSRNOT00000000018.7   0.00000   0.0000   3.000   0.00000   1.0000   1.0000
##                            20       21       22        23        24       25
## ENSRNOT00000000008.4   0.0000  20.9863   0.0000   6.54813   3.93027  13.1300
## ENSRNOT00000000009.5  42.3625  68.9222  17.6006  36.76790  24.36560  47.0854
## ENSRNOT00000000010.5   0.0000   2.0000   0.0000   0.00000   0.00000   0.0000
## ENSRNOT00000000011.5   2.0000   1.0000   6.0000   3.00000   3.00000   0.0000
## ENSRNOT00000000013.5 346.0990 936.4710 645.0050 845.56600 657.88000 653.9830
## ENSRNOT00000000018.7   0.0000   0.0000   0.0000   2.00000   4.00000   1.0000
##                             26       27       28       29        3        30
## ENSRNOT00000000008.4   3.92594  10.0000   0.0000   0.0000   7.0000   6.53318
## ENSRNOT00000000009.5  63.18030  76.1159  43.9129  42.8444  37.8331  54.25200
## ENSRNOT00000000010.5   0.00000   0.0000   0.0000   0.0000   1.0000   0.00000
## ENSRNOT00000000011.5   0.00000   0.0000   2.0000   2.0000   1.0000   0.00000
## ENSRNOT00000000013.5 699.78700 850.1850 771.5110 475.2300 491.6540 343.60600
## ENSRNOT00000000018.7   0.00000   0.0000   0.0000   0.0000   3.0000   0.00000
##                            31       32       33      34       35      36
## ENSRNOT00000000008.4   8.0000   0.0000  40.0898 19.1593  25.9218 11.4780
## ENSRNOT00000000009.5  41.2632  33.1978  28.8229 35.7135  70.6359 35.9501
## ENSRNOT00000000010.5   0.0000   1.0000  19.0000 11.0000  37.0000 15.0000
## ENSRNOT00000000011.5   4.0000   0.0000  35.0000 20.0000  34.0000 32.0000
## ENSRNOT00000000013.5 479.0410 319.9350 111.7250 72.2435 153.0400 62.8931
## ENSRNOT00000000018.7   0.0000   0.0000  14.0000 15.0000  29.0000 18.0000
##                           37      38      39         4       40      41
## ENSRNOT00000000008.4 13.7003 22.6135 14.9332   6.50394  8.52695 12.2591
## ENSRNOT00000000009.5 50.6873 54.7243 35.2301  27.46480 34.80920 26.7389
## ENSRNOT00000000010.5 40.0000 41.0000 35.0000   0.00000 29.00000 10.0000
## ENSRNOT00000000011.5 47.0000 33.0000 14.0000   0.00000 28.00000 22.0000
## ENSRNOT00000000013.5 52.7508 85.5584 68.9108 294.70900 55.07810 72.7735
## ENSRNOT00000000018.7 27.0000 17.0000 13.0000   0.00000 14.00000 15.0000
##                            42       43       44       45       46       47
## ENSRNOT00000000008.4  4.69899  13.6271  16.2942  24.1949  12.9460  32.2802
## ENSRNOT00000000009.5 33.73670 114.9440  47.4423  53.6637  41.5453  67.1163
## ENSRNOT00000000010.5 16.00000  35.0000  13.0000  32.0000  18.0000  25.0000
## ENSRNOT00000000011.5 21.00000  49.0000  29.0000  44.0000  39.0000  37.0000
## ENSRNOT00000000013.5 65.41440 121.1980 114.3950 131.3720 124.3370 131.1560
## ENSRNOT00000000018.7 11.00000  24.0000  15.0000  21.0000  18.0000  10.0000
##                            48      49        5       50       51      52
## ENSRNOT00000000008.4  16.3970 36.6810   0.0000  32.6092  20.9075 23.8737
## ENSRNOT00000000009.5  36.0636 49.3216  32.9113  53.3994  60.2464 36.7990
## ENSRNOT00000000010.5  20.0000 38.0000   0.0000  42.0000  46.0000 40.0000
## ENSRNOT00000000011.5  25.0000 43.0000   0.0000  48.0000  56.0000 33.0000
## ENSRNOT00000000013.5 114.0700 78.2890 824.7450 130.2330 150.1700 93.1834
## ENSRNOT00000000018.7  14.0000 25.0000   0.0000  22.0000  29.0000 17.0000
##                            53       54       55       56        57       58
## ENSRNOT00000000008.4  19.3599  24.1487  14.2184  32.6797   9.35056  10.1055
## ENSRNOT00000000009.5  39.9345  36.7259  56.0723  34.3157  55.51630  40.9847
## ENSRNOT00000000010.5  30.0000  40.0000  41.0000  29.0000  43.00000  27.0000
## ENSRNOT00000000011.5  54.0000  33.0000  53.0000  42.0000  33.00000  34.0000
## ENSRNOT00000000013.5 120.6350 129.7970 127.9770 122.6540 145.20200 117.3270
## ENSRNOT00000000018.7  18.0000  15.0000  24.0000  21.0000  17.00000  15.0000
##                           59        6       60       61       62       63
## ENSRNOT00000000008.4 31.4681  15.3007  17.6768  18.0824  21.5445  30.3799
## ENSRNOT00000000009.5 41.2987  34.8236  53.4337  70.0980  50.4952  49.1870
## ENSRNOT00000000010.5 24.0000   0.0000  24.0000  34.0000  33.0000  41.0000
## ENSRNOT00000000011.5 34.0000   0.0000  50.0000  47.0000  45.0000  48.0000
## ENSRNOT00000000013.5 96.5047 645.2290 100.4960 139.6330 153.3700 129.0280
## ENSRNOT00000000018.7 14.0000   0.0000  25.0000  14.0000  19.0000  25.0000
##                            64         7        8        9 95      96
## ENSRNOT00000000008.4  29.0847   1.67668   0.0000   0.0000  0  0.0000
## ENSRNOT00000000009.5  48.8472  19.33470  22.7956  30.2034  0  0.0000
## ENSRNOT00000000010.5  24.0000   0.00000   1.0000   0.0000  0  0.0000
## ENSRNOT00000000011.5  51.0000   0.00000   3.0000   0.0000  0  0.0000
## ENSRNOT00000000013.5 155.7100 400.78800 316.4870 461.2840  6 28.8082
## ENSRNOT00000000018.7  33.0000   0.00000   3.0000   0.0000  0  0.0000
#dont forget gene names
g<-read.table("../ref/Rattus_norvegicus.Rnor_6.0.cdna+ncrna.gene_names.tsv",row.names=1)
g$gene_ID <- paste(g$V2,g$V3,g$V4,g$V5)
head(g)
##                      V2                   V3      V4             V5
## ENSRNOT00000047550.4 MT ENSRNOG00000030644.4  Mt-nd1 protein_coding
## ENSRNOT00000040993.4 MT ENSRNOG00000031033.4  Mt-nd2 protein_coding
## ENSRNOT00000050156.3 MT ENSRNOG00000034234.3  Mt-co1 protein_coding
## ENSRNOT00000043693.3 MT ENSRNOG00000030371.3  Mt-co2 protein_coding
## ENSRNOT00000046201.3 MT ENSRNOG00000033299.3 Mt-atp8 protein_coding
## ENSRNOT00000046108.3 MT ENSRNOG00000031979.3 Mt-atp6 protein_coding
##                                                             gene_ID
## ENSRNOT00000047550.4  MT ENSRNOG00000030644.4 Mt-nd1 protein_coding
## ENSRNOT00000040993.4  MT ENSRNOG00000031033.4 Mt-nd2 protein_coding
## ENSRNOT00000050156.3  MT ENSRNOG00000034234.3 Mt-co1 protein_coding
## ENSRNOT00000043693.3  MT ENSRNOG00000030371.3 Mt-co2 protein_coding
## ENSRNOT00000046201.3 MT ENSRNOG00000033299.3 Mt-atp8 protein_coding
## ENSRNOT00000046108.3 MT ENSRNOG00000031979.3 Mt-atp6 protein_coding
g <- g[,ncol(g),drop=FALSE]
x<-merge(g,x,by=0)
rownames(x) <- x[,1]
x[,1]=NULL
# aggregate Tx data to genes
xx <- aggregate(. ~ gene_ID,x,sum)
# now round to integers so that DESeq2 doesn't fail
rownames(xx) <- xx[,1]
xx[,1]=NULL
x <- round(xx)
head(x)
##                                                       1   10   11   12   13
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        3301 4795 4460 4965 5104
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding    0    0    0    0    0
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding        1525 1671 1845 1952 1631
## 1 ENSRNOG00000001489.5 Tbp protein_coding           189  181  195  156  154
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding          95  114  123  125  120
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding        188  150  155  192  199
##                                                      14   15   16   17   18
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        4177 3716 4657 4314 4337
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding    0    0    0    1    0
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding        1286 1407 1245 1756 1851
## 1 ENSRNOG00000001489.5 Tbp protein_coding           156  120  159  188  197
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding          93  107   96  190  159
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding        173  158  192  250  262
##                                                      19    2   20   21   22
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        3901 2782 3403 5194 3945
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding    0    0    0    0    0
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding        1947 1204 2112 2717 1679
## 1 ENSRNOG00000001489.5 Tbp protein_coding           210  147  165  241  183
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding         175   59  171  227  124
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding        188  106  210  365  253
##                                                      23   24   25   26   27
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        4823 4317 5347 4593 5806
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding    0    0    0    0    0
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding        1861 1707 1830 1644 1567
## 1 ENSRNOG00000001489.5 Tbp protein_coding           234  200  201  194  153
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding         137  152  177  118  129
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding        246  323  300  266  194
##                                                      28   29    3   30   31
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        4751 3516 3178 3746 3497
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding    0    0    0    0    0
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding        1776 1343 1737 1470 1762
## 1 ENSRNOG00000001489.5 Tbp protein_coding           155  135  127  160  171
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding         161   62  143  112  123
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding        248  123  110  217  155
##                                                      32  33  34  35  36  37  38
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        2733 192 137 252 173 206 219
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding    0  20  24  23  13  15  19
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding        1083  27  15  30  28  16  29
## 1 ENSRNOG00000001489.5 Tbp protein_coding           128  19  23  31  18  28  45
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding          84  21  12  33  12  13  30
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding        183 250 238 360 245 335 349
##                                                     39    4  40  41  42  43  44
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        166 3357 168 154 144 336 190
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding  24    0  15  18  13  17   8
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding         23 1649  23  18  11  43  19
## 1 ENSRNOG00000001489.5 Tbp protein_coding           39  168  17  25  21  54  26
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding         20   85  19  13  14  31  28
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding       229  185 227 241 191 482 286
##                                                     45  46  47  48  49    5  50
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        188 199 205 162 229 4574 243
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding  25  12  10  17  21    0  31
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding         23  28  22  21  20 1879  37
## 1 ENSRNOG00000001489.5 Tbp protein_coding           38  25  34  24  30  150  43
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding         18  24  18  25  19  128  29
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding       323 305 339 250 340  151 378
##                                                     51  52  53  54  55  56  57
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        296 243 214 232 249 265 237
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding  44  11  26  28  29  37  32
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding         40  24  24  29  29  22  29
## 1 ENSRNOG00000001489.5 Tbp protein_coding           42  36  44  45  41  44  26
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding         28  35  26  33  28  30  20
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding       501 384 364 336 355 420 408
##                                                     58  59    6  60  61  62  63
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        235 185 4385 281 255 250 300
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding  14  30    0  24  24  31  31
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding         43  34 1459  45  25  37  34
## 1 ENSRNOG00000001489.5 Tbp protein_coding           36  25  150  37  34  46  42
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding         20  19  105  24  35  25  28
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding       403 345  183 382 442 448 440
##                                                     64    7    8    9 95 96
## 1 ENSRNOG00000000417.7 Numa1 protein_coding        247 3642 3364 3272  2 32
## 1 ENSRNOG00000001466.6 LOC100361492 protein_coding  23    0    1    0  0  0
## 1 ENSRNOG00000001488.6 Psmb1 protein_coding         19 1518 1201 1268  5  0
## 1 ENSRNOG00000001489.5 Tbp protein_coding           25  178   88  143  0  0
## 1 ENSRNOG00000001490.4 Pdcd2 protein_coding         22  108   66   78  0  0
## 1 ENSRNOG00000001492.7 Slc8a2 protein_coding       419  147  164  127  0  0
write.table(x,file="countmatrix_skeletal.tsv",quote=FALSE,sep="\t")

Samplesheet

samplesheet <- read.table("samplesheet.tsv",header=TRUE)
samplesheet$UDI <- gsub("UDI_0","",samplesheet$UDI)
samplesheet$UDI <- gsub("UDI_","",samplesheet$UDI)
samplesheet$label <- paste(samplesheet$fraction,samplesheet$Group)
samplesheet <- samplesheet[order(samplesheet$UDI),]
samplesheet %>% kbl() %>% kable_paper("hover", full_width = F)
UDI fraction Group RatID label
1 1 wholetissue T 1 wholetissue T
10 10 wholetissue T 10 wholetissue T
11 11 wholetissue S 11 wholetissue S
12 12 wholetissue S 12 wholetissue S
13 13 wholetissue T 13 wholetissue T
14 14 wholetissue T 14 wholetissue T
15 15 wholetissue S 15 wholetissue S
16 16 wholetissue S 16 wholetissue S
17 17 wholetissue T 17 wholetissue T
18 18 wholetissue T 18 wholetissue T
19 19 wholetissue S 19 wholetissue S
2 2 wholetissue T 2 wholetissue T
20 20 wholetissue S 20 wholetissue S
21 21 wholetissue T 21 wholetissue T
22 22 wholetissue T 22 wholetissue T
23 23 wholetissue S 23 wholetissue S
24 24 wholetissue S 24 wholetissue S
25 25 wholetissue T 25 wholetissue T
26 26 wholetissue T 26 wholetissue T
27 27 wholetissue T 27 wholetissue T
28 28 wholetissue T 28 wholetissue T
29 29 wholetissue S 29 wholetissue S
3 3 wholetissue S 3 wholetissue S
30 30 wholetissue S 30 wholetissue S
31 31 wholetissue S 31 wholetissue S
32 32 wholetissue S 32 wholetissue S
33 33 mito T 1 mito T
34 34 mito T 2 mito T
35 35 mito S 3 mito S
36 36 mito S 4 mito S
37 37 mito T 5 mito T
38 38 mito T 6 mito T
39 39 mito S 7 mito S
4 4 wholetissue S 4 wholetissue S
40 40 mito S 8 mito S
41 41 mito T 9 mito T
42 42 mito T 10 mito T
43 43 mito S 11 mito S
44 44 mito S 12 mito S
45 45 mito T 13 mito T
46 46 mito T 14 mito T
47 47 mito S 15 mito S
48 48 mito S 16 mito S
49 49 mito T 17 mito T
5 5 wholetissue T 5 wholetissue T
50 50 mito T 18 mito T
51 51 mito S 19 mito S
52 52 mito S 20 mito S
53 53 mito T 21 mito T
54 54 mito T 22 mito T
55 55 mito S 23 mito S
56 56 mito S 24 mito S
57 57 mito T 25 mito T
58 58 mito T 26 mito T
59 59 mito T 27 mito T
6 6 wholetissue T 6 wholetissue T
60 60 mito T 28 mito T
61 61 mito S 29 mito S
62 62 mito S 30 mito S
63 63 mito S 31 mito S
64 64 mito S 32 mito S
7 7 wholetissue S 7 wholetissue S
8 8 wholetissue S 8 wholetissue S
9 9 wholetissue T 9 wholetissue T

Overall clustering with multidimensional scaling

Sample 95 is a HUMAN mito control sample. Sample 96 is a RAT mito control sample. These should be excluded from main results.

ss <- samplesheet
ss <- ss[order(ss$UDI),]
colours = c('pink', 'lightblue','lightgreen','gray')
mds <- cmdscale(dist(t(x)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2, pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
  col = colours[as.factor(ss$label)] ,  type = "p" ,
  xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(x) )
legend('topright', col=colours, legend=levels(as.factor(ss$label)), pch = 16, cex = 1)

x <- x[,which(! colnames(x) %in% c("95","96"))]

colours = c('pink', 'lightblue','lightgreen','gray')
mds <- cmdscale(dist(t(x)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2, pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
  col = colours[as.factor(ss$label)] ,  type = "p" ,
  xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(x) )
legend('topright', col=colours, legend=levels(as.factor(ss$label)), pch = 16, cex = 1)

ss$nreads<-colSums(x)
par(mar=c(5,10,5,3))
barplot(colSums(x),horiz=TRUE,las=2,main="number of reads per sample",cex.names=0.5)

par(mai=c(1.02,0.82,0.82,0.42))

Check purity of mito fraction samples

Here I’m quantifying the mitochondrial read fraction. That is the number of mt reads divided by the total number of reads. We can see that purity is highly variable.

par(mar=c(5,10,5,3))
mtfrac <-  colSums(x[grep("^MT",rownames(x)),]) / colSums(x) 
barplot(mtfrac,horiz=TRUE,las=2,main="Proportion mitochondrial reads",cex.names=1)

par(mai=c(1.02,0.82,0.82,0.42))

mylevels <- levels(as.factor(ss$label))
mylevels
## [1] "mito S"        "mito T"        "wholetissue S" "wholetissue T"
y <- x[,which(ss$label==mylevels[1])]
mitoS <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)
y <- x[,which(ss$label==mylevels[2])] 
mitoT <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)
y <- x[,which(ss$label==mylevels[3])] 
wholeS <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)
y <- x[,which(ss$label==mylevels[4])] 
wholeT <- colSums(y[grep("^MT",rownames(y)),]) / colSums(y)

boxplot(mitoS,mitoT,wholeS,wholeT,names=mylevels,ylab="mito frac")

median(wholeS)
## [1] 0.3338761
median(wholeT)
## [1] 0.3550418
table(mitoS>0.4)
## 
## FALSE  TRUE 
##    14     2
table(mitoT>0.4)
## 
## FALSE  TRUE 
##    11     5
ss$mtfrac <- mtfrac

ss %>% kbl() %>% kable_paper("hover", full_width = F)
UDI fraction Group RatID label nreads mtfrac
1 1 wholetissue T 1 wholetissue T 21258507 0.2601233
10 10 wholetissue T 10 wholetissue T 32402582 0.3723191
11 11 wholetissue S 11 wholetissue S 27624509 0.3521941
12 12 wholetissue S 12 wholetissue S 29209069 0.2845851
13 13 wholetissue T 13 wholetissue T 29174764 0.3195613
14 14 wholetissue T 14 wholetissue T 26930441 0.3552110
15 15 wholetissue S 15 wholetissue S 24139589 0.3354321
16 16 wholetissue S 16 wholetissue S 26585363 0.3323202
17 17 wholetissue T 17 wholetissue T 29764939 0.3617978
18 18 wholetissue T 18 wholetissue T 32286871 0.3904784
19 19 wholetissue S 19 wholetissue S 29474137 0.3574090
2 2 wholetissue T 2 wholetissue T 18839052 0.3441832
20 20 wholetissue S 20 wholetissue S 29473669 0.3501682
21 21 wholetissue T 21 wholetissue T 38356697 0.3680570
22 22 wholetissue T 22 wholetissue T 26332319 0.3551245
23 23 wholetissue S 23 wholetissue S 31385455 0.3802950
24 24 wholetissue S 24 wholetissue S 27209791 0.2678982
25 25 wholetissue T 25 wholetissue T 33288494 0.3205449
26 26 wholetissue T 26 wholetissue T 28504502 0.2691352
27 27 wholetissue T 27 wholetissue T 30196627 0.3549592
28 28 wholetissue T 28 wholetissue T 31275863 0.2879719
29 29 wholetissue S 29 wholetissue S 24900845 0.3670548
3 3 wholetissue S 3 wholetissue S 23495593 0.3273260
30 30 wholetissue S 30 wholetissue S 25393464 0.3000018
31 31 wholetissue S 31 wholetissue S 26748801 0.3738198
32 32 wholetissue S 32 wholetissue S 19491222 0.3556323
33 33 mito T 1 mito T 7938936 0.6465534
34 34 mito T 2 mito T 12294342 0.8147126
35 35 mito S 3 mito S 3781587 0.1980579
36 36 mito S 4 mito S 2752655 0.2414353
37 37 mito T 5 mito T 3445116 0.2070290
38 38 mito T 6 mito T 3101202 0.0577676
39 39 mito S 7 mito S 3516550 0.3757165
4 4 wholetissue S 4 wholetissue S 23993574 0.2853209
40 40 mito S 8 mito S 2164670 0.1035040
41 41 mito T 9 mito T 2041406 0.0597436
42 42 mito T 10 mito T 1731503 0.0656817
43 43 mito S 11 mito S 4641993 0.1646653
44 44 mito S 12 mito S 2576114 0.0634708
45 45 mito T 13 mito T 3027547 0.0948844
46 46 mito T 14 mito T 3000299 0.1706080
47 47 mito S 15 mito S 11142807 0.7268125
48 48 mito S 16 mito S 3010541 0.2668693
49 49 mito T 17 mito T 3080929 0.1054198
5 5 wholetissue T 5 wholetissue T 30674155 0.3747933
50 50 mito T 18 mito T 4044280 0.1292304
51 51 mito S 19 mito S 4890168 0.1009622
52 52 mito S 20 mito S 6589045 0.3775514
53 53 mito T 21 mito T 4720580 0.2118263
54 54 mito T 22 mito T 3685725 0.1458188
55 55 mito S 23 mito S 3101674 0.0446639
56 56 mito S 24 mito S 5790497 0.2490106
57 57 mito T 25 mito T 4620986 0.2491953
58 58 mito T 26 mito T 6786437 0.4821588
59 59 mito T 27 mito T 10802671 0.6646957
6 6 wholetissue T 6 wholetissue T 25369115 0.3510836
60 60 mito T 28 mito T 9524968 0.5887804
61 61 mito S 29 mito S 4721621 0.2121115
62 62 mito S 30 mito S 4409979 0.1527370
63 63 mito S 31 mito S 4277756 0.1687420
64 64 mito S 32 mito S 7138202 0.5016151
7 7 wholetissue S 7 wholetissue S 24756089 0.3214936
8 8 wholetissue S 8 wholetissue S 20318569 0.2543348
9 9 wholetissue T 9 wholetissue T 24443981 0.3754423
mito <- subset(ss,fraction=="mito")

plot(mito$nreads,mito$mtfrac,pch=19,col="lightblue",xlab="No. reads", ylab="mtDNA proportion",cex=3)
text(mito$nreads,mito$mtfrac,labels=mito$RatID)
abline(h=0.4,v=6E6,col="red")

plot(mito$nreads,mito$mtfrac,pch=19,col="lightblue",xlab="No. reads", ylab="mtDNA proportion",cex=3)
text(mito$nreads,mito$mtfrac,labels=mito$Group)
abline(h=0.4,v=6E6,col="red")

Functions

run_de <- function(ss,xx){

y <- round(xx)

# MDS
colours = c('yellow', 'orange')
mds <- cmdscale(dist(t(y)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2 , pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
  col = colours[as.factor(ss$trt)] ,  type = "p" , 
  xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(y) )
legend('topright', col=colours, legend=c("ctrl","trt"), pch = 16, cex = 1.5)

# DE
dds <- DESeqDataSetFromMatrix(countData=y, colData = ss, design = ~ trt)
dds <- DESeq(dds)
de <- DESeq2::results(dds)
de <- de[order(de$pvalue),]
up <- rownames(subset(de, log2FoldChange>0 & padj<0.05 ))
dn <- rownames(subset(de, log2FoldChange<0 & padj<0.05 ))
str(up)
str(dn)

# MA plot
sig <-subset(de, padj < 0.05 )
GENESUP <- length(up)
GENESDN <- length(dn)
SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down")
ns <-subset(de, padj > 0.05 )
plot(log2(de$baseMean),de$log2FoldChange,
     xlab="log2 basemean", ylab="log2 foldchange",
     pch=19, cex=0.5, col="dark gray",
     main="smear plot")
points(log2(sig$baseMean),sig$log2FoldChange,
       pch=19, cex=0.5, col="red")
mtext(SUBHEADER)

# heatmap
yn <- y/colSums(y)*1000000
yf <- yn[which(rownames(yn) %in% rownames(de)[1:50]),]
mycols <- gsub("0","yellow",ss$trt)
mycols <- gsub("1","orange",mycols)
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(  as.matrix(yf), col=colfunc(25),scale="row",
    ColSideColors =mycols ,trace="none",
    margin = c(10,15), cexRow=0.6, cexCol=0.8 , main="Top 50 genes by p-val")
mtext("yellow=ctrl, orange=trt")

return(de)
}

# covariate
run_de_cov <- function(ss,xx){

y <- round(xx)

# MDS
colours = c('yellow', 'orange')
mds <- cmdscale(dist(t(y)))
XMAX=max(mds[,1])*1.1
XMIN=min(mds[,1])*1.1
plot( mds*1.05 , cex=2 , pch=19, xlab="Coordinate 1", ylab="Coordinate 2",
  col = colours[as.factor(ss$trt)] ,  type = "p" ,
  xlim=c(XMIN,XMAX),main="MDS plot",bty="n")
text(mds, labels=colnames(y) )
legend('topright', col=colours, legend=c("ctrl","trt"), pch = 16, cex = 1.5)

# DE
dds <- DESeqDataSetFromMatrix(countData=y, colData = ss, design = ~ mtfrac + trt)
dds <- DESeq(dds)
de <- DESeq2::results(dds)
de <- de[order(de$pvalue),]
up <- rownames(subset(de, log2FoldChange>0 & padj<0.05 ))
dn <- rownames(subset(de, log2FoldChange<0 & padj<0.05 ))
str(up)
str(dn)

# MA plot
sig <-subset(de, padj < 0.05 )
GENESUP <- length(up)
GENESDN <- length(dn)
SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down")
ns <-subset(de, padj > 0.05 )
plot(log2(de$baseMean),de$log2FoldChange,
     xlab="log2 basemean", ylab="log2 foldchange",
     pch=19, cex=0.5, col="dark gray",
     main="smear plot")
points(log2(sig$baseMean),sig$log2FoldChange,
       pch=19, cex=0.5, col="red")
mtext(SUBHEADER)

# heatmap
yn <- y/colSums(y)*1000000
yf <- yn[which(rownames(yn) %in% rownames(de)[1:50]),]
mycols <- gsub("0","yellow",ss$trt)
mycols <- gsub("1","orange",mycols)
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(  as.matrix(yf), col=colfunc(25),scale="row",
    ColSideColors =mycols ,trace="none",
    margin = c(10,15), cexRow=0.6, cexCol=0.8 , main="Top 50 genes by p-val")
mtext("yellow=ctrl, orange=trt")

return(de)
}

Set up contrasts

  1. Whole tissue S versus T

  2. Mito fraction S versus T

  3. Whole versus mito fraction in S

  4. Whole versus mito fraction in T

ss1 <- subset(samplesheet,fraction=="wholetissue")
ss1$trt <- grepl("T",ss1$Group)*1
x1 <- x[,which(colnames(x) %in% rownames(ss1))]

ss2 <- subset(samplesheet,fraction=="mito")
ss2$trt <- grepl("T",ss2$Group)*1
x2 <- x[,which(colnames(x) %in% rownames(ss2))]

ss3 <- subset(samplesheet,Group=="S")
ss3$trt <- grepl("mito",ss3$fraction)*1
x3 <- x[,which(colnames(x) %in% rownames(ss3))]

ss4 <- subset(samplesheet,Group=="T")
ss4$trt <- grepl("mito",ss4$fraction)*1
x4 <- x[,which(colnames(x) %in% rownames(ss4))]

ss5 <- subset(mito,nreads>6E6 & mtfrac>0.4)
ss5$trt <- grepl("T",ss5$Group)*1
x5 <- x[,which(colnames(x) %in% rownames(ss5))]

DE

Here, were using DESeq2 to perform differential expression analysis for the specified contrasts. The run_de function does the analysis and generate the charts. Here we actually run the analysis.

  1. Whole tissue S versus T: 1 DEG

  2. Mito fraction S versus T: 0 DEGs

  3. Whole versus mito fraction in S: 22754 DEGs

  4. Whole versus mito fraction in T: 22406 DEGs

These results suggest that:

  • The differences between S and T are very subtle.

  • Intra-group variation is fairly large.

ss1 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI fraction Group RatID label trt
1 1 wholetissue T 1 wholetissue T 1
10 10 wholetissue T 10 wholetissue T 1
11 11 wholetissue S 11 wholetissue S 0
12 12 wholetissue S 12 wholetissue S 0
13 13 wholetissue T 13 wholetissue T 1
14 14 wholetissue T 14 wholetissue T 1
15 15 wholetissue S 15 wholetissue S 0
16 16 wholetissue S 16 wholetissue S 0
17 17 wholetissue T 17 wholetissue T 1
18 18 wholetissue T 18 wholetissue T 1
19 19 wholetissue S 19 wholetissue S 0
2 2 wholetissue T 2 wholetissue T 1
20 20 wholetissue S 20 wholetissue S 0
21 21 wholetissue T 21 wholetissue T 1
22 22 wholetissue T 22 wholetissue T 1
23 23 wholetissue S 23 wholetissue S 0
24 24 wholetissue S 24 wholetissue S 0
25 25 wholetissue T 25 wholetissue T 1
26 26 wholetissue T 26 wholetissue T 1
27 27 wholetissue T 27 wholetissue T 1
28 28 wholetissue T 28 wholetissue T 1
29 29 wholetissue S 29 wholetissue S 0
3 3 wholetissue S 3 wholetissue S 0
30 30 wholetissue S 30 wholetissue S 0
31 31 wholetissue S 31 wholetissue S 0
32 32 wholetissue S 32 wholetissue S 0
4 4 wholetissue S 4 wholetissue S 0
5 5 wholetissue T 5 wholetissue T 1
6 6 wholetissue T 6 wholetissue T 1
7 7 wholetissue S 7 wholetissue S 0
8 8 wholetissue S 8 wholetissue S 0
9 9 wholetissue T 9 wholetissue T 1
de1 <- run_de(ss1,x1)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 207 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr [1:21] "9 ENSRNOG00000019961.5 Tcte1 protein_coding" ...
##  chr [1:2] "19 ENSRNOG00000015519.6 Ces1d protein_coding" ...

as.data.frame(de1[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
9 ENSRNOG00000019961.5 Tcte1 protein_coding 63.23168 0.9887063 0.1472459 6.714661 0.00e+00 0.0000003
9 ENSRNOG00000019958.5 Tmem151b protein_coding 43.76548 1.5367206 0.2476454 6.205326 0.00e+00 0.0000044
4 ENSRNOG00000060514.1 LOC103692166 protein_coding 41.29021 0.7035412 0.1333954 5.274104 1.00e-07 0.0007247
8 ENSRNOG00000015896.7 Rbpms2 protein_coding 64.48790 0.5181886 0.1077025 4.811297 1.50e-06 0.0061091
3 ENSRNOG00000008482.7 Rbms1 protein_coding 485.10997 0.1890229 0.0399331 4.733485 2.20e-06 0.0071930
19 ENSRNOG00000012482.7 Ndrg4 protein_coding 119.21510 0.7977010 0.1698899 4.695400 2.70e-06 0.0072269
14 ENSRNOG00000000060.7 Cplx1 protein_coding 18.93501 0.9098606 0.1965642 4.628822 3.70e-06 0.0085613
4 ENSRNOG00000010284.6 St3gal5 protein_coding 416.51249 0.4223257 0.0918658 4.597202 4.30e-06 0.0087225
1 ENSRNOG00000015071.4 Zim1 protein_coding 520.46906 0.4077851 0.0933999 4.366012 1.27e-05 0.0221628
13 ENSRNOG00000007290.6 Atp1a2 protein_coding 37352.46595 0.1995007 0.0458599 4.350219 1.36e-05 0.0221628
3 ENSRNOG00000014710.6 Prom2 protein_coding 154.64455 0.4353713 0.1011122 4.305824 1.66e-05 0.0246463
13 ENSRNOG00000005093.4 Lgr6 protein_coding 74.37305 0.6745253 0.1593156 4.233895 2.30e-05 0.0288562
19 ENSRNOG00000015519.6 Ces1d protein_coding 163.95783 -0.6050191 0.1429161 -4.233387 2.30e-05 0.0288562
7 ENSRNOG00000006086.7 Lynx1 protein_coding 1233.69841 0.2335705 0.0561119 4.162585 3.15e-05 0.0357858
12 ENSRNOG00000001115.5 Slc29a4 protein_coding 16.27318 1.1606653 0.2795351 4.152128 3.29e-05 0.0357858
5 ENSRNOG00000023812.5 Raver2 protein_coding 112.30813 0.4713947 0.1141614 4.129196 3.64e-05 0.0363784
10 ENSRNOG00000046195.2 AABR07029596.1 protein_coding 50.30723 0.7663390 0.1861465 4.116860 3.84e-05 0.0363784
15 ENSRNOG00000011323.5 Lgi3 protein_coding 157.83997 0.4762472 0.1159760 4.106429 4.02e-05 0.0363784
10 ENSRNOG00000009370.5 Tbkbp1 protein_coding 232.31212 0.3928446 0.0959925 4.092452 4.27e-05 0.0366090
1 ENSRNOG00000016356.7 Got1 protein_coding 9196.33671 0.4218979 0.1034650 4.077687 4.55e-05 0.0370619
write.table(de1,file="de1.tsv",quote=FALSE,sep="\t")

ss2 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI fraction Group RatID label trt
33 33 mito T 1 mito T 1
34 34 mito T 2 mito T 1
35 35 mito S 3 mito S 0
36 36 mito S 4 mito S 0
37 37 mito T 5 mito T 1
38 38 mito T 6 mito T 1
39 39 mito S 7 mito S 0
40 40 mito S 8 mito S 0
41 41 mito T 9 mito T 1
42 42 mito T 10 mito T 1
43 43 mito S 11 mito S 0
44 44 mito S 12 mito S 0
45 45 mito T 13 mito T 1
46 46 mito T 14 mito T 1
47 47 mito S 15 mito S 0
48 48 mito S 16 mito S 0
49 49 mito T 17 mito T 1
50 50 mito T 18 mito T 1
51 51 mito S 19 mito S 0
52 52 mito S 20 mito S 0
53 53 mito T 21 mito T 1
54 54 mito T 22 mito T 1
55 55 mito S 23 mito S 0
56 56 mito S 24 mito S 0
57 57 mito T 25 mito T 1
58 58 mito T 26 mito T 1
59 59 mito T 27 mito T 1
60 60 mito T 28 mito T 1
61 61 mito S 29 mito S 0
62 62 mito S 30 mito S 0
63 63 mito S 31 mito S 0
64 64 mito S 32 mito S 0
de2 <- run_de(ss2,x2)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 43 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr(0) 
##  chr(0)

as.data.frame(de2[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
11 ENSRNOG00000057596.1 AABR07033056.1 processed_pseudogene 6.799236 -0.9858589 0.2378721 -4.144492 0.0000341 0.8164156
20 ENSRNOG00000033652.3 AABR07045321.1 protein_coding 31.385811 0.4180776 0.1107243 3.775844 0.0001595 0.8164156
16 ENSRNOG00000031335.4 Ankrd37 protein_coding 20.342893 0.5214769 0.1381419 3.774936 0.0001600 0.8164156
17 ENSRNOG00000018698.7 Wac protein_coding 69.447049 0.2927467 0.0784855 3.729946 0.0001915 0.8164156
7 ENSRNOG00000053181.1 Aqp6 protein_coding 28.839273 -0.4517375 0.1211477 -3.728817 0.0001924 0.8164156
10 ENSRNOG00000002388.4 Trim41 protein_coding 72.206861 -0.2721179 0.0744236 -3.656338 0.0002558 0.8164156
2 ENSRNOG00000058603.1 AABR07011434.1 lincRNA 83.746925 0.2713824 0.0748666 3.624881 0.0002891 0.8164156
8 ENSRNOG00000010196.5 Glb1 protein_coding 105.047842 -0.2683572 0.0742367 -3.614887 0.0003005 0.8164156
2 ENSRNOG00000059604.1 Lor protein_coding 37.381077 0.4132954 0.1145260 3.608747 0.0003077 0.8164156
12 ENSRNOG00000057927.1 AABR07035796.1 lincRNA 64.919074 -0.3337369 0.0927046 -3.600003 0.0003182 0.8164156
1 ENSRNOG00000013426.7 Mrgprf protein_coding 68.012764 -0.3029277 0.0843878 -3.589710 0.0003310 0.8164156
18 ENSRNOG00000057832.1 Rnf125 protein_coding 24.503842 0.5066023 0.1414879 3.580535 0.0003429 0.8164156
4 ENSRNOG00000000021.3 AABR07061902.1 pseudogene 31.184421 -0.4398168 0.1230320 -3.574815 0.0003505 0.8164156
2 ENSRNOG00000051623.1 Exosc8 protein_coding 22.769240 0.4874604 0.1374934 3.545336 0.0003921 0.8164156
1 ENSRNOG00000043320.3 LOC103691092 protein_coding 36.149436 0.4002888 0.1133295 3.532080 0.0004123 0.8164156
19 ENSRNOG00000011635.7 Ces2e protein_coding 50.953991 0.3319378 0.0940948 3.527697 0.0004192 0.8164156
14 ENSRNOG00000002271.6 Slain2 protein_coding 70.124559 0.2649451 0.0752231 3.522125 0.0004281 0.8164156
10 ENSRNOG00000002412.7 Mapk7 protein_coding 54.211409 -0.4041696 0.1169384 -3.456261 0.0005477 0.8503168
1 ENSRNOG00000057034.1 AABR07003841.1 lincRNA 9.142742 1.0409635 0.3019970 3.446934 0.0005670 0.8503168
13 ENSRNOG00000022724.5 Cnih3 protein_coding 18.155512 -0.4739114 0.1379474 -3.435449 0.0005916 0.8503168
write.table(de2,file="de2.tsv",quote=FALSE,sep="\t")

ss3 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI fraction Group RatID label trt
11 11 wholetissue S 11 wholetissue S 0
12 12 wholetissue S 12 wholetissue S 0
15 15 wholetissue S 15 wholetissue S 0
16 16 wholetissue S 16 wholetissue S 0
19 19 wholetissue S 19 wholetissue S 0
20 20 wholetissue S 20 wholetissue S 0
23 23 wholetissue S 23 wholetissue S 0
24 24 wholetissue S 24 wholetissue S 0
29 29 wholetissue S 29 wholetissue S 0
3 3 wholetissue S 3 wholetissue S 0
30 30 wholetissue S 30 wholetissue S 0
31 31 wholetissue S 31 wholetissue S 0
32 32 wholetissue S 32 wholetissue S 0
35 35 mito S 3 mito S 1
36 36 mito S 4 mito S 1
39 39 mito S 7 mito S 1
4 4 wholetissue S 4 wholetissue S 0
40 40 mito S 8 mito S 1
43 43 mito S 11 mito S 1
44 44 mito S 12 mito S 1
47 47 mito S 15 mito S 1
48 48 mito S 16 mito S 1
51 51 mito S 19 mito S 1
52 52 mito S 20 mito S 1
55 55 mito S 23 mito S 1
56 56 mito S 24 mito S 1
61 61 mito S 29 mito S 1
62 62 mito S 30 mito S 1
63 63 mito S 31 mito S 1
64 64 mito S 32 mito S 1
7 7 wholetissue S 7 wholetissue S 0
8 8 wholetissue S 8 wholetissue S 0
de3 <- run_de(ss3,x3)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 205 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr [1:22549] "1 ENSRNOG00000010983.6 Otog protein_coding" ...
##  chr [1:7732] "1 ENSRNOG00000000417.7 Numa1 protein_coding" ...

as.data.frame(de3[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
1 ENSRNOG00000000417.7 Numa1 protein_coding 1224.2153 -2.278258 0.0515175 -44.22298 0 0
1 ENSRNOG00000001488.6 Psmb1 protein_coding 451.8783 -4.128107 0.0938347 -43.99342 0 0
1 ENSRNOG00000001494.6 Napa protein_coding 445.0417 -3.135309 0.0695501 -45.07986 0 0
1 ENSRNOG00000010117.7 Eif3a protein_coding 1420.1411 -4.196810 0.0704317 -59.58695 0 0
1 ENSRNOG00000010427.5 Ipo7 protein_coding 628.0483 -2.832880 0.0647304 -43.76431 0 0
1 ENSRNOG00000010958.5 Prdx3 protein_coding 609.2282 -4.933490 0.1091842 -45.18500 0 0
1 ENSRNOG00000010964.6 Akap13 protein_coding 1337.5382 -2.429310 0.0552866 -43.94034 0 0
1 ENSRNOG00000010983.6 Otog protein_coding 429.4795 6.229600 0.1128381 55.20832 0 0
1 ENSRNOG00000011282.6 Ppp2r1a protein_coding 547.8787 -3.099354 0.0772535 -40.11927 0 0
1 ENSRNOG00000011339.6 Slk protein_coding 411.9456 -2.708499 0.0651728 -41.55871 0 0
1 ENSRNOG00000011346.5 Ehd2 protein_coding 787.3396 -4.212573 0.1028450 -40.96042 0 0
1 ENSRNOG00000011460.6 Arfgef3 protein_coding 126.4895 6.147113 0.1524340 40.32640 0 0
1 ENSRNOG00000011659.5 Alpk3 protein_coding 4290.1696 -5.087543 0.0763225 -66.65851 0 0
1 ENSRNOG00000011885.5 Rhpn2 protein_coding 311.6309 3.855666 0.0936647 41.16456 0 0
1 ENSRNOG00000011945.7 Cyfip1 protein_coding 412.5033 -1.842031 0.0458336 -40.18952 0 0
1 ENSRNOG00000012110.7 Col17a1 protein_coding 162.0319 5.013767 0.0999438 50.16584 0 0
1 ENSRNOG00000012142.6 Glyat protein_coding 297.2643 4.700972 0.1054415 44.58370 0 0
1 ENSRNOG00000012206.6 Dennd5a protein_coding 601.6843 -2.443968 0.0460011 -53.12842 0 0
1 ENSRNOG00000012383.6 Ndufc2 protein_coding 655.0776 -5.849854 0.1420982 -41.16770 0 0
1 ENSRNOG00000012415.6 Mpc1 protein_coding 1625.1625 -6.426814 0.1195915 -53.73971 0 0
write.table(de3,file="de3.tsv",quote=FALSE,sep="\t")

ss4 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI fraction Group RatID label trt
1 1 wholetissue T 1 wholetissue T 0
10 10 wholetissue T 10 wholetissue T 0
13 13 wholetissue T 13 wholetissue T 0
14 14 wholetissue T 14 wholetissue T 0
17 17 wholetissue T 17 wholetissue T 0
18 18 wholetissue T 18 wholetissue T 0
2 2 wholetissue T 2 wholetissue T 0
21 21 wholetissue T 21 wholetissue T 0
22 22 wholetissue T 22 wholetissue T 0
25 25 wholetissue T 25 wholetissue T 0
26 26 wholetissue T 26 wholetissue T 0
27 27 wholetissue T 27 wholetissue T 0
28 28 wholetissue T 28 wholetissue T 0
33 33 mito T 1 mito T 1
34 34 mito T 2 mito T 1
37 37 mito T 5 mito T 1
38 38 mito T 6 mito T 1
41 41 mito T 9 mito T 1
42 42 mito T 10 mito T 1
45 45 mito T 13 mito T 1
46 46 mito T 14 mito T 1
49 49 mito T 17 mito T 1
5 5 wholetissue T 5 wholetissue T 0
50 50 mito T 18 mito T 1
53 53 mito T 21 mito T 1
54 54 mito T 22 mito T 1
57 57 mito T 25 mito T 1
58 58 mito T 26 mito T 1
59 59 mito T 27 mito T 1
6 6 wholetissue T 6 wholetissue T 0
60 60 mito T 28 mito T 1
9 9 wholetissue T 9 wholetissue T 0
de4 <- run_de(ss4,x4)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 105 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr [1:22544] "1 ENSRNOG00000009932.8 Mctp2 protein_coding" ...
##  chr [1:7674] "1 ENSRNOG00000000417.7 Numa1 protein_coding" ...

as.data.frame(de4[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
1 ENSRNOG00000000417.7 Numa1 protein_coding 1262.9612 -2.385122 0.0462115 -51.61316 0 0
1 ENSRNOG00000001488.6 Psmb1 protein_coding 427.6390 -3.938947 0.0933781 -42.18278 0 0
1 ENSRNOG00000001494.6 Napa protein_coding 427.3646 -3.115259 0.0788663 -39.50050 0 0
1 ENSRNOG00000009932.8 Mctp2 protein_coding 138.4064 3.880420 0.0862188 45.00668 0 0
1 ENSRNOG00000010117.7 Eif3a protein_coding 1418.0006 -4.172418 0.0872323 -47.83111 0 0
1 ENSRNOG00000010427.5 Ipo7 protein_coding 627.3105 -2.669449 0.0709960 -37.60002 0 0
1 ENSRNOG00000010958.5 Prdx3 protein_coding 621.0700 -4.616300 0.1033410 -44.67054 0 0
1 ENSRNOG00000010964.6 Akap13 protein_coding 1329.1460 -2.320667 0.0496862 -46.70648 0 0
1 ENSRNOG00000010983.6 Otog protein_coding 401.5225 6.040622 0.1117856 54.03755 0 0
1 ENSRNOG00000011058.7 Utrn protein_coding 1084.9255 -1.754523 0.0463132 -37.88383 0 0
1 ENSRNOG00000011339.6 Slk protein_coding 421.8244 -2.587643 0.0610473 -42.38754 0 0
1 ENSRNOG00000011346.5 Ehd2 protein_coding 897.6189 -4.372625 0.0938367 -46.59823 0 0
1 ENSRNOG00000011460.6 Arfgef3 protein_coding 118.8150 6.636153 0.1765664 37.58445 0 0
1 ENSRNOG00000011659.5 Alpk3 protein_coding 4371.2836 -5.090869 0.0738495 -68.93577 0 0
1 ENSRNOG00000011885.5 Rhpn2 protein_coding 311.8998 3.750411 0.0966640 38.79844 0 0
1 ENSRNOG00000012110.7 Col17a1 protein_coding 158.8087 5.136959 0.1051545 48.85152 0 0
1 ENSRNOG00000012142.6 Glyat protein_coding 298.2102 4.774947 0.1086791 43.93622 0 0
1 ENSRNOG00000012206.6 Dennd5a protein_coding 623.9719 -2.682520 0.0518118 -51.77429 0 0
1 ENSRNOG00000012383.6 Ndufc2 protein_coding 635.1984 -5.599595 0.1311112 -42.70875 0 0
1 ENSRNOG00000012415.6 Mpc1 protein_coding 1629.2379 -6.332387 0.1117885 -56.64613 0 0
write.table(de4,file="de4.tsv",quote=FALSE,sep="\t")

Second pass DE analysis

Here we are going to exclude the mito samples with < 40% mito reads. Contrast 1 is not repeated.

  1. Mito fraction S versus T: 0 DEGs

  2. Whole versus mito fraction in S: 20 DEGs

  3. Whole versus mito fraction in T: 0 DEGs

  4. Mito fraction S versus T taking into consideration the mitofrac: 1 DEG

ss0 <- subset(ss, fraction=="mito" & mtfrac>0.4)
ss <- subset(ss, fraction!="mito")
ss <- rbind(ss,ss0)

ss2 <- subset(ss,fraction=="mito")
ss2$trt <- grepl("T",ss2$Group)*1
x2 <- x[,which(colnames(x) %in% rownames(ss2))]

ss3 <- subset(ss,Group=="S")
ss3$trt <- grepl("mito",ss3$fraction)*1
x3 <- x[,which(colnames(x) %in% rownames(ss3))]

ss4 <- subset(ss,Group=="T")
ss4$trt <- grepl("mito",ss4$fraction)*1
x4 <- x[,which(colnames(x) %in% rownames(ss4))]

ss2 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI fraction Group RatID label nreads mtfrac trt
33 33 mito T 1 mito T 7938936 0.6465534 1
34 34 mito T 2 mito T 12294342 0.8147126 1
47 47 mito S 15 mito S 11142807 0.7268125 0
58 58 mito T 26 mito T 6786437 0.4821588 1
59 59 mito T 27 mito T 10802671 0.6646957 1
60 60 mito T 28 mito T 9524968 0.5887804 1
64 64 mito S 32 mito S 7138202 0.5016151 0
de2 <- run_de(ss2,x2)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing

##  chr(0) 
##  chr(0)

as.data.frame(de2[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
17 ENSRNOG00000056825.2 AABR07072539.4 processed_pseudogene 11.661670 6.5676953 1.5385473 4.268764 0.0000197 0.6313871
1 ENSRNOG00000020025.4 LOC108348052 protein_coding 17.782509 2.9172245 0.7530693 3.873780 0.0001072 0.9999479
3 ENSRNOG00000050864.2 Cpne1 protein_coding 14.072847 -2.9272763 0.7602602 -3.850361 0.0001179 0.9999479
2 ENSRNOG00000020832.4 C2cd4d protein_coding 15.822890 2.7222352 0.7431078 3.663311 0.0002490 0.9999479
7 ENSRNOG00000050884.2 AABR07058745.1 protein_coding 50.195404 1.6687089 0.4779421 3.491445 0.0004804 0.9999479
20 ENSRNOG00000045654.2 LOC108348108 protein_coding 7.187484 5.8570854 1.6931454 3.459293 0.0005416 0.9999479
4 ENSRNOG00000049639.2 LOC100909784 protein_coding 52.027683 1.1890107 0.3485934 3.410881 0.0006475 0.9999479
13 ENSRNOG00000056279.1 AC115369.1 lincRNA 199.904660 -0.5561194 0.1700077 -3.271142 0.0010711 0.9999479
6 ENSRNOG00000051280.1 AABR07064502.1 processed_pseudogene 5.509108 5.4622037 1.6700748 3.270634 0.0010731 0.9999479
12 ENSRNOG00000057927.1 AABR07035796.1 lincRNA 58.135739 -0.9607682 0.2975668 -3.228748 0.0012433 0.9999479
18 ENSRNOG00000051569.1 LOC103690147 protein_coding 16.613644 2.4049396 0.7510958 3.201908 0.0013652 0.9999479
14 ENSRNOG00000050406.1 AABR07014914.1 miRNA 102.689535 -0.7408943 0.2335580 -3.172207 0.0015129 0.9999479
5 ENSRNOG00000048618.1 AABR07049890.1 miRNA 68.590808 0.9768229 0.3118632 3.132216 0.0017349 0.9999479
2 ENSRNOG00000061049.1 AABR07011512.1 lincRNA 391.297383 0.4903412 0.1577683 3.107983 0.0018837 0.9999479
1 ENSRNOG00000038697.3 AABR07003616.1 protein_coding 2.349799 -4.7978937 1.5525918 -3.090248 0.0019999 0.9999479
MT ENSRNOG00000029070.3 AY172581.1 Mt_tRNA 28.057647 1.9396338 0.6302285 3.077667 0.0020863 0.9999479
17 ENSRNOG00000052667.1 AABR07027555.1 processed_pseudogene 4.412753 5.1807393 1.6974583 3.052057 0.0022728 0.9999479
KL568337.1 ENSRNOG00000057871.1 5_8S_rRNA rRNA 5.377655 -3.1465703 1.0320391 -3.048887 0.0022969 0.9999479
13 ENSRNOG00000052639.1 LOC108352591 lincRNA 11.174558 2.3679557 0.7780118 3.043599 0.0023377 0.9999479
8 ENSRNOG00000059264.1 U6 snRNA 5.160780 5.3206380 1.7779022 2.992649 0.0027657 0.9999479
write.table(de2,file="de2b.tsv",quote=FALSE,sep="\t")

ss3 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI fraction Group RatID label nreads mtfrac trt
11 11 wholetissue S 11 wholetissue S 27624509 0.3521941 0
12 12 wholetissue S 12 wholetissue S 29209069 0.2845851 0
15 15 wholetissue S 15 wholetissue S 24139589 0.3354321 0
16 16 wholetissue S 16 wholetissue S 26585363 0.3323202 0
19 19 wholetissue S 19 wholetissue S 29474137 0.3574090 0
20 20 wholetissue S 20 wholetissue S 29473669 0.3501682 0
23 23 wholetissue S 23 wholetissue S 31385455 0.3802950 0
24 24 wholetissue S 24 wholetissue S 27209791 0.2678982 0
29 29 wholetissue S 29 wholetissue S 24900845 0.3670548 0
3 3 wholetissue S 3 wholetissue S 23495593 0.3273260 0
30 30 wholetissue S 30 wholetissue S 25393464 0.3000018 0
31 31 wholetissue S 31 wholetissue S 26748801 0.3738198 0
32 32 wholetissue S 32 wholetissue S 19491222 0.3556323 0
4 4 wholetissue S 4 wholetissue S 23993574 0.2853209 0
7 7 wholetissue S 7 wholetissue S 24756089 0.3214936 0
8 8 wholetissue S 8 wholetissue S 20318569 0.2543348 0
47 47 mito S 15 mito S 11142807 0.7268125 1
64 64 mito S 32 mito S 7138202 0.5016151 1
de3 <- run_de(ss3,x3)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 5629 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr [1:18] "9 ENSRNOG00000046834.3 C3 protein_coding" ...
##  chr [1:2] "14 ENSRNOG00000027791.5 AABR07015346.1 processed_pseudogene" ...

as.data.frame(de3[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
9 ENSRNOG00000046834.3 C3 protein_coding 189.947150 6.694343 0.8044297 8.321849 0.00e+00 0.0000000
14 ENSRNOG00000027791.5 AABR07015346.1 processed_pseudogene 154.480953 -23.408177 3.3688533 -6.948411 0.00e+00 0.0000000
13 ENSRNOG00000004405.5 Pigr protein_coding 33.147013 5.576134 0.8340084 6.685944 0.00e+00 0.0000002
2 ENSRNOG00000011200.3 Bhmt protein_coding 23.212978 4.704729 0.7534309 6.244406 0.00e+00 0.0000026
19 ENSRNOG00000014964.8 Hp protein_coding 85.923541 3.648683 0.6437731 5.667654 0.00e+00 0.0000625
16 ENSRNOG00000017381.8 Itih4 protein_coding 27.994702 6.468558 1.1437031 5.655802 0.00e+00 0.0000625
6 ENSRNOG00000005542.8 Apob protein_coding 91.699635 9.580368 1.7184669 5.574950 0.00e+00 0.0000840
19 ENSRNOG00000015438.5 LOC501233 protein_coding 19.393163 5.876676 1.0579672 5.554687 0.00e+00 0.0000840
4 ENSRNOG00000006709.6 Pzp protein_coding 51.516746 7.538147 1.3639175 5.526835 0.00e+00 0.0000875
1 ENSRNOG00000017223.7 Plg protein_coding 27.573652 6.470047 1.2003796 5.390001 1.00e-07 0.0001703
1 ENSRNOG00000046727.2 Abcc2 protein_coding 36.686475 3.034077 0.5814550 5.218078 2.00e-07 0.0003850
6 ENSRNOG00000010478.7 LOC299282 protein_coding 196.409234 2.161695 0.4150939 5.207726 2.00e-07 0.0003850
2 ENSRNOG00000012436.6 Adh6 protein_coding 12.016400 3.126573 0.6145946 5.087212 4.00e-07 0.0006754
1 ENSRNOG00000024016.7 Cyp2c6v1 protein_coding 19.504106 2.998256 0.6171350 4.858347 1.20e-06 0.0020431
3 ENSRNOG00000018899.8 C5 protein_coding 6.163963 5.651434 1.2054685 4.688164 2.80e-06 0.0044408
3 ENSRNOG00000010128.7 Slc27a2 protein_coding 6.107139 4.339468 0.9795889 4.429887 9.40e-06 0.0142390
4 ENSRNOG00000006675.5 Fabp1 protein_coding 52.467979 1.634886 0.3735441 4.376687 1.20e-05 0.0171276
1 ENSRNOG00000031391.4 Ceacam16 protein_coding 40.661418 -2.349823 0.5397098 -4.353863 1.34e-05 0.0179564
16 ENSRNOG00000033386.5 Itih1 protein_coding 11.068834 8.014672 1.8705981 4.284550 1.83e-05 0.0232876
2 ENSRNOG00000013736.6 C9 protein_coding 11.301353 3.221508 0.7727049 4.169131 3.06e-05 0.0369424
write.table(de3,file="de3b.tsv",quote=FALSE,sep="\t")

ss4 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI fraction Group RatID label nreads mtfrac trt
1 1 wholetissue T 1 wholetissue T 21258507 0.2601233 0
10 10 wholetissue T 10 wholetissue T 32402582 0.3723191 0
13 13 wholetissue T 13 wholetissue T 29174764 0.3195613 0
14 14 wholetissue T 14 wholetissue T 26930441 0.3552110 0
17 17 wholetissue T 17 wholetissue T 29764939 0.3617978 0
18 18 wholetissue T 18 wholetissue T 32286871 0.3904784 0
2 2 wholetissue T 2 wholetissue T 18839052 0.3441832 0
21 21 wholetissue T 21 wholetissue T 38356697 0.3680570 0
22 22 wholetissue T 22 wholetissue T 26332319 0.3551245 0
25 25 wholetissue T 25 wholetissue T 33288494 0.3205449 0
26 26 wholetissue T 26 wholetissue T 28504502 0.2691352 0
27 27 wholetissue T 27 wholetissue T 30196627 0.3549592 0
28 28 wholetissue T 28 wholetissue T 31275863 0.2879719 0
5 5 wholetissue T 5 wholetissue T 30674155 0.3747933 0
6 6 wholetissue T 6 wholetissue T 25369115 0.3510836 0
9 9 wholetissue T 9 wholetissue T 24443981 0.3754423 0
33 33 mito T 1 mito T 7938936 0.6465534 1
34 34 mito T 2 mito T 12294342 0.8147126 1
58 58 mito T 26 mito T 6786437 0.4821588 1
59 59 mito T 27 mito T 10802671 0.6646957 1
60 60 mito T 28 mito T 9524968 0.5887804 1
de4 <- run_de(ss4,x4)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 294 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

##  chr(0) 
##  chr(0)

as.data.frame(de4[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
17 ENSRNOG00000053995.1 AABR07027810.4 miRNA 8.350737 3.0222524 0.6855928 4.408232 1.04e-05 0.0900534
2 ENSRNOG00000048082.2 AABR07013776.1 protein_coding 8.905297 3.5112469 0.8304255 4.228250 2.36e-05 0.0900534
5 ENSRNOG00000055453.1 AC127935.1 snoRNA 3.827934 2.8729506 0.6804509 4.222128 2.42e-05 0.0900534
3 ENSRNOG00000011715.3 AABR07053669.1 pseudogene 9.923043 2.6658784 0.6323049 4.216128 2.49e-05 0.0900534
2 ENSRNOG00000045639.2 RGD1560883 protein_coding 70.610633 1.1875298 0.2836711 4.186291 2.84e-05 0.0900534
8 ENSRNOG00000023809.5 Opcml protein_coding 59.018462 1.0449219 0.2506728 4.168469 3.07e-05 0.0900534
1 ENSRNOG00000060312.1 LOC108348197 protein_coding 271.784529 -2.4832702 0.5972205 -4.158046 3.21e-05 0.0900534
1 ENSRNOG00000015717.8 Ptpre protein_coding 86.690130 0.9615012 0.2316621 4.150447 3.32e-05 0.0900534
7 ENSRNOG00000005551.6 Derl1 protein_coding 541.437086 0.2653631 0.0642131 4.132542 3.59e-05 0.0900534
5 ENSRNOG00000022953.4 Ccdc163 protein_coding 36.357350 1.6456259 0.3995540 4.118657 3.81e-05 0.0900534
3 ENSRNOG00000050251.1 MGC105649 protein_coding 13.324704 2.2234732 0.5398584 4.118623 3.81e-05 0.0900534
16 ENSRNOG00000045643.3 AABR07026271.2 protein_coding 5.871765 5.9098751 1.4396072 4.105200 4.04e-05 0.0900534
15 ENSRNOG00000047211.1 Fzd3 protein_coding 42.068994 1.2291144 0.3004629 4.090736 4.30e-05 0.0900534
9 ENSRNOG00000050660.1 LOC100911713 protein_coding 86.887371 -2.2825034 0.5595076 -4.079486 4.51e-05 0.0900534
13 ENSRNOG00000058096.1 AABR07021704.1 protein_coding 181.540160 0.6374446 0.1563429 4.077220 4.56e-05 0.0900534
X ENSRNOG00000002413.6 Gpc4 protein_coding 905.969267 1.2337233 0.3037032 4.062266 4.86e-05 0.0900534
4 ENSRNOG00000006726.7 Zfp9 protein_coding 63.475641 1.7474409 0.4332597 4.033241 5.50e-05 0.0928726
1 ENSRNOG00000043141.3 Ap3s2 protein_coding 109.562150 -0.6388746 0.1586301 -4.027450 5.64e-05 0.0928726
3 ENSRNOG00000016488.6 Pltp protein_coding 212.517369 -0.5918376 0.1475718 -4.010507 6.06e-05 0.0945435
2 ENSRNOG00000053898.1 AABR07013208.1 snoRNA 8.556559 1.7890899 0.4494923 3.980246 6.88e-05 0.0969047
write.table(de4,file="de4b.tsv",quote=FALSE,sep="\t")

ss5 %>% kbl() %>% kable_paper("hover", full_width = F)
UDI fraction Group RatID label nreads mtfrac trt
33 33 mito T 1 mito T 7938936 0.6465534 1
34 34 mito T 2 mito T 12294342 0.8147126 1
47 47 mito S 15 mito S 11142807 0.7268125 0
58 58 mito T 26 mito T 6786437 0.4821588 1
59 59 mito T 27 mito T 10802671 0.6646957 1
60 60 mito T 28 mito T 9524968 0.5887804 1
64 64 mito S 32 mito S 7138202 0.5016151 0
de5 <- run_de_cov(ss5,x5)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing

##  chr "2 ENSRNOG00000059443.1 LOC103690028 protein_coding"
##  chr(0)

as.data.frame(de5[1:20,]) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
2 ENSRNOG00000059443.1 LOC103690028 protein_coding 6.386214 30.0000000 4.1193787 7.282652 0.0000000 0.0000000
17 ENSRNOG00000056825.2 AABR07072539.4 processed_pseudogene 11.661670 6.5824326 1.5521786 4.240770 0.0000223 0.3578214
X ENSRNOG00000050700.2 AABR07037451.1 processed_pseudogene 1.519340 16.2028557 4.1292666 3.923906 0.0000871 0.7172777
1 ENSRNOG00000020025.4 LOC108348052 protein_coding 17.782509 3.2117296 0.8197475 3.917950 0.0000893 0.7172777
AABR07024203.1 ENSRNOG00000061777.1 AABR07024203.3 protein_coding 11.234939 -3.3373093 0.9087237 -3.672524 0.0002402 0.9999799
2 ENSRNOG00000020832.4 C2cd4d protein_coding 15.822890 2.8656038 0.8060464 3.555135 0.0003778 0.9999799
7 ENSRNOG00000050884.2 AABR07058745.1 protein_coding 50.195404 1.5965430 0.4942259 3.230391 0.0012362 0.9999799
3 ENSRNOG00000050864.2 Cpne1 protein_coding 14.072847 -2.5159879 0.7841478 -3.208563 0.0013340 0.9999799
18 ENSRNOG00000051569.1 LOC103690147 protein_coding 16.613644 2.5381822 0.7960416 3.188505 0.0014301 0.9999799
6 ENSRNOG00000051280.1 AABR07064502.1 processed_pseudogene 5.509108 5.4761178 1.7215016 3.181012 0.0014676 0.9999799
3 ENSRNOG00000007478.4 Cry2 protein_coding 471.596916 -0.5978197 0.1884367 -3.172523 0.0015112 0.9999799
4 ENSRNOG00000049639.2 LOC100909784 protein_coding 52.027683 1.1706273 0.3779391 3.097396 0.0019523 0.9999799
12 ENSRNOG00000057927.1 AABR07035796.1 lincRNA 58.135739 -0.9701573 0.3188153 -3.043008 0.0023423 0.9999799
KL568337.1 ENSRNOG00000057871.1 5_8S_rRNA rRNA 5.377655 -3.3118028 1.1068976 -2.991968 0.0027718 0.9999799
17 ENSRNOG00000052667.1 AABR07027555.1 processed_pseudogene 4.412753 5.1827233 1.7468898 2.966829 0.0030089 0.9999799
13 ENSRNOG00000056279.1 AC115369.1 lincRNA 199.904660 -0.5543759 0.1899197 -2.919001 0.0035116 0.9999799
13 ENSRNOG00000057562.1 U5 snRNA 9.045022 6.1759234 2.1248527 2.906518 0.0036548 0.9999799
14 ENSRNOG00000050406.1 AABR07014914.1 miRNA 102.689535 -0.7422696 0.2569182 -2.889128 0.0038631 0.9999799
13 ENSRNOG00000052639.1 LOC108352591 lincRNA 11.174558 2.3658472 0.8234583 2.873063 0.0040651 0.9999799
MT ENSRNOG00000029677.3 AY172581.6 Mt_tRNA 36.277712 1.5776326 0.5539265 2.848090 0.0043982 0.9999799
write.table(de5,file="de5b.tsv",quote=FALSE,sep="\t")

Top expressed genes in low medium and high mtfrac samples

# high
high <- x[which(colnames(x) %in% subset(mito,mtfrac>0.6)$RatID )] 
high <- high/colSums(high)*1000000 
high$mean <- rowMeans(high)
head(high[order(-high$mean),],20) %>% kbl() %>% kable_paper("hover", full_width = F)
1 15 2 27 mean
MT ENSRNOG00000043866.1 AY172581.24 Mt_rRNA 65532.48480 103302.929 70376.072 143173.607 95596.273
MT ENSRNOG00000030478.3 AY172581.9 Mt_rRNA 68166.88500 94253.573 66097.117 127533.781 89012.839
10 ENSRNOG00000049695.2 Myh4 protein_coding 73162.30612 57759.766 36012.999 51313.467 54562.134
MT ENSRNOG00000034234.3 Mt-co1 protein_coding 27760.63254 40763.941 46883.092 57601.094 43252.190
19 ENSRNOG00000017786.6 Acta1 protein_coding 32867.41817 35902.178 28000.931 39461.381 34057.977
3 ENSRNOG00000006783.8 Neb protein_coding 15991.78610 16265.293 13783.228 16011.788 15513.024
15 ENSRNOG00000016983.5 Myh7 protein_coding 39.81012 9491.545 16050.108 22614.511 12048.993
MT ENSRNOG00000029707.3 Mt-nd4 protein_coding 9126.46772 11266.490 13322.592 13856.483 11893.008
1 ENSRNOG00000016837.4 Ckm protein_coding 12624.35786 12710.488 8756.212 13107.600 11799.664
8 ENSRNOG00000018184.8 Tpm1 protein_coding 14962.37709 9629.519 6935.752 5372.086 9224.933
10 ENSRNOG00000058068.1 Obscn protein_coding 8984.36928 10559.555 5807.829 10745.021 9024.193
1 ENSRNOG00000020332.8 Tnnt3 protein_coding 11001.61516 9555.417 7012.296 7849.811 8854.785
1 ENSRNOG00000047746.1 AABR07000398.1 protein_coding 7432.31378 10013.924 5021.958 12045.814 8628.502
MT ENSRNOG00000031979.3 Mt-atp6 protein_coding 5805.02841 8856.986 8647.247 9841.095 8287.589
MT ENSRNOG00000029971.3 Mt-nd5 protein_coding 6091.34969 8484.839 9423.286 7372.061 7842.884
MT ENSRNOG00000031033.4 Mt-nd2 protein_coding 6026.36481 7734.837 8826.612 7479.410 7516.806
1 ENSRNOG00000017645.6 Mylpf protein_coding 9366.22689 7831.735 6621.632 4611.283 7107.719
9 ENSRNOG00000013262.7 Myl1 protein_coding 8134.69807 6425.801 5028.650 4173.936 5940.771
MT ENSRNOG00000031766.3 Mt-cyb protein_coding 4330.41743 5386.463 6793.838 6764.630 5818.837
1 ENSRNOG00000019745.5 Actn3 protein_coding 9656.00605 6018.403 3966.229 2504.744 5536.345
# med
med <- x[which(colnames(x) %in% subset(mito,mtfrac<0.6 & mtfrac > 0.3)$RatID )]  
med <- med/colSums(med)*1000000
med$mean <- rowMeans(med)
head(med[order(-med$mean),],20) %>% kbl() %>% kable_paper("hover", full_width = F)
20 26 28 32 7 mean
MT ENSRNOG00000043866.1 AY172581.24 Mt_rRNA 158053.630 158145.036 120971.027 88803.305 116980.109 128590.621
MT ENSRNOG00000030478.3 AY172581.9 Mt_rRNA 126811.529 117395.765 115558.939 137796.389 95135.763 118539.677
10 ENSRNOG00000049695.2 Myh4 protein_coding 67870.823 91464.506 66350.749 28310.810 64479.813 63695.340
MT ENSRNOG00000034234.3 Mt-co1 protein_coding 24143.686 20917.728 33563.379 19062.392 43784.838 28294.405
19 ENSRNOG00000017786.6 Acta1 protein_coding 25090.231 25867.914 45886.656 13388.493 20198.899 26086.439
3 ENSRNOG00000006783.8 Neb protein_coding 16435.901 22851.994 19473.485 24338.854 14385.281 19497.103
1 ENSRNOG00000047746.1 AABR07000398.1 protein_coding 12862.200 37968.805 30612.680 6824.503 6667.894 18987.217
1 ENSRNOG00000016837.4 Ckm protein_coding 8879.247 9639.926 15528.382 5646.266 14597.238 10858.212
15 ENSRNOG00000016983.5 Myh7 protein_coding 4828.164 9764.103 7522.180 15204.639 3675.789 8198.975
8 ENSRNOG00000018184.8 Tpm1 protein_coding 7759.914 8699.032 8612.078 5817.388 8226.563 7822.995
10 ENSRNOG00000058068.1 Obscn protein_coding 8718.745 8426.063 7970.619 5694.276 6489.291 7459.799
MT ENSRNOG00000029707.3 Mt-nd4 protein_coding 5900.972 6678.882 7573.295 7193.751 7924.565 7054.293
1 ENSRNOG00000020332.8 Tnnt3 protein_coding 6540.507 7796.425 7769.018 5800.355 7172.470 7015.755
MT ENSRNOG00000031979.3 Mt-atp6 protein_coding 5737.140 6467.459 7284.639 7344.178 7729.068 6912.497
1 ENSRNOG00000017645.6 Mylpf protein_coding 10198.437 4616.663 5993.887 4249.904 7677.033 6547.185
3 ENSRNOG00000015155.6 Tnnc2 protein_coding 5844.831 6097.463 5653.046 3236.298 8685.823 5903.492
MT ENSRNOG00000031766.3 Mt-cyb protein_coding 5046.097 4614.837 7223.435 3825.361 8751.170 5892.180
MT ENSRNOG00000029971.3 Mt-nd5 protein_coding 5929.410 4749.987 8432.616 4091.720 5821.454 5805.037
1 ENSRNOG00000052802.1 Aldoa protein_coding 8373.667 5556.689 6338.402 2967.876 5378.940 5723.115
1 ENSRNOG00000020557.7 Ryr1 protein_coding 6303.350 5543.083 5551.917 3461.411 4300.408 5032.034
# low
low <- x[which(colnames(x) %in% subset(mito,mtfrac<0.3)$RatID )]
low <- low/colSums(low)*1000000
low$mean <- rowMeans(low)
head(low[order(-low$mean),],20) %>% kbl() %>% kable_paper("hover", full_width = F)
10 11 12 13 14 16 17 18 19 21 22 23 24 25 29 3 30 31 4 5 6 8 9 mean
MT ENSRNOG00000043866.1 AY172581.24 Mt_rRNA 149740.771 140521.199 112912.776 90432.709 130645.108 109919.970 167770.260 225122.777 146316.179 179413.681 120425.159 171815.233 108694.330 155014.079 130115.959 92971.163 137715.899 127265.169 106936.933 158438.186 104784.387 88235.270 104604.318 133035.283
MT ENSRNOG00000030478.3 AY172581.9 Mt_rRNA 131108.710 149945.141 89966.596 109934.347 132868.836 113507.900 115621.269 180725.484 147278.915 217056.082 162290.953 167527.662 88908.063 139111.249 124143.158 105822.937 116400.986 149740.667 74681.961 201250.393 110581.446 78021.449 126470.807 131868.044
10 ENSRNOG00000049695.2 Myh4 protein_coding 41319.615 44973.305 67895.505 40608.684 50260.309 52639.233 53834.681 60329.612 56754.461 63505.595 53316.057 45731.297 71654.758 80910.627 37412.654 38575.221 78694.321 39132.047 75763.814 47704.054 38511.815 72470.527 36892.554 54299.598
MT ENSRNOG00000034234.3 Mt-co1 protein_coding 42494.672 45287.642 25971.541 34117.708 39616.493 33411.707 20474.443 34762.642 27268.106 42731.899 29603.385 35211.596 19038.883 32765.043 32074.744 24001.103 28595.124 33028.701 19483.939 69008.797 30447.769 16308.643 42109.344 32948.432
19 ENSRNOG00000017786.6 Acta1 protein_coding 32051.070 29717.123 28930.757 26112.701 23825.986 25834.074 22636.484 26729.431 22342.445 24228.131 25781.245 24531.816 24787.633 31491.556 19478.877 28308.117 23503.528 19805.499 28192.688 25923.501 16504.158 22091.308 21420.676 24966.470
3 ENSRNOG00000006783.8 Neb protein_coding 20751.164 18031.671 18943.388 19712.012 15765.207 26704.637 20689.644 28214.826 24040.888 20617.730 18882.818 17487.680 17539.411 27239.135 13873.188 10064.970 20209.093 13771.990 21286.314 18869.469 15835.261 16430.286 13570.219 19066.565
15 ENSRNOG00000016983.5 Myh7 protein_coding 24445.806 18335.812 7918.672 10920.299 13597.539 12539.089 16486.257 15396.703 14527.859 13243.229 3703.053 18619.346 5417.754 16000.234 13880.091 6869.012 8592.626 10965.078 3289.985 14969.633 14212.791 3009.103 8226.256 11963.749
1 ENSRNOG00000047746.1 AABR07000398.1 protein_coding 11618.883 7629.567 9939.861 12235.486 5870.149 7077.052 15272.867 9249.649 6408.034 23809.254 10323.266 13297.613 14777.998 18470.278 21826.798 6731.106 13482.958 10599.273 3456.447 9794.149 5725.101 7873.635 5117.162 10895.069
1 ENSRNOG00000016837.4 Ckm protein_coding 9041.923 12568.946 13148.389 13420.027 11932.222 9159.420 9510.592 8283.846 7978.927 12450.724 7716.590 6300.412 10685.825 10723.039 8913.875 11850.381 10704.491 7231.534 9951.961 10062.665 9145.936 11491.611 9498.986 10077.057
MT ENSRNOG00000029707.3 Mt-nd4 protein_coding 10990.765 9344.980 9702.389 8389.682 8226.199 8279.054 6386.713 8207.891 6976.830 10054.066 4869.040 11605.000 5104.697 9047.404 11144.789 5275.364 8030.187 7030.983 5970.828 12583.514 7888.611 3011.156 10713.377 8210.153
MT ENSRNOG00000031979.3 Mt-atp6 protein_coding 12122.001 8615.783 8472.782 10519.775 8923.397 7664.410 5616.194 8331.130 6586.636 10175.522 6049.870 6520.301 7021.557 8039.392 9234.867 7513.915 5598.808 9436.025 5221.714 11554.367 8660.772 4034.823 6852.102 7946.354
10 ENSRNOG00000058068.1 Obscn protein_coding 7410.582 4927.138 12244.612 8089.383 8556.778 9179.110 6204.813 9271.483 6427.235 8870.421 7082.295 7391.263 6173.368 10073.050 5204.206 4824.376 9546.306 4820.467 5416.171 5062.112 6353.665 7475.030 5786.130 7234.348
1 ENSRNOG00000020332.8 Tnnt3 protein_coding 6706.170 5567.826 8783.047 8904.134 6099.484 6189.682 5328.949 6804.493 6732.283 9325.355 7061.893 4688.227 10148.057 7067.174 5713.421 7318.939 5741.993 6299.777 7273.988 5829.653 6453.078 7044.795 4482.372 6763.687
MT ENSRNOG00000031766.3 Mt-cyb protein_coding 11344.638 6048.283 6079.296 8220.422 7666.163 4988.203 6358.528 6887.313 6445.615 9365.299 5338.689 6113.819 4182.381 7887.654 6124.670 5293.957 5620.574 4993.828 6536.386 9742.503 7336.217 4074.705 6100.529 6641.290
8 ENSRNOG00000018184.8 Tpm1 protein_coding 5337.411 4629.828 12277.784 6772.129 5853.576 6585.098 5665.120 7710.680 5355.808 8393.766 7977.525 4741.225 6264.043 7989.928 4174.731 8412.210 7282.033 4581.048 9887.128 3849.886 5580.562 7795.172 5001.830 6613.849
MT ENSRNOG00000029971.3 Mt-nd5 protein_coding 9213.737 7737.435 7415.710 7580.261 6820.254 10537.012 4945.853 7803.591 6731.391 6965.587 5806.536 5671.770 4454.312 7071.977 6189.793 3325.521 5352.576 5477.819 5227.341 10896.501 5861.881 3301.561 7063.666 6584.873
3 ENSRNOG00000015155.6 Tnnc2 protein_coding 5718.098 6577.086 9239.983 5230.299 5716.219 5117.589 4260.506 5446.792 4091.413 5804.313 3887.279 4520.201 5024.405 5157.058 4951.860 5699.687 6869.677 4675.299 8803.115 7515.961 3936.089 6279.263 4809.586 5623.121
1 ENSRNOG00000017645.6 Mylpf protein_coding 4738.342 4629.501 7863.004 6778.946 4861.412 5254.894 4195.354 4104.992 5680.912 6852.492 5124.485 4730.653 4942.195 6272.581 4439.091 7375.958 5660.905 5884.919 6740.231 5708.443 4914.775 6280.495 5796.469 5601.350
MT ENSRNOG00000030700.3 Mt-co3 protein_coding 5799.326 6067.711 5173.701 6703.132 7227.185 5193.084 3899.641 4896.239 4426.626 6389.612 4450.096 5533.308 2778.468 7720.524 5430.315 4710.764 4802.655 4832.243 4441.386 7383.763 4604.613 3070.121 5922.458 5280.738
1 ENSRNOG00000052802.1 Aldoa protein_coding 5002.804 3136.245 7381.938 5735.205 5457.096 5980.768 4314.311 4514.002 4377.757 6747.086 5150.095 4353.443 6459.005 5916.699 5348.211 4700.967 5941.405 4540.136 5262.108 5652.209 3883.178 4782.328 4819.744 5193.771

Pathway analysis with mitch

Here we are doing a gene set analysis with my R package called mitch. I’m using gene sets downloaded from Reactome 5th Dec 2020.

We lost 46% of genes after converting from rat to human.

There were 259 differentially regulated gene sets (FDR<0.05). Of these 81 were downregulated and 178 were upregulated.

#download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip",
#    destfile="ReactomePathways.gmt.zip")
#unzip("ReactomePathways.gmt.zip")
genesets<-gmt_import("ReactomePathways.gmt")

# i need to get some data from biomart to link rat and human gene IDs

mart <- read.table("mart_export.txt",header=TRUE,sep="\t")
gt <- mart[,c("Gene.stable.ID","Human.gene.name")]

rownames(de1) <- sapply( strsplit(rownames(de1)," ") , "[[", 2)
rownames(de1) <- sapply( strsplit(rownames(de1),"\\.") , "[[", 1)

m <- mitch_import(as.data.frame(de1),"DESeq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 32852
## Note: no. genes in output = 18043
## Note: estimated proportion of input genes in output = 0.549
res<-mitch_calc(m,genesets,priority="significance")
## Note: When prioritising by significance (ie: small
##             p-values), large effect sizes might be missed.
nrow(subset(res$enrichment_result,p.adjustANOVA<0.05))
## [1] 71
head(res$enrichment_result,20) %>% kbl() %>% kable_paper("hover", full_width = F)
set setSize pANOVA s.dist p.adjustANOVA
1440 rRNA processing in the nucleus and cytosol 166 0 -0.3243600 0e+00
668 Major pathway of rRNA processing in the nucleolus and cytosol 157 0 -0.3322112 0e+00
1110 SRP-dependent cotranslational protein targeting to membrane 89 0 -0.4181998 0e+00
860 Peptide chain elongation 66 0 -0.4797966 0e+00
1305 The citric acid (TCA) cycle and respiratory electron transport 165 0 0.3029130 0e+00
378 Eukaryotic Translation Termination 70 0 -0.4614159 0e+00
1074 Response of EIF2AK4 (GCN2) to amino acid deficiency 78 0 -0.4362978 0e+00
676 Metabolism 1943 0 0.0922760 0e+00
154 Cap-dependent Translation Initiation 93 0 -0.3984341 0e+00
377 Eukaryotic Translation Initiation 93 0 -0.3984341 0e+00
1130 Selenocysteine synthesis 69 0 -0.4616298 0e+00
1395 Viral mRNA Translation 66 0 -0.4674795 0e+00
376 Eukaryotic Translation Elongation 70 0 -0.4511815 0e+00
470 GTP hydrolysis and joining of the 60S ribosomal subunit 87 0 -0.3968257 0e+00
428 Formation of a pool of free 40S subunits 77 0 -0.4143765 0e+00
788 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 71 0 -0.4286543 0e+00
628 L13a-mediated translational silencing of Ceruloplasmin expression 85 0 -0.3914113 0e+00
787 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 90 0 -0.3579061 3e-07
789 Nonsense-Mediated Decay (NMD) 90 0 -0.3579061 3e-07
1438 rRNA processing 187 0 -0.2448791 6e-07
mitch_barplot <- function(res){
  sig <- head(subset(res$enrichment_result,p.adjustANOVA<0.05),30)
  sig <- sig[order(sig$s.dist),]
  par(mar=c(3,25,1,1)); barplot(sig$s.dist,horiz=TRUE,las=2,cex.names = 0.6,cex.axis = 0.6,
    names.arg=sig$set,main="Enrichment score") ;grid()
}

mitch_barplot(res)

nrow(subset(res$enrichment_result,p.adjustANOVA<0.05&s.dist<0))
## [1] 44
nrow(subset(res$enrichment_result,p.adjustANOVA<0.05&s.dist>0))
## [1] 27
unlink("skeletal_mitch1.html")
mitch_report(res,outfile="skeletal_mitch1.html")
## Dataset saved as " /tmp/RtmperY9IA/skeletal_mitch1.rds ".
## 
## 
## processing file: mitch.Rmd
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |..                                                                    |   3%
##    inline R code fragments
## 
## 
  |                                                                            
  |....                                                                  |   6%
## label: checklibraries (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |......                                                                |   9%
##   ordinary text without R code
## 
## 
  |                                                                            
  |........                                                              |  12%
## label: peek (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |..........                                                            |  15%
##   ordinary text without R code
## 
## 
  |                                                                            
  |............                                                          |  18%
## label: metrics (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |..............                                                        |  21%
##   ordinary text without R code
## 
## 
  |                                                                            
  |................                                                      |  24%
## label: scatterplot (with options) 
## List of 5
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6.5
##  $ message   : logi FALSE
##  $ warning   : logi FALSE
## 
  |                                                                            
  |...................                                                   |  26%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.....................                                                 |  29%
## label: contourplot (with options) 
## List of 5
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6.5
##  $ warning   : logi FALSE
##  $ message   : logi FALSE
## Contour plot does not apply to unidimensional analysis.
## 
  |                                                                            
  |.......................                                               |  32%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.........................                                             |  35%
## label: input_geneset_metrics1 (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |...........................                                           |  38%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.............................                                         |  41%
## label: input_geneset_metrics2 (with options) 
## List of 5
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
## 
  |                                                                            
  |...............................                                       |  44%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.................................                                     |  47%
## label: input_geneset_metrics3 (with options) 
## List of 5
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ message   : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
## 
  |                                                                            
  |...................................                                   |  50%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.....................................                                 |  53%
## label: echart1d (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.......................................                               |  56%
## label: echart2d (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.........................................                             |  59%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...........................................                           |  62%
## label: heatmap (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 10
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.............................................                         |  65%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...............................................                       |  68%
## label: effectsize (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.................................................                     |  71%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...................................................                   |  74%
## label: results_table (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |......................................................                |  76%
##   ordinary text without R code
## 
## 
  |                                                                            
  |........................................................              |  79%
## label: results_table_complete (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |..........................................................            |  82%
##   ordinary text without R code
## 
## 
  |                                                                            
  |............................................................          |  85%
## label: detailed_geneset_reports1d (with options) 
## List of 7
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6
##  $ out.width : chr "80%"
##  $ comment   : logi NA
##  $ message   : logi FALSE
## 
  |                                                                            
  |..............................................................        |  88%
##   ordinary text without R code
## 
## 
  |                                                                            
  |................................................................      |  91%
## label: detailed_geneset_reports2d (with options) 
## List of 7
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 5
##  $ fig.width : num 6
##  $ out.width : chr "80%"
##  $ comment   : logi NA
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |..................................................................    |  94%
##   ordinary text without R code
## 
## 
  |                                                                            
  |....................................................................  |  97%
## label: session_info (with options) 
## List of 3
##  $ include: logi TRUE
##  $ echo   : logi TRUE
##  $ results: chr "markup"
## 
## 
  |                                                                            
  |......................................................................| 100%
##   ordinary text without R code
## output file: /mnt/bfx6/bfx/adam_trewin/set2/mitch.knit.md
## /home/mdz/anaconda3/bin/pandoc +RTS -K512m -RTS /mnt/bfx6/bfx/adam_trewin/set2/mitch.utf8.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmperY9IA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --standalone --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --include-in-header /tmp/RtmperY9IA/rmarkdown-strc4115cec3ca5.html --mathjax --variable 'mathjax-url:https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'
## 
## Output created: /tmp/RtmperY9IA/mitch_report.html

## [1] TRUE

Session info

sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.2 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] kableExtra_1.3.4            pkgload_1.2.0              
##  [3] GGally_2.1.1                ggplot2_3.3.3              
##  [5] beeswarm_0.3.1              gtools_3.8.2               
##  [7] tibble_3.1.0                dplyr_1.0.5                
##  [9] echarts4r_0.4.0             gplots_3.1.1               
## [11] mitch_1.2.2                 DESeq2_1.30.0              
## [13] SummarizedExperiment_1.20.0 Biobase_2.50.0             
## [15] MatrixGenerics_1.2.0        matrixStats_0.58.0         
## [17] GenomicRanges_1.42.0        GenomeInfoDb_1.26.0        
## [19] IRanges_2.24.0              S4Vectors_0.28.0           
## [21] BiocGenerics_0.36.0         reshape2_1.4.4             
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-6           bit64_4.0.5            webshot_0.5.2         
##  [4] RColorBrewer_1.1-2     httr_1.4.2             rprojroot_2.0.2       
##  [7] tools_4.0.3            bslib_0.2.4            utf8_1.2.1            
## [10] R6_2.5.0               KernSmooth_2.23-18     DBI_1.1.1             
## [13] colorspace_2.0-0       withr_2.4.1            tidyselect_1.1.0      
## [16] gridExtra_2.3          bit_4.0.4              compiler_4.0.3        
## [19] rvest_1.0.0            xml2_1.3.2             desc_1.3.0            
## [22] DelayedArray_0.16.0    sass_0.3.1             caTools_1.18.1        
## [25] scales_1.1.1           genefilter_1.72.0      systemfonts_1.0.1     
## [28] stringr_1.4.0          digest_0.6.27          svglite_2.0.0         
## [31] rmarkdown_2.7          XVector_0.30.0         pkgconfig_2.0.3       
## [34] htmltools_0.5.1.1      highr_0.8              fastmap_1.1.0         
## [37] htmlwidgets_1.5.3      rlang_0.4.10           rstudioapi_0.13       
## [40] RSQLite_2.2.4          shiny_1.6.0            jquerylib_0.1.3       
## [43] generics_0.1.0         jsonlite_1.7.2         BiocParallel_1.24.1   
## [46] RCurl_1.98-1.3         magrittr_2.0.1         GenomeInfoDbData_1.2.4
## [49] Matrix_1.3-2           Rcpp_1.0.6             munsell_0.5.0         
## [52] fansi_0.4.2            lifecycle_1.0.0        stringi_1.5.3         
## [55] yaml_2.2.1             MASS_7.3-53.1          zlibbioc_1.36.0       
## [58] plyr_1.8.6             grid_4.0.3             blob_1.2.1            
## [61] promises_1.2.0.1       crayon_1.4.1           lattice_0.20-41       
## [64] splines_4.0.3          annotate_1.68.0        locfit_1.5-9.4        
## [67] knitr_1.31             pillar_1.5.1           geneplotter_1.68.0    
## [70] XML_3.99-0.6           glue_1.4.2             evaluate_0.14         
## [73] vctrs_0.3.6            httpuv_1.5.5           testthat_3.0.2        
## [76] gtable_0.3.0           purrr_0.3.4            reshape_0.8.8         
## [79] assertthat_0.2.1       cachem_1.0.4           xfun_0.22             
## [82] mime_0.10              xtable_1.8-4           later_1.1.0.1         
## [85] viridisLite_0.4.0      survival_3.2-10        AnnotationDbi_1.52.0  
## [88] memoise_2.0.0          ellipsis_0.3.1