Ee are interested in comparing DEGs between the following comparison groups:
Latently- vs productively-infected cells (groups 3 vs 4).
Latently-infected vs bystander cells (2 vs 3).
Productively-infected vs mock (4 vs 1)
Mock vs bystander (1 vs 2).
As discussed, I think we will do these comparisons separately for both MDM and AlvMDM samples initially. Then, it would be of interest to compare DEGs for MDM vs AlvMDM for each of the four infection groups.
suppressPackageStartupMessages({
library("kableExtra")
library("ggplot2")
library("plyr")
library("Seurat")
library("hdf5r")
library("SingleCellExperiment")
library("parallel")
library("stringi")
library("beeswarm")
library("muscat")
library("DESeq2")
library("mitch")
library("harmony")
library("celldex")
library("SingleR")
library("limma")
library("gplots")
})
Sample | Patient | Group |
---|---|---|
mock0 | MDMP236 | mock |
mock1 | MDMV236 | mock |
mock2 | MDMO236 | mock |
mock3 | MDMP239 | mock |
mock4 | AlvP239 | mock |
mock5 | AlvM239 | mock |
mock6 | AlvN239 | mock |
active0 | MDMP236 | active |
active1 | MDMV236 | active |
active2 | MDMO236 | active |
active3 | MDMP239 | active |
active4 | AlvP239 | active |
active5 | AlvM239 | active |
active6 | AlvN239 | active |
latent0 | MDMP236 | latent |
latent1 | MDMV236 | latent |
latent2 | MDMO236 | latent |
latent3 | MDMP239 | latent |
latent4 | AlvP239 | latent |
latent5 | AlvM239 | latent |
latent6 | AlvN239 | latent |
bystander0 | MDMP236 | bystander |
bystander1 | MDMV236 | bystander |
bystander2 | MDMO236 | bystander |
bystander3 | MDMP239 | bystander |
bystander4 | AlvP239 | bystander |
bystander5 | AlvM239 | bystander |
bystander6 | AlvN239 | bystander |
react6 | AlvN239 | reactivated |
exclude react6
ss <- read.table("samplesheet.tsv",header=TRUE,row.names=1)
ss %>% kbl(caption="sample sheet") %>% kable_paper("hover", full_width = F)
Patient | Group | |
---|---|---|
mock0 | MDMP236 | mock |
mock1 | MDMV236 | mock |
mock2 | MDMO236 | mock |
mock3 | MDMP239 | mock |
mock4 | AlvP239 | mock |
mock5 | AlvM239 | mock |
mock6 | AlvN239 | mock |
active0 | MDMP236 | active |
active1 | MDMV236 | active |
active2 | MDMO236 | active |
active3 | MDMP239 | active |
active4 | AlvP239 | active |
active5 | AlvM239 | active |
active6 | AlvN239 | active |
latent0 | MDMP236 | latent |
latent1 | MDMV236 | latent |
latent2 | MDMO236 | latent |
latent3 | MDMP239 | latent |
latent4 | AlvP239 | latent |
latent5 | AlvM239 | latent |
latent6 | AlvN239 | latent |
bystander0 | MDMP236 | bystander |
bystander1 | MDMV236 | bystander |
bystander2 | MDMO236 | bystander |
bystander3 | MDMP239 | bystander |
bystander4 | AlvP239 | bystander |
bystander5 | AlvM239 | bystander |
bystander6 | AlvN239 | bystander |
react6 | AlvN239 | reactivated |
mylist <- readRDS("macrophage_counts.rds")
comb <- do.call(cbind,mylist)
sce <- SingleCellExperiment(list(counts=comb))
sce
## class: SingleCellExperiment
## dim: 36622 24311
## metadata(0):
## assays(1): counts
## rownames(36622): HIV_LTRR HIV_LTRU5 ... AC007325.4 AC007325.2
## rowData names(0):
## colnames(24311): mdm_mock1|AAACGAATCACATACG mdm_mock1|AAACGCTCATCAGCGC
## ... react6|TTTGTTGTCTGAACGT react6|TTTGTTGTCTTGGCTC
## colData names(0):
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## reducedDimNames(0):
## mainExpName: NULL
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## altExpNames(0):
cellmetadata <- data.frame(colnames(comb) ,sapply(strsplit(colnames(comb),"\\|"),"[[",1))
colnames(cellmetadata) <- c("cell","sample")
comb <- CreateSeuratObject(comb, project = "mac", assay = "RNA", meta.data = cellmetadata)
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
comb <- NormalizeData(comb)
## Normalizing layer: counts
comb <- FindVariableFeatures(comb, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
comb <- ScaleData(comb)
## Centering and scaling data matrix
comb <- RunPCA(comb, features = VariableFeatures(object = comb))
## PC_ 1
## Positive: GAPDH, FABP3, TXN, IFI30, S100A10, PRDX6, TUBA1B, BLVRB, OTOA, S100A9
## FAH, C15orf48, CYSTM1, GCHFR, CARD16, GSTP1, HAMP, PSMA7, CSTA, FABP4
## ACTG1, CTSB, H2AFZ, LDHB, LINC01827, CFD, TUBA1A, MMP9, LINC02244, SELENOW
## Negative: ARL15, DOCK3, FTX, NEAT1, EXOC4, MALAT1, DPYD, LRMDA, RASAL2, JMJD1C
## TMEM117, PLXDC2, VPS13B, FHIT, ATG7, TRIO, TPRG1, ZNF438, ZFAND3, MAML2
## MITF, COP1, ZEB2, ELMO1, DENND4C, MED13L, TCF12, ERC1, JARID2, FMNL2
## PC_ 2
## Positive: HLA-DRB1, CD74, HLA-DRA, HLA-DPA1, GCLC, HLA-DPB1, LYZ, RCBTB2, KCNMA1, MRC1
## SPRED1, C1QA, FGL2, AC020656.1, SLCO2B1, CYP1B1, AIF1, HLA-DRB5, PTGDS, S100A4
## VAMP5, LINC02345, CA2, CRIP1, CAMK1, ALOX5AP, RTN1, HLA-DQB1, MX1, TGFBI
## Negative: CYSTM1, CD164, PSAT1, FAH, FDX1, GDF15, ATP6V1D, BCAT1, SAT1, CCPG1
## PHGDH, PSMA7, HEBP2, SLAMF9, RETREG1, GARS, HES2, TXN, TCEA1, RHOQ
## RILPL2, B4GALT5, CLGN, NUPR1, CSTA, SPTBN1, HSD17B12, SNHG5, STMN1, PTER
## PC_ 3
## Positive: NCAPH, CRABP2, RGCC, CHI3L1, TM4SF19, DUSP2, GAL, CCL22, AC015660.2, ACAT2
## LINC01010, TMEM114, MGST1, RGS20, TRIM54, LINC02244, MREG, NUMB, TCTEX1D2, GPC4
## CCND1, POLE4, SYNGR1, SLC20A1, SERTAD2, IL1RN, GCLC, CLU, PLEK, AC092353.2
## Negative: MARCKS, CD14, BTG1, MS4A6A, TGFBI, CTSC, FPR3, HLA-DQA1, AIF1, MPEG1
## MEF2C, CD163, IFI30, TIMP1, HLA-DPB1, ALDH2, SELENOP, NUPR1, NAMPT, HLA-DQB1
## HIF1A, C1QC, MS4A7, FUCA1, EPB41L3, HLA-DQA2, RNASE1, ARL4C, ZNF331, TCF4
## PC_ 4
## Positive: ACTG1, TPM4, CTSB, CCL3, TUBA1B, CSF1, DHCR24, CYTOR, LGMN, INSIG1
## GAPDH, TUBB, CD36, HAMP, C1QA, CCL7, AIF1, MGLL, LIMA1, TYMS
## C1QC, HSP90B1, CCL2, C1QB, TNFSF13, PCLAF, C15orf48, CLSPN, CAMK1, TK1
## Negative: PTGDS, LINC02244, CLU, CSTA, CCPG1, MGST1, SYNGR1, EPHB1, LINC01010, ALDH2
## LY86-AS1, AC015660.2, GAS5, NCF1, BX664727.3, S100P, AP000331.1, TMEM91, SNHG5, CLEC12A
## APOD, PDE4D, C1QTNF4, VAMP5, DIXDC1, LYZ, AC073359.2, ARHGAP15, RCBTB2, CFD
## PC_ 5
## Positive: TYMS, PCLAF, TK1, MKI67, MYBL2, RRM2, CENPM, BIRC5, CEP55, CLSPN
## CDK1, DIAPH3, SHCBP1, NUSAP1, CENPF, CENPK, PRC1, TOP2A, NCAPG, ESCO2
## KIF11, ANLN, CCNA2, TPX2, ASPM, FAM111B, MAD2L1, RAD51AP1, GTSE1, HMMR
## Negative: HIV-BaLEnv, HIV-LTRU5, HIV-Polprot, HIV-Gagp17, HIV-Nef, HIV-TatEx1, HIV-Polp15p31, HIV-LTRR, HIV-Vif, HIV-Gagp1Pol
## HIV-TatEx2Rev, HIV-Gagp2p7, HIV-EnvStart, HIV-Vpu, HIV-Vpr, HIV-EGFP, CTSB, MMP19, IL6R-AS1, CSF1
## IL1RN, CCL3, MGLL, INSIG1, AL157912.1, SDS, TCTEX1D2, TNFRSF9, LGMN, PHLDA1
comb <- RunHarmony(comb,"sample")
## Transposing data matrix
## Initializing state using k-means centroids initialization
## Harmony 1/10
## Harmony 2/10
## Harmony 3/10
## Harmony 4/10
## Harmony converged after 4 iterations
## Warning: The `slot` argument of `GetAssayData()` is deprecated as of SeuratObject 5.0.0.
## ℹ Please use the `layer` argument instead.
## ℹ The deprecated feature was likely used in the Seurat package.
## Please report the issue at <https://github.com/satijalab/seurat/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
DimHeatmap(comb, dims = 1:6, cells = 500, balanced = TRUE)
## Warning: The `slot` argument of `FetchData()` is deprecated as of SeuratObject 5.0.0.
## ℹ Please use the `layer` argument instead.
## ℹ The deprecated feature was likely used in the Seurat package.
## Please report the issue at <https://github.com/satijalab/seurat/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
ElbowPlot(comb)
comb <- JackStraw(comb, num.replicate = 100)
comb <- FindNeighbors(comb, dims = 1:10)
## Computing nearest neighbor graph
## Computing SNN
comb <- FindClusters(comb, resolution = 0.5)
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 24311
## Number of edges: 745637
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8948
## Number of communities: 14
## Elapsed time: 3 seconds
comb <- RunUMAP(comb, dims = 1:10)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 12:40:00 UMAP embedding parameters a = 0.9922 b = 1.112
## 12:40:00 Read 24311 rows and found 10 numeric columns
## 12:40:00 Using Annoy for neighbor search, n_neighbors = 30
## 12:40:00 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 12:40:02 Writing NN index file to temp file /tmp/RtmpRdHgON/file11d0d41e0bebac
## 12:40:02 Searching Annoy index using 1 thread, search_k = 3000
## 12:40:08 Annoy recall = 100%
## 12:40:09 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 12:40:11 Initializing from normalized Laplacian + noise (using RSpectra)
## 12:40:11 Commencing optimization for 200 epochs, with 972676 positive edges
## 12:40:11 Using rng type: pcg
## 12:40:18 Optimization finished
DimPlot(comb, reduction = "umap")
ADGRE1, CCR2, CD169, CX3CR1, CD206, CD163, LYVE1, CD9, TREM2
HLA-DP, HLA-DM, HLA-DOA, HLA-DOB, HLA-DQ, and HLA-DR.
message("macrophage markers")
## macrophage markers
FeaturePlot(comb, features = c("ADGRE1", "CCR2", "SIGLEC1", "CX3CR1", "MRC1", "CD163", "LYVE1", "CD9", "TREM2"))
DimPlot(comb, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
That’s pretty useless. Let’s use celldex pkg to annotate cells and get the macs.
ref <- celldex::MonacoImmuneData()
DefaultAssay(comb) <- "RNA"
comb2 <- as.SingleCellExperiment(comb)
## Warning: `PackageCheck()` was deprecated in SeuratObject 5.0.0.
## ℹ Please use `rlang::check_installed()` instead.
## ℹ The deprecated feature was likely used in the Seurat package.
## Please report the issue at <https://github.com/satijalab/seurat/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
lc <- logcounts(comb2)
pred_imm_broad <- SingleR(test=comb2, ref=ref,
labels=ref$label.main)
head(pred_imm_broad)
## DataFrame with 6 rows and 4 columns
## scores labels
## <matrix> <character>
## mdm_mock1|AAACGAATCACATACG 0.306472:0.325537:0.166567:... Monocytes
## mdm_mock1|AAACGCTCATCAGCGC 0.311527:0.281167:0.189514:... Monocytes
## mdm_mock1|AAACGCTGTCGAGTGA 0.316271:0.276472:0.170736:... Monocytes
## mdm_mock1|AAAGGTAAGCCATATC 0.290547:0.291036:0.154976:... Monocytes
## mdm_mock1|AAAGGTAGTTTCCAAG 0.290907:0.279384:0.181857:... Monocytes
## mdm_mock1|AAATGGAAGATCGCCC 0.242404:0.241021:0.117564:... Monocytes
## delta.next pruned.labels
## <numeric> <character>
## mdm_mock1|AAACGAATCACATACG 0.1823977 Monocytes
## mdm_mock1|AAACGCTCATCAGCGC 0.0338547 Monocytes
## mdm_mock1|AAACGCTGTCGAGTGA 0.1301308 Monocytes
## mdm_mock1|AAAGGTAAGCCATATC 0.1794308 Monocytes
## mdm_mock1|AAAGGTAGTTTCCAAG 0.0952702 Monocytes
## mdm_mock1|AAATGGAAGATCGCCC 0.1508974 Monocytes
table(pred_imm_broad$pruned.labels)
##
## Basophils Dendritic cells Monocytes
## 1 86 23423
cellmetadata$label <- pred_imm_broad$pruned.labels
pred_imm_fine <- SingleR(test=comb2, ref=ref,
labels=ref$label.fine)
head(pred_imm_fine)
## DataFrame with 6 rows and 4 columns
## scores labels
## <matrix> <character>
## mdm_mock1|AAACGAATCACATACG 0.180057:0.485292:0.202974:... Classical monocytes
## mdm_mock1|AAACGCTCATCAGCGC 0.195973:0.430960:0.226764:... Classical monocytes
## mdm_mock1|AAACGCTGTCGAGTGA 0.170594:0.441313:0.186890:... Classical monocytes
## mdm_mock1|AAAGGTAAGCCATATC 0.156243:0.415082:0.167816:... Classical monocytes
## mdm_mock1|AAAGGTAGTTTCCAAG 0.185006:0.431679:0.205883:... Classical monocytes
## mdm_mock1|AAATGGAAGATCGCCC 0.125917:0.383407:0.146835:... Classical monocytes
## delta.next pruned.labels
## <numeric> <character>
## mdm_mock1|AAACGAATCACATACG 0.0675290 Classical monocytes
## mdm_mock1|AAACGCTCATCAGCGC 0.1150706 Classical monocytes
## mdm_mock1|AAACGCTGTCGAGTGA 0.0651352 Classical monocytes
## mdm_mock1|AAAGGTAAGCCATATC 0.1076301 Classical monocytes
## mdm_mock1|AAAGGTAGTTTCCAAG 0.1521533 Classical monocytes
## mdm_mock1|AAATGGAAGATCGCCC 0.1282183 Classical monocytes
table(pred_imm_fine$pruned.labels)
##
## Classical monocytes Intermediate monocytes
## 20826 2648
## Low-density neutrophils Myeloid dendritic cells
## 1 90
## Non classical monocytes Plasmacytoid dendritic cells
## 11 6
cellmetadata$finelabel <- pred_imm_fine$pruned.labels
col_pal <- c('#e31a1c', '#ff7f00', "#999900", '#cc00ff', '#1f78b4', '#fdbf6f',
'#33a02c', '#fb9a99', "#a6cee3", "#cc6699", "#b2df8a", "#99004d", "#66ff99",
"#669999", "#006600", "#9966ff", "#cc9900", "#e6ccff", "#3399ff", "#ff66cc",
"#ffcc66", "#003399")
annot_df <- data.frame(
barcodes = rownames(pred_imm_broad),
monaco_broad_annotation = pred_imm_broad$labels,
monaco_broad_pruned_labels = pred_imm_broad$pruned.labels,
monaco_fine_annotation = pred_imm_fine$labels,
monaco_fine_pruned_labels = pred_imm_fine$pruned.labels
)
meta_inf <- comb@meta.data
meta_inf$cell_barcode <- colnames(comb)
meta_inf <- meta_inf %>% dplyr::left_join(y = annot_df,
by = c("cell_barcode" = "barcodes"))
rownames(meta_inf) <- colnames(lc)
comb@meta.data <- meta_inf
DimPlot(comb, label=TRUE, group.by = "monaco_broad_annotation", reduction = "umap",
cols = col_pal, pt.size = 0.5) + ggtitle("Annotation With the Monaco Reference Database")
DimPlot(comb, label=TRUE, group.by = "monaco_fine_annotation", reduction = "umap",
cols = col_pal, pt.size = 0.5) + ggtitle("Annotation With the Monaco Reference Database")
mdmlist <- mylist[grep("mdm",names(mylist))]
comb1 <- do.call(cbind,mdmlist)
sce1 <- SingleCellExperiment(list(counts=comb1))
sce1
## class: SingleCellExperiment
## dim: 36622 10269
## metadata(0):
## assays(1): counts
## rownames(36622): HIV_LTRR HIV_LTRU5 ... AC007325.4 AC007325.2
## rowData names(0):
## colnames(10269): mdm_mock1|AAACGAATCACATACG mdm_mock1|AAACGCTCATCAGCGC
## ... mdm_bystander4|TTTGTTGAGAACGCGT mdm_bystander4|TTTGTTGCAAATGCGG
## colData names(0):
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## reducedDimNames(0):
## mainExpName: NULL
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## altExpNames(0):
cellmetadata1 <- data.frame(colnames(comb1) ,sapply(strsplit(colnames(comb1),"\\|"),"[[",1))
colnames(cellmetadata1) <- c("cell","sample")
comb1 <- CreateSeuratObject(comb1, project = "mac", assay = "RNA", meta.data = cellmetadata1)
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
comb1 <- NormalizeData(comb1)
## Normalizing layer: counts
comb1 <- FindVariableFeatures(comb1, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
comb1 <- ScaleData(comb1)
## Centering and scaling data matrix
comb1 <- RunPCA(comb1, features = VariableFeatures(object = comb1))
## PC_ 1
## Positive: S100A10, TXN, COX5B, PRDX6, FABP3, C15orf48, BCL2A1, CALM3, PSME2, TUBA1B
## CYSTM1, SPP1, CHI3L1, TUBA1A, CRABP2, ACTB, ACTG1, MGST1, ACAT2, FBP1
## IFI30, FABP4, GAL, HAMP, RGCC, MMP9, AKR7A2, LILRA1, CTSL, LDHA
## Negative: ARL15, FTX, EXOC4, NEAT1, DPYD, FHIT, JMJD1C, RAD51B, VPS13B, ZFAND3
## MALAT1, PLXDC2, TRIO, LRMDA, ZEB2, DOCK3, COP1, MBD5, TCF12, ATXN1
## RASAL2, MAML2, ATG7, ZSWIM6, FNDC3B, DOCK4, ELMO1, ZNF438, SPIDR, ARHGAP15
## PC_ 2
## Positive: TM4SF19, ANO5, GPC4, CYSTM1, FNIP2, TXNRD1, BCL2A1, SPP1, SNX10, PSD3
## RETREG1, RGS20, TXN, TCTEX1D2, SLC28A3, MGST1, EPB41L1, FABP3, RGCC, CALM3
## NIBAN1, TGM2, ATP6V0D2, ACAT2, CCL22, CCDC26, LINC01010, CHI3L1, MREG, CRABP2
## Negative: HLA-DPB1, HLA-DRA, CD74, HLA-DPA1, TGFBI, MS4A6A, AIF1, HLA-DQB1, C1QA, HLA-DQA1
## HLA-DRB1, CEBPD, FPR3, C1QC, MS4A7, CD163, CD14, MPEG1, LYZ, TIMP1
## ST8SIA4, LILRB2, FOS, EPB41L3, TCF4, MAFB, HLA-DRB5, RNASE1, SELENOP, FCN1
## PC_ 3
## Positive: CCPG1, NUPR1, HES2, PSAT1, S100P, CLGN, CARD16, TCEA1, PHGDH, SUPV3L1
## BTG1, NIBAN1, G0S2, BEX2, NMB, PDE4D, PLEKHA5, RAB6B, STMN1, XIST
## ME1, CLEC4A, CLEC4E, RETREG1, IFI6, CYSTM1, GDF15, CXCR4, DUSP1, SEL1L3
## Negative: ACTB, CALR, SLC35F1, TIMP3, TUBA1B, FBP1, ACTG1, LINC01091, HSP90B1, GSN
## MGLL, IL1RN, GLIPR1, INSIG1, LPL, GCLC, PLEK, PDIA4, MADD, RGCC
## LDHA, MANF, ALCAM, HLA-DRB1, IGSF6, TMEM176B, DHCR24, CSF1, TUBA1A, CYP1B1
## PC_ 4
## Positive: PTGDS, NCAPH, CLU, BX664727.3, LINC02244, SYNGR1, COX5B, RCBTB2, CRABP2, AL136317.2
## MT-ATP6, SSBP3, RARRES1, ADRA2B, LINC01010, AC015660.2, S100A4, CRIP1, MT-ND2, LY86-AS1
## RNASE6, HLA-C, S100A8, VAMP5, MT-CO3, MT-CYB, CCL22, CPE, CSRP2, TMEM176B
## Negative: HIV-Gagp17, HIV-BaLEnv, HIV-Polprot, HIV-Polp15p31, HIV-LTRU5, HIV-Vif, HIV-Nef, HIV-TatEx1, HIV-LTRR, HIV-Gagp1Pol
## HIV-Gagp2p7, HIV-TatEx2Rev, MARCKS, CCL3, HIV-Vpu, HIV-EGFP, TPM4, UGCG, SNCA, HIV-EnvStart
## HIV-Vpr, CD36, LGMN, G0S2, HES4, B4GALT5, CLEC4A, BCAT1, TNFRSF9, SDS
## PC_ 5
## Positive: TYMS, PCLAF, BIRC5, MKI67, CEP55, CENPF, CENPM, TK1, CDKN3, PRC1
## CDK1, DIAPH3, MYBL2, SHCBP1, NUSAP1, DLGAP5, RRM2, CENPK, HMMR, TPX2
## ASPM, NCAPG, CCNA2, MAD2L1, PTTG1, TOP2A, CLSPN, KIF4A, CIT, KIF11
## Negative: GCLC, TIMP3, TMEM117, TMEM176B, AC067751.1, CRABP2, NUMB, LINC01091, CHI3L1, LY86-AS1
## LINC00278, TNFSF14, RGCC, KCNJ1, IGSF6, SH3RF3, AC015660.2, IL1RN, DUSP2, MADD
## KCNA2, DOCK3, FLT1, RPS4Y1, TTTY14, TNS3, GADD45G, NCAPH, AL157886.1, TM4SF19-AS1
comb1 <- RunHarmony(comb1,"sample")
## Transposing data matrix
## Initializing state using k-means centroids initialization
## Harmony 1/10
## Harmony 2/10
## Harmony 3/10
## Harmony 4/10
## Harmony 5/10
## Harmony converged after 5 iterations
DimHeatmap(comb1, dims = 1:6, cells = 500, balanced = TRUE)
ElbowPlot(comb1)
comb1 <- JackStraw(comb1, num.replicate = 100)
comb1 <- FindNeighbors(comb1, dims = 1:10)
## Computing nearest neighbor graph
## Computing SNN
comb1 <- FindClusters(comb1, resolution = 0.5)
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 10269
## Number of edges: 322519
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8766
## Number of communities: 12
## Elapsed time: 0 seconds
comb1 <- RunUMAP(comb1, dims = 1:10)
## 12:43:56 UMAP embedding parameters a = 0.9922 b = 1.112
## 12:43:56 Read 10269 rows and found 10 numeric columns
## 12:43:56 Using Annoy for neighbor search, n_neighbors = 30
## 12:43:56 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 12:43:57 Writing NN index file to temp file /tmp/RtmpRdHgON/file11d0d444252c19
## 12:43:57 Searching Annoy index using 1 thread, search_k = 3000
## 12:44:00 Annoy recall = 100%
## 12:44:01 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 12:44:02 Initializing from normalized Laplacian + noise (using RSpectra)
## 12:44:02 Commencing optimization for 200 epochs, with 405542 positive edges
## 12:44:02 Using rng type: pcg
## 12:44:06 Optimization finished
DimPlot(comb1, reduction = "umap")
message("macrophage markers")
## macrophage markers
FeaturePlot(comb1, features = c("ADGRE1", "CCR2", "SIGLEC1", "CX3CR1", "MRC1", "CD163", "LYVE1", "CD9", "TREM2"))
DimPlot(comb1, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
ref <- celldex::MonacoImmuneData()
DefaultAssay(comb1) <- "RNA"
comb21 <- as.SingleCellExperiment(comb1)
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
lc1 <- logcounts(comb21)
pred_imm_broad1 <- SingleR(test=comb21, ref=ref,labels=ref$label.main)
head(pred_imm_broad1)
## DataFrame with 6 rows and 4 columns
## scores labels
## <matrix> <character>
## mdm_mock1|AAACGAATCACATACG 0.306472:0.325537:0.166567:... Monocytes
## mdm_mock1|AAACGCTCATCAGCGC 0.311527:0.281167:0.189514:... Monocytes
## mdm_mock1|AAACGCTGTCGAGTGA 0.316271:0.276472:0.170736:... Monocytes
## mdm_mock1|AAAGGTAAGCCATATC 0.290547:0.291036:0.154976:... Monocytes
## mdm_mock1|AAAGGTAGTTTCCAAG 0.290907:0.279384:0.181857:... Monocytes
## mdm_mock1|AAATGGAAGATCGCCC 0.242404:0.241021:0.117564:... Monocytes
## delta.next pruned.labels
## <numeric> <character>
## mdm_mock1|AAACGAATCACATACG 0.1823977 Monocytes
## mdm_mock1|AAACGCTCATCAGCGC 0.0338547 Monocytes
## mdm_mock1|AAACGCTGTCGAGTGA 0.1301308 Monocytes
## mdm_mock1|AAAGGTAAGCCATATC 0.1794308 Monocytes
## mdm_mock1|AAAGGTAGTTTCCAAG 0.0952702 Monocytes
## mdm_mock1|AAATGGAAGATCGCCC 0.1508974 Monocytes
table(pred_imm_broad1$pruned.labels)
##
## Basophils Dendritic cells Monocytes
## 1 71 9629
cellmetadata1$label <- pred_imm_broad1$pruned.labels
pred_imm_fine1 <- SingleR(test=comb21, ref=ref, labels=ref$label.fine)
head(pred_imm_fine1)
## DataFrame with 6 rows and 4 columns
## scores labels
## <matrix> <character>
## mdm_mock1|AAACGAATCACATACG 0.180057:0.485292:0.202974:... Classical monocytes
## mdm_mock1|AAACGCTCATCAGCGC 0.195973:0.430960:0.226764:... Classical monocytes
## mdm_mock1|AAACGCTGTCGAGTGA 0.170594:0.441313:0.186890:... Classical monocytes
## mdm_mock1|AAAGGTAAGCCATATC 0.156243:0.415082:0.167816:... Classical monocytes
## mdm_mock1|AAAGGTAGTTTCCAAG 0.185006:0.431679:0.205883:... Classical monocytes
## mdm_mock1|AAATGGAAGATCGCCC 0.125917:0.383407:0.146835:... Classical monocytes
## delta.next pruned.labels
## <numeric> <character>
## mdm_mock1|AAACGAATCACATACG 0.0675290 Classical monocytes
## mdm_mock1|AAACGCTCATCAGCGC 0.1150706 Classical monocytes
## mdm_mock1|AAACGCTGTCGAGTGA 0.0651352 Classical monocytes
## mdm_mock1|AAAGGTAAGCCATATC 0.1076301 Classical monocytes
## mdm_mock1|AAAGGTAGTTTCCAAG 0.1521533 Classical monocytes
## mdm_mock1|AAATGGAAGATCGCCC 0.1282183 Classical monocytes
table(pred_imm_fine1$pruned.labels)
##
## Classical monocytes Intermediate monocytes
## 8841 823
## Low-density neutrophils Myeloid dendritic cells
## 1 51
## Non classical monocytes Plasmacytoid dendritic cells
## 8 6
cellmetadata1$finelabel <- pred_imm_fine1$pruned.labels
col_pal <- c('#e31a1c', '#ff7f00', "#999900", '#cc00ff', '#1f78b4', '#fdbf6f',
'#33a02c', '#fb9a99', "#a6cee3", "#cc6699", "#b2df8a", "#99004d", "#66ff99",
"#669999", "#006600", "#9966ff", "#cc9900", "#e6ccff", "#3399ff", "#ff66cc",
"#ffcc66", "#003399")
annot_df1 <- data.frame(
barcodes = rownames(pred_imm_broad1),
monaco_broad_annotation = pred_imm_broad1$labels,
monaco_broad_pruned_labels = pred_imm_broad1$pruned.labels,
monaco_fine_annotation = pred_imm_fine1$labels,
monaco_fine_pruned_labels = pred_imm_fine1$pruned.labels)
meta_inf1 <- comb1@meta.data
meta_inf1$cell_barcode <- colnames(comb1)
meta_inf1 <- meta_inf1 %>% dplyr::left_join(y = annot_df1, by = c("cell_barcode" = "barcodes"))
rownames(meta_inf1) <- colnames(lc1)
comb1@meta.data <- meta_inf1
DimPlot(comb1, label=TRUE, group.by = "monaco_broad_annotation", reduction = "umap",
cols = col_pal, pt.size = 0.5) + ggtitle("Annotation With the Monaco Reference Database")
DimPlot(comb1, label=TRUE, group.by = "monaco_fine_annotation", reduction = "umap",
cols = col_pal, pt.size = 0.5) + ggtitle("Annotation With the Monaco Reference Database")
message("extract mono")
## extract mono
mono <- comb1[,which(meta_inf1$monaco_broad_annotation == "Monocytes")]
mono_metainf1 <- meta_inf1[which(meta_inf1$monaco_broad_annotation == "Monocytes"),]
mono_metainf1 <- mono_metainf1[grep("monocytes",mono_metainf1$monaco_fine_pruned_labels),]
mono <- mono[,which(colnames(mono) %in% rownames(mono_metainf1))]
mono <- FindVariableFeatures(mono, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
mono <- RunPCA(mono, features = VariableFeatures(object = mono))
## Warning in PrepDR5(object = object, features = features, layer = layer, : The
## following features were not available: AL358779.1, CSTA, RALA, PLAUR, ACP5,
## ALDH1A1, NABP1, PTPRJ, S100A9, ZCCHC7, LCP1, GATAD2B, FDX1, RPS20, EML1, RAB10,
## AL669970.1, RPS6KA2, RASGEF1B, FAM13B, SLC11A1, AC002429.2.
## PC_ 1
## Positive: S100A10, TXN, COX5B, PRDX6, C15orf48, FABP3, BCL2A1, PSME2, TUBA1B, CALM3
## ACTB, CYSTM1, CHI3L1, ACTG1, TUBA1A, CRABP2, ACAT2, MGST1, IFI30, SPP1
## FBP1, RGCC, LDHA, MMP9, CTSL, HAMP, AKR7A2, ANXA1, LILRA1, HLA-C
## Negative: ARL15, FTX, EXOC4, NEAT1, DPYD, FHIT, RAD51B, MALAT1, VPS13B, JMJD1C
## ZFAND3, MBD5, LRMDA, TRIO, ZEB2, TCF12, DOCK4, COP1, DOCK3, ZSWIM6
## SPIDR, ARHGAP15, ELMO1, PLXDC2, MAML2, RERE, SBF2, ATP9B, MED13L, ATG7
## PC_ 2
## Positive: TM4SF19, ANO5, GPC4, CYSTM1, FNIP2, TXNRD1, BCL2A1, SPP1, PSD3, SNX10
## RETREG1, RGS20, TCTEX1D2, SLC28A3, TXN, EPB41L1, NIBAN1, MGST1, CALM3, FABP3
## RGCC, TGM2, CCL22, ATP6V0D2, CCDC26, LINC01010, AC092353.2, ACAT2, LINC01135, HES2
## Negative: HLA-DPB1, HLA-DRA, CD74, HLA-DPA1, TGFBI, AIF1, HLA-DQB1, MS4A6A, C1QA, HLA-DQA1
## HLA-DRB1, CEBPD, C1QC, FPR3, MS4A7, CD163, CD14, MPEG1, TIMP1, LYZ
## ST8SIA4, FOS, EPB41L3, MAFB, TCF4, HLA-DRB5, SELENOP, FCN1, RNASE1, ARL4C
## PC_ 3
## Positive: CCPG1, NUPR1, HES2, PSAT1, CARD16, CLGN, S100P, TCEA1, BTG1, SUPV3L1
## PHGDH, NIBAN1, G0S2, BEX2, NMB, STMN1, IFI6, CLEC4A, CLEC4E, PLEKHA5
## RAB6B, DUSP1, GDF15, CYSTM1, ME1, PDE4D, CXCR4, RETREG1, QPCT, XIST
## Negative: ACTB, CALR, SLC35F1, TIMP3, LINC01091, TUBA1B, FBP1, ACTG1, IL1RN, HSP90B1
## GSN, INSIG1, MGLL, LPL, GLIPR1, GCLC, MADD, PDIA4, ALCAM, PLEK
## MANF, RGCC, CSF1, DHCR24, LDHA, GADD45G, TMEM176B, HLA-DRB1, DUSP2, TNS3
## PC_ 4
## Positive: HIV-Gagp17, HIV-BaLEnv, HIV-Polprot, HIV-Polp15p31, HIV-LTRU5, HIV-Vif, HIV-Nef, HIV-TatEx1, HIV-LTRR, HIV-Gagp1Pol
## HIV-Gagp2p7, HIV-TatEx2Rev, HIV-Vpu, HIV-EGFP, MARCKS, CCL3, HIV-EnvStart, TPM4, SNCA, UGCG
## HIV-Vpr, G0S2, CD36, LGMN, HES4, B4GALT5, TNFRSF9, CLEC4A, BCAT1, SDS
## Negative: PTGDS, CLU, NCAPH, BX664727.3, LINC02244, SYNGR1, COX5B, RCBTB2, MT-ATP6, CRABP2
## AL136317.2, RARRES1, SSBP3, LINC01010, ADRA2B, AC015660.2, MT-ND2, S100A4, CRIP1, MT-CYB
## LY86-AS1, RNASE6, MT-CO3, S100A8, HLA-C, VAMP5, CCL22, CPE, CSRP2, TMEM176B
## PC_ 5
## Positive: TYMS, BIRC5, MKI67, PCLAF, CEP55, CENPF, CENPM, TK1, PRC1, CDKN3
## DIAPH3, CDK1, MYBL2, SHCBP1, NUSAP1, DLGAP5, RRM2, CENPK, HMMR, ASPM
## TPX2, NCAPG, CCNA2, MAD2L1, TOP2A, CIT, KIF4A, CLSPN, KIF11, PTTG1
## Negative: RGCC, TMEM176B, CRABP2, IGSF6, GCLC, TIMP3, IFI30, AC005280.2, GSN, CCND1
## NUMB, TNFSF14, PLEK, BCL2A1, NCAPH, KCNJ1, GPAT3, MGLL, AC015660.2, MREG
## PTGDS, RPS4Y1, RASSF4, TMEM117, CFD, CHI3L1, HLA-DRB1, DUSP2, ACTB, AC067751.1
DimHeatmap(mono, dims = 1:2, cells = 500, balanced = TRUE)
DimHeatmap(mono, dims = 3:4, cells = 500, balanced = TRUE)
ElbowPlot(mono)
mono <- FindNeighbors(mono, dims = 1:4)
## Computing nearest neighbor graph
## Computing SNN
mono <- FindClusters(mono, algorithm = 3, resolution = 0.3, verbose = FALSE)
mono <- RunUMAP(mono, dims = 1:4)
## 12:44:41 UMAP embedding parameters a = 0.9922 b = 1.112
## 12:44:41 Read 9669 rows and found 4 numeric columns
## 12:44:41 Using Annoy for neighbor search, n_neighbors = 30
## 12:44:41 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 12:44:41 Writing NN index file to temp file /tmp/RtmpRdHgON/file11d0d479ab57a3
## 12:44:41 Searching Annoy index using 1 thread, search_k = 3000
## 12:44:44 Annoy recall = 100%
## 12:44:45 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 12:44:46 Initializing from normalized Laplacian + noise (using RSpectra)
## 12:44:47 Commencing optimization for 500 epochs, with 332446 positive edges
## 12:44:47 Using rng type: pcg
## 12:44:53 Optimization finished
DimPlot(mono, reduction = "umap", label=TRUE)
DimPlot(mono, group.by="monaco_fine_annotation" , reduction = "umap", label=TRUE)
DimPlot(mono, group.by="sample" , reduction = "umap", label=TRUE)
alvlist <- mylist[grep("alv",names(mylist))]
comb1 <- do.call(cbind,alvlist)
sce1 <- SingleCellExperiment(list(counts=comb1))
sce1
## class: SingleCellExperiment
## dim: 36622 11212
## metadata(0):
## assays(1): counts
## rownames(36622): HIV_LTRR HIV_LTRU5 ... AC007325.4 AC007325.2
## rowData names(0):
## colnames(11212): alv_mock1|AAACCCAGTGCTGCAC alv_mock1|AAAGGATAGCATGAAT
## ... alv_bystander3|TTTGGTTCAGGTTCCG alv_bystander3|TTTGTTGTCGCGTTTC
## colData names(0):
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## reducedDimNames(0):
## mainExpName: NULL
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## altExpNames(0):
cellmetadata1 <- data.frame(colnames(comb1) ,sapply(strsplit(colnames(comb1),"\\|"),"[[",1))
colnames(cellmetadata1) <- c("cell","sample")
comb1 <- CreateSeuratObject(comb1, project = "mac", assay = "RNA", meta.data = cellmetadata1)
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
comb1 <- NormalizeData(comb1)
## Normalizing layer: counts
comb1 <- FindVariableFeatures(comb1, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
comb1 <- ScaleData(comb1)
## Centering and scaling data matrix
comb1 <- RunPCA(comb1, features = VariableFeatures(object = comb1))
## PC_ 1
## Positive: S100A6, GAPDH, LGALS1, DBI, MIF, LGALS3, PRDX6, PSME2, CSTB, GSTO1
## LINC02244, PTGDS, CALM3, CYSTM1, ELOC, TXN, TMEM176B, GSTP1, CLU, MGST1
## CRIP1, MMP9, CHI3L1, SYNGR1, FAH, H2AFZ, ACTB, TMEM176A, TUBA1A, LDHA
## Negative: DOCK3, ARL15, MALAT1, RASAL2, LRMDA, TMEM117, DPYD, PLXDC2, EXOC4, ASAP1
## FTX, ATG7, NEAT1, MITF, TPRG1, JMJD1C, VPS13B, FHIT, ELMO1, UBE2E2
## MAML2, ZNF438, ZFAND3, FMNL2, FRMD4B, LPP, COP1, TRIO, ZEB2, DENND4C
## PC_ 2
## Positive: HLA-DPA1, HLA-DRA, CD74, HLA-DPB1, LYZ, AIF1, MRC1, HLA-DRB1, TGFBI, CTSC
## C1QA, VAMP5, RCBTB2, SAMSN1, HMOX1, FOS, CLEC7A, SLCO2B1, FCGR2A, C1QC
## FGL2, SPRED1, SLC8A1, RBPJ, SELENOP, PDGFC, CLEC4A, ME1, FCGR3A, CD14
## Negative: TM4SF19, GAL, CCL22, CYSTM1, ATP6V1D, GM2A, CD164, FDX1, SCD, ACAT2
## CSTB, TGM2, CIR1, IARS, TCTEX1D2, RHOF, BCAT1, CYTOR, NCAPH, EPB41L1
## DCSTAMP, SLC20A1, GOLGA7B, LGALS1, CSF1, SNHG32, ADCY3, DUSP13, NRIP3, MREG
## PC_ 3
## Positive: PTGDS, TMEM176B, LINC02244, CLU, LINC01800, RGS20, LGALS3, TMEM176A, MGST1, KCNMA1
## SERTAD2, NCAPH, CRIP1, AC067751.1, SYNGR1, GPC4, GCLC, C2orf92, NOS1AP, TRIM54
## S100A6, LINC01010, FCMR, SLC35F1, LY86-AS1, NCF1, FGL2, ST5, NRCAM, CT69
## Negative: CTSZ, SLC11A1, MS4A7, AIF1, MRC1, FCER1G, CTSB, LGMN, ID3, MSR1
## FCGR3A, TPM4, CLEC7A, FPR3, C1QA, CTSC, CAMK1, CTSL, HLA-DRB5, CCL3
## S100A9, C1QC, HAMP, CSTB, HLA-DQA1, HLA-DQB1, MARCO, MARCKS, SLA, PLAU
## PC_ 4
## Positive: TYMS, PCLAF, CLSPN, TK1, DIAPH3, MYBL2, RRM2, ESCO2, CENPM, MKI67
## FAM111B, TCF19, SHCBP1, CDK1, HELLS, CEP55, CENPK, BIRC5, CENPU, ATAD2
## DTL, KIF11, NCAPG, NUSAP1, MCM10, TOP2A, PRC1, GINS2, ANLN, TPX2
## Negative: GCHFR, XIST, HLA-DRB5, GPX3, SAT1, SLC11A1, MS4A7, MSR1, QPCT, AC020656.1
## GPRIN3, MARCO, NMB, PAX8-AS1, FRMD4A, ST6GAL1, AL035446.2, FDX1, SERINC2, CTSZ
## S100A9, STX4, FUCA1, RARRES1, SASH1, AC008591.1, LINC01500, CCDC26, GM2A, C22orf34
## PC_ 5
## Positive: AC020656.1, NIPAL2, LINC02244, GCHFR, RARRES1, TDRD3, BX664727.3, FDX1, XIST, AL136317.2
## LINC01010, TDRD9, OSBP2, QPCT, GJB2, CFD, LYZ, S100A9, GAPLINC, TMTC1
## PKD1L1, PRSS21, SLC6A16, CCDC26, GM2A, HES2, CTSK, PLEKHA5, HLA-DRB5, ANO5
## Negative: HIV-Gagp17, HIV-BaLEnv, HIV-LTRU5, HIV-TatEx1, HIV-Polprot, MIF, HIV-Nef, HIV-LTRR, HIV-Polp15p31, HIV-Vif
## HIV-Gagp1Pol, IL1RN, PLEK, HIV-EnvStart, HIV-TatEx2Rev, HIV-Vpu, HIV-Gagp2p7, SLC35F1, ACTB, HIV-Vpr
## TMEM176A, CYTOR, ACTG1, HIV-EGFP, PSME2, TUBA1A, CTSB, MARCKS, MYL9, PHLDA1
comb1 <- RunHarmony(comb1,"sample")
## Transposing data matrix
## Initializing state using k-means centroids initialization
## Harmony 1/10
## Harmony 2/10
## Harmony 3/10
## Harmony 4/10
## Harmony converged after 4 iterations
DimHeatmap(comb1, dims = 1:6, cells = 500, balanced = TRUE)
ElbowPlot(comb1)
comb1 <- JackStraw(comb1, num.replicate = 100)
comb1 <- FindNeighbors(comb1, dims = 1:10)
## Computing nearest neighbor graph
## Computing SNN
comb1 <- FindClusters(comb1, resolution = 0.5)
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 11212
## Number of edges: 344775
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8624
## Number of communities: 10
## Elapsed time: 0 seconds
comb1 <- RunUMAP(comb1, dims = 1:10)
## 12:48:16 UMAP embedding parameters a = 0.9922 b = 1.112
## 12:48:16 Read 11212 rows and found 10 numeric columns
## 12:48:16 Using Annoy for neighbor search, n_neighbors = 30
## 12:48:16 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 12:48:17 Writing NN index file to temp file /tmp/RtmpRdHgON/file11d0d49e2e086
## 12:48:17 Searching Annoy index using 1 thread, search_k = 3000
## 12:48:20 Annoy recall = 100%
## 12:48:21 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 12:48:22 Initializing from normalized Laplacian + noise (using RSpectra)
## 12:48:22 Commencing optimization for 200 epochs, with 450140 positive edges
## 12:48:22 Using rng type: pcg
## 12:48:26 Optimization finished
DimPlot(comb1, reduction = "umap")
message("macrophage markers")
## macrophage markers
FeaturePlot(comb1, features = c("ADGRE1", "CCR2", "SIGLEC1", "CX3CR1", "MRC1", "CD163", "LYVE1", "CD9", "TREM2"))
DimPlot(comb1, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
ref <- celldex::MonacoImmuneData()
DefaultAssay(comb1) <- "RNA"
comb21 <- as.SingleCellExperiment(comb1)
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
lc1 <- logcounts(comb21)
pred_imm_broad1 <- SingleR(test=comb21, ref=ref,labels=ref$label.main)
head(pred_imm_broad1)
## DataFrame with 6 rows and 4 columns
## scores labels
## <matrix> <character>
## alv_mock1|AAACCCAGTGCTGCAC 0.273560:0.272344:0.161242:... Monocytes
## alv_mock1|AAAGGATAGCATGAAT 0.318711:0.307377:0.191663:... Monocytes
## alv_mock1|AAAGGATAGTCAGGGT 0.294485:0.275673:0.182914:... Monocytes
## alv_mock1|AAAGGATAGTTCCGGC 0.294678:0.294725:0.183945:... Monocytes
## alv_mock1|AAAGGATTCACCATCC 0.278966:0.268607:0.190627:... Monocytes
## alv_mock1|AAAGGGCCATGACGTT 0.284776:0.293739:0.171230:... Monocytes
## delta.next pruned.labels
## <numeric> <character>
## alv_mock1|AAACCCAGTGCTGCAC 0.134488 Monocytes
## alv_mock1|AAAGGATAGCATGAAT 0.104645 Monocytes
## alv_mock1|AAAGGATAGTCAGGGT 0.140018 Monocytes
## alv_mock1|AAAGGATAGTTCCGGC 0.128407 Monocytes
## alv_mock1|AAAGGATTCACCATCC 0.147810 Monocytes
## alv_mock1|AAAGGGCCATGACGTT 0.166792 Monocytes
table(pred_imm_broad1$pruned.labels)
##
## Dendritic cells Monocytes
## 12 11014
cellmetadata1$label <- pred_imm_broad1$pruned.labels
pred_imm_fine1 <- SingleR(test=comb21, ref=ref, labels=ref$label.fine)
head(pred_imm_fine1)
## DataFrame with 6 rows and 4 columns
## scores labels
## <matrix> <character>
## alv_mock1|AAACCCAGTGCTGCAC 0.163017:0.398232:0.176698:... Classical monocytes
## alv_mock1|AAAGGATAGCATGAAT 0.180234:0.435146:0.208731:... Classical monocytes
## alv_mock1|AAAGGATAGTCAGGGT 0.169967:0.389207:0.187751:... Classical monocytes
## alv_mock1|AAAGGATAGTTCCGGC 0.166462:0.422480:0.189466:... Classical monocytes
## alv_mock1|AAAGGATTCACCATCC 0.184520:0.383707:0.203877:... Classical monocytes
## alv_mock1|AAAGGGCCATGACGTT 0.173873:0.439659:0.198357:... Classical monocytes
## delta.next pruned.labels
## <numeric> <character>
## alv_mock1|AAACCCAGTGCTGCAC 0.1433756 Classical monocytes
## alv_mock1|AAAGGATAGCATGAAT 0.1213924 Classical monocytes
## alv_mock1|AAAGGATAGTCAGGGT 0.0502055 Classical monocytes
## alv_mock1|AAAGGATAGTTCCGGC 0.0994518 Classical monocytes
## alv_mock1|AAAGGATTCACCATCC 0.0283404 Classical monocytes
## alv_mock1|AAAGGGCCATGACGTT 0.0687853 Classical monocytes
table(pred_imm_fine1$pruned.labels)
##
## Classical monocytes Intermediate monocytes Myeloid dendritic cells
## 9702 1332 25
## Non classical monocytes
## 3
cellmetadata1$finelabel <- pred_imm_fine1$pruned.labels
col_pal <- c('#e31a1c', '#ff7f00', "#999900", '#cc00ff', '#1f78b4', '#fdbf6f',
'#33a02c', '#fb9a99', "#a6cee3", "#cc6699", "#b2df8a", "#99004d", "#66ff99",
"#669999", "#006600", "#9966ff", "#cc9900", "#e6ccff", "#3399ff", "#ff66cc",
"#ffcc66", "#003399")
annot_df1 <- data.frame(
barcodes = rownames(pred_imm_broad1),
monaco_broad_annotation = pred_imm_broad1$labels,
monaco_broad_pruned_labels = pred_imm_broad1$pruned.labels,
monaco_fine_annotation = pred_imm_fine1$labels,
monaco_fine_pruned_labels = pred_imm_fine1$pruned.labels)
meta_inf1 <- comb1@meta.data
meta_inf1$cell_barcode <- colnames(comb1)
meta_inf1 <- meta_inf1 %>% dplyr::left_join(y = annot_df1, by = c("cell_barcode" = "barcodes"))
rownames(meta_inf1) <- colnames(lc1)
comb1@meta.data <- meta_inf1
DimPlot(comb1, label=TRUE, group.by = "monaco_broad_annotation", reduction = "umap",
cols = col_pal, pt.size = 0.5) + ggtitle("Annotation With the Monaco Reference Database")
DimPlot(comb1, label=TRUE, group.by = "monaco_fine_annotation", reduction = "umap",
cols = col_pal, pt.size = 0.5) + ggtitle("Annotation With the Monaco Reference Database")
message("extract mono")
## extract mono
mono <- comb1[,which(meta_inf1$monaco_broad_annotation == "Monocytes")]
mono_metainf1 <- meta_inf1[which(meta_inf1$monaco_broad_annotation == "Monocytes"),]
mono_metainf1 <- mono_metainf1[grep("monocytes",mono_metainf1$monaco_fine_pruned_labels),]
mono <- mono[,which(colnames(mono) %in% rownames(mono_metainf1))]
mono <- FindVariableFeatures(mono, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
mono <- RunPCA(mono, features = VariableFeatures(object = mono))
## Warning in PrepDR5(object = object, features = features, layer = layer, : The
## following features were not available: AC074099.1, MBOAT4, CYP1B1, AC022035.1,
## MS4A4A, IFI30, PSMA7, ZCCHC7, CPEB2-DT, ZNF609, CEP85L, AC023194.3, GLUL,
## LINC01951, LINC02643, DIAPH3-AS1, F2RL1, AC108860.2, DNAI1, HULC, AL135818.3,
## KIF16B, TESK2, HCAR3, LIMCH1, PGBD5, DOP1B, YJEFN3, LINC02732.
## PC_ 1
## Positive: S100A6, GAPDH, LGALS1, DBI, MIF, LGALS3, PSME2, PRDX6, CSTB, GSTO1
## LINC02244, PTGDS, CYSTM1, ELOC, CALM3, TXN, GSTP1, TMEM176B, MMP9, CRIP1
## MGST1, CLU, CHI3L1, H2AFZ, FAH, TUBA1A, LDHA, TMEM176A, SYNGR1, S100A4
## Negative: DOCK3, ARL15, MALAT1, RASAL2, LRMDA, TMEM117, DPYD, PLXDC2, FTX, EXOC4
## ASAP1, TPRG1, ATG7, MITF, NEAT1, JMJD1C, VPS13B, FHIT, ELMO1, MAML2
## UBE2E2, ZNF438, COP1, FMNL2, LPP, ZFAND3, TRIO, FRMD4B, ZEB2, MED13L
## PC_ 2
## Positive: TM4SF19, CCL22, GAL, CYSTM1, ATP6V1D, GM2A, CD164, FDX1, SCD, ACAT2
## CSTB, TGM2, IARS, CIR1, TCTEX1D2, RHOF, BCAT1, CYTOR, NCAPH, EPB41L1
## DCSTAMP, SLC20A1, GOLGA7B, CSF1, LGALS1, ADCY3, SNHG32, DUSP13, NRIP3, MREG
## Negative: HLA-DPA1, HLA-DRA, CD74, HLA-DPB1, AIF1, LYZ, HLA-DRB1, MRC1, CTSC, TGFBI
## VAMP5, C1QA, RCBTB2, SAMSN1, HMOX1, FOS, CLEC7A, SLCO2B1, FCGR2A, C1QC
## FGL2, SPRED1, SLC8A1, SELENOP, RBPJ, PDGFC, CLEC4A, ME1, FCGR3A, CD14
## PC_ 3
## Positive: PTGDS, TMEM176B, LINC02244, CLU, LINC01800, LGALS3, TMEM176A, RGS20, MGST1, KCNMA1
## CRIP1, NCAPH, SERTAD2, SYNGR1, AC067751.1, GPC4, GCLC, TRIM54, C2orf92, NOS1AP
## S100A6, FCMR, SLC35F1, LINC01010, NCF1, LY86-AS1, FGL2, ST5, PLEK, MX1
## Negative: CTSZ, SLC11A1, MS4A7, AIF1, MRC1, FCER1G, LGMN, CTSB, MSR1, FCGR3A
## ID3, TPM4, CLEC7A, FPR3, CAMK1, C1QA, CTSC, HLA-DRB5, CTSL, CCL3
## S100A9, HAMP, C1QC, CSTB, HLA-DQA1, MARCO, HLA-DQB1, FMN1, SLA, MARCKS
## PC_ 4
## Positive: GCHFR, XIST, SAT1, GPX3, HLA-DRB5, QPCT, MS4A7, SLC11A1, AC020656.1, MSR1
## GPRIN3, NMB, MARCO, PAX8-AS1, FRMD4A, ST6GAL1, FDX1, AL035446.2, SERINC2, CTSZ
## FUCA1, S100A9, STX4, RARRES1, SASH1, AC008591.1, LINC01500, CCDC26, GM2A, CFD
## Negative: TYMS, PCLAF, CLSPN, TK1, MYBL2, DIAPH3, RRM2, ESCO2, CENPM, FAM111B
## MKI67, TCF19, SHCBP1, HELLS, CDK1, CENPU, CEP55, CENPK, DTL, BIRC5
## ATAD2, NCAPG, KIF11, MCM10, GINS2, NUSAP1, TOP2A, PRC1, TPX2, ANLN
## PC_ 5
## Positive: AC020656.1, NIPAL2, LINC02244, GCHFR, RARRES1, TDRD3, BX664727.3, XIST, FDX1, AL136317.2
## LINC01010, GJB2, CFD, QPCT, OSBP2, TDRD9, LYZ, S100A9, GAPLINC, TMTC1
## PRSS21, CTSK, SLC6A16, PKD1L1, GM2A, HES2, CCDC26, PLEKHA5, HLA-DRB5, ANO5
## Negative: HIV-Gagp17, HIV-LTRU5, HIV-BaLEnv, HIV-TatEx1, HIV-Polprot, MIF, HIV-Nef, HIV-LTRR, HIV-Polp15p31, HIV-Vif
## HIV-Gagp1Pol, IL1RN, PLEK, HIV-EnvStart, HIV-Vpu, HIV-TatEx2Rev, HIV-Gagp2p7, ACTB, SLC35F1, HIV-Vpr
## CYTOR, ACTG1, TMEM176A, HIV-EGFP, PSME2, CTSB, MARCKS, TUBA1A, MYL9, PHLDA1
DimHeatmap(mono, dims = 1:2, cells = 500, balanced = TRUE)
DimHeatmap(mono, dims = 3:4, cells = 500, balanced = TRUE)
ElbowPlot(mono)
mono <- FindNeighbors(mono, dims = 1:4)
## Computing nearest neighbor graph
## Computing SNN
mono <- FindClusters(mono, algorithm = 3, resolution = 0.3, verbose = FALSE)
mono <- RunUMAP(mono, dims = 1:4)
## 12:49:04 UMAP embedding parameters a = 0.9922 b = 1.112
## 12:49:04 Read 11036 rows and found 4 numeric columns
## 12:49:04 Using Annoy for neighbor search, n_neighbors = 30
## 12:49:04 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 12:49:05 Writing NN index file to temp file /tmp/RtmpRdHgON/file11d0d43a052a0d
## 12:49:05 Searching Annoy index using 1 thread, search_k = 3000
## 12:49:08 Annoy recall = 100%
## 12:49:09 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 12:49:11 Initializing from normalized Laplacian + noise (using RSpectra)
## 12:49:11 Commencing optimization for 200 epochs, with 374004 positive edges
## 12:49:11 Using rng type: pcg
## 12:49:14 Optimization finished
DimPlot(mono, reduction = "umap", label=TRUE)
DimPlot(mono, group.by="monaco_fine_annotation" , reduction = "umap", label=TRUE)
DimPlot(mono, group.by="sample" , reduction = "umap", label=TRUE)
mono <- comb[,which(meta_inf$monaco_broad_annotation == "Monocytes")]
mono_metainf <- meta_inf[which(meta_inf$monaco_broad_annotation == "Monocytes"),]
mono_metainf1 <- mono_metainf[grep("monocytes",mono_metainf$monaco_fine_pruned_labels),]
mono <- mono[,which(colnames(mono) %in% rownames(mono_metainf))]
mono <- FindVariableFeatures(mono, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
mono <- RunPCA(mono, features = VariableFeatures(object = mono))
## Warning in PrepDR5(object = object, features = features, layer = layer, : The
## following features were not available: ADGRF1, AP000812.1, ACTB, AC005740.5,
## AC138123.1, HIF1A-AS3, PRH1, AL592494.2.
## PC_ 1
## Positive: GAPDH, FABP3, TXN, IFI30, S100A10, PRDX6, TUBA1B, BLVRB, OTOA, S100A9
## FAH, C15orf48, GCHFR, CYSTM1, CARD16, GSTP1, HAMP, PSMA7, CTSB, CSTA
## ACTG1, FABP4, H2AFZ, LDHB, LINC01827, CFD, TUBA1A, MMP9, SELENOW, LINC02244
## Negative: ARL15, DOCK3, FTX, NEAT1, EXOC4, MALAT1, DPYD, LRMDA, RASAL2, JMJD1C
## TMEM117, PLXDC2, VPS13B, FHIT, TPRG1, TRIO, ATG7, ZNF438, MAML2, ZFAND3
## MITF, COP1, ZEB2, ELMO1, MED13L, DENND4C, TCF12, ERC1, JARID2, FMNL2
## PC_ 2
## Positive: HLA-DRB1, CD74, HLA-DRA, HLA-DPA1, GCLC, HLA-DPB1, LYZ, RCBTB2, MRC1, KCNMA1
## SPRED1, C1QA, FGL2, AC020656.1, SLCO2B1, CYP1B1, AIF1, HLA-DRB5, PTGDS, S100A4
## VAMP5, LINC02345, CA2, CRIP1, CAMK1, ALOX5AP, RTN1, HLA-DQB1, MX1, TGFBI
## Negative: CYSTM1, CD164, PSAT1, FAH, FDX1, GDF15, ATP6V1D, BCAT1, SAT1, CCPG1
## PHGDH, PSMA7, HEBP2, SLAMF9, RETREG1, GARS, HES2, TCEA1, TXN, RHOQ
## RILPL2, B4GALT5, CLGN, NUPR1, CSTA, SPTBN1, HSD17B12, STMN1, SNHG5, PTER
## PC_ 3
## Positive: MARCKS, CD14, BTG1, MS4A6A, TGFBI, CTSC, FPR3, HLA-DQA1, AIF1, MPEG1
## MEF2C, CD163, IFI30, TIMP1, HLA-DPB1, ALDH2, SELENOP, NUPR1, NAMPT, HLA-DQB1
## HIF1A, C1QC, MS4A7, FUCA1, EPB41L3, HLA-DQA2, RNASE1, ARL4C, ZNF331, TCF4
## Negative: NCAPH, CRABP2, RGCC, CHI3L1, TM4SF19, DUSP2, GAL, AC015660.2, CCL22, ACAT2
## LINC01010, TMEM114, MGST1, RGS20, TRIM54, LINC02244, MREG, NUMB, TCTEX1D2, GPC4
## CCND1, POLE4, SYNGR1, SLC20A1, SERTAD2, IL1RN, GCLC, CLU, PLEK, AC092353.2
## PC_ 4
## Positive: ACTG1, TPM4, CCL3, CTSB, TUBA1B, CSF1, DHCR24, CYTOR, LGMN, INSIG1
## GAPDH, TUBB, CD36, HAMP, CCL7, C1QA, AIF1, MGLL, TYMS, LIMA1
## C1QC, PCLAF, CCL2, HSP90B1, CLSPN, C1QB, TNFSF13, TK1, C15orf48, CAMK1
## Negative: PTGDS, LINC02244, CLU, CSTA, CCPG1, MGST1, SYNGR1, LINC01010, EPHB1, ALDH2
## AC015660.2, LY86-AS1, GAS5, NCF1, BX664727.3, S100P, TMEM91, SNHG5, CLEC12A, AP000331.1
## APOD, PDE4D, C1QTNF4, VAMP5, LYZ, CFD, RCBTB2, DIXDC1, AC073359.2, ARHGAP15
## PC_ 5
## Positive: TYMS, PCLAF, TK1, MKI67, MYBL2, RRM2, CENPM, BIRC5, CEP55, CLSPN
## CDK1, DIAPH3, SHCBP1, NUSAP1, CENPF, CENPK, PRC1, TOP2A, NCAPG, ESCO2
## KIF11, ANLN, CCNA2, TPX2, ASPM, FAM111B, MAD2L1, RAD51AP1, GTSE1, HMMR
## Negative: HIV-BaLEnv, HIV-LTRU5, HIV-Polprot, HIV-Gagp17, HIV-Nef, HIV-TatEx1, HIV-Polp15p31, HIV-LTRR, HIV-Vif, HIV-Gagp1Pol
## HIV-TatEx2Rev, HIV-Gagp2p7, HIV-EnvStart, HIV-Vpu, HIV-Vpr, HIV-EGFP, CTSB, MMP19, IL6R-AS1, CSF1
## CCL3, MGLL, IL1RN, INSIG1, AL157912.1, SDS, LGMN, TCTEX1D2, TNFRSF9, PHLDA1
DimHeatmap(mono, dims = 1:2, cells = 500, balanced = TRUE)
DimHeatmap(mono, dims = 3:4, cells = 500, balanced = TRUE)
ElbowPlot(mono)
mono <- FindNeighbors(mono, dims = 1:4)
## Computing nearest neighbor graph
## Computing SNN
mono <- FindClusters(mono, algorithm = 3, resolution = 0.3, verbose = FALSE)
mono <- RunUMAP(mono, dims = 1:4)
## 12:50:00 UMAP embedding parameters a = 0.9922 b = 1.112
## 12:50:00 Read 24224 rows and found 4 numeric columns
## 12:50:00 Using Annoy for neighbor search, n_neighbors = 30
## 12:50:00 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 12:50:02 Writing NN index file to temp file /tmp/RtmpRdHgON/file11d0d466b58b08
## 12:50:02 Searching Annoy index using 1 thread, search_k = 3000
## 12:50:10 Annoy recall = 100%
## 12:50:11 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 12:50:13 Initializing from normalized Laplacian + noise (using RSpectra)
## 12:50:13 Commencing optimization for 200 epochs, with 793206 positive edges
## 12:50:13 Using rng type: pcg
## 12:50:19 Optimization finished
DimPlot(mono, reduction = "umap", label=TRUE)
DimPlot(mono, group.by="monaco_fine_annotation" , reduction = "umap", label=TRUE)
DimPlot(mono, group.by="sample" , reduction = "umap", label=TRUE)
Most cells are classified as monocytes.
cc <- table(meta_inf[,c("sample","monaco_broad_annotation")])
cc %>% kbl(caption="cell counts") %>% kable_paper("hover", full_width = F)
Basophils | Dendritic cells | Monocytes | |
---|---|---|---|
alv_active1 | 0 | 0 | 774 |
alv_active2 | 0 | 3 | 543 |
alv_active3 | 0 | 1 | 540 |
alv_bystander1 | 0 | 1 | 2458 |
alv_bystander2 | 0 | 0 | 1948 |
alv_bystander3 | 0 | 1 | 1936 |
alv_latent1 | 0 | 1 | 301 |
alv_latent2 | 0 | 0 | 99 |
alv_latent3 | 0 | 1 | 137 |
alv_mock1 | 0 | 1 | 883 |
alv_mock2 | 0 | 0 | 649 |
alv_mock3 | 0 | 3 | 1031 |
mdm_active1 | 0 | 3 | 599 |
mdm_active2 | 0 | 0 | 414 |
mdm_active3 | 0 | 2 | 305 |
mdm_active4 | 0 | 0 | 401 |
mdm_bystander1 | 0 | 12 | 1845 |
mdm_bystander2 | 0 | 8 | 1957 |
mdm_bystander3 | 0 | 19 | 490 |
mdm_bystander4 | 0 | 1 | 1495 |
mdm_latent1 | 1 | 11 | 160 |
mdm_latent2 | 0 | 8 | 187 |
mdm_latent3 | 0 | 3 | 72 |
mdm_latent4 | 0 | 0 | 23 |
mdm_mock1 | 0 | 1 | 691 |
mdm_mock2 | 0 | 1 | 549 |
mdm_mock3 | 0 | 2 | 135 |
mdm_mock4 | 0 | 0 | 775 |
react6 | 0 | 3 | 2827 |
tcc <- t(cc)
pctcc <- apply(tcc,2,function(x) { x/sum(x)*100} )
pctcc %>% kbl(caption="cell proportions") %>% kable_paper("hover", full_width = F)
alv_active1 | alv_active2 | alv_active3 | alv_bystander1 | alv_bystander2 | alv_bystander3 | alv_latent1 | alv_latent2 | alv_latent3 | alv_mock1 | alv_mock2 | alv_mock3 | mdm_active1 | mdm_active2 | mdm_active3 | mdm_active4 | mdm_bystander1 | mdm_bystander2 | mdm_bystander3 | mdm_bystander4 | mdm_latent1 | mdm_latent2 | mdm_latent3 | mdm_latent4 | mdm_mock1 | mdm_mock2 | mdm_mock3 | mdm_mock4 | react6 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Basophils | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.5813953 | 0.000000 | 0 | 0 | 0.0000000 | 0.0000000 | 0.000000 | 0 | 0.0000000 |
Dendritic cells | 0 | 0.5494505 | 0.1848429 | 0.0406669 | 0 | 0.0516262 | 0.3311258 | 0 | 0.7246377 | 0.1131222 | 0 | 0.2901354 | 0.4983389 | 0 | 0.6514658 | 0 | 0.6462036 | 0.4071247 | 3.732809 | 0.0668449 | 6.3953488 | 4.102564 | 4 | 0 | 0.1445087 | 0.1818182 | 1.459854 | 0 | 0.1060071 |
Monocytes | 100 | 99.4505495 | 99.8151571 | 99.9593331 | 100 | 99.9483738 | 99.6688742 | 100 | 99.2753623 | 99.8868778 | 100 | 99.7098646 | 99.5016611 | 100 | 99.3485342 | 100 | 99.3537964 | 99.5928753 | 96.267191 | 99.9331551 | 93.0232558 | 95.897436 | 96 | 100 | 99.8554913 | 99.8181818 | 98.540146 | 100 | 99.8939929 |
focus <- meta_inf[grep("latent",rownames(meta_inf),invert=TRUE),]
focus <- focus[grep("bystander",rownames(focus),invert=TRUE),]
focus_mdm <- focus[grep("mdm",rownames(focus)),]
focus_alv <- focus[grep("alv",rownames(focus)),]
mono_focus_mdm <- mono[,which(colnames(mono) %in% rownames(focus_mdm))]
mono_focus_alv <- mono[,which(colnames(mono) %in% rownames(focus_alv))]
# mono_focus_mdm
mono_focus_mdm <- FindVariableFeatures(mono_focus_mdm, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
mono_focus_mdm <- RunPCA(mono_focus_mdm, features = VariableFeatures(object = mono_focus_mdm))
## Warning: The following 36 features requested have zero variance; running
## reduction without them: CCL3, PDE7B, NEAT1, KCNIP1, BX664727.3, ARL4C,
## BX284613.2, HIST1H3J, ANXA1, NCALD, SLC51A, CPEB2, PRMT9, MGST1, ABCG1, EPSTI1,
## PPP2R3A, PRKCA, CU638689.5, DIAPH2-AS1, RGS20, CST7, ARMC9, AC013799.1,
## AC137770.1, GRAMD1B, RRAS2, PPP1R12B, AC124017.1, ENTPD1, GTDC1, LINC00511,
## AC024901.1, AC006001.2, PRKG2, SCLT1
## Warning in PrepDR5(object = object, features = features, layer = layer, : The
## following features were not available: HIST1H2BJ, ENG, OASL, CENPA, SSBP3,
## MT-ND5, CCND2, TVP23A, PCBP3, LINC00885, SCAI, AL009177.1, AC013287.1,
## AL355388.1, IFT80, PIWIL2, AC106793.1, AL358944.1, C16orf89, KLF12, AC108134.2,
## SETD2, C5AR2, PPP6R2, FANCM, TTK, HIF1A-AS3, TNRC6C, STXBP1, ZZEF1, HCAR2,
## GPR155, MARCH1, SLC2A14, RPS4Y1, IPCEF1, AC064805.2, PNPLA7, AL353759.1, KLRG1,
## PDIA4, TENM1, EIF2B3, LRRK2, TNFRSF4, RASIP1, ZBTB41, AGPAT5, LPL, RAP1GDS1,
## NUP93, LINC02853, CLPX, FAM118B, ESR2, MT-ATP6, SH3GL1, ATP6V0A2, CWC22, PSME2,
## PAWR, GYG2, AC034213.1, AL157911.1, AC007091.1, LINC02585, AC007364.1,
## AL357873.1, P2RY12, AC025262.1, NR2F1-AS1, ANKRD34B, PCA3, CLIC5, DUSP16, CREM,
## AL360015.1, IFT140, AURKC, CCNB2, ASTL, CHRNB4, PKIA-AS1, WWP1, SF3B3,
## TMEM220-AS1, DOK5, RAB10, LDHA, STAT5B, AC005740.5, MT-ND2, PARD3, LYPD1,
## AL355388.3, AP000462.1, AC072022.2, ZNF276, HLA-C, AC093766.1, BTBD2, FAM184A,
## IFI6, PDGFD, SRRM2-AS1, SIGLEC10, SRGN, SEMA6D, AC108879.1, MT-CO3, AC133550.2,
## MAP4K1, CPLX1, LINC01054, PACS1, OBI1-AS1, MAP3K15, ACTR3C, AL021917.1, LRRC9,
## RASSF4, TMEM212-AS1, AC105001.1, AL031658.1, CDK19, SF3B1, MT-CYB, AP000446.1,
## TTC21B-AS1, JAKMIP3, VGLL3, RGS18, CHRM3, DAPK2, AC099552.1, UBASH3B, ANK3,
## AC006427.2, AC079062.1, ACMSD, ZNF385D-AS1, CFAP52, SETBP1, MRC2, BCL2A1,
## ZFPM2-AS1, COX5B, MT-ND1, CTHRC1, AL592295.3, AC100849.2, TRIM71, CCDC7,
## AC078923.1, DPEP3, CARD11, AC240274.1, AC112236.3, ZDHHC17, IGSF6, AC089983.1,
## P2RY13, AC092490.1, MANF, GRM7, FDXACB1, NLRP4, APCDD1L, FHOD3, AC092811.1,
## MMP28, AC009315.1, AHR, KIF21A, CRISPLD2, TFG, AC007389.1, GNG4, RORA, ARC,
## SAMD11, GAS1RR, MIR155HG, DARS, CLEC4C, TRIM37, SLC44A5, AC114977.1,
## AC019117.1, CEP112, TUBB3, ADRA2B, TPTE2, STPG2, GTSF1, CORIN, CEP135,
## AL132775.1, SNAP25-AS1, AL049828.1, DNAH2, AL391807.1, PRRT2, TEX15, OR8D1,
## SOAT2, MCF2L-AS1, AC005393.1, SESN3, DHX8, VIPR1, NWD1, TNS3, GSN, OR3A2,
## HIST1H2AC, AKR7A2, ALDH1A1, TMEM45A, SRGAP3, AC084809.2, CPE, SNHG12,
## AC026333.3, AC073050.1, LINC01600, LCTL, AC019330.1, AC073569.1, ATP6V0D2,
## TACC3, GFRA2, MAPK8, LRRIQ4, LINC00649, RUFY2, CD93, ATF3, AC011365.1, GAL3ST4,
## Z99758.1, CREG2, U62317.4, SCAPER, LYPLAL1-DT, LNX1, AC096570.1, AC016074.2,
## ERO1A, AC009264.1, ENPEP, CNDP1, SIGLEC7, GLIPR1, OSBPL6, AL136418.1,
## HIST1H2BG, SULF2, MNAT1, AL589740.1, TUBB4B, PAX8-AS1, TASP1, ABCA13,
## LINC00237, AC020743.2, TSPAN8, AC015849.1, AL078602.1, CACNA2D3, LINC01917,
## LINC01855, Z94721.1, MAPK13, FKBP1B, AC021231.1, PRTG, GAK, RALGAPA2, RTKN2,
## AL445584.2, LINC02208, PODN, PDE11A, DPF1, ACTB, RPS6KA6, MCCC2, TFRC,
## AC005264.1, TMEM71, KDM6A, HIST2H2BE, EPHA6, COL8A2, LINC00958, ZBTB46,
## AC011476.3, SCFD2, GLRX, C11orf45, MLLT3, RAP2C-AS1, LGALSL, LINC01353, SOX15,
## KIAA0825, CD72, NPRL3, LINC01891, AL645929.2, MMD2, LINC02449, MAP1A, OXSR1,
## AC104459.1, SLC26A7, ZHX2, AC021086.1, SPAG7, CALR, AC090630.1, HERPUD1, ITGA4,
## AC087683.3, AC114763.1, ZFP36L1, SPEG, LINC01191, RFX3, RNF24, STAG1,
## AC117473.1, MGAT5, TUBB4A, MRVI1, CKMT1A, AC073475.1, LY96, SPTLC3, KIAA1841,
## AL031710.2, NYX, LGALS3, PTPRG-AS1, CHM, TMEM131L, MCM9, JAKMIP2-AS1, BACH1,
## AP000829.1, CFAP69, CLDN4, RHCE, PRSS3, AC010834.2, AL356379.2, MDH1, HCAR3,
## ADORA2B, MARCH3, LINC02015, CALM3, PROCR, LILRB2, IGF2R, SOCS3, NETO2,
## TMEM72-AS1, RNF180, E2F1, TNIK, P3H2, AC008115.2, SPIB, PLBD1, AF131216.1,
## AC103726.2, NALCN, AC008555.2, AC008655.2, AL672032.1, AP002793.1, AL110292.1,
## AC098588.3, UBE2T, PIP4K2C, PCLO, AC097654.1, MKX, AL121772.1, AC020637.1,
## LINC00571, LINC02112, KCNJ1, AL136298.1, TRAF2, BMPR1B, AFF1, SPIRE1, PAFAH1B1,
## CASP1, LINC02851, CNIH3, EXD2, PTPRB, SNX10, ITPR2, KIF20B, AC129803.1, NFKB1,
## BUB1, SOS1, ADAMTS10, PLXNC1, SGO1, BFSP2, AL365295.2, AHCYL2, PKN2, ZC4H2,
## HSP90AA1, FAM135A, XKR9, CDT1, PRORP, LINC01762, ITM2A, NEGR1, ANGPTL4,
## AC079584.1, LINC00987, SLC7A8, PFKFB3, LPP, STUM, FAM110B, QKI, FILIP1L, DYM,
## MYADM, ADIRF, TXNIP, ARRDC3-AS1, LINC02798, AL139246.1, AL137076.1, AL158839.1,
## AL589765.6, C4BPA, C1orf229, AC114810.1, AL133243.1, AC009229.3, AC012358.1,
## LINC01104, AC063944.3, AC092902.6, AC128709.2, AC021220.2, ADAMTS3, RBM46,
## AC116351.1, AC011374.3, LINC02533, LINC02571, Z84484.1, MRAP2, FUT9,
## AL357992.1, AL078582.1, AC002480.2, TRIM74, DEFB136, PRDM14, CALB1, AF178030.1,
## AF235103.1, CNTFR-AS1, AL353764.1, TMEM246-AS1, PPP3R2, AL356481.2, AL731559.1,
## AL121748.1, LINC02625, SYCE1, OR10A4, LINC02751, SAA4, AC013714.1, AC024940.1,
## AC012464.3, AC063943.1, C1QTNF9-AS1, SMAD9-IT1, LINC00563, AL161717.1,
## CLYBL-AS2, AL442125.2, KLHL33, CMA1, AL163953.1, AC104938.1, AC048382.1,
## AC091167.5, BAIAP3, AL133297.1, AC106820.2, NPIPB8, AC012186.2, AC092378.1,
## AC129507.2, RAI1-AS1, AC007952.6, AC004448.3, AC243773.2, KRT19, AC105094.2,
## OR7E24, ANGPTL8, LINC01858, AC022150.2, AL021396.1, LINC01747, CU634019.5,
## NUDT11, LINC00266-4P, PLA2G5, BDNF-AS, KCNA2, AC021546.1, LINC00407,
## AC246817.1, GNG7, DNAH3, GMDS, LINC02398, AL096794.1, AL390800.1, AC083836.1,
## NELL2, UFL1-AS1, PRH1, SUCLG2-AS1, ITGA9, GLUL, LINC01572, SPOCK3, POF1B, FAIM,
## SPATA5, TIMP4, CAMK2D, ELANE, PCNX2, ABCA1, TOM1L2, SLC41A2, HCRTR2, ST3GAL3,
## MCTP2, DUSP5, MARF1, COBL, PRDM1, CD200R1, AC092134.3, CPXM2, EDA, CASC2, PKP2,
## TTLL7, GPAT3, PLAA, PRAG1, DMXL2, AL009179.1, SH3GL2, AL158068.2, AC005736.1,
## CYP4F22, LINC01098, EFL1, RERE, CRELD2, ZNF609, STAU2, EMP1, AC024084.1, RHPN2,
## MPDZ, TYW1B, LINC02457, RAB7B.
## PC_ 1
## Positive: PRDX6, TUBA1B, C15orf48, FABP3, S100A10, TUBA1A, TXN, S100A9, CRABP2, CHI3L1
## SLC35F1, RGCC, ACTG1, ACAT2, MMP9, FBP1, TUBA1C, GAL, HPGDS, LDHB
## BLVRB, HAMP, MYL9, SPP1, UCHL1, CCNA1, TMEM176B, LINC02244, TMEM114, TMEM176A
## Negative: FHIT, RAD51B, FMN1, ARL15, MALAT1, FTX, AL035446.2, MBD5, EXOC4, SLC22A15
## ZFAND3, SNTB1, FNDC3B, GMDS-DT, COP1, VTI1A, PDE4D, JMJD1C, DENND1A, VPS13B
## TRIO, DOCK4, SBF2, SMYD3, FRMD4B, DOCK3, COG5, TBC1D8, REV3L, ZBTB20
## PC_ 2
## Positive: HLA-DRB1, LYZ, PTGDS, CD74, HLA-DRA, HLA-DPA1, CFD, HLA-DPB1, KCNMA1, CEBPD
## RCBTB2, CYP1B1, GCLC, NCAPH, RNASE6, TGFBI, SIPA1L1, S100A4, CRIP1, HLA-DRB5
## MNDA, ATP8B4, ATG7, CA2, HLA-DQB1, ALOX5AP, MRC1, DUSP2, VAMP5, RAPGEF1
## Negative: HIV-Gagp17, HIV-Polp15p31, HIV-BaLEnv, HIV-Polprot, HIV-Vif, HIV-LTRU5, HIV-Gagp2p7, GDF15, PSAT1, CYSTM1
## HIV-Gagp1Pol, BEX2, HIV-EGFP, TCEA1, G0S2, HIV-TatEx2Rev, SNCA, PHGDH, HIV-Vpu, B4GALT5
## OCIAD2, SLAMF9, HIV-TatEx1, HIV-LTRR, SUPV3L1, UGCG, RAB38, GARS, S100A10, NMRK2
## PC_ 3
## Positive: BTG1, MARCKS, CD14, G0S2, TGFBI, FUCA1, MS4A6A, CLEC4E, SEMA4A, CXCR4
## VMO1, TIMP1, MEF2C, HIF1A, CEBPD, MS4A7, MAFB, P2RY8, RNASE1, FPR3
## TCF4, MPEG1, PDK4, CTSC, CD163, HLA-DQA2, HIV-Gagp17, ST8SIA4, SDS, SELENOP
## Negative: RGCC, NCAPH, CRABP2, CHI3L1, TM4SF19, LINC01010, MREG, LINC02244, GPC4, AC015660.2
## TMEM114, FNIP2, NUMB, ACAT2, PSD3, TCTEX1D2, LRCH1, SLC28A3, PLEK, ST3GAL6
## AC005280.2, ANO5, DOCK3, FBP1, AC092353.2, CSF1, ASAP1, GCLC, FDX1, TXNRD1
## PC_ 4
## Positive: HES2, CCPG1, LINC02244, NUPR1, CARD16, RAB6B, LINC01010, S100P, PSAT1, CPD
## PTGDS, CLGN, CLU, BEX2, NIBAN1, SYNGR1, PHGDH, TDRD3, PLEKHA5, QPCT
## NMB, RETREG1, PCDH19, C5orf17, GAS5, SUPV3L1, TCEA1, PDE4D, CLEC12A, SEL1L3
## Negative: AC078850.1, SLC35F1, INSIG1, TUBA1B, CCL7, ACTG1, LINC01091, CD36, FABP4, C3
## MGLL, TPM4, TIMP3, PHLDA1, CD300LB, CSF1, TMEM176A, CADM1, TUBB, ALCAM
## HSP90B1, IL1RN, TNFRSF9, LIMA1, TPM2, SDS, IL18BP, PLEK, IL4I1, MACC1
## PC_ 5
## Positive: PCLAF, STMN1, TYMS, CTSL, CENPF, MKI67, CEP55, CDKN3, BIRC5, KIF4A
## DLGAP5, PTTG1, RAD51AP1, CENPM, TK1, PRC1, PLEKHA5, CDK1, HMMR, CENPK
## CLSPN, CCNA2, NUSAP1, SHCBP1, TPX2, ASPM, BUB1B, TUBB, MYBL2, NCAPG
## Negative: HIV-Vif, HIV-Gagp2p7, HIV-Polp15p31, HIV-Polprot, HIV-Gagp17, HIV-Gagp1Pol, HIV-BaLEnv, HIV-LTRU5, HIV-TatEx1, HIV-Vpu
## HIV-TatEx2Rev, HIV-LTRR, HIV-EGFP, HIV-Nef, HIV-EnvStart, HIV-Vpr, CHI3L1, HES1, GCLC, PLCL1
## SPRED1, IL1RN, HES4, ISG15, MX1, CDKN1A, DUSP2, ST6GALNAC3, ADK, MDM2
DimHeatmap(mono_focus_mdm, dims = 1:2, cells = 500, balanced = TRUE)
DimHeatmap(mono_focus_mdm, dims = 3:4, cells = 500, balanced = TRUE)
ElbowPlot(mono_focus_mdm)
mono_focus_mdm <- FindNeighbors(mono_focus_mdm, dims = 1:4)
## Computing nearest neighbor graph
## Computing SNN
mono_focus_mdm <- FindClusters(mono_focus_mdm, algorithm = 3, resolution = 0.3, verbose = FALSE)
mono_focus_mdm <- RunUMAP(mono_focus_mdm, dims = 1:4)
## 12:50:30 UMAP embedding parameters a = 0.9922 b = 1.112
## 12:50:30 Read 3869 rows and found 4 numeric columns
## 12:50:30 Using Annoy for neighbor search, n_neighbors = 30
## 12:50:30 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 12:50:30 Writing NN index file to temp file /tmp/RtmpRdHgON/file11d0d45223eefb
## 12:50:30 Searching Annoy index using 1 thread, search_k = 3000
## 12:50:31 Annoy recall = 100%
## 12:50:32 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 12:50:34 Initializing from normalized Laplacian + noise (using RSpectra)
## 12:50:34 Commencing optimization for 500 epochs, with 135842 positive edges
## 12:50:34 Using rng type: pcg
## 12:50:37 Optimization finished
DimPlot(mono_focus_mdm, reduction = "umap", label=TRUE)
DimPlot(mono_focus_mdm, group.by="monaco_fine_annotation" , reduction = "umap", label=TRUE)
DimPlot(mono_focus_mdm, group.by="sample" , reduction = "umap", label=TRUE)
# mono_focus_alv
mono_focus_alv <- FindVariableFeatures(mono_focus_alv, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
mono_focus_alv <- RunPCA(mono_focus_alv, features = VariableFeatures(object = mono_focus_alv))
## Warning: The following 35 features requested have zero variance; running
## reduction without them: MT1X, HAMP, APOA1, MT2A, INHBA, ID3, ISM1, ANKRD66,
## PKD1L1, AL591135.2, LINC00607, TXN, AC087857.1, CABCOCO1, LINGO1, PPP1R17,
## LINC02073, AC093916.1, SAMSN1, AC009292.2, IGSF23, LINC00639, PRKCG, KRTAP10-4,
## SIK3, CHD9, MED13L, AC104041.1, FAM13B, PLAT, AC016152.1, AC069410.1,
## AC130650.2, LINC01276, NME5
## Warning in PrepDR5(object = object, features = features, layer = layer, : The
## following features were not available: LINC00964, NUP210L, CPNE8, IFI6,
## AC083837.1, SMS, TMIGD1, HCAR2, AC011396.2, CD28, AP002075.1, SLC6A16, TEKT5,
## EMP3, MIF, AL096794.1, PPP1R1C, ACVR2A, LYPD1, EDIL3, AC022031.2, EFCAB7,
## LINC02068, IQCA1, SPINK6, TENM4, COL25A1, HIST1H2BG, C11orf49, SRL, AC092821.3,
## EXO1, IL6, DNAH12, DNAJC9, ACTN2, SLC7A14-AS1, AC135050.3, MRPS6, NPTX2,
## LINC02269, ERAP2, KIAA1755, GNLY, AC076968.2, AC026391.1, AC013391.2, INO80,
## ADAM22, LINC00589, DSG2, MS4A5, AC207130.1, PLAAT3, AC005740.5, BTNL8,
## AC084740.1, MSRB3, ARMC8, SMCHD1, CNTNAP2, BANK1, COL27A1, TEK, GCH1, SCFD1,
## CD226, GPRC5D, AHCTF1, PMAIP1, CTSW, DCSTAMP, TRIM2, TUBB4A, NWD1, LGALS1,
## GIGYF2, MARCKSL1, CH25H, BRMS1L, RAD51C, RFX3-AS1, AL353596.1, KIF6, SHCBP1L,
## LPCAT1, RLF, LINC00350, NEURL3, MIR4300HG, AC104596.1, IGF2R, LINC02789,
## AC019131.1, ADCY3, TMEM236, AL161646.1, CR1, SVEP1, USP10, ASAP3, PTPN2, ZC3H8,
## LINC01344, TNFAIP3, STK32B, YJEFN3, CTSZ, XDH, AC010834.2, CCDC85A, RFTN2,
## DYNC1H1, AC079313.2, MECP2, AC009435.1, LINC00299, SHANK2, AC005264.1,
## AC084809.2, SPOCK1, RPH3AL, ABCB1, LINC01862, SH3TC2, CCNC, NEK4, ZPLD1,
## LINC00511, NDRG1, SPACA3, URB1, PSME2, CFAP74, XPO5, CCDC57, PPEF1, CSTB,
## AC007785.1, HSF2BP, PTX3, MFSD11, POU6F2, SLC2A5, ABRAXAS2, AC063944.1, STS,
## FBXO4, NCMAP, PAX8-AS1, MBOAT4, ANGPT1, RXFP1, FCRLB, RAB7B, SMAD1-AS2,
## AL353595.1, AC125421.1, PHACTR1, LINC02466, SOX6, LDHA, AL672032.1, LINC00842,
## TEPP, EML2-AS1, ERI2, GAPLINC, GRID2, SYT12, TIMELESS, AKAP6, ANOS1, CKAP5,
## WDR90, GOLGA7B, HNRNPM, LGALS3, WIPF3, NRG1, MID2, AC007100.1, NBAT1, C2orf72,
## FSD1, GRHL2, GLIPR1, NRIP3, TMEM37, AC092957.1, SOAT2, HCAR3, LINC01414,
## AC011346.1, INKA2-AS1, FO393415.3, UPK1A-AS1, AC073569.2, AL513166.1, GTF2IRD2,
## IPCEF1, PMPCA, DHRS9, C22orf34, AC124852.1, RFX8, ELOC, PTPRB, HRH2, HMOX1,
## GATA2, SEMA6D, CLDN18, GNRHR, LMNB1-DT, COBL, SLC23A2, AC041005.1, ZNF385D-AS1,
## NNMT, AOC1, EAF2, AC107081.2, PDE1C, CLEC7A, SERINC2, CNR2, LCP1, IL17RB, RGS7,
## SPRY4-AS1, DACH1, AL592295.3, SVOP, STPG2, AL662884.3, AC022035.1, SLC44A5,
## AC006441.4, LINC00609, HLTF-AS1, KIAA0825, MOSPD1, SLC4A8, NDRG2, FAF1, PLCH1,
## RELN, LINC01299, MTFMT, SLC6A7, HIP1, WDFY4, KIF21A, NCR3, MAS1, LINC01999,
## AC007001.1, TNC, CLSTN2, PLXDC1, AC004949.1, CD5L, TNR, AL360015.1, LINGO2,
## TMEM132C, ZNF157, NEIL3, LINC01358, ADM, SFTPD-AS1, MIR3142HG, MRC2, MIR2052HG,
## HSPA1B, ULBP2, GLUL, AC068228.3, DZIP1, AC025430.1, TPSAB1, SLC12A3,
## AC092718.1, COL4A5, AC006460.1, VIPR1, SLC9A2, TDRD9, ABLIM1, ZSCAN5A, SIK2,
## SPSB1, YLPM1, SCIN, AC116563.1, NRCAM, CRIM1, BPIFC, SLA, GALNT14, MSH4, CRIPT,
## AL354811.2, UST, NIPAL4, CTXND1, ELOVL5, LINC00378, AL049828.1, KDR, CNGB1,
## Z99758.1, AC010997.3, AC109454.3, AL354733.2, NSG2, GPAT3, SHROOM4, RASSF4,
## FOXM1, LINC00571, TNIK, OASL, RBL1, POU2F2, EML4, IKZF3, CDHR3, CLPB,
## AL645933.3, PARD3, AL136456.1, PTP4A2, CSMD2, AHCYL2, NES, AC093898.1, MARCH1,
## ARHGAP6, SLC4A1, PAWR, AC110491.2, DPYS, PARN, ABCG2, CYP4F22, ITGA2,
## SH3TC2-DT, CHODL, GM2A, GINS2, CHDH, IGSF6, BRCA1, MEP1A, SRGAP3, AC084816.1,
## TROAP, LINC01900, APOM, COL8A2, RALGAPA2, AC005753.2, AC015908.2, STXBP5L,
## DNAJC1, FBXW7, AC099489.1, TMEM45A, FCMR, FRRS1, AC002454.1, ARL9, C1orf143,
## FAXC, ATP1B2, PDLIM4, AC016831.7, EMP1, RBPJ, ANKH, AC117453.1, CHAC1, KCP,
## SNAI3, FHAD1, DENND2A, TNFRSF12A, MX2, KDM7A, AC108066.1, SLC23A1, AL109930.1,
## SH3BP5, CENPU, KCNA2, AC011893.1, AIM2, TBC1D24, ATP1B1, AP000812.1, S100A6,
## JAML, MS4A4A, TGFB3, LINC00973, ING3, SOX5, MCAM, RBM47, AC246817.1, PCLO,
## PCDH15, TNFRSF11A, SNX10, ACTB, SCFD2, LINC02109, CHD5, AC093307.1, TSGA13,
## C11orf45, RHOD, AC007529.2, AC008443.9, AMPD1, CEP126, ITSN2, KCNJ1, CD1E,
## AL359220.1, RNF212, GNAI1, AC093010.2, TEX49, SPOPL, LINC02777, PRRX2,
## SEPTIN4-AS1, LIPG, HIST1H2AC, LINC02698, SDC2, CNTNAP5, SULT6B1, STXBP6,
## PPP1R16B, CFAP57, LINC01800, SLC22A2, EXOSC10, LINC02752, AC024901.1, ASPH,
## ZNF431, BICD1, DEGS2, GALNTL6, AC079742.1, MEI4, LINC01924, AMPD3, MB21D2,
## LINC01572, PLTP, ITPR2, SAMD12, EFNA2, HTRA4, XKR9, AL713998.1, AC016587.1,
## SLC35F3, EOGT, CDC5L, LINC00519, AC113137.1, ARSF, LIN28B-AS1, RASL10A, FCER1G,
## LINC00894, SYT10, RBPJL, AC007381.1, STMND1, AC006333.1, CNGA4, GLCCI1, TCEA3,
## LINC01739, AL355981.1, MOBP, AC079298.3, AC097487.1, AC137810.1, AL357146.1,
## TMEM213, AL136119.1, AC087897.2, AL160035.1, LINC01198, AC090515.6, AC018618.1,
## MAP1A, NR1H3, DNAH2, BX004807.1, NR6A1, IARS, TMEM131L, SYNE1, AL645465.1,
## BCL2A1, SH3PXD2B, AC099560.1, LPP, AL591845.1, HPN, KLB, SKA3, CPEB2-DT,
## INPP4B, ELF5, STUM, LMO4, NANOS1, ASTN2, STX4, LINC02805, GNGT1, HIST1H1C,
## AC010343.3, TYW1B, ACSBG2, TRMT5, LDLRAD4, SSH2, SLC25A23, LPAR1, AP001496.1,
## SERPINA1, HIST2H2BE, FCHO2, CDH12, AC011476.3, PAX5, GALNT18, FA2H, SDSL,
## ABCA1, CFI, LINC01948, IAPP, WASF3-AS1, AC130456.2, ROBO4, AC087280.2, IL3RA,
## DAO, AC073091.4, FUT2, GFOD1, AC055855.2, LINC02742, ZNF609, LINC01933, CORO1A,
## CLSTN3, LIMCH1, NABP1, FBXO43, DOCK2, ASMT, TREM1, CTNNA3, GRXCR2, AP000424.1,
## CNIH3, IGF1R, AC005280.1, PPP1R14C, GLT1D1, AC068587.4, AP001636.3, ERBB4,
## MIR155HG, ERLEC1, AGPAT4, GRAMD2A, ADGRL4, AC239860.4, LHCGR, AC103563.9,
## CCDC141, NECTIN3-AS1, AC010307.4, ZBED9, AC120498.4, OPRD1, SCG2, AC145146.1,
## AC068305.2, TMEM233, HECW1, NCAM2, SLAMF7, PRAG1, AL731563.2, FRMD6-AS2, GRIK5,
## AC021851.2, CDT1, WDR54, MYO16-AS1, LMCD1-AS1, AC096531.2, MAP1B, OR10G3,
## NUDT10, CIDEC, SSPO, FAM107B, RBM11, BARD1, EGFL7, MARCH3, SLC30A10, TFRC,
## PKIB, DENND5B, SPIRE1, AC079163.2, AHRR, ZNF543, QKI.
## PC_ 1
## Positive: RASAL2, DOCK3, AC092353.2, TMEM117, DPYD, CPEB2, LINC01374, LRMDA, ASAP1, PLXDC2
## NEAT1, FMNL2, TPRG1, LRCH1, ATG7, ARL15, MALAT1, MITF, ATXN1, MAML2
## RAPGEF1, DENND1B, NUMB, EXOC4, ELMO1, FHIT, ST3GAL6, VWA8, ZNF438, PPARG
## Negative: GAPDH, H2AFZ, BLVRB, GSTP1, NUPR1, MMP9, FABP4, SAT1, CARD16, ALDH2
## STMN1, CFD, CYSTM1, FAH, PRDX6, MARCKS, CD74, PSAT1, IFITM3, HLA-DPA1
## GDF15, PTGDS, PHGDH, SELENOP, LINC02244, BTG1, TUBA1B, TMEM176B, GCHFR, TUBB
## PC_ 2
## Positive: LYZ, SLC8A1, MRC1, RCBTB2, FCGR3A, CTSC, NRP1, HLA-DPA1, CFD, AL356124.1
## TRPS1, ME1, RARRES1, HLA-DRA, ATP8B4, PDGFC, ARHGAP15, SELENOP, XYLT1, ZEB2
## FCHSD2, HLA-DPB1, SLCO2B1, DOCK4, AIF1, CD74, ALDH2, KCNMA1, CAMK1D, CCDC102B
## Negative: HIV-Nef, HIV-TatEx1, HIV-LTRU5, HIV-BaLEnv, HIV-LTRR, HIV-Polprot, HIV-Gagp17, HIV-Polp15p31, CCL22, HIV-EnvStart
## HIV-Vpr, HIV-Gagp1Pol, HIV-TatEx2Rev, IL6R-AS1, AL157912.1, GAL, HIV-Vif, HIV-Vpu, HIV-Gagp2p7, SLC20A1
## HIV-EGFP, DUSP13, IL1RN, TRIM54, CYTOR, MIR4435-2HG, MYL9, NMRK2, GPC3, RHOF
## PC_ 3
## Positive: CTSL, BCAT1, FDX1, MARCO, S100A9, DNASE2B, CCDC26, B4GALT5, TPM4, SAT1
## CD164, FMN1, FAH, UGCG, TXNRD1, PLEKHA5, SCD, STMN1, HES2, FABP4
## BCL11A, BLVRB, SNCA, SEL1L2, FRMD4A, QPCT, NUPR1, SLC11A1, SNTB1, CLMP
## Negative: CRIP1, MMP7, CLU, GCLC, HIV-TatEx1, RNF128, HIV-Nef, PTGDS, HIV-LTRR, CDKN2A
## KCNMA1, RTN1, HIV-Vpr, DUSP2, LINC02345, C1QTNF4, HIV-Gagp1Pol, IL1RN, TMEM176B, TIMP3
## HIV-EnvStart, CYP1B1, S100A4, ALOX5AP, VAMP5, LINC02408, RAMP1, AC067751.1, FGL2, HIV-Polprot
## PC_ 4
## Positive: NCAPH, LINC02244, AC015660.2, SYNGR1, RGS20, DUSP2, PTGDS, TMEM114, C2orf92, NIPAL2
## LINC01010, TRIM54, TM4SF19, MGST1, PSD3, SLC28A3, AC005280.2, ACAT2, SERTAD2, MICAL3
## MT1E, ANO5, ZNF366, BX664727.3, RGS16, TGM2, OCSTAMP, TDRD3, AL157886.1, SPP1
## Negative: HIV-TatEx1, HIV-LTRR, HIV-Vpr, HIV-Nef, HIV-Polprot, HIV-Gagp1Pol, HIV-EnvStart, HIV-BaLEnv, HIV-Vif, HIV-Polp15p31
## HIV-Gagp17, HIV-LTRU5, HIV-Vpu, HIV-Gagp2p7, HIV-TatEx2Rev, AIF1, HIV-EGFP, FPR3, CTSB, MARCKS
## MRC1, C1QA, CTSC, IL7R, CCL2, LGMN, OLR1, ALOX5, TNFSF13B, COLEC12
## PC_ 5
## Positive: CLSPN, SHCBP1, TYMS, DIAPH3, TK1, PCLAF, RRM2, HELLS, FAM111B, ESCO2
## CENPK, MYBL2, MKI67, CENPM, CIT, CDK1, ACTG1, NCAPG, CCNA2, ATAD2
## TOP2A, TUBB, KIF11, CEP55, HMMR, DTL, KNL1, TUBA1B, BIRC5, CENPF
## Negative: AC008591.1, XIST, QPCT, AC020656.1, GCHFR, GPX3, AC012668.3, LINC01340, MIR646HG, ST6GAL1
## LINC01708, LINC02320, AL136317.2, NMB, OSBP2, KCNMB2-AS1, LIX1-AS1, SKAP1, CFD, NIPAL2
## CCDC26, PDE4D, LINC00923, TMTC1, CPD, BX664727.3, GPRIN3, AP000331.1, RARRES1, GPAT2
DimHeatmap(mono_focus_alv, dims = 1:2, cells = 500, balanced = TRUE)
DimHeatmap(mono_focus_alv, dims = 3:4, cells = 500, balanced = TRUE)
ElbowPlot(mono_focus_alv)
mono_focus_alv <- FindNeighbors(mono_focus_alv, dims = 1:4)
## Computing nearest neighbor graph
## Computing SNN
mono_focus_alv <- FindClusters(mono_focus_alv, algorithm = 3, resolution = 0.3, verbose = FALSE)
mono_focus_alv <- RunUMAP(mono_focus_alv, dims = 1:4)
## 12:50:45 UMAP embedding parameters a = 0.9922 b = 1.112
## 12:50:45 Read 4420 rows and found 4 numeric columns
## 12:50:45 Using Annoy for neighbor search, n_neighbors = 30
## 12:50:45 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 12:50:45 Writing NN index file to temp file /tmp/RtmpRdHgON/file11d0d46b050f80
## 12:50:45 Searching Annoy index using 1 thread, search_k = 3000
## 12:50:46 Annoy recall = 100%
## 12:50:47 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 12:50:49 Initializing from normalized Laplacian + noise (using RSpectra)
## 12:50:49 Commencing optimization for 500 epochs, with 154158 positive edges
## 12:50:49 Using rng type: pcg
## 12:50:52 Optimization finished
DimPlot(mono_focus_alv, reduction = "umap", label=TRUE)
DimPlot(mono_focus_alv, group.by="monaco_fine_annotation" , reduction = "umap", label=TRUE)
DimPlot(mono_focus_alv, group.by="sample" , reduction = "umap", label=TRUE)
We are going to use muscat for pseudobulk analysis. First need to convert seurat obj to singlecellexperiment object. Then summarise counts to pseudobulk level.
sce <- Seurat::as.SingleCellExperiment(comb, assay = "RNA")
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
## Found more than one class "package_version" in cache; using the first, from namespace 'SeuratObject'
## Also defined by 'alabaster.base'
head(colData(sce),2)
## DataFrame with 2 rows and 13 columns
## orig.ident nCount_RNA nFeature_RNA
## <factor> <numeric> <integer>
## mdm_mock1|AAACGAATCACATACG mac 72761 7103
## mdm_mock1|AAACGCTCATCAGCGC mac 49143 6282
## cell sample RNA_snn_res.0.5
## <character> <character> <factor>
## mdm_mock1|AAACGAATCACATACG mdm_mock1|AAACGAATCA.. mdm_mock1 5
## mdm_mock1|AAACGCTCATCAGCGC mdm_mock1|AAACGCTCAT.. mdm_mock1 12
## seurat_clusters cell_barcode
## <factor> <character>
## mdm_mock1|AAACGAATCACATACG 5 mdm_mock1|AAACGAATCA..
## mdm_mock1|AAACGCTCATCAGCGC 12 mdm_mock1|AAACGCTCAT..
## monaco_broad_annotation monaco_broad_pruned_labels
## <character> <character>
## mdm_mock1|AAACGAATCACATACG Monocytes Monocytes
## mdm_mock1|AAACGCTCATCAGCGC Monocytes Monocytes
## monaco_fine_annotation monaco_fine_pruned_labels
## <character> <character>
## mdm_mock1|AAACGAATCACATACG Classical monocytes Classical monocytes
## mdm_mock1|AAACGCTCATCAGCGC Classical monocytes Classical monocytes
## ident
## <factor>
## mdm_mock1|AAACGAATCACATACG 5
## mdm_mock1|AAACGCTCATCAGCGC 12
colnames(colData(sce))
## [1] "orig.ident" "nCount_RNA"
## [3] "nFeature_RNA" "cell"
## [5] "sample" "RNA_snn_res.0.5"
## [7] "seurat_clusters" "cell_barcode"
## [9] "monaco_broad_annotation" "monaco_broad_pruned_labels"
## [11] "monaco_fine_annotation" "monaco_fine_pruned_labels"
## [13] "ident"
#muscat library
pb <- aggregateData(sce,
assay = "counts", fun = "sum",
by = c("monaco_broad_annotation", "sample"))
# one sheet per subpopulation
assayNames(pb)
## [1] "Basophils" "Dendritic cells" "Monocytes"
t(head(assay(pb)))
## HIV-LTRR HIV-LTRU5 HIV-Gagp17 HIV-Gagp24 HIV-Gagp2p7
## alv_active1 0 0 0 0 0
## alv_active2 0 0 0 0 0
## alv_active3 0 0 0 0 0
## alv_bystander1 0 0 0 0 0
## alv_bystander2 0 0 0 0 0
## alv_bystander3 0 0 0 0 0
## alv_latent1 0 0 0 0 0
## alv_latent2 0 0 0 0 0
## alv_latent3 0 0 0 0 0
## alv_mock1 0 0 0 0 0
## alv_mock2 0 0 0 0 0
## alv_mock3 0 0 0 0 0
## mdm_active1 0 0 0 0 0
## mdm_active2 0 0 0 0 0
## mdm_active3 0 0 0 0 0
## mdm_active4 0 0 0 0 0
## mdm_bystander1 0 0 0 0 0
## mdm_bystander2 0 0 0 0 0
## mdm_bystander3 0 0 0 0 0
## mdm_bystander4 0 0 0 0 0
## mdm_latent1 0 0 0 0 0
## mdm_latent2 0 0 0 0 0
## mdm_latent3 0 0 0 0 0
## mdm_latent4 0 0 0 0 0
## mdm_mock1 0 0 0 0 0
## mdm_mock2 0 0 0 0 0
## mdm_mock3 0 0 0 0 0
## mdm_mock4 0 0 0 0 0
## react6 0 0 0 0 0
## HIV-Gagp1Pol
## alv_active1 0
## alv_active2 0
## alv_active3 0
## alv_bystander1 0
## alv_bystander2 0
## alv_bystander3 0
## alv_latent1 0
## alv_latent2 0
## alv_latent3 0
## alv_mock1 0
## alv_mock2 0
## alv_mock3 0
## mdm_active1 0
## mdm_active2 0
## mdm_active3 0
## mdm_active4 0
## mdm_bystander1 0
## mdm_bystander2 0
## mdm_bystander3 0
## mdm_bystander4 0
## mdm_latent1 0
## mdm_latent2 0
## mdm_latent3 0
## mdm_latent4 0
## mdm_mock1 0
## mdm_mock2 0
## mdm_mock3 0
## mdm_mock4 0
## react6 0
plotMDS(assays(pb)[[3]], main="Monocytes" )
par(mfrow=c(2,3))
dump <- lapply(1:length(assays(pb)) , function(i) {
cellname=names(assays(pb))[i]
plotMDS(assays(pb)[[i]],cex=1,pch=19,main=paste(cellname),labels=colnames(assays(pb)[[1]]))
})
## Warning in plotMDS.default(assays(pb)[[i]], cex = 1, pch = 19, main =
## paste(cellname), : dimension 2 is degenerate or all zero
par(mfrow=c(1,1))
pbmono <- assays(pb)[["Monocytes"]]
head(pbmono)
## alv_active1 alv_active2 alv_active3 alv_bystander1 alv_bystander2
## HIV-LTRR 4391 3316 2601 111 134
## HIV-LTRU5 162741 127498 102452 2085 2885
## HIV-Gagp17 32789 27176 17079 106 162
## HIV-Gagp24 0 0 0 0 0
## HIV-Gagp2p7 1201 1242 744 16 26
## HIV-Gagp1Pol 2100 2334 1592 26 50
## alv_bystander3 alv_latent1 alv_latent2 alv_latent3 alv_mock1
## HIV-LTRR 138 249 261 411 31
## HIV-LTRU5 2848 10994 10224 17207 753
## HIV-Gagp17 183 2306 1784 2576 106
## HIV-Gagp24 0 0 0 0 0
## HIV-Gagp2p7 17 69 104 121 2
## HIV-Gagp1Pol 42 129 163 210 6
## alv_mock2 alv_mock3 mdm_active1 mdm_active2 mdm_active3
## HIV-LTRR 52 200 2251 1482 1476
## HIV-LTRU5 1311 7206 100998 71868 94108
## HIV-Gagp17 178 1530 38092 23541 40568
## HIV-Gagp24 0 0 0 0 0
## HIV-Gagp2p7 7 52 1462 1021 2365
## HIV-Gagp1Pol 21 94 2021 1375 3032
## mdm_active4 mdm_bystander1 mdm_bystander2 mdm_bystander3
## HIV-LTRR 1648 103 147 26
## HIV-LTRU5 56478 1425 1946 449
## HIV-Gagp17 15110 255 254 57
## HIV-Gagp24 0 0 0 0
## HIV-Gagp2p7 414 23 32 3
## HIV-Gagp1Pol 785 20 61 16
## mdm_bystander4 mdm_latent1 mdm_latent2 mdm_latent3 mdm_latent4
## HIV-LTRR 41 119 142 37 48
## HIV-LTRU5 725 5359 6710 2150 1644
## HIV-Gagp17 61 1927 2077 566 534
## HIV-Gagp24 0 0 0 0 0
## HIV-Gagp2p7 8 51 108 37 12
## HIV-Gagp1Pol 10 83 129 63 24
## mdm_mock1 mdm_mock2 mdm_mock3 mdm_mock4 react6
## HIV-LTRR 30 37 9 39 256
## HIV-LTRU5 486 685 106 1119 7461
## HIV-Gagp17 117 253 37 159 596
## HIV-Gagp24 0 0 0 0 0
## HIV-Gagp2p7 5 8 1 5 21
## HIV-Gagp1Pol 7 14 3 13 39
dim(pbmono)
## [1] 36622 29
hiv <- pbmono[1:2,]
pbmono <- pbmono[3:nrow(pbmono),]
Gene ontology.
#go <- gmt_import("c5.go.v2023.2.Hs.symbols.gmt")
#names(go) <- gsub("_"," ",names(go))
#wget https://ziemann-lab.net/public/tmp/go_2024-11.gmt
go <- gmt_import("go_2024-11.gmt")
MDM group.
pbmdm <- pbmono[,grep("mdm",colnames(pbmono))]
pb1m <- pbmdm[,c(grep("active",colnames(pbmdm)),grep("latent",colnames(pbmdm)))]
head(pb1m)
## mdm_active1 mdm_active2 mdm_active3 mdm_active4 mdm_latent1
## HIV-Gagp17 38092 23541 40568 15110 1927
## HIV-Gagp24 0 0 0 0 0
## HIV-Gagp2p7 1462 1021 2365 414 51
## HIV-Gagp1Pol 2021 1375 3032 785 83
## HIV-Polprot 27388 18583 44857 9126 1383
## HIV-Polp15p31 75686 55267 105649 14984 3589
## mdm_latent2 mdm_latent3 mdm_latent4
## HIV-Gagp17 2077 566 534
## HIV-Gagp24 0 0 0
## HIV-Gagp2p7 108 37 12
## HIV-Gagp1Pol 129 63 24
## HIV-Polprot 1587 877 250
## HIV-Polp15p31 5077 2425 441
pb1mf <- pb1m[which(rowMeans(pb1m)>=10),]
head(pb1mf)
## mdm_active1 mdm_active2 mdm_active3 mdm_active4 mdm_latent1
## HIV-Gagp17 38092 23541 40568 15110 1927
## HIV-Gagp2p7 1462 1021 2365 414 51
## HIV-Gagp1Pol 2021 1375 3032 785 83
## HIV-Polprot 27388 18583 44857 9126 1383
## HIV-Polp15p31 75686 55267 105649 14984 3589
## HIV-Vif 5276 4254 7255 1109 221
## mdm_latent2 mdm_latent3 mdm_latent4
## HIV-Gagp17 2077 566 534
## HIV-Gagp2p7 108 37 12
## HIV-Gagp1Pol 129 63 24
## HIV-Polprot 1587 877 250
## HIV-Polp15p31 5077 2425 441
## HIV-Vif 317 146 25
colSums(pb1mf)
## mdm_active1 mdm_active2 mdm_active3 mdm_active4 mdm_latent1 mdm_latent2
## 29512873 22423101 25226765 13842115 2508756 3993617
## mdm_latent3 mdm_latent4
## 2428015 582852
des1m <- as.data.frame(grepl("active",colnames(pb1mf)))
colnames(des1m) <- "case"
plot(cmdscale(dist(t(pb1mf))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",pch=19,col="gray",cex=2)
text(cmdscale(dist(t(pb1mf))), labels=colnames(pb1mf) )
des1m$sample <- rep(1:4,2)
dds <- DESeqDataSetFromMatrix(countData = pb1mf , colData = des1m, design = ~ sample + case)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
de <- as.data.frame(zz[order(zz$pvalue),])
de1mf <- de
write.table(de1mf,"de1mf.tsv",sep="\t")
nrow(subset(de1mf,padj<0.05 & log2FoldChange>0))
## [1] 102
nrow(subset(de1mf,padj<0.05 & log2FoldChange<0))
## [1] 246
head(subset(de1mf,padj<0.05 & log2FoldChange>0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in active MDM cells") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
HIV-EnvStart | 106.40798 | 1.508999 | 0.2336803 | 6.457538 | 0.0e+00 | 0.0000002 |
HIV-TatEx2Rev | 171.30897 | 1.228427 | 0.2010876 | 6.108913 | 0.0e+00 | 0.0000011 |
HIV-EGFP | 179.06534 | 1.505331 | 0.2723122 | 5.527959 | 0.0e+00 | 0.0000230 |
HIV-BaLEnv | 8035.68066 | 1.270031 | 0.2309893 | 5.498224 | 0.0e+00 | 0.0000257 |
HIV-Vpr | 76.19161 | 1.396513 | 0.2655816 | 5.258322 | 1.0e-07 | 0.0000700 |
HPGD | 609.85581 | 1.051743 | 0.2092152 | 5.027088 | 5.0e-07 | 0.0001900 |
TNFRSF9 | 79.53884 | 2.223553 | 0.4425434 | 5.024485 | 5.0e-07 | 0.0001900 |
HIV-Vpu | 133.16300 | 1.275730 | 0.2571406 | 4.961216 | 7.0e-07 | 0.0002343 |
HIV-Vif | 834.80391 | 1.603745 | 0.3339763 | 4.801974 | 1.6e-06 | 0.0004205 |
HIV-Gagp1Pol | 362.34737 | 1.368681 | 0.2964683 | 4.616618 | 3.9e-06 | 0.0008541 |
head(subset(de1mf,padj<0.05 & log2FoldChange<0),10)[,1:6] %>%
kbl(caption="Top downregulated genes in active MDM cells") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
PDE4B | 111.80062 | -3.307095 | 0.3853403 | -8.582270 | 0 | 0.0e+00 |
STAB1 | 58.70194 | -5.220943 | 0.6780455 | -7.699988 | 0 | 0.0e+00 |
VAMP5 | 158.27240 | -1.835932 | 0.2578050 | -7.121397 | 0 | 0.0e+00 |
FCN1 | 82.63210 | -3.108742 | 0.4481621 | -6.936648 | 0 | 0.0e+00 |
VCAN | 16.54526 | -4.682256 | 0.7056837 | -6.635063 | 0 | 1.0e-07 |
PDE7B | 32.06724 | -3.887577 | 0.6089721 | -6.383836 | 0 | 3.0e-07 |
SESN3 | 60.20373 | -2.125609 | 0.3342092 | -6.360116 | 0 | 3.0e-07 |
MS4A6A | 293.46672 | -3.015229 | 0.4809701 | -6.269057 | 0 | 5.0e-07 |
FGL2 | 72.58902 | -3.292405 | 0.5370701 | -6.130308 | 0 | 1.1e-06 |
SSBP2 | 60.95534 | -3.024786 | 0.4988879 | -6.063057 | 0 | 1.3e-06 |
m1m <- mitch_import(de,DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 13336
## Note: no. genes in output = 13336
## Note: estimated proportion of input genes in output = 1
mres1m <- mitch_calc(m1m,genesets=go,minsetsize=5,cores=4,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres1m$enrichment_result
mitchtbl <- mres1m$enrichment_result
goid <- sapply(strsplit(mitchtbl$set," "),"[[",1)
mysplit <- strsplit(mitchtbl$set," ")
mysplit <- lapply(mysplit, function(x) { x[2:length(x)] } )
godescription <- unlist(lapply(mysplit, function(x) { paste(x,collapse=" ") } ))
em <- data.frame(goid,godescription,mitchtbl$pANOVA,mitchtbl$p.adjustANOVA,sign(mitchtbl$s.dist),mitchtbl$s.dist)
colnames(em) <- c("GO.ID","Description","p.Val","FDR","Phenotype","ES")
write.table(em,"de1mf_em.tsv",row.names = FALSE, quote=FALSE,sep="\t")
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
par(mar=c(5,27,3,1))
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="")
if (! file.exists("MDM_latent_vs_active.html") ) {
mitch_report(mres1m,outfile="MDM_latent_vs_active.html")
}
networkplot(mres1m,FDR=0.05,n_sets=20)
network_genes(mres1m,FDR=0.05,n_sets=20)
## [[1]]
## [[1]]$`UP genesets.GO:0000221 vacuolar proton-transporting V-type ATPase, V1 domain`
## [1] "ATP6V1F" "ATP6V1D" "ATP6V1G1"
##
## [[1]]$`UP genesets.GO:0005744 TIM23 mitochondrial import inner membrane translocase complex`
## [1] "TIMM44" "GRPEL1"
##
## [[1]]$`UP genesets.GO:0005761 mitochondrial ribosome`
## [1] "MRPL18" "MRPL40" "MRPL34" "MRPL43"
##
## [[1]]$`UP genesets.GO:0005762 mitochondrial large ribosomal subunit`
## [1] "MRPL18" "MRPL40" "MRPL15" "MRPL47" "MRPL54" "MRPL34" "MRPL43" "MRPL22"
##
## [[1]]$`UP genesets.GO:0005763 mitochondrial small ribosomal subunit`
## [1] "MRPS16" "CHCHD1" "MRPS10" "AURKAIP1" "MRPS15" "MRPS24"
##
## [[1]]$`UP genesets.GO:0005839 proteasome core complex`
## [1] "PSMA7" "PSMB1" "PSMA3" "PSMA6" "PSMA4" "PSMB6" "PSMA2"
##
## [[1]]$`UP genesets.GO:0005885 Arp2/3 protein complex`
## [1] "ARPC1B" "ARPC5L" "ARPC2" "ACTR3" "ARPC5" "ARPC3" "ARPC1A"
##
## [[1]]$`UP genesets.GO:0008540 proteasome regulatory particle, base subcomplex`
## [1] "PSMC2" "PSMC3"
##
## [[1]]$`UP genesets.GO:0008541 proteasome regulatory particle, lid subcomplex`
## [1] "PSMD8" "SEM1"
##
## [[1]]$`UP genesets.GO:0010756 positive regulation of plasminogen activation`
## [1] "ENO1" "S100A10"
##
## [[1]]$`UP genesets.GO:0015078 proton transmembrane transporter activity`
## [1] "ATP6V1F" "UCP2" "SLC25A4"
##
## [[1]]$`UP genesets.GO:0019773 proteasome core complex, alpha-subunit complex`
## [1] "PSMA7" "PSMA3" "PSMA6" "PSMA4" "PSMA2"
##
## [[1]]$`UP genesets.GO:0022624 proteasome accessory complex`
## [1] "PSMD8" "PSMC2" "PSMC3"
##
## [[1]]$`UP genesets.GO:0030150 protein import into mitochondrial matrix`
## [1] "TIMM44" "GRPEL1"
##
## [[1]]$`UP genesets.GO:0030836 positive regulation of actin filament depolymerization`
## [1] "WDR1" "PLEK"
##
## [[1]]$`UP genesets.GO:0032543 mitochondrial translation`
## [1] "MRPS16" "MRPL18" "MRPL40" "CHCHD1" "MRPS10" "AURKAIP1"
## [7] "MRPS15" "MRPL15" "MRPL47" "MRPL54" "MRPL34" "MRPL43"
## [13] "MRPS24" "MRPL22"
##
## [[1]]$`UP genesets.GO:0034709 methylosome`
## character(0)
##
## [[1]]$`UP genesets.GO:0044305 calyx of Held`
## [1] "ACTG1" "CALM3" "CALM1"
##
## [[1]]$`UP genesets.GO:0046961 proton-transporting ATPase activity, rotational mechanism`
## [1] "ATP6V1F" "ATP6V0D2" "ATP6V1D" "ATP6V1G1" "ATP5F1B"
##
## [[1]]$`UP genesets.GO:0097250 mitochondrial respirasome assembly`
## [1] "RAB5IF"
##
## [[1]]$`DOWN genesets.GO:0002503 peptide antigen assembly with MHC class II protein complex`
## [1] "HLA-DOA" "HLA-DPA1" "HLA-DPB1" "HLA-DRA" "HLA-DMA" "HLA-DRB1"
## [7] "HLA-DQA1" "HLA-DMB" "HLA-DQB1" "HLA-DQA2" "HLA-DRB5" "B2M"
##
## [[1]]$`DOWN genesets.GO:0005942 phosphatidylinositol 3-kinase complex`
## [1] "PIK3R1" "PIK3R5" "PIK3CD" "PIK3R6" "PIK3CB" "PIK3CA"
##
## [[1]]$`DOWN genesets.GO:0006198 cAMP catabolic process`
## [1] "PDE4B" "PDE7B" "PDE7A" "PDE8B" "PDE4A" "PDE4D" "PDE8A"
##
## [[1]]$`DOWN genesets.GO:0016303 1-phosphatidylinositol-3-kinase activity`
## [1] "ATM" "PIK3CG" "PIK3CD" "PIK3CB" "PIK3CA" "PIK3C3" "PIK3C2B"
## [8] "PIK3C2A" "PIK3R3"
##
## [[1]]$`DOWN genesets.GO:0019886 antigen processing and presentation of exogenous peptide antigen via MHC class II`
## [1] "HLA-DOA" "HLA-DPA1" "HLA-DPB1" "HLA-DRA" "HLA-DMA" "CD74"
## [7] "HLA-DRB1" "HLA-DQA1" "HLA-DMB" "CTSF" "CTSS" "PIKFYVE"
## [13] "HLA-DQB1" "FCER1G" "HLA-DQA2" "CTSL" "HLA-DRB5" "FCGR2B"
## [19] "DNM2" "TRAF6" "IFI30" "CTSD" "CTSV" "B2M"
## [25] "UNC93B1" "LGMN"
##
## [[1]]$`DOWN genesets.GO:0030658 transport vesicle membrane`
## [1] "HLA-DPA1" "HLA-DPB1" "HLA-DRA" "CD74" "ITPR2" "HLA-DRB1"
## [7] "SORL1" "RPH3AL" "HLA-DQA1" "CPE" "HLA-DQB1" "HLA-DQA2"
## [13] "RAB11FIP5" "RAB1A" "SNTB2" "SLC17A9" "HLA-DRB5" "SYTL4"
## [19] "ITPR1" "PAM" "TMEM30A" "VAMP7" "SPRED2" "ARFGEF3"
##
## [[1]]$`DOWN genesets.GO:0031123 RNA 3'-end processing`
## [1] "TUT7" "PAPOLG" "TENT2" "CSTF3" "TUT1" "TUT4" "TENT4B" "TENT4A"
## [9] "MTPAP"
##
## [[1]]$`DOWN genesets.GO:0032395 MHC class II receptor activity`
## [1] "HLA-DOA" "HLA-DPA1" "HLA-DRA" "HLA-DRB1" "HLA-DQA1" "HLA-DQB1" "HLA-DQA2"
##
## [[1]]$`DOWN genesets.GO:0032454 histone H3K9 demethylase activity`
## [1] "KDM3A" "PHF2" "KDM7A" "JMJD1C" "PHF8" "KDM4B" "KDM3B" "KDM1A"
## [9] "KDM4A" "KDM4C" "KDM4D"
##
## [[1]]$`DOWN genesets.GO:0038187 pattern recognition receptor activity`
## [1] "FCN1" "TLR8" "TLR2" "NLRP1" "COLEC12" "ASGR1" "TLR5"
## [8] "NOD1" "CLEC7A" "IFIH1" "MARCO" "CLEC4E" "CLEC4A" "CARD8"
## [15] "PYCARD" "TRIM5" "DHX16" "CLEC12A"
##
## [[1]]$`DOWN genesets.GO:0042605 peptide antigen binding`
## [1] "HLA-DOA" "HLA-DPA1" "HLA-DPB1" "HLA-DRA" "HLA-DMA" "HLA-DRB1"
## [7] "HLA-DQA1" "HLA-DMB" "HFE" "HLA-E" "HLA-DQB1" "SLC7A8"
## [13] "FCGRT" "HLA-DQA2" "HLA-B" "HLA-DRB5" "SLC7A5" "TAPBP"
## [19] "HLA-C" "MAML1" "TAP1" "TAP2" "HLA-A" "HLA-F"
## [25] "HLA-G" "B2M"
##
## [[1]]$`DOWN genesets.GO:0042613 MHC class II protein complex`
## [1] "HLA-DOA" "HLA-DPA1" "HLA-DPB1" "HLA-DRA" "HLA-DMA" "CD74"
## [7] "HLA-DRB1" "HLA-DQA1" "HLA-DMB" "HLA-DQB1" "HLA-DQA2" "HLA-DRB5"
## [13] "B2M"
##
## [[1]]$`DOWN genesets.GO:0044849 estrous cycle`
## [1] "IGF1R" "MDK" "NCOA1" "EGR1" "OPRL1" "CYP1B1" "NCOR2"
## [8] "ADNP" "PCNA" "SLC26A6"
##
## [[1]]$`DOWN genesets.GO:0046847 filopodium assembly`
## [1] "FGD4" "SRGAP2" "SPATA13" "TGFBR1" "FGD3" "S1PR2" "FMNL3"
## [8] "DNM3" "SH3BP1" "CD2AP" "FGD5" "EZR" "CDC42" "ITGB4"
## [15] "SRF" "PPP1R9B" "FGD2" "FGD6"
##
## [[1]]$`DOWN genesets.GO:0046849 bone remodeling`
## [1] "MITF" "RASSF2" "NOTCH2" "DOCK5" "LGR4" "LTBP3" "LRP5"
##
## [[1]]$`DOWN genesets.GO:0046934 1-phosphatidylinositol-4,5-bisphosphate 3-kinase activity`
## [1] "PIK3CG" "PIK3CD" "PIK3R6" "PIK3CB" "PIK3CA" "IPMK" "PIK3C2A"
##
## [[1]]$`DOWN genesets.GO:0048015 phosphatidylinositol-mediated signaling`
## [1] "PLCL2" "PIK3CG" "PIK3CD" "PIK3CB" "PIK3CA" "PLCG2" "PLCB1"
## [8] "PIK3C3" "RPS6KB1" "PLCG1" "FGFR1" "PIK3C2B" "PIK3C2A" "PI4KA"
## [15] "PLCB2" "PI4KB" "PLCL1" "PLCB3" "INPP5F"
##
## [[1]]$`DOWN genesets.GO:0050778 positive regulation of immune response`
## [1] "HLA-DOA" "HLA-DPA1" "HLA-DPB1" "HLA-DRA" "HLA-DMA" "HLA-DRB1"
## [7] "HLA-DQA1" "HLA-DMB" "IL15" "HLA-DQB1" "RSAD2" "HLA-DQA2"
## [13] "HLA-DRB5" "B2M" "C9"
##
## [[1]]$`DOWN genesets.GO:0051056 regulation of small GTPase mediated signal transduction`
## [1] "SIPA1L1" "FGD4" "GNA13" "VAV2" "VAV1" "ARHGAP45"
## [7] "VAV3" "RHOD" "GARNL3" "STARD13" "ITSN1" "ARHGAP15"
## [13] "FAM13A" "SRGAP2" "ARHGAP31" "ECT2" "ARHGAP26" "RAP1GAP2"
## [19] "SRGAP3" "ARHGEF3" "SPATA13" "FGD3" "RHOU" "ARHGAP6"
## [25] "SIPA1L3" "ARHGEF10L" "MYO9B" "ARHGAP19" "RALGAPA1" "ARHGAP30"
## [31] "ARHGEF40" "FAM13B" "SH3BP1" "DEF6" "FGD5" "ARHGAP8"
## [37] "ARHGAP20" "SYDE2" "ARHGAP21" "ARHGEF1" "DOCK8" "RACGAP1"
## [43] "AKAP13" "DOCK2" "OBSCN" "ARHGAP11A" "ARHGEF5" "NET1"
## [49] "KALRN" "MYO9A" "GMIP" "SIPA1" "CHN2" "BCR"
## [55] "ARHGAP11B" "ARHGAP4" "CHN1" "RALBP1" "ARHGEF2" "ARHGAP1"
## [61] "ARHGAP22" "ARHGAP5" "TRIO" "PREX1" "ABR" "ARHGAP32"
## [67] "DLC1" "TAGAP" "ARHGEF28" "ARHGEF9" "DOCK3" "ARHGAP27"
## [73] "ARHGEF12" "ARHGAP35" "ARHGEF10" "FGD2" "ARHGAP9" "DNMBP"
## [79] "RALGAPA2" "SIPA1L2" "SWAP70" "TSC2" "ARHGAP10" "ARHGAP18"
## [85] "ARAP1" "ARHGEF11" "TIAM1" "RALGAPB" "TIAM2"
##
## [[1]]$`DOWN genesets.GO:0061470 T follicular helper cell differentiation`
## [1] "FOXP1" "PIK3R1" "GPR183" "RC3H1" "TBK1" "RC3H2" "ICOSLG"
Alv cells.
pbalv <- pbmono[,grep("alv",colnames(pbmono))]
pb1a <- pbalv[,c(grep("active",colnames(pbalv)),grep("latent",colnames(pbalv)))]
head(pb1a)
## alv_active1 alv_active2 alv_active3 alv_latent1 alv_latent2
## HIV-Gagp17 32789 27176 17079 2306 1784
## HIV-Gagp24 0 0 0 0 0
## HIV-Gagp2p7 1201 1242 744 69 104
## HIV-Gagp1Pol 2100 2334 1592 129 163
## HIV-Polprot 23710 30544 21871 1465 2065
## HIV-Polp15p31 38437 59592 41124 2414 4070
## alv_latent3
## HIV-Gagp17 2576
## HIV-Gagp24 0
## HIV-Gagp2p7 121
## HIV-Gagp1Pol 210
## HIV-Polprot 3280
## HIV-Polp15p31 5631
pb1af <- pb1a[which(rowMeans(pb1a)>=10),]
head(pb1af)
## alv_active1 alv_active2 alv_active3 alv_latent1 alv_latent2
## HIV-Gagp17 32789 27176 17079 2306 1784
## HIV-Gagp2p7 1201 1242 744 69 104
## HIV-Gagp1Pol 2100 2334 1592 129 163
## HIV-Polprot 23710 30544 21871 1465 2065
## HIV-Polp15p31 38437 59592 41124 2414 4070
## HIV-Vif 3140 4489 3034 173 322
## alv_latent3
## HIV-Gagp17 2576
## HIV-Gagp2p7 121
## HIV-Gagp1Pol 210
## HIV-Polprot 3280
## HIV-Polp15p31 5631
## HIV-Vif 423
colSums(pb1af)
## alv_active1 alv_active2 alv_active3 alv_latent1 alv_latent2 alv_latent3
## 29715862 28360869 23446102 7231016 4200851 5268032
des1a <- as.data.frame(grepl("active",colnames(pb1af)))
colnames(des1a) <- "case"
plot(cmdscale(dist(t(pb1af))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",pch=19,col="gray",cex=2)
text(cmdscale(dist(t(pb1af))), labels=colnames(pb1af) )
des1a$sample <- rep(1:3,2)
dds <- DESeqDataSetFromMatrix(countData = pb1af , colData = des1a, design = ~ sample + case)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
de <- as.data.frame(zz[order(zz$pvalue),])
de1af <- de
write.table(de1af,"de1af.tsv",sep="\t")
nrow(subset(de1af,padj<0.05 & log2FoldChange>0))
## [1] 23
nrow(subset(de1af,padj<0.05 & log2FoldChange<0))
## [1] 57
head(subset(de1af,padj<0.05 & log2FoldChange>0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in active Alv cells") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
CCL2 | 187.4633 | 1.9143141 | 0.3348532 | 5.716876 | 0.00e+00 | 0.0000161 |
HIV-Gagp17 | 8100.4242 | 1.1977591 | 0.2284677 | 5.242575 | 2.00e-07 | 0.0001386 |
HIV-BaLEnv | 14478.2281 | 1.2308374 | 0.2574098 | 4.781625 | 1.70e-06 | 0.0010322 |
HIV-EnvStart | 304.4463 | 1.3184580 | 0.2769949 | 4.759863 | 1.90e-06 | 0.0010322 |
AP005262.2 | 115.9552 | 1.2581355 | 0.2645860 | 4.755110 | 2.00e-06 | 0.0010322 |
HIV-Gagp1Pol | 641.1340 | 1.2794395 | 0.2715165 | 4.712198 | 2.50e-06 | 0.0011387 |
ANK2 | 554.2652 | 0.6629198 | 0.1448643 | 4.576144 | 4.70e-06 | 0.0019343 |
HIV-Polprot | 8352.3676 | 1.2390814 | 0.2727169 | 4.543470 | 5.50e-06 | 0.0021043 |
HIV-TatEx1 | 1831.0679 | 1.2999113 | 0.2864239 | 4.538417 | 5.70e-06 | 0.0021043 |
SASH1 | 294.2959 | 0.9111924 | 0.2136122 | 4.265638 | 1.99e-05 | 0.0058892 |
head(subset(de1af,padj<0.05 & log2FoldChange<0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in active Alv cells") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
LGALS2 | 217.50384 | -2.2260459 | 0.2893934 | -7.692111 | 0 | 0.00e+00 |
FGL2 | 290.45945 | -1.8890957 | 0.2749454 | -6.870803 | 0 | 0.00e+00 |
IL1R2 | 45.87058 | -2.6702007 | 0.4077695 | -6.548309 | 0 | 2.00e-07 |
KCNMA1 | 1103.71817 | -0.8853129 | 0.1481504 | -5.975770 | 0 | 7.00e-06 |
TXLNB | 89.27259 | -2.0228132 | 0.3417990 | -5.918137 | 0 | 8.00e-06 |
CHST13 | 187.27152 | -1.4785120 | 0.2535128 | -5.832100 | 0 | 9.80e-06 |
NDRG2 | 130.11646 | -1.6267372 | 0.2790974 | -5.828564 | 0 | 9.80e-06 |
GPR68 | 91.66040 | -1.3611671 | 0.2387067 | -5.702256 | 0 | 1.61e-05 |
TSPAN33 | 323.56673 | -1.3038337 | 0.2295032 | -5.681113 | 0 | 1.64e-05 |
VAMP5 | 453.27420 | -1.3754138 | 0.2510658 | -5.478299 | 0 | 4.78e-05 |
m1a <- mitch_import(de,DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 14501
## Note: no. genes in output = 14501
## Note: estimated proportion of input genes in output = 1
mres1a <- mitch_calc(m1a,genesets=go,minsetsize=5,cores=4,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres1a$enrichment_result
mitchtbl <- mres1a$enrichment_result
goid <- sapply(strsplit(mitchtbl$set," "),"[[",1)
mysplit <- strsplit(mitchtbl$set," ")
mysplit <- lapply(mysplit, function(x) { x[2:length(x)] } )
godescription <- unlist(lapply(mysplit, function(x) { paste(x,collapse=" ") } ))
em <- data.frame(goid,godescription,mitchtbl$pANOVA,mitchtbl$p.adjustANOVA,sign(mitchtbl$s.dist),mitchtbl$s.dist)
colnames(em) <- c("GO.ID","Description","p.Val","FDR","Phenotype","ES")
write.table(em,"de1af_em.tsv",row.names = FALSE, quote=FALSE,sep="\t")
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
par(mar=c(5,27,3,1))
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="")
if (! file.exists("Alv_latent_vs_active.html") ) {
mitch_report(mres1a,outfile="Alv_latent_vs_active.html")
}
networkplot(mres1a,FDR=0.05,n_sets=20)
network_genes(mres1a,FDR=0.05,n_sets=20)
## [[1]]
## [[1]]$`UP genesets.GO:0000502 proteasome complex`
## [1] "PSMC4" "PSMB7" "PSMD2" "PSMD8"
##
## [[1]]$`UP genesets.GO:0005739 mitochondrion`
## [1] "ANK2" "SNCA" "SDS" "PRDX5" "BCKDHB" "IFI27L2"
## [7] "ME3" "MRPS33" "SSBP1" "MFN1" "TRIAP1" "MRPL35"
## [13] "MLLT11" "PERP" "OCIAD2" "GDAP1" "PPIF" "MRPS6"
## [19] "NDUFA13" "HEBP2" "MSRB2" "PUS10" "FDXR" "NDUFB8"
## [25] "CARS2" "BCAT1" "SCP2" "DDX1" "DTD1" "NDFIP2"
## [31] "ARMC10" "ARHGAP26" "BCL2" "LYRM2" "SQOR" "DMAC1"
##
## [[1]]$`UP genesets.GO:0005743 mitochondrial inner membrane`
## [1] "MRPS33" "MRPL35" "PPIF" "MRPS6" "NDUFA13" "FDXR" "NDUFB8"
## [8] "SQOR" "DMAC1"
##
## [[1]]$`UP genesets.GO:0005759 mitochondrial matrix`
## [1] "PRDX5" "BCKDHB" "ME3" "SSBP1" "PPIF" "FDXR" "NDUFB8" "FDPS"
## [9] "NRDC"
##
## [[1]]$`UP genesets.GO:0005762 mitochondrial large ribosomal subunit`
## [1] "MRPL35"
##
## [[1]]$`UP genesets.GO:0005763 mitochondrial small ribosomal subunit`
## [1] "MRPS33" "MRPS6"
##
## [[1]]$`UP genesets.GO:0005839 proteasome core complex`
## [1] "PSMB7"
##
## [[1]]$`UP genesets.GO:0022624 proteasome accessory complex`
## [1] "PSMC4" "PSMD2" "PSMD8"
##
## [[1]]$`UP genesets.GO:0032543 mitochondrial translation`
## [1] "MRPS33" "MRPL35" "MRPS6"
##
## [[1]]$`UP genesets.GO:0060271 cilium assembly`
## [1] "BBS7" "ATP6V1D" "WWTR1" "CDC14B" "IFT80" "KIAA0586"
##
## [[1]]$`UP genesets.GO:0140662 ATP-dependent protein folding chaperone`
## [1] "TCP1"
##
## [[1]]$`DOWN genesets.GO:0000381 regulation of alternative mRNA splicing, via spliceosome`
## [1] "TRA2B" "ARGLU1" "RBM5" "ZBTB7A" "CELF1" "FMR1" "RNPS1"
## [8] "SAP18" "SMU1" "HNRNPA1" "YTHDC1" "HNRNPU" "DDX17" "RBFOX1"
## [15] "TIA1" "MAGOH" "RBFOX2" "CELF6" "RBM15" "SRSF2" "DDX5"
## [22] "WTAP" "SRSF6" "THRAP3" "RBM4" "RBM47" "RBPMS2" "RBMX"
## [29] "NSRP1" "REST" "RBM25" "RBM15B" "KHDRBS3" "PTBP1" "PUF60"
## [36] "RBM7" "SRSF8" "RBPMS" "HNRNPL" "CELF2" "RBM8A" "KHDRBS1"
##
## [[1]]$`DOWN genesets.GO:0000976 transcription cis-regulatory region binding`
## [1] "CEBPA" "FOS" "DLX3" "EGR2" "AR" "ZBTB46"
## [7] "BASP1" "RXRA" "JUND" "PER1" "SOX6" "ZNF217"
## [13] "TAF9" "HHEX" "ZNF174" "TP53" "ZFHX3" "NFE2L2"
## [19] "KLF11" "POU2F2" "ZBED4" "SP1" "CEBPB" "STAT3"
## [25] "SPI1" "GABPB1" "OVOL2" "NR1D1" "FLI1" "MESP1"
## [31] "TCF7L2" "ZNF746" "TBL1X" "RUNX1" "CBX4" "SUV39H1"
## [37] "HDAC5" "THRA" "ARID4B" "GFI1" "PER3" "CALCOCO1"
## [43] "IRF1" "BRD4" "JUN" "CARM1" "ZBTB14" "ZNF513"
## [49] "ARID5B" "PAX8" "ATF7" "CREB3L2" "ATF6" "ATF5"
## [55] "FOXO3" "SMAD6" "SMAD4" "KDM5A" "TAF2" "XRCC6"
## [61] "ZBTB48" "KMT2D" "PER2" "TBL1XR1" "ELK1" "ZNF579"
## [67] "YY1" "GRHL1" "DHX36" "HMGB2" "SMARCA2" "TBP"
## [73] "TFE3" "CTCF" "SOX4" "SOX12" "TAF7" "GABPA"
## [79] "FOXK1" "CDK5RAP2" "ATF3" "SFPQ" "BRD7" "CRY2"
## [85] "FOXK2" "CIITA" "ZNF335" "TFAM" "GABPB2" "HMGB1"
## [91] "ERBB4" "HDAC4" "NCOR1" "KLF4" "XBP1" "SOX13"
## [97] "MEN1" "MEF2C" "ATF6B" "ARID4A" "TCF3" "ANKRD23"
## [103] "REST" "ZNF658" "TFEB" "EGR1" "PRDM5" "PIAS1"
## [109] "TNF" "ZNF568" "HSF1" "ATF4" "ZNF281" "BCOR"
## [115] "ARID5A" "ZBTB8A" "CCNT1" "MAFK" "MZF1" "XRCC5"
## [121] "AHR" "SUV39H2" "HNRNPL" "ZBTB20" "NFYA" "HINFP"
## [127] "NFYB" "RELA" "NFYC" "BAHD1" "ZNF639" "ETV5"
## [133] "ZNF808" "RNF10" "CHD3" "MTERF3" "TCF12" "ZNF263"
## [139] "RBBP5" "ATMIN" "RFX3" "TCF7" "NFKB1" "ASH2L"
## [145] "BRCA1" "NR1H3" "DDIT3" "SMAD3"
##
## [[1]]$`DOWN genesets.GO:0001227 DNA-binding transcription repressor activity, RNA polymerase II-specific`
## [1] "NFATC3" "ZBTB46" "FOXP1" "MAX" "ZNF692" "MYC"
## [7] "DEAF1" "BCL6" "MLX" "ZNF217" "ASCL2" "HHEX"
## [13] "KLF16" "HESX1" "MLXIPL" "ZEB2" "TP53" "ZFHX3"
## [19] "ZBTB7A" "MNT" "CEBPB" "CC2D1A" "ZNF134" "KLF8"
## [25] "OVOL2" "NR1D1" "SAMD11" "HES2" "ZNF746" "ZNF205"
## [31] "SKI" "SNAI3" "TRPS1" "ELK3" "BHLHE40" "HES1"
## [37] "GFI1" "NR2F6" "MITF" "ENO1" "ZBTB1" "JUN"
## [43] "ZBTB14" "PURA" "BATF3" "ZBTB21" "ATF7" "ZBTB10"
## [49] "FOXO3" "THAP1" "ZNF219" "ZBTB6" "FOXO1" "TCFL5"
## [55] "BCL11A" "GZF1" "HDGF" "BHLHE41" "SNAI1" "ZNF91"
## [61] "ZBTB4" "ERF" "YY1" "PRDM2" "ZBTB33" "SP3"
## [67] "HIC2" "NR3C1" "TGIF1" "CTCF" "SATB1" "FOXK1"
## [73] "ATF3" "ZBTB37" "VAX2" "NR2C1" "LRRFIP1" "FOXK2"
## [79] "HIVEP1" "NFE2L1" "MXI1" "ZNF354C" "MXD1" "ZBTB2"
## [85] "IRF8" "E2F6" "OVOL1" "ZC3H8" "PRDM1" "NFE2L3"
## [91] "CC2D1B" "SOX13" "CREM" "ZBTB39" "ZNF148" "ZNF85"
## [97] "NFX1" "HES6" "SKIL" "TCF3" "PLAGL1" "ETS2"
## [103] "REST" "ZBTB34" "PATZ1" "PRDM5" "PPARA" "ZNF224"
## [109] "MSC" "POU6F1" "ZBTB5" "HSF1" "BACH1" "KCNIP3"
## [115] "ZNF281" "ZGPAT" "ZNF350" "ZBTB8A" "NACC1" "ZNF202"
## [121] "MAFK" "ZKSCAN3" "MZF1" "FOXP4" "PPARD" "ZNF140"
## [127] "ETV3" "INSM1" "ZBTB20" "HINFP" "ZNF131" "THAP11"
## [133] "RELA" "TGIF2" "ZBTB18" "TFEC" "ZBTB26" "IKZF5"
## [139] "ZNF668" "SMAD5" "MXD3" "SP2" "ZNF589" "ZNF175"
## [145] "ZFP90" "ZBTB45" "IRF3" "KLF12" "ZBTB25" "ZNF512B"
## [151] "NACC2" "ZBTB49" "ZNF263" "ZNF93" "E4F1" "SREBF2"
## [157] "ZBTB17" "GTF2IRD1" "NR1D2" "PURB" "NFKB1" "JDP2"
## [163] "NFIL3" "MYPOP" "NFATC2" "ETV6"
##
## [[1]]$`DOWN genesets.GO:0002181 cytoplasmic translation`
## [1] "RPL10A" "RPL12" "RPL26" "RPL5" "RPL3" "RPL36A" "RPS23"
## [8] "RPL34" "RPL32" "RPS18" "RPS14" "RPS13" "RPS24" "RPL35A"
## [15] "RPS8" "RPL30" "RPS15A" "RPL7A" "RPS4X" "RPL29" "RPL10"
## [22] "RPL22" "RPL37A" "RPS3A" "RPS6" "RPL23" "RPL22L1" "RPL11"
## [29] "RPL17" "RPS19" "RPS9" "RPL4" "RPS25" "RPL6" "RPL37"
## [36] "RPL24" "RPS3" "RPL31" "RPL14" "RPL39" "RPL28" "RPL15"
## [43] "RPS7" "RPS27" "RPL7" "RWDD1" "RPL13" "GTPBP1" "RPS20"
## [50] "RPS27A" "RPL19" "RPL23A" "RPS12" "RPLP1" "RPL18" "DRG2"
## [57] "RPS11" "RPS21" "FAU" "RPL8" "RACK1" "RPL35" "RPL27A"
## [64] "UBA52" "ZC3H15" "RPLP2" "RPL21" "RPS26" "RPL41" "RPL36"
## [71] "RPS15" "FTSJ1" "DRG1" "RPS2" "RPL27" "RPL26L1" "RPS17"
## [78] "RPL38" "RPL13A" "RPS5" "RPL18A" "RPL9" "RPS29" "RPS10"
## [85] "RPS16" "RPS28"
##
## [[1]]$`DOWN genesets.GO:0002503 peptide antigen assembly with MHC class II protein complex`
## [1] "HLA-DPA1" "HLA-DRA" "HLA-DPB1" "HLA-DRB1" "HLA-DMB" "HLA-DMA"
## [7] "HLA-DOA" "HLA-DQB1" "HLA-DRB5" "HLA-DQA1" "B2M"
##
## [[1]]$`DOWN genesets.GO:0006325 chromatin organization`
## [1] "OGT" "HMGN2" "HMGN3" "ZMYND8" "HDAC7" "PWWP3A"
## [7] "SAMD1" "GATAD1" "ZBTB7A" "NUCKS1" "M1AP" "HMG20A"
## [13] "CBX4" "HDAC1" "SUV39H1" "MSL3" "RPA1" "HMGN1"
## [19] "ZNF518A" "TRIM28" "MRGBP" "ABRAXAS1" "RCOR1" "MLLT6"
## [25] "PARP10" "GPX4" "FAM50A" "PHF20" "MMS22L" "HNRNPU"
## [31] "CBX8" "RTF1" "USP36" "PHF13" "TOX" "RHNO1"
## [37] "RBL1" "HMGN4" "TP53BP1" "PHF14" "TBL1XR1" "RNF169"
## [43] "L3MBTL1" "BCORL1" "RAG1" "UTP3" "EP400" "RAD54L2"
## [49] "SIRT1" "HMGB2" "SS18L1" "ZCWPW1" "NR3C1" "SATB1"
## [55] "SAFB" "TDRD3" "HDAC10" "CBX6" "CDAN1" "HDAC3"
## [61] "MBTD1" "L3MBTL2" "EHMT1" "MTA2" "MORF4L2" "NCOR1"
## [67] "IKZF1" "L3MBTL4" "ATRX" "KANSL3" "ATG5" "HMG20B"
## [73] "AEBP2" "ZMYND11" "ENY2" "LRWD1" "UBN2" "PRDM5"
## [79] "SMARCA5" "BUD23" "UBE2B" "HIRIP3" "KANSL2" "BANF1"
## [85] "FAM50B" "APBB1" "CBX2" "ZNF518B" "KANSL1" "RNF40"
## [91] "SUV39H2" "MDC1" "RSF1" "ANP32E" "PHF21A" "EZH2"
## [97] "DNAJC2" "SETD7" "CBX7" "HTATSF1" "RELA" "HMGN5"
## [103] "HLTF" "HDAC8" "ASXL1" "EMSY" "BANP" "SFMBT1"
## [109] "L3MBTL3" "RCCD1" "THAP7" "RBL2" "TOPBP1" "TADA3"
## [115] "EPC2" "RCBTB1" "BRD8" "ZZEF1" "BAG6" "HDAC11"
## [121] "ATXN7L3" "TONSL" "MORF4L1" "UBN1"
##
## [[1]]$`DOWN genesets.GO:0008286 insulin receptor signaling pathway`
## [1] "EPHB1" "CSF1R" "AKT1" "EPHB2" "IRS2" "FGFR1"
## [7] "PDK2" "ALK" "C2CD5" "RHOQ" "ZNF106" "IGF1R"
## [13] "SLC39A14" "MAPK3" "INSR" "NCOA5" "AP3S1" "SREBF1"
## [19] "PIK3R1" "PDK4" "BCAR1" "SMARCC1" "TIE1" "RAF1"
## [25] "SOS2" "FOXO1" "SH2B2" "GRB10" "STXBP4" "PTPRA"
## [31] "TYRO3" "SOS1" "NAMPT" "ERBB4" "PIK3R3" "BAIAP2"
## [37] "GPLD1" "MERTK" "AKT2" "RET" "GSK3B" "EIF4EBP2"
## [43] "GRB2" "PIK3C2A" "PTPN1" "SLC2A8" "FOXO4" "GAB1"
## [49] "PIK3R2" "NDEL1" "SOCS7" "PIK3CA" "MAPK1" "COL6A1"
## [55] "PTPN2" "CAV2" "PDGFRA" "PHIP" "ERBB2" "APC"
## [61] "APPL1" "GSK3A" "AXL" "IDE" "PDPK1" "DDR2"
## [67] "HRAS" "SHC1" "FER"
##
## [[1]]$`DOWN genesets.GO:0016605 PML body`
## [1] "MAX" "BASP1" "TRIM8" "RNF6" "KLHL20" "SUMO2"
## [7] "N4BP1" "ZBED1" "TP53" "SP140" "HIPK3" "SPN"
## [13] "TCF7L2" "MKNK2" "SLF2" "CHEK2" "SKI" "TP53INP1"
## [19] "EIF3E" "WDFY3" "RPA1" "NSMCE2" "HIPK1" "LRCH4"
## [25] "TOP3A" "PARK7" "ZMYM2" "PML" "RB1" "RAD51"
## [31] "RNF111" "THAP1" "TRIM16" "HIRA" "DAXX" "SP3"
## [37] "TOPORS" "SIRT1" "HMBOX1" "CHFR" "SRSF2" "GCNA"
## [43] "TDG" "SATB1" "IKBKE" "NR2C1" "HIPK2" "CIITA"
## [49] "RPAIN" "TDP2" "CSNK2A1" "SPTBN4" "CALCOCO2" "BLM"
## [55] "ATRX" "CSNK2B" "CDK9" "SUMO1" "NBN" "SKIL"
## [61] "RPA2" "MTOR" "PIAS1" "PTEN" "HSF1" "MAPK7"
## [67] "ATR" "RGS14" "USP7" "UBE2I" "TP53INP2" "SMC5"
## [73] "CBX5" "MORC3" "RNF4" "TRIM27" "SP100" "PATL1"
## [79] "EIF4ENIF1" "PIAS2" "SIMC1" "ELF4" "ZNF451" "DAPK3"
## [85] "AKAP8L" "SQSTM1" "KAT6A" "CHD3" "SUMO3" "PIAS4"
## [91] "CASP8AP2" "SENP2" "TOPBP1" "ISG20" "CIART" "UBN1"
## [97] "MRE11" "SMC6" "RFWD3"
##
## [[1]]$`DOWN genesets.GO:0022625 cytosolic large ribosomal subunit`
## [1] "RPL10A" "RPL12" "RPL26" "RPL5" "RPL3" "RPL36A" "RPL34"
## [8] "RPL32" "RPL35A" "RPL30" "RPL7A" "RPL29" "RPL10" "RPL22"
## [15] "RPL37A" "RPL23" "RPL11" "RPL17" "RPL4" "ZCCHC17" "RPL6"
## [22] "RPL37" "RPL24" "RPL31" "RPL14" "RPL39" "RPL28" "RPL15"
## [29] "RPL7" "RPL13" "RPL39L" "RPL19" "RPL23A" "RPLP1" "RPL18"
## [36] "RPL8" "RPL35" "RPL27A" "UBA52" "RPLP2" "RPL21" "RPL41"
## [43] "RPL36" "RPL7L1" "RPL36AL" "RPL27" "RPL26L1" "RPL38" "RPL13A"
## [50] "RPL18A" "RPL9"
##
## [[1]]$`DOWN genesets.GO:0022626 cytosolic ribosome`
## [1] "RPL10A" "RPL12" "RPL26" "RPL5" "RPL3" "APOD" "EEF1A1"
## [8] "RPL36A" "RPS23" "RPL34" "RPL32" "RPS18" "RPS14" "RPS13"
## [15] "RPS24" "RPL35A" "RPS8" "RPL30" "RPS15A" "RPL7A" "RPS4X"
## [22] "RPL29" "RPL10" "RPL22" "RPL37A" "RPS3A" "RPS6" "RPL23"
## [29] "RPL11" "RPL17" "RPS19" "RPS9" "RPL4" "RPS25" "RPL6"
## [36] "RPL37" "RPL24" "RPS3" "RPL31" "RPL14" "RPL39" "RPL28"
## [43] "RPL15" "PELO" "RPS7" "ASCC3" "RPS27" "RPL7" "GSPT1"
## [50] "RPL13" "RPS20" "RPS27A" "RPL19" "RPL23A" "RPS12" "ETF1"
## [57] "RPLP1" "RPL18" "RNF14" "GCN1" "RNF25" "RPS11" "RPS21"
## [64] "FAU" "RPL8" "RPL35" "RPL27A" "UBA52" "RPL21" "ZNF598"
## [71] "RPL36" "RPS15" "EIF2AK4" "ASCC2" "RPS2" "USP10" "RPL27"
## [78] "RPS17" "RPL38" "RNF10" "METAP1" "HBS1L" "NEMF" "RPL13A"
## [85] "RPS5" "RPL18A" "LTN1" "ABCE1" "RPL9" "RPS10" "RPS16"
##
## [[1]]$`DOWN genesets.GO:0022627 cytosolic small ribosomal subunit`
## [1] "RPS23" "RPS18" "RPS14" "RPS13" "RPS24" "RPS8" "RPS15A" "RPS4X"
## [9] "RPS3A" "RPS6" "RPS27L" "RPS19" "RPS9" "RPS25" "RPS3" "RPS7"
## [17] "RPS27" "LARP4" "RPS20" "RPS27A" "RPS12" "DHX29" "RPS11" "RPS21"
## [25] "FAU" "RACK1" "RPS26" "RPS15" "RPS4Y1" "RPS2" "EIF2A" "RPS17"
## [33] "RPS5" "DDX3X" "RPS29" "RPS10" "RPS16" "RPS28"
##
## [[1]]$`DOWN genesets.GO:0032720 negative regulation of tumor necrosis factor production`
## [1] "VSIR" "C5AR2" "ARRB2" "GPNMB" "SYT11" "BPI" "RARA"
## [8] "GSTP1" "BCL3" "IGF1" "LGALS9" "ZC3H12A" "ARG2" "CLEC4A"
## [15] "IL10" "POMC" "RAD21" "IL27RA" "DICER1" "IRAK3" "CD33"
## [22] "TNFAIP3" "TREM2" "PTPN6" "FXR1" "CACTIN" "SIRPA" "NFKBIL1"
## [29] "GAS6" "LILRB4" "ILRUN" "HAVCR2" "LILRA4" "MC1R" "TRIM27"
## [36] "PTPN22" "AKAP8" "TSPO" "ELF4" "SELENOS" "AXL" "ACP5"
## [43] "TLR4" "GHRL"
##
## [[1]]$`DOWN genesets.GO:0042613 MHC class II protein complex`
## [1] "CD74" "HLA-DPA1" "HLA-DRA" "HLA-DPB1" "HLA-DRB1" "HLA-DMB"
## [7] "HLA-DMA" "HLA-DOA" "HLA-DQB1" "HLA-DRB5" "HLA-DQA1" "B2M"
##
## [[1]]$`DOWN genesets.GO:0051607 defense response to virus`
## [1] "TLR8" "IFNGR2" "IFI27" "UNC93B1" "IRF5" "STAT2"
## [7] "TBKBP1" "IFITM2" "PCBP2" "AZU1" "IFI44L" "G3BP1"
## [13] "SPON2" "OAS1" "APOBEC3H" "CARD8" "ZC3H12A" "TRIM56"
## [19] "SAMHD1" "OAS2" "PTPRC" "IFITM3" "CD40" "ADAR"
## [25] "IL10RB" "MX2" "PYCARD" "MAP3K14" "TTC4" "TLR2"
## [31] "LSM14A" "MOV10" "SLFN13" "OAS3" "MYD88" "IFI6"
## [37] "IRF1" "POLR3F" "TRIM52" "PMAIP1" "IRF9" "SERINC3"
## [43] "CRCP" "SLFN11" "GBP1" "IRF2" "BCL2L1" "NCBP1"
## [49] "APOBEC3F" "DDX17" "SKP2" "ZNFX1" "ILF3" "RAB2B"
## [55] "IFIT5" "ATG16L1" "NCBP3" "TBK1" "IRF7" "MX1"
## [61] "SHFL" "CGAS" "RIOK3" "PDE12" "POLR3E" "DDX60L"
## [67] "GBP2" "DHX36" "AZI2" "HYAL2" "TICAM1" "TRIM5"
## [73] "CNOT7" "IFIT3" "TRIM34" "CARD9" "RNF185" "BNIP3"
## [79] "MAVS" "IKBKE" "DDX60" "NLRC5" "APOBEC3C" "EXOSC4"
## [85] "SERINC5" "DDX56" "UNC13D" "ATG7" "ITGAX" "RTP4"
## [91] "HERC5" "RNASE1" "APOBEC3D" "EXOC1" "ATG14" "EXOSC5"
## [97] "TRAF3" "VAMP8" "DDIT4" "SETD2" "RNASEL" "BECN1"
## [103] "POLR3K" "ATG5" "EIF2AK4" "ZMYND11" "PARP9" "DHX15"
## [109] "IL23A" "FADD" "IFIT2" "TRIM22" "ELMOD2" "IFIT1"
## [115] "IFNGR1" "STAT1" "GBP5" "ARMC5" "GPAM" "IFNLR1"
## [121] "BNIP3L" "PLSCR1" "ITCH" "EIF2AK2" "CXADR" "NT5C3A"
## [127] "GBP3" "POLR3H" "TLR3" "TRIM41" "AGBL5" "RIPK3"
## [133] "APOBEC3A" "OASL" "LYST" "POLR3G" "TANK" "PQBP1"
## [139] "RNASE6" "BST2" "RELA" "ISG15" "DTX3L" "RB1CC1"
## [145] "IFNAR2" "NLRP1" "ZNF175" "IRF3" "APOBEC3G" "POLR3A"
## [151] "ZCCHC3" "ABCF3" "NDUFAF4" "POLR3C" "IFI16" "MICA"
## [157] "UBL7" "AIMP1" "DDX21" "MLKL" "ISG20" "IFIH1"
## [163] "POLR3B" "ZC3HAV1" "RSAD2" "POLR3D" "DNAJC3"
##
## [[1]]$`DOWN genesets.GO:0051726 regulation of cell cycle`
## [1] "CEBPA" "PPP1R9B" "VASH1" "JUNB" "JUND" "PRNP"
## [7] "TFDP2" "PKD1" "DDIAS" "RASSF1" "CCNL2" "CDKN1B"
## [13] "PRR11" "TP53" "CCNG2" "EVI2B" "CDKL5" "ITGB1"
## [19] "MECOM" "KAT2B" "PTPRC" "MNT" "ATM" "CDK5"
## [25] "STAT3" "OVOL2" "BAX" "MX2" "TGFBR1" "SIRT2"
## [31] "GPER1" "CTBP1" "MDM4" "TP53INP1" "RIPOR2" "CDK10"
## [37] "STK11" "ACTB" "GADD45B" "CDKL1" "ING3" "JADE1"
## [43] "BIRC2" "MRGBP" "VPS72" "IRF1" "PML" "TRIM36"
## [49] "JUN" "MCRS1" "PUM1" "DMAP1" "MBIP" "CDKN3"
## [55] "BCR" "JADE2" "NFRKB" "TARDBP" "CCNF" "SON"
## [61] "RB1" "RHEB" "SKP2" "MADD" "INO80B" "HSP90AB1"
## [67] "ACTR8" "CDKN2A" "NUP214" "PPM1G" "PCLAF" "PER2"
## [73] "L3MBTL1" "CDK7" "LIN9" "ING5" "PRKACA" "TSC2"
## [79] "YY1" "ZNF703" "MEAF6" "INO80E" "CDK19" "CDKL3"
## [85] "BAK1" "EP400" "COPS5" "HBP1" "CABLES1" "YY1AP1"
## [91] "CDK4" "HIPK2" "FOXM1" "RACK1" "MBTD1" "GAS2"
## [97] "PNPT1" "YEATS2" "CCNL1" "USP16" "CSNK2A1" "PRCC"
## [103] "MORF4L2" "RUVBL1" "CDK8" "KAT7" "PPP1R15A" "BIRC7"
## [109] "CDK11B" "TSC1" "CDK9" "AKT2" "ING4" "INO80"
## [115] "SGSM3" "NBN" "MASTL" "BTRC" "SKIL" "PES1"
## [121] "PLAGL1" "CDK6" "TBRG4" "MAP2K6" "TXLNG" "NANOS3"
## [127] "PRDM11" "PHACTR4" "CDK12" "XIAP" "WDR12" "UBA3"
## [133] "TADA2A" "TRRAP" "GADD45A" "RAD51D" "BAP1" "UCHL5"
## [139] "EIF4G2" "SGF29" "NF2" "KIF20B" "KAT2A" "GADD45G"
## [145] "BIRC3" "WDR5" "KAT14" "CDKL4" "INSM1" "ACTL6A"
## [151] "EPC1" "CABLES2" "BARD1" "PPP2R3B" "CDK13" "BOP1"
## [157] "DR1" "TBRG1" "TSG101" "RBM38" "ZNF268" "UHRF2"
## [163] "ACTR5" "INO80D" "CDK11A" "PPM1A" "CGRRF1" "GRK5"
## [169] "NOP53" "ZBTB49" "KHDRBS1" "KAT5" "TADA3" "TRNP1"
## [175] "EPC2" "E4F1" "YEATS4" "FIGNL1" "UHMK1" "BRD8"
## [181] "CDKL2" "PKD2" "HRAS" "MORF4L1" "ABL1" "BRCA1"
## [187] "RUVBL2" "DDIT3" "DAB2IP"
##
## [[1]]$`DOWN genesets.GO:0060337 type I interferon-mediated signaling pathway`
## [1] "IFI27" "STAT2" "TBKBP1" "IFITM2" "OAS1" "OAS2" "IFITM3" "TRIM65"
## [9] "OAS3" "MYD88" "TBK1" "IRF7" "AZI2" "IFNAR1" "MAVS" "IKBKE"
## [17] "TYK2" "HDAC4" "TRAF3" "STAT1" "OASL" "SP100" "TANK" "IFNAR2"
## [25] "IRF3" "SIN3A" "IRAK1" "IFIH1" "JAK1"
##
## [[1]]$`DOWN genesets.GO:0061158 3'-UTR-mediated mRNA destabilization`
## [1] "ZFP36L1" "PUM2" "ZC3H12A" "ZFP36" "KHSRP" "MOV10" "PUM1"
## [8] "TARDBP" "DHX36" "HNRNPD" "ZC3H12D" "UPF1" "ZFP36L2" "CPEB3"
## [15] "RC3H1"
##
## [[1]]$`DOWN genesets.GO:0071276 cellular response to cadmium ion`
## [1] "HESX1" "MT2A" "OGG1" "MT1F" "MT1E" "HMOX1" "MT1X" "CYBB" "DAXX"
## [10] "MT1H" "MT1G" "SUMO1" "HSF1" "MT1M" "ATP7A"
##
## [[1]]$`DOWN genesets.GO:1990837 sequence-specific double-stranded DNA binding`
## [1] "CEBPD" "FOS" "DLX3" "EGR2" "NFATC3" "KLF13" "FOXP1"
## [8] "MAX" "IRF5" "NFIC" "ZBTB7B" "ZNF384" "RXRA" "JUNB"
## [15] "JUND" "PITX1" "BCL6" "RARA" "MAFF" "MLX" "NFIX"
## [22] "CREB3" "ASCL2" "KLF16" "HESX1" "KLF6" "ZNF768" "POU3F1"
## [29] "ZNF174" "ZBED1" "ZBTB7A" "KLF11" "POU2F2" "SP1" "FOXN2"
## [36] "CEBPB" "KDM5B" "DBP" "E2F3" "ATF2" "OVOL2" "KLF10"
## [43] "NR1D1" "HES2" "FLI1" "ZNF821" "SNAI3" "ZNF740" "ZNF580"
## [50] "CLOCK" "ZNF250" "ELK3" "LBX2" "SREBF1" "RFX1" "BHLHE40"
## [57] "HES1" "ELF2" "GFI1" "NR2F6" "CPSF4" "BATF" "SRF"
## [64] "ESRRB" "NR4A2" "FOSL1" "JUN" "RFX5" "TFCP2" "ZBTB14"
## [71] "NFATC1" "USF2" "IRF9" "ZBTB22" "ZFP41" "IRF2" "MAF"
## [78] "BATF3" "HOXA1" "PAX8" "RFX2" "HNRNPU" "ATF7" "ESRRA"
## [85] "MEF2B" "ZNF12" "ATF6" "CUX1" "TBX1" "FOXO3" "HOXA5"
## [92] "ZNF343" "TCF4" "GMEB2" "ZNF449" "CREB1" "PKNOX1" "TCFL5"
## [99] "YY2" "HNRNPAB" "BHLHE41" "SNAI1" "YBX1" "ZSCAN5A" "TEF"
## [106] "NFAT5" "IRF7" "ELK1" "ELK4" "HSF5" "YY1" "NFKB2"
## [113] "ZNF274" "RUNX2" "ZBTB33" "RUNX3" "SP3" "GRHL1" "LMNB1"
## [120] "CEBPG" "HOXA10" "THRB" "HMBOX1" "ZNF524" "BBX" "TFE3"
## [127] "NR3C1" "TGIF1" "ZNF444" "CTCF" "SOX4" "SOX12" "GABPA"
## [134] "FOXK1" "ZSCAN29" "ATF3" "ESR1" "ZBTB37" "ZNF713" "VAX2"
## [141] "NR2C1" "HIVEP1" "FOSB" "XPA" "ZNF296" "RXRB" "NPAS2"
## [148] "ZBTB2" "NR6A1" "ZFP1" "ZNF787" "USF1" "KLF4" "IRF8"
## [155] "OVOL1" "RARG" "KLF3" "CEBPE" "XBP1" "PRDM4" "PRDM1"
## [162] "MTF1" "CREB3L4" "CREM" "MEF2C" "E2F4" "ATF6B" "HES6"
## [169] "NRL" "ETS2" "ELF1" "TFEB" "ZSCAN9" "ZBTB43" "ZNF704"
## [176] "EGR1" "RFX7" "FOXJ3" "MEIS3" "MSC" "POU6F1" "HSF1"
## [183] "ZNF784" "ATF4" "ARNT" "ZNF281" "FOXO4" "CREB5" "ZNF771"
## [190] "HSF2" "MAFG" "ETV2" "ZNF276" "ZSCAN31" "ZNF385D" "ZNF345"
## [197] "AHR" "ZSCAN16" "NR3C2" "PPARD" "ZNF140" "ETV3" "ZBTB20"
## [204] "ELF5" "TBX19" "ZNF597" "ZNF76" "ZNF75A" "ZNF282" "ZNF410"
## [211] "TGIF2" "ZBTB18" "ELF4" "TFEC" "TFCP2L1" "ZBTB26" "ZNF23"
## [218] "E2F1" "SMAD5" "ETV5" "ZNF460" "SP2" "UBP1" "ZBTB45"
## [225] "IRF3" "MBNL2" "ZNF396" "KLF12" "ZNF684" "GMEB1" "TCF12"
## [232] "ZNF263" "MEF2D" "RFX3" "TCF7" "FOXJ2" "SREBF2" "NR1D2"
## [239] "JDP2" "ABL1" "ZNF32" "HSF4" "ZNF501" "NFATC2" "NR2C2"
## [246] "ZNF177"
##
## [[1]]$`DOWN genesets.GO:1990904 ribonucleoprotein complex`
## [1] "RPL26" "RPL5" "ZFP36L1" "RPS8" "DYRK2" "RPS4X"
## [7] "RPL22" "PCBP2" "RPS3A" "GRSF1" "RPS6" "RNF135"
## [13] "RPL22L1" "PABPC1" "RPS9" "RPL4" "PCBP1" "ZFP36"
## [19] "SLBP" "CELF1" "HSPA8" "RPS3" "RBMS3" "FMR1"
## [25] "NPM1" "RBMS1" "GAPDH" "LSM14A" "PABPN1" "ACTB"
## [31] "RPS7" "RPL7" "HNRNPK" "HNRNPH1" "PHAX" "PABPC1L"
## [37] "TOP2B" "DYRK1A" "HNRNPA1" "HNRNPA0" "EEFSEC" "SRA1"
## [43] "NCBP1" "APOBEC3F" "HNRNPU" "DDX17" "RBM14" "GTF3C1"
## [49] "ILF3" "PCBP4" "EFL1" "TIA1" "HNRNPUL1" "HNRNPH2"
## [55] "HNRNPAB" "YBX1" "CPEB1" "SSB" "MRPL41" "CELF6"
## [61] "JMJD6" "TEP1" "SRRT" "ZC3H14" "PABPC4" "HNRNPF"
## [67] "CPSF3" "HNRNPD" "RO60" "HNRNPH3" "DDX5" "LRRK2"
## [73] "TOP2A" "DAZAP1" "CSNK1E" "IGHMBP2" "ATXN2" "RUVBL1"
## [79] "ZNF827" "MVP" "PA2G4" "RBMX" "RBM12B" "NSRP1"
## [85] "MEPCE" "SLIRP" "IQGAP1" "HSF1" "PATL2" "TEFM"
## [91] "PUF60" "LSM14B" "ZC3H18" "RBMS2" "TRIM21" "MRPL10"
## [97] "NUP98" "XRCC5" "EEF2" "HSPA1A" "CBX5" "ELAVL1"
## [103] "ZFP36L2" "XPO1" "HNRNPL" "DHX9" "RPL27" "JRK"
## [109] "CELF2" "LSM1" "BOP1" "SYNCRIP" "HSPA1B" "ACTN4"
## [115] "PCBP3" "ILF2" "RPS6KL1" "AKAP8L" "LRPPRC" "PIH1D2"
## [121] "APOBEC3G" "RPL13A" "PIH1D1" "SECISBP2" "RPS5" "LARP7"
## [127] "PARP4" "NCL" "RBM45" "RBM12" "HNRNPA2B1" "NUP62"
## [133] "SUZ12" "CPSF6" "HNRNPA3" "HNRNPR" "BRCA1" "NFATC2"
## [139] "RUVBL2" "SECISBP2L"
Combined.
mm1 <- merge(m1a,m1m,by=0)
head(mm1)
## Row.names x.x x.y
## 1 A1BG 0.3726457 0.03903336
## 2 A1BG-AS1 -1.1015815 -0.54327750
## 3 A2M 0.8269858 -0.04242701
## 4 A4GALT 1.2356907 -1.06994742
## 5 AAAS 0.2195956 -0.35071802
## 6 AACS 2.5002124 1.18770579
rownames(mm1) <- mm1[,1]
mm1[,1]=NULL
colnames(mm1) <- c("Alv","MDM")
plot(mm1)
mylm <- lm(mm1)
abline(mylm,col="red",lty=2,lwd=3)
summary(mylm)
##
## Call:
## lm(formula = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.1948 -0.6053 0.0086 0.6214 6.3079
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.022862 0.008593 2.661 0.00781 **
## MDM 0.319117 0.006259 50.989 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9837 on 13111 degrees of freedom
## Multiple R-squared: 0.1655, Adjusted R-squared: 0.1654
## F-statistic: 2600 on 1 and 13111 DF, p-value: < 2.2e-16
cor.test(mm1$Alv,mm1$MDM)
##
## Pearson's product-moment correlation
##
## data: mm1$Alv and mm1$MDM
## t = 50.989, df = 13111, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3924094 0.4209782
## sample estimates:
## cor
## 0.4067932
mm1r <- as.data.frame(apply(mm1,2,rank))
plot(mm1r,cex=0.3)
mylm <- lm(mm1r)
abline(mylm,col="red",lty=2,lwd=3)
summary(mylm)
##
## Call:
## lm(formula = mm1r)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8674.8 -2980.8 -28.6 2959.3 8837.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.184e+03 6.164e+01 67.87 <2e-16 ***
## MDM 3.620e-01 8.141e-03 44.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3529 on 13111 degrees of freedom
## Multiple R-squared: 0.131, Adjusted R-squared: 0.131
## F-statistic: 1977 on 1 and 13111 DF, p-value: < 2.2e-16
cor.test(mm1r$Alv,mm1r$MDM)
##
## Pearson's product-moment correlation
##
## data: mm1r$Alv and mm1r$MDM
## t = 44.462, df = 13111, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3470045 0.3767526
## sample estimates:
## cor
## 0.3619707
MDM group.
pb2m <- pbmdm[,c(grep("bystander",colnames(pbmdm)),grep("latent",colnames(pbmdm)))]
head(pb2m)
## mdm_bystander1 mdm_bystander2 mdm_bystander3 mdm_bystander4
## HIV-Gagp17 255 254 57 61
## HIV-Gagp24 0 0 0 0
## HIV-Gagp2p7 23 32 3 8
## HIV-Gagp1Pol 20 61 16 10
## HIV-Polprot 331 492 181 81
## HIV-Polp15p31 1033 1505 413 181
## mdm_latent1 mdm_latent2 mdm_latent3 mdm_latent4
## HIV-Gagp17 1927 2077 566 534
## HIV-Gagp24 0 0 0 0
## HIV-Gagp2p7 51 108 37 12
## HIV-Gagp1Pol 83 129 63 24
## HIV-Polprot 1383 1587 877 250
## HIV-Polp15p31 3589 5077 2425 441
pb2mf <- pb2m[which(rowMeans(pb2m)>=10),]
head(pb2mf)
## mdm_bystander1 mdm_bystander2 mdm_bystander3 mdm_bystander4
## HIV-Gagp17 255 254 57 61
## HIV-Gagp2p7 23 32 3 8
## HIV-Gagp1Pol 20 61 16 10
## HIV-Polprot 331 492 181 81
## HIV-Polp15p31 1033 1505 413 181
## HIV-Vif 87 73 29 16
## mdm_latent1 mdm_latent2 mdm_latent3 mdm_latent4
## HIV-Gagp17 1927 2077 566 534
## HIV-Gagp2p7 51 108 37 12
## HIV-Gagp1Pol 83 129 63 24
## HIV-Polprot 1383 1587 877 250
## HIV-Polp15p31 3589 5077 2425 441
## HIV-Vif 221 317 146 25
colSums(pb2mf)
## mdm_bystander1 mdm_bystander2 mdm_bystander3 mdm_bystander4 mdm_latent1
## 70251518 68922564 26227400 36266616 2511512
## mdm_latent2 mdm_latent3 mdm_latent4
## 3999100 2431331 583834
des2m <- as.data.frame(grepl("latent",colnames(pb2mf)))
colnames(des2m) <- "case"
plot(cmdscale(dist(t(pb2mf))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",pch=19,col="gray",cex=2)
text(cmdscale(dist(t(pb2mf))), labels=colnames(pb2mf) )
des2m$sample <- rep(1:4,2)
dds <- DESeqDataSetFromMatrix(countData = pb2mf , colData = des2m, design = ~ sample + case)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
de <- as.data.frame(zz[order(zz$pvalue),])
de2mf <- de
write.table(de2mf,"de2mf.tsv",sep="\t")
nrow(subset(de2mf,padj<0.05 & log2FoldChange>0))
## [1] 30
nrow(subset(de2mf,padj<0.05 & log2FoldChange<0))
## [1] 19
head(subset(de2mf,log2FoldChange>0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in latent compared to bystander (MDM paired)") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
HIV-Vif | 312.16572 | 6.060595 | 0.2096421 | 28.90925 | 0 | 0 |
HIV-BaLEnv | 3477.64934 | 6.755062 | 0.2431928 | 27.77657 | 0 | 0 |
HIV-Polp15p31 | 5133.34400 | 6.200422 | 0.3071491 | 20.18701 | 0 | 0 |
HIV-Polprot | 1995.91085 | 6.270763 | 0.3209171 | 19.54013 | 0 | 0 |
HIV-Gagp17 | 2763.92685 | 7.702589 | 0.4093093 | 18.81850 | 0 | 0 |
HIV-Gagp2p7 | 95.31590 | 6.001675 | 0.3530808 | 16.99802 | 0 | 0 |
HIV-EGFP | 67.19305 | 5.954128 | 0.3657873 | 16.27757 | 0 | 0 |
HIV-TatEx2Rev | 79.07938 | 7.161458 | 0.4442420 | 16.12062 | 0 | 0 |
HIV-Vpu | 58.00682 | 5.569366 | 0.3571472 | 15.59404 | 0 | 0 |
HIV-TatEx1 | 246.18840 | 6.224838 | 0.4070984 | 15.29075 | 0 | 0 |
head(subset(de2mf,log2FoldChange<0),10)[,1:6] %>%
kbl(caption="Top downregulated genes in latent compared to bystander (MDM paired)") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
VIM | 24783.4593 | -0.6055611 | 0.1156514 | -5.236091 | 2.00e-07 | 0.0001314 |
FBP1 | 8641.3556 | -0.7193683 | 0.1396845 | -5.149951 | 3.00e-07 | 0.0001971 |
MGST3 | 8645.8034 | -0.4021467 | 0.0795970 | -5.052285 | 4.00e-07 | 0.0002972 |
TMSB4X | 91023.5640 | -0.3227649 | 0.0687588 | -4.694158 | 2.70e-06 | 0.0017358 |
CAPG | 13118.9952 | -0.5307891 | 0.1142230 | -4.646953 | 3.40e-06 | 0.0020849 |
PRDX1 | 11714.8162 | -0.5281115 | 0.1151080 | -4.587966 | 4.50e-06 | 0.0026497 |
CYP27A1 | 4943.4425 | -0.4045165 | 0.0889949 | -4.545390 | 5.50e-06 | 0.0031109 |
TUBB | 1912.4974 | -0.5203904 | 0.1154535 | -4.507360 | 6.60e-06 | 0.0034937 |
IFI27 | 121.1303 | -2.2691939 | 0.5090422 | -4.457771 | 8.30e-06 | 0.0041764 |
TUBB4B | 608.5510 | -0.7597242 | 0.1780907 | -4.265940 | 1.99e-05 | 0.0087433 |
m2m <- mitch_import(de,DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 15078
## Note: no. genes in output = 15078
## Note: estimated proportion of input genes in output = 1
mres2m <- mitch_calc(m2m,genesets=go,minsetsize=5,cores=4,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres2m$enrichment_result
mitchtbl <- mres2m$enrichment_result
goid <- sapply(strsplit(mitchtbl$set," "),"[[",1)
mysplit <- strsplit(mitchtbl$set," ")
mysplit <- lapply(mysplit, function(x) { x[2:length(x)] } )
godescription <- unlist(lapply(mysplit, function(x) { paste(x,collapse=" ") } ))
em <- data.frame(goid,godescription,mitchtbl$pANOVA,mitchtbl$p.adjustANOVA,sign(mitchtbl$s.dist),mitchtbl$s.dist)
colnames(em) <- c("GO.ID","Description","p.Val","FDR","Phenotype","ES")
write.table(em,"de2mf_em.tsv",row.names = FALSE, quote=FALSE,sep="\t")
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
par(mar=c(5,27,3,1))
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="")
if (! file.exists("MDM_bystander_vs_latent.html") ) {
mitch_report(mres2m,outfile="MDM_bystander_vs_latent.html")
}
networkplot(mres2m,FDR=0.05,n_sets=20)
network_genes(mres2m,FDR=0.05,n_sets=20)
## [[1]]
## [[1]]$`UP genesets.GO:0000122 negative regulation of transcription by RNA polymerase II`
## [1] "EGR1" "ZBTB10" "ELK4" "CIITA" "RB1" "MAFB" "ZNF133"
## [8] "SNCA" "FOXO1" "ZHX2" "CRY1" "MDM2" "MEF2C" "HES1"
## [15] "CBFA2T2" "PRKN" "ETS2" "URI1" "SP2" "PLAGL1" "ZBTB20"
## [22] "BCOR" "NR6A1" "KLF4" "ASCL2" "ZNF354C" "CUX1" "WWC2"
## [29] "ZFP36" "NRIP1"
##
## [[1]]$`UP genesets.GO:0000785 chromatin`
## [1] "EGR1" "ELK4" "AHR" "DDB2" "RB1" "SPIN1" "KDM3A" "MAFB"
## [9] "KAT6A" "TRIM24" "PDS5B" "FOXO1" "ZHX2" "HES4" "MEF2C" "HES1"
## [17] "ARID2" "ETS2" "TFCP2" "SP2" "RFX3" "RCC1" "HOXA10" "FANCC"
## [25] "NR6A1" "NFIA" "POLA1" "KLF4" "ASCL2" "ZBED4" "CBX1" "ESCO2"
## [33] "CUX1" "ASF1B" "PBX2" "NRIP1"
##
## [[1]]$`UP genesets.GO:0000977 RNA polymerase II transcription regulatory region sequence-specific DNA binding`
## [1] "EGR1" "ZBTB10" "RB1" "ZNF133" "MEF2C" "ZNF180" "ZNF391" "PLAGL1"
## [9] "BCOR" "ASCL2" "ZBED4" "CUX1" "ZNF550" "PBX2" "ZNF124"
##
## [[1]]$`UP genesets.GO:0000978 RNA polymerase II cis-regulatory region sequence-specific DNA binding`
## [1] "EGR1" "ELK4" "MAFB" "FOXO1" "HES4" "ZNF718" "ZNF658"
## [8] "MEF2C" "ETS2" "TFCP2" "SP2" "RFX3" "ZNF37A" "ZNF765"
## [15] "ZNF713" "PLAGL1" "HOXA10" "ZBTB20" "NFIA" "KLF4" "ASCL2"
## [22] "ZNF354C" "ZNF75D" "ZNF678" "NRIP1"
##
## [[1]]$`UP genesets.GO:0000981 DNA-binding transcription factor activity, RNA polymerase II-specific`
## [1] "EGR1" "ELK4" "AHR" "MAFB" "ZNF133" "FOXO1" "ZHX2"
## [8] "HES4" "ZNF718" "MEF2C" "HES1" "ETS2" "TFCP2" "SP2"
## [15] "RFX3" "ZNF180" "ZNF37A" "ZNF391" "ZNF765" "ZNF713" "HOXA10"
## [22] "NR6A1" "NFIA" "ZNF654" "KLF4" "ASCL2" "ZBED4" "ZNF354C"
## [29] "ZNF75D" "CUX1" "ZNF678" "ZNF550" "PBX2" "ZNF124"
##
## [[1]]$`UP genesets.GO:0001228 DNA-binding transcription activator activity, RNA polymerase II-specific`
## [1] "EGR1" "ELK4" "MAFB" "FOXO1" "ZNF658" "MEF2C" "TFCP2" "PLAGL1"
## [9] "HOXA10" "NR6A1" "NFIA" "KLF4" "ASCL2" "ZBED4" "PBX2"
##
## [[1]]$`UP genesets.GO:0003682 chromatin binding`
## [1] "TOP2A" "ELK4" "KAT6A" "ERCC6" "TRIM24" "FOXO1" "MCM8" "HES1"
## [9] "URI1" "RCC1" "NFIA" "POLA1" "CBX1" "PBX2"
##
## [[1]]$`UP genesets.GO:0004672 protein kinase activity`
## [1] "STK3" "CCL2" "TRIM24" "GUCY2C" "KSR1" "DYRK1A" "TNNI3K" "GRK4"
## [9] "MAP3K1" "RASSF2" "PDK3"
##
## [[1]]$`UP genesets.GO:0005814 centriole`
## [1] "TOP2A" "FBF1" "TUBD1" "CEP192" "SCLT1" "CEP128" "CEP83" "CEP97"
##
## [[1]]$`UP genesets.GO:0006355 regulation of DNA-templated transcription`
## [1] "EMSY" "AHR" "RB1" "SPIN1" "MAFB" "KAT6A" "SLC39A8"
## [8] "ZNF718" "MEF2C" "ATF7IP2" "SSBP2" "RFX3" "ZNF37A" "ZNF713"
## [15] "NFIA" "ZNF654" "WWC2" "MTERF1" "MLF1" "ZNF678"
##
## [[1]]$`UP genesets.GO:0006357 regulation of transcription by RNA polymerase II`
## [1] "EGR1" "ZBTB10" "ELK4" "AHR" "KDM3A" "MAFB" "KAT6A"
## [8] "ZNF133" "FOXO1" "ZHX2" "HES4" "ZNF718" "ZNF658" "HES1"
## [15] "ARID2" "ETS2" "URI1" "TFCP2" "SP2" "DYRK1A" "PHIP"
## [22] "RFX3" "ZNF180" "ZNF37A" "ZNF391" "ZNF765" "ZNF713" "HOXA10"
## [29] "NR6A1" "NFIA" "ZNF654" "EPM2A" "KLF4" "ZNF354C" "ZNF75D"
## [36] "SSH2" "CUX1" "TCF20" "ZNF678" "ZNF550" "ZNF124"
##
## [[1]]$`UP genesets.GO:0008270 zinc ion binding`
## [1] "EGR1" "ADA" "ZCWPW2" "RNF19B" "KAT6A" "TRIM24" "SNCA"
## [8] "TAB3" "MDM2" "PRKN" "ZMYND11" "ZFAND3" "RC3H1" "TUT7"
## [15] "NR6A1" "UBR7" "AGTPBP1" "POLA1" "KLF4" "ZFAND4" "MAP3K1"
## [22] "ZNF75D" "TIMP1"
##
## [[1]]$`UP genesets.GO:0030509 BMP signaling pathway`
## [1] "EGR1" "SMURF1" "HES1" "NFIA"
##
## [[1]]$`UP genesets.GO:0030658 transport vesicle membrane`
## [1] "ITPR2" "HLA-DPB1"
##
## [[1]]$`UP genesets.GO:0032395 MHC class II receptor activity`
## [1] "HLA-DOA"
##
## [[1]]$`UP genesets.GO:0045944 positive regulation of transcription by RNA polymerase II`
## [1] "TOP2A" "PIK3R1" "EGR1" "ELK4" "CIITA" "AHR" "RB1"
## [8] "HGF" "KDM3A" "MAFB" "ERCC6" "IGF1" "FOXO1" "PPP3R1"
## [15] "TLR2" "SLC40A1" "GTF2A1" "ZNF658" "MEF2C" "HES1" "PRKN"
## [22] "ETS2" "TFCP2" "PHIP" "SSBP2" "RFX3" "PLAGL1" "HOXA10"
## [29] "PAXBP1" "NR6A1" "NFIA" "KLF4" "ASCL2" "ZBED4" "SENP1"
## [36] "TCF20" "PPP2R5B" "PBX2" "PPP3CA" "NRIP1"
##
## [[1]]$`UP genesets.GO:0051056 regulation of small GTPase mediated signal transduction`
## [1] "GARNL3" "ARHGEF10L" "RHOD" "ARHGAP6" "STARD13" "RAP1GAP2"
## [7] "NET1" "VAV3" "ARHGAP26" "SRGAP3"
##
## [[1]]$`UP genesets.GO:0060070 canonical Wnt signaling pathway`
## [1] "EDA" "STK3" "FOXO1" "KLF4"
##
## [[1]]$`UP genesets.GO:0061470 T follicular helper cell differentiation`
## [1] "PIK3R1" "RC3H1" "ASCL2"
##
## [[1]]$`UP genesets.GO:0071168 protein localization to chromatin`
## [1] "SPIN1" "MCM8" "ESCO2"
##
## [[1]]$`DOWN genesets.GO:0002181 cytoplasmic translation`
## [1] "RPL7A" "RPL3" "RPS3" "RPL8" "RPS13" "RACK1" "RPL14"
## [8] "RPL29" "RPL15" "RPS9" "RPL5" "RPL11" "RPL10" "RPL12"
## [15] "RPL28" "RPS23" "RPL6" "RPL18" "RPS8" "DRG2" "RPL10A"
## [22] "RPS2" "RPS5" "RPL22" "RPL17" "RPS14" "RPS7" "RPS15"
## [29] "RPL19" "RPL4" "RPS4X" "RPS11" "RPL26" "RPL35A" "RPL7"
## [36] "RPL32" "RPL22L1" "RPS15A" "RPL24" "RPS6" "RPS25" "RPL27"
## [43] "RPS3A" "UBA52" "RPL23" "RPL18A" "RPL13A" "RPL23A" "RPS18"
## [50] "RPL30" "RPS24" "RPL34" "RPS27A" "RPL31" "FAU" "RPL13"
## [57] "RPS10" "RPS16" "RPL39" "RPL37" "RPL26L1" "RPS12" "RPL21"
## [64] "RPL41" "RPL9" "RPS27" "RPL37A" "RPL27A" "RPS26" "RPS21"
## [71] "RPL36A" "RPL36" "RPS28" "RPLP0" "RPLP2" "FTSJ1" "RPL38"
## [78] "DRG1" "RPS29" "RPS17" "GTPBP1" "RPL35" "RPSA" "RPS19"
## [85] "ZC3H15" "RPS20" "RWDD1" "RPLP1"
##
## [[1]]$`DOWN genesets.GO:0003985 acetyl-CoA C-acetyltransferase activity`
## [1] "ACAA1" "HADHB" "ACAT2" "ACAA2" "HADHA" "ACAT1"
##
## [[1]]$`DOWN genesets.GO:0004298 threonine-type endopeptidase activity`
## [1] "PSMB10" "PSMB8" "PSMB6" "PSMB5" "PSMB9" "PSMB7" "TASP1"
##
## [[1]]$`DOWN genesets.GO:0005839 proteasome core complex`
## [1] "PSMB1" "PSMA7" "PSMB10" "PSMA3" "PSMA2" "PSMA6" "PSMA5" "PSMB8"
## [9] "PSMB3" "PSMB6" "PSMA1" "PSMA4" "PSMB4" "PSMB5" "PSMB9" "PSMB2"
## [17] "PSMF1" "PSMB7"
##
## [[1]]$`DOWN genesets.GO:0006739 NADP metabolic process`
## [1] "G6PD" "MDH1" "DCXR" "IDH1" "IDH2" "TP53I3" "PC" "ME1"
## [9] "NOCT"
##
## [[1]]$`DOWN genesets.GO:0015935 small ribosomal subunit`
## [1] "RACK1" "RPS4X" "RPS6" "RPS25" "RPS18" "RPS24" "RPS27A" "FAU"
## [9] "RPS16" "RPS26" "RPS21" "RPS28" "RPS29" "MRPS6"
##
## [[1]]$`DOWN genesets.GO:0015986 proton motive force-driven ATP synthesis`
## [1] "ATP5PB" "ATP5F1C" "ATP5PO" "ATP5F1B" "ATP5MC3" "ATP5MG" "ATP5MGL"
## [8] "ATP5MC2" "ATP6V1A" "ATP5F1A" "ATP5F1D" "ATP5PD" "ATP5ME" "ATP5MF"
## [15] "ATP6V0C" "ATP5PF" "ATP5MC1" "ATP5F1E" "VPS9D1" "MT-ATP8" "MT-ATP6"
##
## [[1]]$`DOWN genesets.GO:0016018 cyclosporin A binding`
## [1] "PPIA" "PPIB" "PPIE" "PPIF" "PPIG" "NKTR" "PPID" "PPIH" "PPIC"
## [10] "PPIL6"
##
## [[1]]$`DOWN genesets.GO:0019773 proteasome core complex, alpha-subunit complex`
## [1] "PSMA7" "PSMA3" "PSMA2" "PSMA6" "PSMA5" "PSMA1" "PSMA4"
##
## [[1]]$`DOWN genesets.GO:0019774 proteasome core complex, beta-subunit complex`
## [1] "PSMB1" "PSMB10" "PSMB8" "PSMB3" "PSMB6" "PSMB4" "PSMB5" "PSMB9"
## [9] "PSMB2" "PSMB7"
##
## [[1]]$`DOWN genesets.GO:0019941 modification-dependent protein catabolic process`
## [1] "UBC" "UBB" "UBA52" "NEDD8" "RPS27A" "FAU" "ISG15" "UBA7"
##
## [[1]]$`DOWN genesets.GO:0022625 cytosolic large ribosomal subunit`
## [1] "RPL7A" "RPL3" "RPL8" "RPL14" "RPL29" "RPL15" "RPL5"
## [8] "RPL11" "RPL10" "RPL12" "RPL28" "RPL6" "RPL18" "RPL10A"
## [15] "RPL22" "RPL17" "RPL19" "RPL4" "RPL26" "RPL35A" "RPL7"
## [22] "RPL36AL" "RPL32" "RPL24" "RPL27" "UBA52" "RPL23" "RPL18A"
## [29] "RPL13A" "RPL23A" "RPL30" "RPL34" "RPL31" "RPL13" "RPL39"
## [36] "RPL37" "RPL26L1" "RPL21" "RPL41" "RPL9" "RPL37A" "RPL27A"
## [43] "RPL36A" "RPL36" "RPLP0" "RPLP2" "RPL38" "RPL7L1" "RPL35"
## [50] "ZCCHC17" "RPL39L" "RPLP1"
##
## [[1]]$`DOWN genesets.GO:0022627 cytosolic small ribosomal subunit`
## [1] "RPS3" "RPS13" "RACK1" "RPS9" "RPS23" "EIF2A" "RPS8" "RPS2"
## [9] "RPS5" "RPS14" "RPS7" "RPS15" "RPS4X" "RPS11" "RPS15A" "RPS6"
## [17] "RPS25" "RPS3A" "RPS18" "RPS24" "RPS27A" "FAU" "RPS10" "RPS16"
## [25] "RPS12" "RPS27" "LARP4" "RPS26" "RPS21" "RPS28" "RPS29" "RPS17"
## [33] "RPSA" "RPS27L" "RPS19" "DHX29" "RPS20" "RPS4Y1" "DDX3X"
##
## [[1]]$`DOWN genesets.GO:0034663 endoplasmic reticulum chaperone complex`
## [1] "PPIB" "HSP90B1" "PDIA6" "P4HB" "HSPA5" "DNAJB11" "DNAJC10"
## [8] "SDF2L1" "HYOU1"
##
## [[1]]$`DOWN genesets.GO:0042776 proton motive force-driven mitochondrial ATP synthesis`
## [1] "NDUFB5" "NDUFB9" "SDHD" "SDHB" "ATP5PB" "NDUFC2" "ATP5F1C"
## [8] "ATP5PO" "ATP5F1B" "NDUFA8" "ATP5MG" "NDUFA9" "NDUFA10" "NDUFAB1"
## [15] "NDUFS2" "NDUFA13" "NDUFS3" "NDUFA12" "NDUFA3" "NDUFS8" "ATP5F1A"
## [22] "SDHC" "STOML2" "NDUFB11" "NDUFS4" "NDUFB3" "NDUFS7" "NDUFB8"
## [29] "ATP5F1D" "NDUFB4" "NDUFA2" "NDUFA7" "NDUFV1" "ATP5PD" "ATP5ME"
## [36] "NDUFV2" "NDUFB10" "NDUFA5" "NDUFC1" "MT-ND6" "NDUFA11" "ATP5MF"
## [43] "NDUFS5" "NDUFA1" "NDUFB7" "ATP5PF" "NDUFS1" "NDUFB2" "NDUFB1"
## [50] "ATP5F1E" "NDUFA6" "MT-ND3" "NDUFS6" "MT-ND4" "NDUFB6" "MT-ATP8"
## [57] "MT-ATP6" "NDUFV3" "MT-ND4L" "SDHA" "MT-ND1" "MT-ND5" "MT-ND2"
##
## [[1]]$`DOWN genesets.GO:0045259 proton-transporting ATP synthase complex`
## [1] "ATP5PB" "ATP5F1C" "ATP5PO" "ATP5F1B" "ATP5MG" "ATP5F1A" "ATP5F1D"
## [8] "ATP5PD" "ATP5ME" "ATP5MF" "ATP5PF" "ATP5MC1" "ATP5F1E" "MT-ATP8"
## [15] "MT-ATP6"
##
## [[1]]$`DOWN genesets.GO:0045271 respiratory chain complex I`
## [1] "NDUFB5" "NDUFB9" "NDUFC2" "NDUFA8" "NDUFA9" "NDUFA10" "NDUFAB1"
## [8] "NDUFS2" "NDUFA13" "NDUFS3" "NDUFA12" "NDUFA3" "NDUFS8" "NDUFB11"
## [15] "NDUFS4" "NDUFB3" "NDUFS7" "NDUFB8" "NDUFB4" "NDUFA2" "NDUFA7"
## [22] "NDUFV1" "NDUFV2" "NDUFB10" "NDUFA5" "NDUFC1" "MT-ND6" "NDUFA11"
## [29] "NDUFS5" "NDUFA1" "NDUFB7" "NDUFS1" "NDUFB2" "NDUFB1" "NDUFA6"
## [36] "MT-ND3" "NDUFS6" "MT-ND4" "NDUFB6" "NDUFV3" "MT-ND4L" "MT-ND1"
## [43] "MT-ND5" "MT-ND2"
##
## [[1]]$`DOWN genesets.GO:0045275 respiratory chain complex III`
## [1] "CYC1" "UQCRB" "UQCRFS1" "BCS1L" "UQCRH" "UQCRC2" "UQCR10"
## [8] "UQCR11" "UQCRC1" "UQCRQ" "MT-CYB" "UQCRHL"
##
## [[1]]$`DOWN genesets.GO:0046933 proton-transporting ATP synthase activity, rotational mechanism`
## [1] "ATP5PB" "ATP5F1C" "ATP5PO" "ATP5F1B" "ATP5MG" "ATP5MGL" "ATP6V1A"
## [8] "ATP5F1A" "ATP5F1D" "ATP5PD" "ATP5ME" "ATP5MF" "ATP6V0C" "ATP5PF"
## [15] "ATP5F1E" "MT-ATP8" "MT-ATP6"
##
## [[1]]$`DOWN genesets.GO:0071541 eukaryotic translation initiation factor 3 complex, eIF3m`
## [1] "EIF3D" "EIF3M" "EIF3I" "EIF3F" "EIF3H" "EIF3A" "EIF3B"
Alv cells.
pb2a <- pbalv[,c(grep("bystander",colnames(pbalv)),grep("latent",colnames(pbalv)))]
head(pb2a)
## alv_bystander1 alv_bystander2 alv_bystander3 alv_latent1
## HIV-Gagp17 106 162 183 2306
## HIV-Gagp24 0 0 0 0
## HIV-Gagp2p7 16 26 17 69
## HIV-Gagp1Pol 26 50 42 129
## HIV-Polprot 208 515 534 1465
## HIV-Polp15p31 476 1203 1151 2414
## alv_latent2 alv_latent3
## HIV-Gagp17 1784 2576
## HIV-Gagp24 0 0
## HIV-Gagp2p7 104 121
## HIV-Gagp1Pol 163 210
## HIV-Polprot 2065 3280
## HIV-Polp15p31 4070 5631
pb2af <- pb2a[which(rowMeans(pb2a)>=10),]
head(pb2af)
## alv_bystander1 alv_bystander2 alv_bystander3 alv_latent1
## HIV-Gagp17 106 162 183 2306
## HIV-Gagp2p7 16 26 17 69
## HIV-Gagp1Pol 26 50 42 129
## HIV-Polprot 208 515 534 1465
## HIV-Polp15p31 476 1203 1151 2414
## HIV-Vif 31 78 86 173
## alv_latent2 alv_latent3
## HIV-Gagp17 1784 2576
## HIV-Gagp2p7 104 121
## HIV-Gagp1Pol 163 210
## HIV-Polprot 2065 3280
## HIV-Polp15p31 4070 5631
## HIV-Vif 322 423
colSums(pb2af)
## alv_bystander1 alv_bystander2 alv_bystander3 alv_latent1 alv_latent2
## 58217374 65486247 58735478 7238086 4203761
## alv_latent3
## 5271201
des2a <- as.data.frame(grepl("latent",colnames(pb2af)))
colnames(des2a) <- "case"
plot(cmdscale(dist(t(pb2af))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",pch=19,col="gray",cex=2)
text(cmdscale(dist(t(pb2af))), labels=colnames(pb2af) )
des2a$sample <- rep(1:3,2)
dds <- DESeqDataSetFromMatrix(countData = pb2af , colData = des2a, design = ~ sample + case)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
de <- as.data.frame(zz[order(zz$pvalue),])
de2af <- de
write.table(de2af,"de2af.tsv",sep="\t")
nrow(subset(de2af,padj<0.05 & log2FoldChange>0))
## [1] 129
nrow(subset(de2af,padj<0.05 & log2FoldChange<0))
## [1] 18
head(subset(de2af, log2FoldChange>0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in latent compared to bystander (Alv paired)") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
HIV-Gagp17 | 3883.4893 | 7.478760 | 0.1268825 | 58.94243 | 0 | 0 |
HIV-BaLEnv | 7093.0345 | 6.767764 | 0.2077302 | 32.57959 | 0 | 0 |
HIV-Polprot | 4223.1618 | 6.055481 | 0.2108850 | 28.71461 | 0 | 0 |
HIV-TatEx1 | 884.5283 | 6.048266 | 0.2361235 | 25.61484 | 0 | 0 |
HIV-Nef | 4865.1335 | 5.228768 | 0.2168170 | 24.11604 | 0 | 0 |
HIV-Polp15p31 | 7626.1756 | 5.722092 | 0.2567299 | 22.28837 | 0 | 0 |
HIV-Gagp1Pol | 309.1866 | 5.696556 | 0.2731985 | 20.85134 | 0 | 0 |
HIV-Vif | 580.6007 | 5.886159 | 0.2911749 | 20.21520 | 0 | 0 |
HIV-EnvStart | 143.5971 | 5.560129 | 0.2872099 | 19.35911 | 0 | 0 |
HIV-TatEx2Rev | 174.7315 | 6.304501 | 0.3579902 | 17.61082 | 0 | 0 |
head(subset(de2af, log2FoldChange<0),10)[,1:6] %>%
kbl(caption="Top downregulated genes in latent compared to bystander (Alv paired)") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
FBP1 | 11600.57229 | -0.5316647 | 0.1131745 | -4.697742 | 0.0000026 | 0.0007527 |
KCNMA1 | 2773.61123 | -0.6607014 | 0.1536891 | -4.298948 | 0.0000172 | 0.0038464 |
ERP29 | 2954.75815 | -0.5833641 | 0.1433450 | -4.069650 | 0.0000471 | 0.0087342 |
HIST1H1C | 789.48480 | -0.8612194 | 0.2124561 | -4.053634 | 0.0000504 | 0.0091643 |
FLRT2 | 460.87686 | -0.7263502 | 0.1795683 | -4.044980 | 0.0000523 | 0.0093827 |
MT-ND6 | 821.08506 | -0.9093873 | 0.2275406 | -3.996593 | 0.0000643 | 0.0108022 |
ZNF804A | 1304.54050 | -0.6201855 | 0.1647291 | -3.764882 | 0.0001666 | 0.0214047 |
TNIK | 1315.46385 | -0.5598225 | 0.1512009 | -3.702508 | 0.0002135 | 0.0251830 |
ATP8B4 | 1444.11342 | -0.6842583 | 0.1859069 | -3.680651 | 0.0002326 | 0.0269701 |
LTB4R | 65.70184 | -1.3610716 | 0.3737966 | -3.641210 | 0.0002714 | 0.0306660 |
m2a <- mitch_import(de,DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 16291
## Note: no. genes in output = 16291
## Note: estimated proportion of input genes in output = 1
mres2a <- mitch_calc(m2a,genesets=go,minsetsize=5,cores=4,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres2a$enrichment_result
mitchtbl <- mres2a$enrichment_result
goid <- sapply(strsplit(mitchtbl$set," "),"[[",1)
mysplit <- strsplit(mitchtbl$set," ")
mysplit <- lapply(mysplit, function(x) { x[2:length(x)] } )
godescription <- unlist(lapply(mysplit, function(x) { paste(x,collapse=" ") } ))
em <- data.frame(goid,godescription,mitchtbl$pANOVA,mitchtbl$p.adjustANOVA,sign(mitchtbl$s.dist),mitchtbl$s.dist)
colnames(em) <- c("GO.ID","Description","p.Val","FDR","Phenotype","ES")
write.table(em,"de2af_em.tsv",row.names = FALSE, quote=FALSE,sep="\t")
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
par(mar=c(5,27,3,1))
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="")
if (! file.exists("Alv_bystander_vs_latent.html") ) {
mitch_report(mres2a,outfile="Alv_bystander_vs_latent.html")
}
networkplot(mres2a,FDR=0.05,n_sets=20)
network_genes(mres2a,FDR=0.05,n_sets=20)
## [[1]]
## [[1]]$`UP genesets.GO:0003925 G protein activity`
## [1] "RALA" "RAB1B" "GNA13" "NRAS" "GNAS"
##
## [[1]]$`UP genesets.GO:0004017 adenylate kinase activity`
## [1] "AK3" "AK8" "AK1"
##
## [[1]]$`UP genesets.GO:0005744 TIM23 mitochondrial import inner membrane translocase complex`
## character(0)
##
## [[1]]$`UP genesets.GO:0005758 mitochondrial intermembrane space`
## [1] "ARL2BP" "CMC4" "TRIAP1" "REXO2" "TIMM10B" "HAX1" "TIMM8A"
## [8] "NDUFS5" "COX17" "BLOC1S1" "CHCHD7"
##
## [[1]]$`UP genesets.GO:0005762 mitochondrial large ribosomal subunit`
## [1] "MRPL41" "MRPL33" "MRPL52" "MRPL42"
##
## [[1]]$`UP genesets.GO:0006091 generation of precursor metabolites and energy`
## [1] "COX17" "POMC" "COX7C"
##
## [[1]]$`UP genesets.GO:0006626 protein targeting to mitochondrion`
## [1] "BID" "TOMM5"
##
## [[1]]$`UP genesets.GO:0006695 cholesterol biosynthetic process`
## [1] "INSIG1" "DHCR24" "DHCR7" "EBP" "CYB5R3"
##
## [[1]]$`UP genesets.GO:0006783 heme biosynthetic process`
## [1] "SLC25A39" "TMEM14C" "UROS"
##
## [[1]]$`UP genesets.GO:0006882 intracellular zinc ion homeostasis`
## [1] "MT1G" "ATP13A2" "MT1H" "MT1F" "MT1X" "SLC39A13"
##
## [[1]]$`UP genesets.GO:0016226 iron-sulfur cluster assembly`
## [1] "FDX2" "ISCA1" "CIAO1" "BOLA3" "ISCU" "LYRM4"
##
## [[1]]$`UP genesets.GO:0032418 lysosome localization`
## [1] "BLOC1S2" "RNF167" "DEF8" "BLOC1S1" "PLEKHM1"
##
## [[1]]$`UP genesets.GO:0033617 mitochondrial cytochrome c oxidase assembly`
## [1] "COX17" "SURF1" "COX18" "COA8"
##
## [[1]]$`UP genesets.GO:0044571 [2Fe-2S] cluster assembly`
## [1] "FDX2" "ISCU" "LYRM4"
##
## [[1]]$`UP genesets.GO:0051537 2 iron, 2 sulfur cluster binding`
## [1] "FDX2" "SLC25A39" "CISD3" "ISCA1" "CISD2" "ISCU"
##
## [[1]]$`UP genesets.GO:0051881 regulation of mitochondrial membrane potential`
## [1] "TUSC2" "SOD2"
##
## [[1]]$`UP genesets.GO:0071280 cellular response to copper ion`
## [1] "SNCA" "MT1G" "MT1H" "MT1F" "MT1X"
##
## [[1]]$`UP genesets.GO:0098803 respiratory chain complex`
## [1] "COX7A2" "UQCRH" "SURF1"
##
## [[1]]$`UP genesets.GO:0106035 protein maturation by [4Fe-4S] cluster transfer`
## [1] "BOLA3"
##
## [[1]]$`UP genesets.GO:1990229 iron-sulfur cluster assembly complex`
## [1] "FDX2" "BOLA3" "ISCU" "LYRM4"
##
## [[1]]$`DOWN genesets.GO:0000228 nuclear chromosome`
## [1] "BIRC5" "PBRM1" "SPIDR" "SETX" "RAD51" "TOP1" "EXOSC9"
## [8] "HNRNPU" "HDAC8" "IK" "TOP2A" "TERF2IP" "BAZ1A" "SMARCE1"
## [15] "PINX1" "SMARCB1" "ATRX" "BLM" "FIGNL1" "JUN" "NCAPD2"
## [22] "SMC2" "CHD1"
##
## [[1]]$`DOWN genesets.GO:0000727 double-strand break repair via break-induced replication`
## [1] "CDC45" "MCM7" "MCM3" "MCM6" "MCM2" "MCM4" "GINS4" "GINS2"
## [9] "CDC7" "MUS81" "MCMDC2" "MCM5"
##
## [[1]]$`DOWN genesets.GO:0003688 DNA replication origin binding`
## [1] "POLA1" "CDC45" "DHX9" "HSPD1" "MCM10" "ORC1" "MCM2" "ORC4" "KAT7"
## [10] "CDC6" "ORC5" "DDX11" "GRWD1" "ORC3" "ORC2" "MCM5"
##
## [[1]]$`DOWN genesets.GO:0006265 DNA topological change`
## [1] "TDRD3" "HMGB2" "TOP1" "TOP2A" "TOP1MT" "TOP2B" "HMGB1" "ERCC3"
## [9] "TOP3B" "TOP3A"
##
## [[1]]$`DOWN genesets.GO:0006271 DNA strand elongation involved in DNA replication`
## [1] "POLA1" "RFC3" "MCM7" "MCM3" "POLD2" "MCM4" "POLD3" "RFC4"
##
## [[1]]$`DOWN genesets.GO:0006353 DNA-templated transcription termination`
## [1] "SMN1" "SETX" "DHX9" "TTF2" "POLR2A" "PRMT5" "WDR82" "TTF1"
## [9] "MTERF1" "ZC3H4"
##
## [[1]]$`DOWN genesets.GO:0008094 ATP-dependent activity, acting on DNA`
## [1] "RAD51B" "RFC3" "RBBP4" "SMARCA2" "RAD51" "XRCC5"
## [7] "INO80" "XRCC6" "BPTF" "CHD6" "TOP2A" "TTF2"
## [13] "MSH6" "IGHMBP2" "BTAF1" "SMARCA4" "ERCC6" "MSH2"
## [19] "HLTF" "CDK7" "DDX11" "BLM" "SMARCAL1" "DHX36"
## [25] "RAD51D" "MYO18A"
##
## [[1]]$`DOWN genesets.GO:0008353 RNA polymerase II CTD heptapeptide repeat kinase activity`
## [1] "CDK1" "CDK13" "DYRK1A" "CDK12" "CDK9" "BRD4" "CDK7" "MAPK1"
## [9] "CCNK"
##
## [[1]]$`DOWN genesets.GO:0019864 IgG binding`
## [1] "FCER1G" "FCGRT" "FCGR1A" "FCGR2B" "FCGR3A" "FCGR2A"
##
## [[1]]$`DOWN genesets.GO:0038094 Fc-gamma receptor signaling pathway`
## [1] "FCER1G" "FCGR1A" "FCGR2B" "FCGR3A" "CD247" "CLEC4E" "FCGR2A" "CD33"
##
## [[1]]$`DOWN genesets.GO:0042555 MCM complex`
## [1] "MCM7" "MCM3" "MCM6" "MCMBP" "MCM2" "MCM4" "MCM9" "MCM8"
## [9] "MMS22L" "TONSL" "MCM5"
##
## [[1]]$`DOWN genesets.GO:0044027 negative regulation of gene expression via chromosomal CpG island methylation`
## [1] "HELLS" "DNMT1" "MECP2" "CTCF" "MYC" "BRCA1"
## [7] "UHRF1" "UHRF2" "DNMT3A" "PRMT5" "MPHOSPH8" "USP7"
## [13] "ZNF445" "EHMT2"
##
## [[1]]$`DOWN genesets.GO:0071162 CMG complex`
## [1] "CDC45" "MCM7" "MCM3" "MCM6" "MCM2" "MCM4" "GINS4" "GINS2" "GINS1"
## [10] "GINS3" "MCM5"
##
## [[1]]$`DOWN genesets.GO:0140092 bBAF complex`
## [1] "SMARCA2" "ARID1A" "SMARCC2" "SMARCA4" "ARID1B" "SMARCE1" "SMARCD2"
## [8] "SMARCB1" "ACTB"
##
## [[1]]$`DOWN genesets.GO:0140833 RNA polymerase II CTD heptapeptide repeat Y1 kinase activity`
## [1] "CDK1" "CDK13" "CDK8" "CDK12" "CDK9" "CDK7"
##
## [[1]]$`DOWN genesets.GO:0140834 RNA polymerase II CTD heptapeptide repeat S2 kinase activity`
## [1] "CDK1" "CDK13" "CDK8" "CDK12" "CDK9" "CDK7"
##
## [[1]]$`DOWN genesets.GO:0140835 RNA polymerase II CTD heptapeptide repeat T4 kinase activity`
## [1] "CDK1" "CDK13" "CDK8" "CDK12" "CDK9" "CDK7"
##
## [[1]]$`DOWN genesets.GO:0140836 RNA polymerase II CTD heptapeptide repeat S5 kinase activity`
## [1] "CDK1" "CDK13" "CDK8" "CDK12" "CDK9" "CDK7"
##
## [[1]]$`DOWN genesets.GO:0140837 RNA polymerase II CTD heptapeptide repeat S7 kinase activity`
## [1] "CDK1" "CDK13" "CDK8" "CDK12" "CDK9" "CDK7"
##
## [[1]]$`DOWN genesets.GO:1905665 positive regulation of calcium ion import across plasma membrane`
## [1] "AKAP5" "PPP3CA" "PPP3CC" "PPP3R1" "P2RX1" "PPP3CB" "P2RX5"
Combined.
mm2 <- merge(m2a,m2m,by=0)
head(mm2)
## Row.names x.x x.y
## 1 A1BG 1.4498277 -0.31296863
## 2 A1BG-AS1 0.5306624 0.30818540
## 3 A2M -0.4846264 -0.60355175
## 4 A2M-AS1 -0.8483824 0.03503586
## 5 A2ML1-AS1 -1.1363073 0.63891414
## 6 AAAS 0.3012506 0.06893024
rownames(mm2) <- mm2[,1]
mm2[,1]=NULL
colnames(mm2) <- c("Alv","MDM")
plot(mm2)
mylm <- lm(mm2)
abline(mylm,col="red",lty=2,lwd=3)
summary(mylm)
##
## Call:
## lm(formula = mm2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.415 -0.782 -0.072 0.679 53.901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.055151 0.011184 4.931 8.26e-07 ***
## MDM 0.264968 0.009284 28.539 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.357 on 14736 degrees of freedom
## Multiple R-squared: 0.05238, Adjusted R-squared: 0.05231
## F-statistic: 814.5 on 1 and 14736 DF, p-value: < 2.2e-16
cor.test(mm2$Alv,mm2$MDM)
##
## Pearson's product-moment correlation
##
## data: mm2$Alv and mm2$MDM
## t = 28.539, df = 14736, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2135053 0.2441043
## sample estimates:
## cor
## 0.2288613
mm2r <- as.data.frame(apply(mm2,2,rank))
plot(mm2r,cex=0.3)
mylm <- lm(mm2r)
abline(mylm,col="red",lty=2,lwd=3)
summary(mylm)
##
## Call:
## lm(formula = mm2r)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7715.4 -3694.2 -10.7 3673.6 7715.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.716e+03 7.002e+01 110.202 < 2e-16 ***
## MDM -4.708e-02 8.229e-03 -5.722 1.07e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4250 on 14736 degrees of freedom
## Multiple R-squared: 0.002217, Adjusted R-squared: 0.002149
## F-statistic: 32.74 on 1 and 14736 DF, p-value: 1.075e-08
cor.test(mm2r$Alv,mm2r$MDM)
##
## Pearson's product-moment correlation
##
## data: mm2r$Alv and mm2r$MDM
## t = -5.7218, df = 14736, p-value = 1.075e-08
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.06317936 -0.03096113
## sample estimates:
## cor
## -0.04708249
MDM group.
pb3m <- pbmdm[,c(grep("active",colnames(pbmdm)),grep("mock",colnames(pbmdm)))]
head(pb3m)
## mdm_active1 mdm_active2 mdm_active3 mdm_active4 mdm_mock1
## HIV-Gagp17 38092 23541 40568 15110 117
## HIV-Gagp24 0 0 0 0 0
## HIV-Gagp2p7 1462 1021 2365 414 5
## HIV-Gagp1Pol 2021 1375 3032 785 7
## HIV-Polprot 27388 18583 44857 9126 136
## HIV-Polp15p31 75686 55267 105649 14984 341
## mdm_mock2 mdm_mock3 mdm_mock4
## HIV-Gagp17 253 37 159
## HIV-Gagp24 0 0 0
## HIV-Gagp2p7 8 1 5
## HIV-Gagp1Pol 14 3 13
## HIV-Polprot 196 47 146
## HIV-Polp15p31 550 101 257
pb3mf <- pb3m[which(rowMeans(pb3m)>=10),]
head(pb3mf)
## mdm_active1 mdm_active2 mdm_active3 mdm_active4 mdm_mock1
## HIV-Gagp17 38092 23541 40568 15110 117
## HIV-Gagp2p7 1462 1021 2365 414 5
## HIV-Gagp1Pol 2021 1375 3032 785 7
## HIV-Polprot 27388 18583 44857 9126 136
## HIV-Polp15p31 75686 55267 105649 14984 341
## HIV-Vif 5276 4254 7255 1109 15
## mdm_mock2 mdm_mock3 mdm_mock4
## HIV-Gagp17 253 37 159
## HIV-Gagp2p7 8 1 5
## HIV-Gagp1Pol 14 3 13
## HIV-Polprot 196 47 146
## HIV-Polp15p31 550 101 257
## HIV-Vif 45 8 17
colSums(pb3mf)
## mdm_active1 mdm_active2 mdm_active3 mdm_active4 mdm_mock1 mdm_mock2
## 29532716 22439063 25242866 13852866 28545021 20536722
## mdm_mock3 mdm_mock4
## 7022107 20628091
des3m <- as.data.frame(grepl("active",colnames(pb3mf)))
colnames(des3m) <- "case"
plot(cmdscale(dist(t(pb3mf))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",pch=19,col="gray",cex=2)
text(cmdscale(dist(t(pb3mf))), labels=colnames(pb3mf) )
des3m$sample <- rep(1:4,2)
dds <- DESeqDataSetFromMatrix(countData = pb3mf , colData = des3m, design = ~ sample + case)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
de <- as.data.frame(zz[order(zz$pvalue),])
de3mf <- de
write.table(de3mf,"de3mf.tsv",sep="\t")
nrow(subset(de3mf,padj<0.05 & log2FoldChange>0))
## [1] 331
nrow(subset(de3mf,padj<0.05 & log2FoldChange<0))
## [1] 482
head(subset(de3mf,padj<0.05 & log2FoldChange>0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in active MDM cells compared to mock") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
HIV-Gagp17 | 12498.4369 | 7.501364 | 0.3158859 | 23.74707 | 0 | 0 |
HIV-Polprot | 10407.8721 | 7.303870 | 0.3339530 | 21.87096 | 0 | 0 |
HIV-TatEx1 | 1135.6725 | 7.144389 | 0.3282006 | 21.76836 | 0 | 0 |
HIV-BaLEnv | 16603.6070 | 7.389094 | 0.3399286 | 21.73719 | 0 | 0 |
HIV-Polp15p31 | 25546.9540 | 7.367479 | 0.3816660 | 19.30347 | 0 | 0 |
HIV-Gagp1Pol | 760.7351 | 7.361945 | 0.3950080 | 18.63746 | 0 | 0 |
HIV-Vpu | 279.0444 | 5.666870 | 0.3114660 | 18.19418 | 0 | 0 |
HIV-EGFP | 391.0342 | 7.640811 | 0.4461126 | 17.12754 | 0 | 0 |
HIV-EnvStart | 232.1886 | 6.838465 | 0.4214554 | 16.22583 | 0 | 0 |
HIV-Vif | 1824.6706 | 7.384595 | 0.4563273 | 16.18267 | 0 | 0 |
head(subset(de1mf,padj<0.05 & log2FoldChange<0),10)[,1:6] %>%
kbl(caption="Top downregulated genes in active MDM cells compared to mock") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
PDE4B | 111.80062 | -3.307095 | 0.3853403 | -8.582270 | 0 | 0.0e+00 |
STAB1 | 58.70194 | -5.220943 | 0.6780455 | -7.699988 | 0 | 0.0e+00 |
VAMP5 | 158.27240 | -1.835932 | 0.2578050 | -7.121397 | 0 | 0.0e+00 |
FCN1 | 82.63210 | -3.108742 | 0.4481621 | -6.936648 | 0 | 0.0e+00 |
VCAN | 16.54526 | -4.682256 | 0.7056837 | -6.635063 | 0 | 1.0e-07 |
PDE7B | 32.06724 | -3.887577 | 0.6089721 | -6.383836 | 0 | 3.0e-07 |
SESN3 | 60.20373 | -2.125609 | 0.3342092 | -6.360116 | 0 | 3.0e-07 |
MS4A6A | 293.46672 | -3.015229 | 0.4809701 | -6.269057 | 0 | 5.0e-07 |
FGL2 | 72.58902 | -3.292405 | 0.5370701 | -6.130308 | 0 | 1.1e-06 |
SSBP2 | 60.95534 | -3.024786 | 0.4988879 | -6.063057 | 0 | 1.3e-06 |
m3m <- mitch_import(de,DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 14556
## Note: no. genes in output = 14556
## Note: estimated proportion of input genes in output = 1
mres3m <- mitch_calc(m3m,genesets=go,minsetsize=5,cores=4,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres3m$enrichment_result
mitchtbl <- mres3m$enrichment_result
goid <- sapply(strsplit(mitchtbl$set," "),"[[",1)
mysplit <- strsplit(mitchtbl$set," ")
mysplit <- lapply(mysplit, function(x) { x[2:length(x)] } )
godescription <- unlist(lapply(mysplit, function(x) { paste(x,collapse=" ") } ))
em <- data.frame(goid,godescription,mitchtbl$pANOVA,mitchtbl$p.adjustANOVA,sign(mitchtbl$s.dist),mitchtbl$s.dist)
colnames(em) <- c("GO.ID","Description","p.Val","FDR","Phenotype","ES")
write.table(em,"de3mf_em.tsv",row.names = FALSE, quote=FALSE,sep="\t")
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
par(mar=c(5,27,3,1))
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="")
if (! file.exists("MDM_mock_vs_active.html") ) {
mitch_report(mres3m,outfile="MDM_mock_vs_active.html")
}
networkplot(mres3m,FDR=0.05,n_sets=20)
network_genes(mres3m,FDR=0.05,n_sets=20)
## [[1]]
## [[1]]$`UP genesets.GO:0000502 proteasome complex`
## [1] "PSMD8" "RAD23A" "PSMC5" "PSMB2" "PSMA7" "RAD23B" "PSMC4" "PSMA4"
## [9] "PSMA6" "PSMC3" "PSMD3" "PSMB1"
##
## [[1]]$`UP genesets.GO:0004532 RNA exonuclease activity`
## [1] "EXOSC1" "EXOSC8"
##
## [[1]]$`UP genesets.GO:0005179 hormone activity`
## [1] "GDF15" "STC2" "CCN3" "EDN1" "ADM2" "NMB"
##
## [[1]]$`UP genesets.GO:0005744 TIM23 mitochondrial import inner membrane translocase complex`
## character(0)
##
## [[1]]$`UP genesets.GO:0005761 mitochondrial ribosome`
## [1] "MRPL18" "MRPS22" "MRPL43"
##
## [[1]]$`UP genesets.GO:0005762 mitochondrial large ribosomal subunit`
## [1] "MRPL18" "MRPL42" "MRPL43" "MRPL3"
##
## [[1]]$`UP genesets.GO:0005763 mitochondrial small ribosomal subunit`
## [1] "MRPS16" "MRPL42" "MRPS15" "MRPS10" "MRPS22" "AURKAIP1"
##
## [[1]]$`UP genesets.GO:0005839 proteasome core complex`
## [1] "PSMB2" "PSMA7" "PSMA4" "PSMA6" "PSMB1"
##
## [[1]]$`UP genesets.GO:0008540 proteasome regulatory particle, base subcomplex`
## [1] "PSMC5" "PSMC4" "PSMC3"
##
## [[1]]$`UP genesets.GO:0008541 proteasome regulatory particle, lid subcomplex`
## [1] "PSMD8" "PSMD3"
##
## [[1]]$`UP genesets.GO:0016226 iron-sulfur cluster assembly`
## [1] "CIAO2B" "NUBPL" "BOLA1"
##
## [[1]]$`UP genesets.GO:0019773 proteasome core complex, alpha-subunit complex`
## [1] "PSMA7" "PSMA4" "PSMA6"
##
## [[1]]$`UP genesets.GO:0022624 proteasome accessory complex`
## [1] "PSMD8" "PSMC5" "PSMC4" "PSMC3" "PSMD3"
##
## [[1]]$`UP genesets.GO:0030150 protein import into mitochondrial matrix`
## character(0)
##
## [[1]]$`UP genesets.GO:0032543 mitochondrial translation`
## [1] "MRPS16" "MRPL18" "MRPL42" "MRPS15" "MRPS10" "MRPS22" "MRPL43"
## [8] "MRPL3" "AURKAIP1"
##
## [[1]]$`UP genesets.GO:0036402 proteasome-activating activity`
## [1] "PSMC5" "PSMC4" "PSMC3"
##
## [[1]]$`UP genesets.GO:0061025 membrane fusion`
## [1] "DPP4" "VTI1B" "YKT6"
##
## [[1]]$`UP genesets.GO:0101019 nucleolar exosome (RNase complex)`
## [1] "EXOSC1" "EXOSC8"
##
## [[1]]$`UP genesets.GO:0101031 protein folding chaperone complex`
## [1] "PSMG1" "DNAJC9" "SPAG1" "UXT" "BAG3" "CCDC47"
##
## [[1]]$`UP genesets.GO:1990229 iron-sulfur cluster assembly complex`
## [1] "BOLA1"
##
## [[1]]$`DOWN genesets.GO:0002503 peptide antigen assembly with MHC class II protein complex`
## [1] "HLA-DPA1" "HLA-DMA" "HLA-DPB1" "HLA-DRA" "HLA-DRB1" "HLA-DMB"
## [7] "HLA-DOA" "HLA-DQA1" "HLA-DQB1" "HLA-DRB5" "HLA-DQA2" "B2M"
##
## [[1]]$`DOWN genesets.GO:0005942 phosphatidylinositol 3-kinase complex`
## [1] "PIK3CD" "PIK3R5" "PIK3CB" "PIK3CA" "PIK3R6" "PIK3R1"
##
## [[1]]$`DOWN genesets.GO:0007019 microtubule depolymerization`
## [1] "KIF14" "BMERB1" "STMN1" "KIF2C" "NCKAP5L" "CKAP5" "KIF18A"
## [8] "KIF24" "KIF2A" "KATNB1"
##
## [[1]]$`DOWN genesets.GO:0008330 protein tyrosine/threonine phosphatase activity`
## [1] "DUSP16" "DUSP7" "DUSP10" "DUSP4" "DUSP6"
##
## [[1]]$`DOWN genesets.GO:0019864 IgG binding`
## [1] "FCGR3A" "FCGR2B" "FCGR1A" "FCGRT" "FCGR2A" "FCER1G"
##
## [[1]]$`DOWN genesets.GO:0019886 antigen processing and presentation of exogenous peptide antigen via MHC class II`
## [1] "HLA-DPA1" "HLA-DMA" "HLA-DPB1" "HLA-DRA" "CD74" "CTSS"
## [7] "HLA-DRB1" "HLA-DMB" "IFI30" "HLA-DOA" "FCGR2B" "CTSF"
## [13] "CTSV" "HLA-DQA1" "UNC93B1" "DNM2" "PIKFYVE" "HLA-DQB1"
## [19] "CTSD" "FCER1G" "HLA-DRB5" "HLA-DQA2" "CTSL" "B2M"
## [25] "LGMN" "TRAF6"
##
## [[1]]$`DOWN genesets.GO:0031123 RNA 3'-end processing`
## [1] "TENT4B" "TENT4A" "PAPOLG" "TUT7" "TUT1" "CSTF3" "TENT2" "TUT4"
## [9] "MTPAP"
##
## [[1]]$`DOWN genesets.GO:0032395 MHC class II receptor activity`
## [1] "HLA-DPA1" "HLA-DRA" "HLA-DRB1" "HLA-DOA" "HLA-DQA1" "HLA-DQB1" "HLA-DQA2"
##
## [[1]]$`DOWN genesets.GO:0032873 negative regulation of stress-activated MAPK cascade`
## [1] "PBK" "FOXM1" "IGBP1" "DUSP10" "MYC" "FOXO1" "PPIA" "GSTP1"
##
## [[1]]$`DOWN genesets.GO:0036150 phosphatidylserine acyl-chain remodeling`
## [1] "MBOAT1" "MBOAT2" "LPCAT3" "OSBPL8" "OSBPL5" "PLA1A" "LPCAT4"
##
## [[1]]$`DOWN genesets.GO:0038094 Fc-gamma receptor signaling pathway`
## [1] "FCGR3A" "CD247" "FCGR2B" "FCGR1A" "FCGR2A" "CD33" "CLEC4E" "FCER1G"
##
## [[1]]$`DOWN genesets.GO:0042555 MCM complex`
## [1] "MCM5" "MCM7" "MCM3" "MCM4" "MCM6" "MCM2" "TONSL" "MCM9"
## [9] "MCMBP" "MCM8" "MMS22L"
##
## [[1]]$`DOWN genesets.GO:0042613 MHC class II protein complex`
## [1] "HLA-DPA1" "HLA-DMA" "HLA-DPB1" "HLA-DRA" "CD74" "HLA-DRB1"
## [7] "HLA-DMB" "HLA-DOA" "HLA-DQA1" "HLA-DQB1" "HLA-DRB5" "HLA-DQA2"
## [13] "B2M"
##
## [[1]]$`DOWN genesets.GO:0051450 myoblast proliferation`
## [1] "HGF" "IGF1" "FOS" "FGR" "ABL1" "CTNNB1" "FES" "SRC"
##
## [[1]]$`DOWN genesets.GO:0051983 regulation of chromosome segregation`
## [1] "MKI67" "CDCA2" "BUB1" "KIF2C" "AURKB" "ZNF207" "PUM1"
## [8] "PUM2" "PPP2R2D" "PPP2R2A"
##
## [[1]]$`DOWN genesets.GO:0071162 CMG complex`
## [1] "MCM5" "GINS2" "MCM7" "MCM3" "MCM4" "MCM6" "MCM2" "GINS4" "GINS1"
## [10] "GINS3"
##
## [[1]]$`DOWN genesets.GO:0071476 cellular hypotonic response`
## [1] "CAB39" "MYLK" "OXSR1" "TRPV4" "STK39" "SLC12A6" "SLC4A11"
## [8] "TSPO"
##
## [[1]]$`DOWN genesets.GO:1900744 regulation of p38MAPK cascade`
## [1] "HGF" "PHLPP1" "PER1" "LGALS9" "AGER" "DAB2IP" "ULK4"
##
## [[1]]$`DOWN genesets.GO:1905870 positive regulation of 3'-UTR-mediated mRNA stabilization`
## [1] "TENT4B" "TENT4A" "LARP4B" "ARID5A" "ELAVL4"
##
## [[1]]$`DOWN genesets.GO:2000179 positive regulation of neural precursor cell proliferation`
## [1] "NAP1L1" "MDK" "NES" "GNAI2" "KDM1A" "INSM1" "FLNA"
pb3a <- pbalv[,c(grep("active",colnames(pbalv)),grep("mock",colnames(pbalv)))]
head(pb3a)
## alv_active1 alv_active2 alv_active3 alv_mock1 alv_mock2 alv_mock3
## HIV-Gagp17 32789 27176 17079 106 178 1530
## HIV-Gagp24 0 0 0 0 0 0
## HIV-Gagp2p7 1201 1242 744 2 7 52
## HIV-Gagp1Pol 2100 2334 1592 6 21 94
## HIV-Polprot 23710 30544 21871 95 230 1596
## HIV-Polp15p31 38437 59592 41124 164 360 2804
pb3af <- pb3a[which(rowMeans(pb3a)>=10),]
head(pb3af)
## alv_active1 alv_active2 alv_active3 alv_mock1 alv_mock2 alv_mock3
## HIV-Gagp17 32789 27176 17079 106 178 1530
## HIV-Gagp2p7 1201 1242 744 2 7 52
## HIV-Gagp1Pol 2100 2334 1592 6 21 94
## HIV-Polprot 23710 30544 21871 95 230 1596
## HIV-Polp15p31 38437 59592 41124 164 360 2804
## HIV-Vif 3140 4489 3034 10 33 162
colSums(pb3af)
## alv_active1 alv_active2 alv_active3 alv_mock1 alv_mock2 alv_mock3
## 29735667 28374259 23458113 20217498 24567251 33158713
des3a <- as.data.frame(grepl("active",colnames(pb3af)))
colnames(des3a) <- "case"
plot(cmdscale(dist(t(pb3af))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",pch=19,col="gray",cex=2)
text(cmdscale(dist(t(pb3af))), labels=colnames(pb3af) )
des3a$sample <- rep(1:3,2)
dds <- DESeqDataSetFromMatrix(countData = pb3af , colData = des3a, design = ~ sample + case)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
de <- as.data.frame(zz[order(zz$pvalue),])
de3af <- de
write.table(de3af,"de3af.tsv",sep="\t")
nrow(subset(de3af,padj<0.05 & log2FoldChange>0))
## [1] 1317
nrow(subset(de3af,padj<0.05 & log2FoldChange<0))
## [1] 1016
head(subset(de3af,padj<0.05 & log2FoldChange>0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in active Alv cells compared to mock") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
SDS | 4663.3040 | 2.108601 | 0.0864428 | 24.39301 | 0 | 0 |
SNCA | 867.9473 | 2.918705 | 0.1394669 | 20.92757 | 0 | 0 |
CDKN1A | 5259.6829 | 1.545713 | 0.0976608 | 15.82736 | 0 | 0 |
AL157912.1 | 745.8582 | 2.694261 | 0.1808349 | 14.89901 | 0 | 0 |
MDM2 | 4016.2286 | 1.414654 | 0.1006816 | 14.05077 | 0 | 0 |
OCIAD2 | 348.2412 | 2.488586 | 0.1919387 | 12.96553 | 0 | 0 |
CIR1 | 37209.1545 | 1.641934 | 0.1269746 | 12.93120 | 0 | 0 |
HES4 | 377.0144 | 2.345086 | 0.1948713 | 12.03403 | 0 | 0 |
CCL22 | 32869.2636 | 2.170492 | 0.1824300 | 11.89767 | 0 | 0 |
NSMCE1-DT | 476.6261 | 1.629657 | 0.1379713 | 11.81157 | 0 | 0 |
head(subset(de3af,padj<0.05 & log2FoldChange<0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in active Alv cells compared to mock") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
LYZ | 45445.6900 | -1.182497 | 0.1060701 | -11.148260 | 0 | 0 |
FLRT2 | 555.0481 | -1.674158 | 0.1507768 | -11.103553 | 0 | 0 |
RARRES1 | 2017.6675 | -1.682100 | 0.1523915 | -11.038017 | 0 | 0 |
LTA4H | 3441.6154 | -1.205164 | 0.1092833 | -11.027887 | 0 | 0 |
NDRG2 | 315.7674 | -1.821109 | 0.1715017 | -10.618605 | 0 | 0 |
HIST1H1C | 782.9297 | -1.170697 | 0.1105688 | -10.587949 | 0 | 0 |
ADA2 | 1768.1605 | -1.060889 | 0.1038563 | -10.214968 | 0 | 0 |
CEBPD | 682.1436 | -1.482679 | 0.1479936 | -10.018537 | 0 | 0 |
STAB1 | 103.2025 | -3.424849 | 0.3429959 | -9.985102 | 0 | 0 |
ANPEP | 1143.3202 | -1.288540 | 0.1335019 | -9.651850 | 0 | 0 |
m3a <- mitch_import(de,DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 15728
## Note: no. genes in output = 15728
## Note: estimated proportion of input genes in output = 1
mres3a <- mitch_calc(m3a,genesets=go,minsetsize=5,cores=4,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres3a$enrichment_result
mitchtbl <- mres3a$enrichment_result
goid <- sapply(strsplit(mitchtbl$set," "),"[[",1)
mysplit <- strsplit(mitchtbl$set," ")
mysplit <- lapply(mysplit, function(x) { x[2:length(x)] } )
godescription <- unlist(lapply(mysplit, function(x) { paste(x,collapse=" ") } ))
em <- data.frame(goid,godescription,mitchtbl$pANOVA,mitchtbl$p.adjustANOVA,sign(mitchtbl$s.dist),mitchtbl$s.dist)
colnames(em) <- c("GO.ID","Description","p.Val","FDR","Phenotype","ES")
write.table(em,"de3af_em.tsv",row.names = FALSE, quote=FALSE,sep="\t")
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
par(mar=c(5,27,3,1))
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="")
if (! file.exists("Alv_mock_vs_active.html") ) {
mitch_report(mres3a,outfile="Alv_mock_vs_active.html")
}
networkplot(mres3a,FDR=0.05,n_sets=20)
network_genes(mres3a,FDR=0.05,n_sets=20)
## [[1]]
## [[1]]$`UP genesets.GO:0004017 adenylate kinase activity`
## [1] "AK3" "AK8" "AK4"
##
## [[1]]$`UP genesets.GO:0005758 mitochondrial intermembrane space`
## [1] "TRIAP1" "TIMM10B" "UQCC2" "CMC4" "TIMM8A" "NDUFS5" "BLOC1S1"
## [8] "CHCHD7" "REXO2" "THEM4" "HAX1" "TIMM9" "COX6C" "SOD1"
## [15] "CYCS" "ARL2BP" "COX17" "NDUFA8" "PRELID2" "GATM" "SDHAF3"
## [22] "THOP1" "PRELID1" "ALPL" "TIMM8B" "GFER" "CHCHD4"
##
## [[1]]$`UP genesets.GO:0005762 mitochondrial large ribosomal subunit`
## [1] "MRPL52" "MRPL41" "MRPL42" "MRPL18" "MRPS30" "MRPL57" "MRPL40" "MRPL35"
## [9] "MRPL33" "MRPL39" "MRPL47" "MRPL12" "MRPL43" "MRPL15" "MRPL27" "MTERF4"
##
## [[1]]$`UP genesets.GO:0005763 mitochondrial small ribosomal subunit`
## [1] "MRPS33" "MRPS18C" "MRPS6" "MRPS16" "MRPL42" "MRPS28"
## [7] "AURKAIP1" "MRPS10" "MRPS12" "MRPS34" "MRPS17" "MRPS15"
## [13] "CHCHD1"
##
## [[1]]$`UP genesets.GO:0006091 generation of precursor metabolites and energy`
## [1] "FDXR" "POMC" "ATP5IF1" "PPP1R2" "COX7C" "CROT" "COX6C"
## [8] "GIPR" "SLC25A4" "COX17" "COX6A1"
##
## [[1]]$`UP genesets.GO:0006626 protein targeting to mitochondrion`
## [1] "BID" "GDAP1" "TOMM5" "TIMM9" "TIMM17A" "PITRM1" "TIMM8B"
## [8] "MFN2" "TOMM34" "MTERF4"
##
## [[1]]$`UP genesets.GO:0006826 iron ion transport`
## [1] "FTL" "SFXN1" "FTH1" "SLC11A2" "TFRC" "FXN"
##
## [[1]]$`UP genesets.GO:0016226 iron-sulfur cluster assembly`
## [1] "BOLA3" "CIAO1" "LYRM4" "XDH" "ISCA1" "FDX2" "NDUFAB1"
## [8] "NUBPL" "CIAO2B" "HSPA9" "FXN" "GLRX3"
##
## [[1]]$`UP genesets.GO:0032402 melanosome transport`
## [1] "BBS7" "MREG" "MLPH" "RAB1A" "RAB27A" "RAB11A"
##
## [[1]]$`UP genesets.GO:0032543 mitochondrial translation`
## [1] "MRPS33" "MRPL52" "MRPS18C" "MRPL41" "MRPS6" "MRPS16"
## [7] "MRPL42" "MRPL18" "MRPS30" "MRPL57" "MRPL40" "MRPL35"
## [13] "MRPL33" "MRPS28" "AURKAIP1" "MRPL39" "MRPS10" "MRPL47"
## [19] "MRPS12" "MRPL12" "MRPS34" "MRPS17" "MRPL43" "MRPS15"
## [25] "CHCHD1" "MRPL15" "MRPL27"
##
## [[1]]$`UP genesets.GO:0033617 mitochondrial cytochrome c oxidase assembly`
## [1] "COX14" "COA1" "COX17" "COA8" "COA3"
##
## [[1]]$`UP genesets.GO:0042719 mitochondrial intermembrane space protein transporter complex`
## [1] "TIMM10B" "TIMM8A" "TIMM9" "TIMM8B"
##
## [[1]]$`UP genesets.GO:0044571 [2Fe-2S] cluster assembly`
## [1] "LYRM4" "FDX2" "NDUFAB1" "FXN" "GLRX3"
##
## [[1]]$`UP genesets.GO:0045039 protein insertion into mitochondrial inner membrane`
## [1] "TIMM10B" "TIMM8A" "NDUFA13" "ROMO1" "TIMM9" "TIMM8B"
##
## [[1]]$`UP genesets.GO:0045071 negative regulation of viral genome replication`
## [1] "ISG15" "EIF2AK2" "OAS1" "BST2" "OAS3" "OASL"
## [7] "TNIP1" "OAS2" "PLSCR1" "RSAD2" "IFIT1" "ISG20"
## [13] "IFIH1" "ZC3HAV1" "TRIM6" "APOBEC3A" "APOBEC3C" "IFITM3"
## [19] "SHFL"
##
## [[1]]$`UP genesets.GO:0045569 TRAIL binding`
## [1] "TNFRSF10B" "TNFRSF10A" "TNFRSF10C"
##
## [[1]]$`UP genesets.GO:0046961 proton-transporting ATPase activity, rotational mechanism`
## [1] "ATP6V1D" "ATP6V1G1" "ATP6V0E1" "ATP6V0E2" "ATP6V0D2" "ATP6V1H" "ATP6V0C"
## [8] "ATP6V1C1" "ATP6V1E1"
##
## [[1]]$`UP genesets.GO:0051537 2 iron, 2 sulfur cluster binding`
## [1] "SLC25A39" "CISD3" "GLRX2" "XDH" "ISCA1" "FDX2" "UQCRFS1"
## [8] "FDX1" "FXN"
##
## [[1]]$`UP genesets.GO:0070106 interleukin-27-mediated signaling pathway`
## [1] "OAS1" "OAS3" "OASL" "OAS2" "STAT1" "IL6ST"
##
## [[1]]$`UP genesets.GO:1990229 iron-sulfur cluster assembly complex`
## [1] "BOLA3" "LYRM4" "FDX2" "NDUFAB1" "FXN" "GLRX3"
##
## [[1]]$`DOWN genesets.GO:0002437 inflammatory response to antigenic stimulus`
## [1] "RBPJ" "HLA-DRB1" "HMGB2" "PNMA1" "KDM6B" "NOTCH2"
## [7] "HMGB1" "NOTCH1" "CYSLTR1" "IL20RB" "CD68" "RASGRP1"
##
## [[1]]$`DOWN genesets.GO:0006265 DNA topological change`
## [1] "HMGB2" "TDRD3" "HMGB1" "TOP2B" "TOP1" "TOP1MT" "TOP3A" "TOP2A"
## [9] "ERCC3" "TOP3B"
##
## [[1]]$`DOWN genesets.GO:0006271 DNA strand elongation involved in DNA replication`
## [1] "MCM7" "MCM3" "RFC3" "MCM4" "POLD3" "POLA1" "RFC4"
##
## [[1]]$`DOWN genesets.GO:0014898 cardiac muscle hypertrophy in response to stress`
## [1] "HDAC4" "PPP3CA" "ATP2A2" "INPP5F" "CAMTA2" "SMAD4" "EZH2" "KDM4A"
##
## [[1]]$`DOWN genesets.GO:0019864 IgG binding`
## [1] "FCGRT" "FCER1G" "FCGR1A" "FCGR3A" "FCGR2A" "FCGR2B"
##
## [[1]]$`DOWN genesets.GO:0030292 protein tyrosine kinase inhibitor activity`
## [1] "PTPRC" "RACK1" "DUSP22" "IBTK" "SOCS3"
##
## [[1]]$`DOWN genesets.GO:0032489 regulation of Cdc42 protein signal transduction`
## [1] "APOA1" "APOE" "NRP1" "ABL1" "RALBP1" "ABCA1"
##
## [[1]]$`DOWN genesets.GO:0036002 pre-mRNA binding`
## [1] "TRA2B" "HNRNPA1" "DDX5" "HNRNPU" "ARGLU1" "CELF1" "SRSF3"
## [8] "RBM22" "CELF2" "SRSF2" "PTBP1" "TARBP2" "SRSF6"
##
## [[1]]$`DOWN genesets.GO:0038094 Fc-gamma receptor signaling pathway`
## [1] "FCER1G" "FCGR1A" "CD33" "FCGR3A" "CD247" "FCGR2A" "CLEC4E" "FCGR2B"
##
## [[1]]$`DOWN genesets.GO:0038156 interleukin-3-mediated signaling pathway`
## [1] "CSF2RB" "FCER1G" "IL3RA" "JAK2" "STAT5A" "SYK"
##
## [[1]]$`DOWN genesets.GO:0042555 MCM complex`
## [1] "MCM7" "MCM3" "MCM4" "MCM6" "MCM9" "MCM2" "MMS22L" "MCMBP"
## [9] "MCM8" "MCM5" "TONSL"
##
## [[1]]$`DOWN genesets.GO:0042800 histone H3K4 methyltransferase activity`
## [1] "KMT2C" "SETD3" "ASH1L" "SETD1B" "KMT2D" "KMT2B" "KMT2A" "SETD1A"
## [9] "SETD4" "SETBP1" "SETMAR" "WDR5"
##
## [[1]]$`DOWN genesets.GO:0044027 negative regulation of gene expression via chromosomal CpG island methylation`
## [1] "DNMT1" "MYC" "HELLS" "BRCA1" "CTCF" "UHRF1"
## [7] "DNMT3A" "MECP2" "MPHOSPH8" "UHRF2" "ZNF445" "EHMT2"
## [13] "PRMT5" "USP7"
##
## [[1]]$`DOWN genesets.GO:0045656 negative regulation of monocyte differentiation`
## [1] "GPR68" "MYC" "ZBTB46" "INPP5D" "CDK6"
##
## [[1]]$`DOWN genesets.GO:0046974 histone H3K9 methyltransferase activity`
## [1] "SETDB1" "ASH1L" "EHMT1" "SETD5" "SETDB2" "SUV39H1" "EHMT2"
## [8] "SUV39H2" "MECOM"
##
## [[1]]$`DOWN genesets.GO:0060766 negative regulation of androgen receptor signaling pathway`
## [1] "FOXP1" "DAB2" "ZBTB7A" "HDAC1" "NCOR1" "NCOR2" "SIRT1"
## [8] "SMARCA4" "PIAS2"
##
## [[1]]$`DOWN genesets.GO:0070578 RISC-loading complex`
## [1] "AGO3" "DICER1" "DHX9" "AGO1" "AGO2" "AGO4" "PRKRA" "TARBP2"
##
## [[1]]$`DOWN genesets.GO:0071541 eukaryotic translation initiation factor 3 complex, eIF3m`
## [1] "EIF3H" "EIF3F" "EIF3D" "EIF3A" "EIF3B" "EIF3M" "EIF3I"
##
## [[1]]$`DOWN genesets.GO:0097100 supercoiled DNA binding`
## [1] "HMGB2" "RPS3" "ABL1" "PSIP1" "HMGB1" "TOP1"
##
## [[1]]$`DOWN genesets.GO:0106222 lncRNA binding`
## [1] "DNMT1" "HADHB" "HNRNPU" "PCBP2" "ATP2A2" "DNMT3A" "RAD21" "PUM2"
## [9] "BRD3" "STAT3" "RBM33" "EZH2" "SUZ12" "CSDE1" "ELAVL1" "SUGT1"
Combined.
mm3 <- merge(m3a,m3m,by=0)
head(mm3)
## Row.names x.x x.y
## 1 A1BG 1.3424630 0.37551812
## 2 A1BG-AS1 -0.6793356 -1.10527413
## 3 A2M -1.4968521 -0.53690564
## 4 A2ML1-AS1 -0.3449972 0.43165967
## 5 A4GALT 3.0879136 0.09420681
## 6 AAAS 0.7838179 -0.43417325
rownames(mm3) <- mm3[,1]
mm3[,1]=NULL
colnames(mm3) <- c("Alv","MDM")
plot(mm3)
mylm <- lm(mm3)
abline(mylm,col="red",lty=2,lwd=3)
summary(mylm)
##
## Call:
## lm(formula = mm3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.8814 -0.9832 -0.1177 0.8530 23.0640
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.094008 0.013892 6.767 1.36e-11 ***
## MDM 0.790663 0.008554 92.428 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.662 on 14306 degrees of freedom
## Multiple R-squared: 0.3739, Adjusted R-squared: 0.3738
## F-statistic: 8543 on 1 and 14306 DF, p-value: < 2.2e-16
cor.test(mm3$Alv,mm3$MDM)
##
## Pearson's product-moment correlation
##
## data: mm3$Alv and mm3$MDM
## t = 92.428, df = 14306, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6011007 0.6216213
## sample estimates:
## cor
## 0.6114638
mm3r <- as.data.frame(apply(mm3,2,rank))
plot(mm3r,cex=0.3)
mylm <- lm(mm3r)
abline(mylm,col="red",lty=2,lwd=3)
summary(mylm)
##
## Call:
## lm(formula = mm3r)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9934.7 -2510.9 -90.8 2409.6 11085.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.818e+03 5.493e+01 51.30 <2e-16 ***
## MDM 6.061e-01 6.650e-03 91.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3285 on 14306 degrees of freedom
## Multiple R-squared: 0.3674, Adjusted R-squared: 0.3674
## F-statistic: 8309 on 1 and 14306 DF, p-value: < 2.2e-16
cor.test(mm3r$Alv,mm3r$MDM)
##
## Pearson's product-moment correlation
##
## data: mm3r$Alv and mm3r$MDM
## t = 91.152, df = 14306, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5956684 0.6164016
## sample estimates:
## cor
## 0.606138
MDM group.
pb4m <- pbmdm[,c(grep("mock",colnames(pbmdm)),grep("bystander",colnames(pbmdm)))]
head(pb4m)
## mdm_mock1 mdm_mock2 mdm_mock3 mdm_mock4 mdm_bystander1
## HIV-Gagp17 117 253 37 159 255
## HIV-Gagp24 0 0 0 0 0
## HIV-Gagp2p7 5 8 1 5 23
## HIV-Gagp1Pol 7 14 3 13 20
## HIV-Polprot 136 196 47 146 331
## HIV-Polp15p31 341 550 101 257 1033
## mdm_bystander2 mdm_bystander3 mdm_bystander4
## HIV-Gagp17 254 57 61
## HIV-Gagp24 0 0 0
## HIV-Gagp2p7 32 3 8
## HIV-Gagp1Pol 61 16 10
## HIV-Polprot 492 181 81
## HIV-Polp15p31 1505 413 181
pb4mf <- pb4m[which(rowMeans(pb4m)>=10),]
head(pb4mf)
## mdm_mock1 mdm_mock2 mdm_mock3 mdm_mock4 mdm_bystander1
## HIV-Gagp17 117 253 37 159 255
## HIV-Gagp2p7 5 8 1 5 23
## HIV-Gagp1Pol 7 14 3 13 20
## HIV-Polprot 136 196 47 146 331
## HIV-Polp15p31 341 550 101 257 1033
## HIV-Vif 15 45 8 17 87
## mdm_bystander2 mdm_bystander3 mdm_bystander4
## HIV-Gagp17 254 57 61
## HIV-Gagp2p7 32 3 8
## HIV-Gagp1Pol 61 16 10
## HIV-Polprot 492 181 81
## HIV-Polp15p31 1505 413 181
## HIV-Vif 73 29 16
colSums(pb4mf)
## mdm_mock1 mdm_mock2 mdm_mock3 mdm_mock4 mdm_bystander1
## 28557312 20547234 7025832 20638609 70265280
## mdm_bystander2 mdm_bystander3 mdm_bystander4
## 68938388 26232912 36276740
des4m <- as.data.frame(grepl("bystander",colnames(pb4mf)))
colnames(des4m) <- "case"
plot(cmdscale(dist(t(pb4mf))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",pch=19,col="gray",cex=2)
text(cmdscale(dist(t(pb4mf))), labels=colnames(pb4mf) )
des4m$sample <- rep(1:4,2)
dds <- DESeqDataSetFromMatrix(countData = pb4mf , colData = des4m, design = ~ sample + case)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
de <- as.data.frame(zz[order(zz$pvalue),])
de4mf <- de
write.table(de4mf,"de4mf.tsv",sep="\t")
nrow(subset(de4mf,padj<0.05 & log2FoldChange>0))
## [1] 0
nrow(subset(de4mf,padj<0.05 & log2FoldChange<0))
## [1] 8
head(subset(de4mf, log2FoldChange>0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in bystander MDM cells compared to mock") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
IFI27 | 398.48186 | 1.5360241 | 0.3730761 | 4.117188 | 0.0000384 | 0.0595815 |
TNFRSF10B | 502.55437 | 0.4963497 | 0.1259997 | 3.939292 | 0.0000817 | 0.0642395 |
PLAAT3 | 27.49546 | 1.3240300 | 0.3502151 | 3.780619 | 0.0001564 | 0.0910935 |
CCL8 | 11.08084 | 2.8264229 | 0.7498256 | 3.769440 | 0.0001636 | 0.0910935 |
NCF1 | 239.01747 | 0.8313951 | 0.2259180 | 3.680075 | 0.0002332 | 0.1071642 |
ISG15 | 1232.21671 | 0.6854540 | 0.1868554 | 3.668365 | 0.0002441 | 0.1088930 |
PSME2 | 4609.35725 | 0.3424031 | 0.0953156 | 3.592311 | 0.0003278 | 0.1380863 |
PRPH | 29.76869 | 1.5668278 | 0.4411072 | 3.552034 | 0.0003823 | 0.1486619 |
TNFAIP6 | 147.61999 | 1.1343811 | 0.3244416 | 3.496411 | 0.0004716 | 0.1723480 |
AFF3 | 72.03688 | 1.1232639 | 0.3320915 | 3.382393 | 0.0007186 | 0.2270539 |
head(subset(de4mf, log2FoldChange<0),10)[,1:6] %>%
kbl(caption="Top downregulated genes in bystander MDM cells compared to mock") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
CDK1 | 83.35505 | -2.2505422 | 0.4688702 | -4.799926 | 1.60e-06 | 0.0240737 |
RRM2 | 66.74492 | -1.9768888 | 0.4371513 | -4.522208 | 6.10e-06 | 0.0335727 |
TK1 | 127.38681 | -1.3066986 | 0.2901141 | -4.504085 | 6.70e-06 | 0.0335727 |
CENPK | 158.41357 | -0.9379988 | 0.2110985 | -4.443416 | 8.90e-06 | 0.0335727 |
UBE2C | 94.86970 | -2.9161884 | 0.6642659 | -4.390092 | 1.13e-05 | 0.0343692 |
CENPF | 169.31681 | -2.1460422 | 0.4963458 | -4.323684 | 1.53e-05 | 0.0371842 |
PBK | 22.44710 | -3.0058997 | 0.6992662 | -4.298649 | 1.72e-05 | 0.0371842 |
CLSPN | 111.53747 | -1.0670283 | 0.2499335 | -4.269249 | 1.96e-05 | 0.0371842 |
CIT | 29.18619 | -1.7288869 | 0.4204846 | -4.111653 | 3.93e-05 | 0.0595815 |
TIMP3 | 2878.07690 | -0.8631982 | 0.2126014 | -4.060171 | 4.90e-05 | 0.0642395 |
m4m <- mitch_import(de,DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 15779
## Note: no. genes in output = 15779
## Note: estimated proportion of input genes in output = 1
mres4m <- mitch_calc(m4m,genesets=go,minsetsize=5,cores=4,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres4m$enrichment_result
mitchtbl <- mres4m$enrichment_result
goid <- sapply(strsplit(mitchtbl$set," "),"[[",1)
mysplit <- strsplit(mitchtbl$set," ")
mysplit <- lapply(mysplit, function(x) { x[2:length(x)] } )
godescription <- unlist(lapply(mysplit, function(x) { paste(x,collapse=" ") } ))
em <- data.frame(goid,godescription,mitchtbl$pANOVA,mitchtbl$p.adjustANOVA,sign(mitchtbl$s.dist),mitchtbl$s.dist)
colnames(em) <- c("GO.ID","Description","p.Val","FDR","Phenotype","ES")
write.table(em,"de4mf_em.tsv",row.names = FALSE, quote=FALSE,sep="\t")
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
par(mar=c(5,27,3,1))
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="")
if (! file.exists("MDM_mock_vs_bystander.html") ) {
mitch_report(mres4m,outfile="MDM_mock_vs_bystander.html")
}
networkplot(mres4m,FDR=0.05,n_sets=20)
network_genes(mres4m,FDR=0.05,n_sets=20)
## [[1]]
## [[1]]$`UP genesets.GO:0000502 proteasome complex`
## [1] "PSME2" "PSMC4" "PSMB2"
##
## [[1]]$`UP genesets.GO:0002181 cytoplasmic translation`
## [1] "RPL18" "RPL15" "RPS6" "RPL7A"
##
## [[1]]$`UP genesets.GO:0002476 antigen processing and presentation of endogenous peptide antigen via MHC class Ib`
## character(0)
##
## [[1]]$`UP genesets.GO:0002486 antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independent`
## character(0)
##
## [[1]]$`UP genesets.GO:0004298 threonine-type endopeptidase activity`
## character(0)
##
## [[1]]$`UP genesets.GO:0005839 proteasome core complex`
## [1] "PSMB2"
##
## [[1]]$`UP genesets.GO:0006693 prostaglandin metabolic process`
## character(0)
##
## [[1]]$`UP genesets.GO:0007342 fusion of sperm to egg plasma membrane involved in single fertilization`
## character(0)
##
## [[1]]$`UP genesets.GO:0008097 5S rRNA binding`
## [1] "MDM2"
##
## [[1]]$`UP genesets.GO:0010273 detoxification of copper ion`
## [1] "MT1H" "MT1M" "MT1F" "MT1HL1"
##
## [[1]]$`UP genesets.GO:0019773 proteasome core complex, alpha-subunit complex`
## character(0)
##
## [[1]]$`UP genesets.GO:0019774 proteasome core complex, beta-subunit complex`
## [1] "PSMB2"
##
## [[1]]$`UP genesets.GO:0022624 proteasome accessory complex`
## [1] "PSMC4"
##
## [[1]]$`UP genesets.GO:0022625 cytosolic large ribosomal subunit`
## [1] "RPL18" "RPL15" "RPL7A"
##
## [[1]]$`UP genesets.GO:0022627 cytosolic small ribosomal subunit`
## [1] "RPS6"
##
## [[1]]$`UP genesets.GO:0032308 positive regulation of prostaglandin secretion`
## character(0)
##
## [[1]]$`UP genesets.GO:0042612 MHC class I protein complex`
## character(0)
##
## [[1]]$`UP genesets.GO:0045926 negative regulation of growth`
## [1] "MT1H" "MT1M" "MT1F"
##
## [[1]]$`UP genesets.GO:0070106 interleukin-27-mediated signaling pathway`
## [1] "MX1" "OASL" "OAS2"
##
## [[1]]$`UP genesets.GO:1902254 negative regulation of intrinsic apoptotic signaling pathway by p53 class mediator`
## [1] "MDM2"
##
## [[1]]$`DOWN genesets.GO:0000727 double-strand break repair via break-induced replication`
## [1] "GINS2" "MCM3" "MCM7" "CDC7" "MCM5" "MCM4" "MCM2" "CDC45"
## [9] "GINS4" "MCMDC2" "MCM6" "MUS81"
##
## [[1]]$`DOWN genesets.GO:0000796 condensin complex`
## [1] "NCAPG" "NCAPG2" "NCAPD3" "NCAPD2" "SMC2" "NCAPH2" "NCAPH" "SMC4"
##
## [[1]]$`DOWN genesets.GO:0000940 outer kinetochore`
## [1] "CENPF" "CCNB1" "KNL1" "SPC25" "NUF2" "PLK1" "ZWINT" "SKA3" "BUB1B"
## [10] "SKA2" "BUB1" "NDC80" "SPDL1" "DSN1" "NSL1" "MIS12" "BOD1" "PMF1"
##
## [[1]]$`DOWN genesets.GO:0007076 mitotic chromosome condensation`
## [1] "NCAPG" "PLK1" "AKAP8" "PHF13" "CDCA5" "NCAPD3" "NCAPD2" "NUSAP1"
## [9] "SMC2" "NCAPH2" "CHMP1A" "NCAPH" "SMC4" "AKAP8L" "TENT4A" "KMT5A"
## [17] "TTN"
##
## [[1]]$`DOWN genesets.GO:0010032 meiotic chromosome condensation`
## [1] "NCAPD3" "NCAPD2" "SMC2" "NCAPH2" "NCAPH" "SMC4"
##
## [[1]]$`DOWN genesets.GO:0017116 single-stranded DNA helicase activity`
## [1] "MCM3" "MCM7" "POLQ" "DSCC1" "RFC5" "MCM5" "MCM4" "MCM2"
## [9] "MCM8" "WRNIP1" "CHTF18" "RAD51" "MCM9" "RFC2" "RFC3" "CHTF8"
## [17] "DNA2" "HELB" "RFC4" "PIF1"
##
## [[1]]$`DOWN genesets.GO:0030174 regulation of DNA-templated DNA replication initiation`
## [1] "MCM3" "MCM7" "CDT1" "MCM5" "MCM4" "MCM2" "WRNIP1" "GMNN"
## [9] "MCM6" "NBN" "KAT7"
##
## [[1]]$`DOWN genesets.GO:0030263 apoptotic chromosome condensation`
## [1] "TOP2A" "ACIN1" "DFFB" "KDM4A" "GPER1"
##
## [[1]]$`DOWN genesets.GO:0030594 neurotransmitter receptor activity`
## [1] "HRH2" "P2RY11" "HTR2B" "HTR2A" "GRIN3B"
##
## [[1]]$`DOWN genesets.GO:0042555 MCM complex`
## [1] "MCM3" "MCM7" "MCM5" "MCM4" "MCM2" "MCM8" "MCM9" "MCMBP"
## [9] "TONSL" "MMS22L" "MCM6"
##
## [[1]]$`DOWN genesets.GO:0043534 blood vessel endothelial cell migration`
## [1] "CYP1B1" "EMP2" "PTK2B" "MYH9" "CLN3" "SCARB1"
##
## [[1]]$`DOWN genesets.GO:0045322 unmethylated CpG binding`
## [1] "KMT2B" "KDM2B" "MECP2" "DNMT3A" "KDM2A" "KMT2A" "FBXL19" "MBD1"
## [9] "CXXC1"
##
## [[1]]$`DOWN genesets.GO:0048407 platelet-derived growth factor binding`
## [1] "COL6A1" "PDGFA" "COL4A1" "PDGFRA" "PDGFB"
##
## [[1]]$`DOWN genesets.GO:0050790 regulation of catalytic activity`
## [1] "SGK1" "CAPN3" "PARP1" "ANKLE2" "CAPN1"
##
## [[1]]$`DOWN genesets.GO:0051983 regulation of chromosome segregation`
## [1] "MKI67" "CDCA2" "BUB1" "KIF2C" "ZNF207" "AURKB" "PPP2R2D"
## [8] "PUM1" "PPP2R2A" "PUM2"
##
## [[1]]$`DOWN genesets.GO:0051984 positive regulation of chromosome segregation`
## [1] "NCAPG" "CDC6" "NCAPG2" "NCAPD3" "NCAPD2" "NUMA1" "RAD18" "SMC2"
## [9] "NCAPH2" "NCAPH" "SMC4" "SMC6" "SMC5"
##
## [[1]]$`DOWN genesets.GO:0071162 CMG complex`
## [1] "GINS2" "MCM3" "MCM7" "MCM5" "MCM4" "GINS1" "MCM2" "CDC45" "GINS4"
## [10] "MCM6" "GINS3"
##
## [[1]]$`DOWN genesets.GO:1902975 mitotic DNA replication initiation`
## [1] "MCM3" "MCM4" "MCM2" "POLA1" "GINS3"
##
## [[1]]$`DOWN genesets.GO:1905820 positive regulation of chromosome separation`
## [1] "NCAPG" "NCAPG2" "NCAPD3" "NCAPD2" "PLSCR1" "NUMA1" "SMC2" "NCAPH2"
## [9] "NCAPH" "SMC4"
##
## [[1]]$`DOWN genesets.GO:1905821 positive regulation of chromosome condensation`
## [1] "NCAPG" "NCAPG2" "NCAPD3" "NCAPD2" "SMC2" "NCAPH2" "NCAPH" "SMC4"
Alv cells.
pb4a <- pbalv[,c(grep("mock",colnames(pbalv)),grep("bystander",colnames(pbalv)))]
head(pb4a)
## alv_mock1 alv_mock2 alv_mock3 alv_bystander1 alv_bystander2
## HIV-Gagp17 106 178 1530 106 162
## HIV-Gagp24 0 0 0 0 0
## HIV-Gagp2p7 2 7 52 16 26
## HIV-Gagp1Pol 6 21 94 26 50
## HIV-Polprot 95 230 1596 208 515
## HIV-Polp15p31 164 360 2804 476 1203
## alv_bystander3
## HIV-Gagp17 183
## HIV-Gagp24 0
## HIV-Gagp2p7 17
## HIV-Gagp1Pol 42
## HIV-Polprot 534
## HIV-Polp15p31 1151
pb4af <- pb4a[which(rowMeans(pb4a)>=10),]
head(pb4af)
## alv_mock1 alv_mock2 alv_mock3 alv_bystander1 alv_bystander2
## HIV-Gagp17 106 178 1530 106 162
## HIV-Gagp2p7 2 7 52 16 26
## HIV-Gagp1Pol 6 21 94 26 50
## HIV-Polprot 95 230 1596 208 515
## HIV-Polp15p31 164 360 2804 476 1203
## HIV-Vif 10 33 162 31 78
## alv_bystander3
## HIV-Gagp17 183
## HIV-Gagp2p7 17
## HIV-Gagp1Pol 42
## HIV-Polprot 534
## HIV-Polp15p31 1151
## HIV-Vif 86
colSums(pb4af)
## alv_mock1 alv_mock2 alv_mock3 alv_bystander1 alv_bystander2
## 20228192 24576310 33170699 58232744 65496965
## alv_bystander3
## 58745079
des4a <- as.data.frame(grepl("bystander",colnames(pb4af)))
colnames(des4a) <- "case"
plot(cmdscale(dist(t(pb4af))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",pch=19,col="gray",cex=2)
text(cmdscale(dist(t(pb4af))), labels=colnames(pb4af) )
des4a$sample <- rep(1:3,2)
dds <- DESeqDataSetFromMatrix(countData = pb4af , colData = des4a, design = ~ sample + case)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
de <- as.data.frame(zz[order(zz$pvalue),])
de4af <- de
write.table(de4af,"de4af.tsv",sep="\t")
nrow(subset(de4af,padj<0.05 & log2FoldChange>0))
## [1] 47
nrow(subset(de4af,padj<0.05 & log2FoldChange<0))
## [1] 4
head(subset(de4af,padj<0.05 & log2FoldChange>0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in latent Alv cells compared to ") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
PARP14 | 2649.6649 | 1.1809110 | 0.1535856 | 7.688944 | 0e+00 | 0.0000000 |
LY6E | 13662.4198 | 1.2547553 | 0.1704800 | 7.360134 | 0e+00 | 0.0000000 |
OAS1 | 1040.3169 | 1.6357335 | 0.2558141 | 6.394227 | 0e+00 | 0.0000008 |
XAF1 | 1087.1096 | 2.0282937 | 0.3214543 | 6.309743 | 0e+00 | 0.0000010 |
SAMD9L | 1541.9550 | 1.0993464 | 0.1794907 | 6.124809 | 0e+00 | 0.0000026 |
GMPR | 436.2431 | 0.9746833 | 0.1727695 | 5.641524 | 0e+00 | 0.0000339 |
CMPK2 | 128.1722 | 2.9552388 | 0.5361132 | 5.512341 | 0e+00 | 0.0000623 |
EIF2AK2 | 2205.7316 | 0.9177018 | 0.1681172 | 5.458701 | 0e+00 | 0.0000750 |
IRF7 | 293.0091 | 1.6134171 | 0.2969970 | 5.432436 | 1e-07 | 0.0000782 |
LGALS3BP | 1670.7932 | 1.1213907 | 0.2095225 | 5.352124 | 1e-07 | 0.0001041 |
head(subset(de4af, log2FoldChange<0),10)[,1:6] %>%
kbl(caption="Top upregulated genes in active Alv cells") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
CCL4 | 473.46252 | -2.2023606 | 0.3850376 | -5.719859 | 0.0000000 | 0.0000250 |
SPP1 | 81304.43380 | -0.4227772 | 0.0801142 | -5.277184 | 0.0000001 | 0.0001231 |
ACTG1 | 23356.92294 | -0.2965569 | 0.0766674 | -3.868099 | 0.0001097 | 0.0328408 |
AC007952.4 | 956.05946 | -0.7087295 | 0.1849711 | -3.831568 | 0.0001273 | 0.0373287 |
HIV-Gagp17 | 441.21001 | -2.4064383 | 0.6601073 | -3.645526 | 0.0002668 | 0.0661083 |
C9 | 459.15120 | -0.6017109 | 0.1781765 | -3.377050 | 0.0007327 | 0.1412362 |
ERVMER61-1 | 42.24601 | -1.2723297 | 0.3899306 | -3.262964 | 0.0011025 | 0.2068647 |
AC078850.1 | 367.64916 | -0.5486816 | 0.1710904 | -3.206970 | 0.0013414 | 0.2420043 |
HPGDS | 4522.18706 | -0.2945729 | 0.0955298 | -3.083571 | 0.0020453 | 0.3553306 |
ACTB | 119698.37379 | -0.2226873 | 0.0729501 | -3.052596 | 0.0022687 | 0.3800627 |
m4a <- mitch_import(de,DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 17047
## Note: no. genes in output = 17047
## Note: estimated proportion of input genes in output = 1
mres4a <- mitch_calc(m4a,genesets=go,minsetsize=5,cores=4,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres4a$enrichment_result
mitchtbl <- mres4a$enrichment_result
goid <- sapply(strsplit(mitchtbl$set," "),"[[",1)
mysplit <- strsplit(mitchtbl$set," ")
mysplit <- lapply(mysplit, function(x) { x[2:length(x)] } )
godescription <- unlist(lapply(mysplit, function(x) { paste(x,collapse=" ") } ))
em <- data.frame(goid,godescription,mitchtbl$pANOVA,mitchtbl$p.adjustANOVA,sign(mitchtbl$s.dist),mitchtbl$s.dist)
colnames(em) <- c("GO.ID","Description","p.Val","FDR","Phenotype","ES")
write.table(em,"de4af_em.tsv",row.names = FALSE, quote=FALSE,sep="\t")
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
par(mar=c(5,27,3,1))
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="")
if (! file.exists("Alv_mock_vs_bystander.html") ) {
mitch_report(mres4a,outfile="Alv_mock_vs_bystander.html")
}
networkplot(mres4a,FDR=0.05,n_sets=20)
network_genes(mres4a,FDR=0.05,n_sets=20)
## [[1]]
## [[1]]$`UP genesets.GO:0002503 peptide antigen assembly with MHC class II protein complex`
## [1] "B2M"
##
## [[1]]$`UP genesets.GO:0002726 positive regulation of T cell cytokine production`
## [1] "B2M"
##
## [[1]]$`UP genesets.GO:0004126 cytidine deaminase activity`
## [1] "APOBEC3A"
##
## [[1]]$`UP genesets.GO:0016554 cytidine to uridine editing`
## [1] "APOBEC3A"
##
## [[1]]$`UP genesets.GO:0019885 antigen processing and presentation of endogenous peptide antigen via MHC class I`
## [1] "TAP1" "TAP2" "B2M"
##
## [[1]]$`UP genesets.GO:0032020 ISG15-protein conjugation`
## [1] "ISG15" "UBE2L6" "HERC5"
##
## [[1]]$`UP genesets.GO:0032395 MHC class II receptor activity`
## character(0)
##
## [[1]]$`UP genesets.GO:0032693 negative regulation of interleukin-10 production`
## character(0)
##
## [[1]]$`UP genesets.GO:0035455 response to interferon-alpha`
## [1] "EIF2AK2" "IFITM3" "ADAR" "BST2" "MX2" "IFITM2"
##
## [[1]]$`UP genesets.GO:0035456 response to interferon-beta`
## [1] "XAF1" "IFITM3" "PLSCR1" "STAT1" "BST2" "SHFL" "IFITM2"
##
## [[1]]$`UP genesets.GO:0042157 lipoprotein metabolic process`
## [1] "APOL6"
##
## [[1]]$`UP genesets.GO:0042612 MHC class I protein complex`
## [1] "HLA-C" "HLA-F" "B2M" "HLA-B"
##
## [[1]]$`UP genesets.GO:0042613 MHC class II protein complex`
## [1] "B2M"
##
## [[1]]$`UP genesets.GO:0045071 negative regulation of viral genome replication`
## [1] "OAS1" "EIF2AK2" "IFITM3" "PLSCR1" "OASL" "IFIT1"
## [7] "OAS2" "IFIH1" "BST2" "SHFL" "IFIT5" "ZC3HAV1"
## [13] "ISG15" "OAS3" "RSAD2" "ISG20" "MX1" "N4BP1"
## [19] "APOBEC3A" "IFITM2" "IFI16"
##
## [[1]]$`UP genesets.GO:0051715 cytolysis in another organism`
## [1] "GBP1" "GBP3"
##
## [[1]]$`UP genesets.GO:0060337 type I interferon-mediated signaling pathway`
## [1] "OAS1" "IRF7" "IFITM3" "IFI27" "OASL" "STAT1" "OAS2" "IFIH1"
## [9] "OAS3" "STAT2" "SP100" "IFITM2" "MYD88"
##
## [[1]]$`UP genesets.GO:0070106 interleukin-27-mediated signaling pathway`
## [1] "OAS1" "OASL" "STAT1" "OAS2" "OAS3" "MX1"
##
## [[1]]$`UP genesets.GO:0070212 protein poly-ADP-ribosylation`
## [1] "PARP14" "PARP9" "ZC3HAV1" "PARP10"
##
## [[1]]$`UP genesets.GO:0070383 DNA cytosine deamination`
## [1] "APOBEC3A"
##
## [[1]]$`UP genesets.GO:1902554 serine/threonine protein kinase complex`
## character(0)
##
## [[1]]$`DOWN genesets.GO:0000727 double-strand break repair via break-induced replication`
## [1] "MCM3" "MCM7" "GINS4" "GINS2" "MCM6" "MCM5" "MUS81" "CDC7"
## [9] "MCMDC2" "MCM2" "CDC45" "MCM4"
##
## [[1]]$`DOWN genesets.GO:0000774 adenyl-nucleotide exchange factor activity`
## [1] "PFN1" "BAG1" "HSPA4L" "HSPBP1" "BAG2" "GRPEL1" "HYOU1" "BAG5"
## [9] "GRPEL2" "HSPA4" "CCAR2" "HSPH1" "BAG3" "SIL1" "BAG4"
##
## [[1]]$`DOWN genesets.GO:0002181 cytoplasmic translation`
## [1] "RPLP0" "RPLP1" "GTPBP1" "RPS12" "RPS3A" "ZC3H15" "RPS6"
## [8] "RPS17" "RACK1" "RPL7" "RPL23" "RPS21" "RPSA" "RPS5"
## [15] "RPS20" "RPL27A" "RPS23" "RPL4" "RPS2" "RPL27" "RPS11"
## [22] "UBA52" "RPLP2" "RPL23A" "DRG1" "RPL21" "RPL13" "RPS24"
## [29] "RPL9" "RPS13" "RPL24" "RWDD1" "RPL13A" "RPL5" "RPL14"
## [36] "DRG2" "RPS7" "RPS18" "RPL3" "RPS29" "RPL22L1" "RPS3"
## [43] "RPL35" "RPL38" "RPL8" "RPS27A" "RPL18A" "RPL31" "RPL7A"
## [50] "RPS15A" "RPL15" "RPL22" "RPL10" "RPS25" "RPL6" "RPS14"
## [57] "RPL41" "RPL37A" "RPL12" "RPL10A" "RPL18" "RPS28" "RPL34"
## [64] "RPS8" "RPS16" "RPL35A" "RPL39" "FTSJ1" "RPL37" "RPS27"
## [71] "RPL26L1" "RPS4X" "RPL17" "RPL26" "RPL28" "RPL11" "RPL36"
## [78] "FAU" "RPL19" "RPL32" "RPS19" "RPS15" "RPS26" "RPS9"
## [85] "RPS10" "RPL30" "RPL36A" "RPL29"
##
## [[1]]$`DOWN genesets.GO:0005852 eukaryotic translation initiation factor 3 complex`
## [1] "EIF3J" "EIF3M" "EIF3D" "EIF3E" "COPS5" "EIF3A" "EIF3I" "EIF3L" "EIF3B"
## [10] "EIF3K" "EIF3C" "DDX3X" "EIF3H" "EIF3G" "EIF3F"
##
## [[1]]$`DOWN genesets.GO:0005885 Arp2/3 protein complex`
## [1] "ARPC2" "ACTR3" "ARPC5" "ARPC3" "ARPC4" "ARPC5L" "ACTR2" "ARPC1B"
## [9] "ARPC1A"
##
## [[1]]$`DOWN genesets.GO:0008250 oligosaccharyltransferase complex`
## [1] "RPN2" "DDOST" "STT3B" "MLEC" "STT3A" "RPN1" "OSTC"
## [8] "KRTCAP2" "DAD1" "OST4" "MAGT1" "TMEM258"
##
## [[1]]$`DOWN genesets.GO:0015935 small ribosomal subunit`
## [1] "RPS6" "RACK1" "RPS21" "RPS24" "RPS18" "RPS29" "RPS27A" "RPS25"
## [9] "RPS28" "RPS16" "MRPS6" "RPS4X" "FAU" "RPS26"
##
## [[1]]$`DOWN genesets.GO:0016282 eukaryotic 43S preinitiation complex`
## [1] "EIF1" "EIF3J" "EIF3M" "EIF3D" "EIF1B" "EIF1AX" "EIF3E" "EIF3A"
## [9] "EIF3I" "EIF3L" "EIF3B" "EIF3K" "DHX29" "EIF3C" "EIF3H" "EIF3G"
## [17] "EIF3F"
##
## [[1]]$`DOWN genesets.GO:0022625 cytosolic large ribosomal subunit`
## [1] "RPLP0" "RPLP1" "RPL7" "RPL23" "RPL27A" "RPL4" "RPL27"
## [8] "RPL39L" "UBA52" "RPLP2" "RPL23A" "RPL21" "RPL13" "RPL9"
## [15] "RPL24" "RPL13A" "RPL5" "RPL14" "RPL3" "RPL35" "RPL38"
## [22] "RPL8" "RPL18A" "ZCCHC17" "RPL31" "RPL7A" "RPL15" "RPL22"
## [29] "RPL10" "RPL6" "RPL41" "RPL37A" "RPL12" "RPL10A" "RPL18"
## [36] "RPL34" "RPL36AL" "RPL35A" "RPL39" "RPL37" "RPL26L1" "RPL17"
## [43] "RPL26" "RPL28" "RPL11" "RPL36" "RPL19" "RPL32" "RPL30"
## [50] "RPL36A" "RPL7L1" "RPL29"
##
## [[1]]$`DOWN genesets.GO:0022627 cytosolic small ribosomal subunit`
## [1] "RPS12" "RPS3A" "RPS6" "RPS17" "RACK1" "RPS21" "RPSA" "RPS5"
## [9] "RPS20" "RPS23" "RPS2" "RPS11" "RPS24" "RPS13" "RPS7" "RPS18"
## [17] "RPS29" "LARP4" "RPS3" "RPS27A" "RPS15A" "RPS25" "RPS14" "EIF2A"
## [25] "DHX29" "RPS28" "RPS8" "DDX3X" "RPS16" "RPS27L" "RPS27" "RPS4X"
## [33] "FAU" "RPS19" "RPS15" "RPS26" "RPS9" "RPS10" "RPS4Y1"
##
## [[1]]$`DOWN genesets.GO:0030003 intracellular monoatomic cation homeostasis`
## [1] "SLC39A8" "SLC39A4" "SLC39A12" "ATP13A2" "MINPP1" "SLC39A10"
## [7] "CNNM4" "SLC39A14" "COX11" "SLC39A6" "SLC4A11"
##
## [[1]]$`DOWN genesets.GO:0030687 preribosome, large subunit precursor`
## [1] "EBNA1BP2" "PPAN" "WDR74" "MAK16" "WDR12" "RRP15"
## [7] "NIP7" "MRTO4" "RRS1" "ZNF622" "FTSJ3" "BOP1"
## [13] "NSA2" "RPF1" "PES1" "MDN1"
##
## [[1]]$`DOWN genesets.GO:0042555 MCM complex`
## [1] "MCM3" "MCM7" "MCM6" "MCM9" "TONSL" "MCM8" "MCM5" "MMS22L"
## [9] "MCM2" "MCM4" "MCMBP"
##
## [[1]]$`DOWN genesets.GO:0045040 protein insertion into mitochondrial outer membrane`
## [1] "HSP90AA1" "SAMM50" "MTX1" "TOMM40" "TOMM5" "TOMM70"
## [7] "MTCH2" "TOMM22" "HSPA4" "MTX2" "TOMM7" "TOMM6"
## [13] "MTCH1" "TOMM20"
##
## [[1]]$`DOWN genesets.GO:0045277 respiratory chain complex IV`
## [1] "MT-CO1" "MT-CO3" "COX7A2L" "COX7A2" "COX4I1" "COX5A" "MT-CO2"
## [8] "COX7C" "COX6A1" "COX7A1" "COX6C" "COX7B" "COX6B1" "NDUFA4"
## [15] "COX8A" "COX5B"
##
## [[1]]$`DOWN genesets.GO:0046933 proton-transporting ATP synthase activity, rotational mechanism`
## [1] "MT-ATP8" "ATP5PD" "ATP5PB" "ATP5MGL" "ATP6V0C" "ATP5PF" "MT-ATP6"
## [8] "ATP5F1B" "ATP5PO" "ATP5MG" "ATP5F1C" "ATP5MF" "ATP5F1A" "ATP6V1A"
## [15] "ATP5F1D" "ATP5F1E" "ATP5ME"
##
## [[1]]$`DOWN genesets.GO:0051086 chaperone mediated protein folding independent of cofactor`
## [1] "CCT5" "CCT2" "CCT8" "CCT7" "CCT4" "TCP1" "CCT6A" "CCT3"
##
## [[1]]$`DOWN genesets.GO:0140410 monoatomic cation:bicarbonate symporter activity`
## [1] "SLC39A8" "SLC39A4" "SLC39A12" "SLC39A10" "SLC39A14" "SLC39A6"
##
## [[1]]$`DOWN genesets.GO:1904874 positive regulation of telomerase RNA localization to Cajal body`
## [1] "CCT5" "CCT2" "CCT8" "CCT7" "CCT4" "TCP1" "DKC1" "CCT6A" "CCT3"
##
## [[1]]$`DOWN genesets.GO:2000001 regulation of DNA damage checkpoint`
## [1] "RNASEH2B" "ETAA1" "BARD1" "WDR76" "BRCA1" "RAD51"
## [7] "CUL4A" "BRCC3" "RFWD3" "BRCA2" "FEM1B" "FBXO4"
## [13] "RPA2" "CRY1" "BABAM2"
Combined.
mm4 <- merge(m4a,m4m,by=0)
head(mm4)
## Row.names x.x x.y
## 1 A1BG -0.73042642 0.58959250
## 2 A1BG-AS1 0.02730344 -0.86115057
## 3 A2M -2.85879532 -0.09167325
## 4 A2M-AS1 0.06208747 0.45344070
## 5 A2ML1-AS1 0.83144312 -0.16587319
## 6 AAAS 0.08514238 -0.13528728
rownames(mm4) <- mm4[,1]
mm4[,1]=NULL
colnames(mm4) <- c("Alv","MDM")
plot(mm4)
mylm <- lm(mm4)
abline(mylm,col="red",lty=2,lwd=3)
summary(mylm)
##
## Call:
## lm(formula = mm4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6127 -0.4063 -0.0135 0.3781 7.6324
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.008888 0.005744 -1.547 0.122
## MDM 0.084249 0.007116 11.840 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7137 on 15437 degrees of freedom
## Multiple R-squared: 0.008999, Adjusted R-squared: 0.008935
## F-statistic: 140.2 on 1 and 15437 DF, p-value: < 2.2e-16
cor.test(mm4$Alv,mm4$MDM)
##
## Pearson's product-moment correlation
##
## data: mm4$Alv and mm4$MDM
## t = 11.84, df = 15437, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.07920745 0.11047183
## sample estimates:
## cor
## 0.09486303
mm4r <- as.data.frame(apply(mm4,2,rank))
plot(mm4r,cex=0.3)
mylm <- lm(mm4r)
abline(mylm,col="red",lty=2,lwd=3)
summary(mylm)
##
## Call:
## lm(formula = mm4r)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7983.3 -3873.6 1.1 3878.5 7904.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.417e+03 7.169e+01 103.456 < 2e-16 ***
## MDM 3.927e-02 8.042e-03 4.882 1.06e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4454 on 15437 degrees of freedom
## Multiple R-squared: 0.001542, Adjusted R-squared: 0.001477
## F-statistic: 23.84 on 1 and 15437 DF, p-value: 1.058e-06
cor.test(mm4r$Alv,mm4r$MDM)
##
## Pearson's product-moment correlation
##
## data: mm4r$Alv and mm4r$MDM
## t = 4.8824, df = 15437, p-value = 1.058e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.02350650 0.05500608
## sample estimates:
## cor
## 0.03926604
l1 <- list("de1a"=de1af,"de1m"=de1mf,"de2a"=de2af,"de2m"=de2mf,
"de3a"=de3af,"de3m"=de3mf,"de4a"=de4af,"de4m"=de4mf)
lm <- mitch_import(x=l1,DEtype="deseq2",joinType="inner")
## Note: Mean no. genes in input = 15289.5
## Note: no. genes in output = 13075
## Note: estimated proportion of input genes in output = 0.855
lmres <- mitch_calc(x=lm,genesets=go,minsetsize=5,cores=8,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
top <- head(lmres$enrichment_result,50)
top %>%
kbl(caption="Top pathways across all contrasts") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.de1a | s.de1m | s.de2a | s.de2m | s.de3a | s.de3m | s.de4a | s.de4m | p.de1a | p.de1m | p.de2a | p.de2m | p.de3a | p.de3m | p.de4a | p.de4m | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1987 | GO:0019773 proteasome core complex, alpha-subunit complex | 7 | 0.0000001 | 0.7198609 | 0.9220779 | -0.1322970 | -0.9440072 | 0.2348157 | 0.7565919 | -0.4139446 | 0.8932616 | 0.0009727 | 0.0000239 | 0.5444849 | 0.0000152 | 0.2820643 | 0.0005269 | 0.0579106 | 0.0000425 | 1.968227 | 0.6923635 | 0.0000059 |
2525 | GO:0032395 MHC class II receptor activity | 6 | 0.0000000 | -0.7071951 | -0.9471268 | -0.3660061 | 0.8306425 | -0.4173489 | -0.8384472 | 0.8101615 | -0.0952636 | 0.0027005 | 0.0000586 | 0.1205668 | 0.0004254 | 0.0766951 | 0.0003752 | 0.0005884 | 0.6861840 | 1.940029 | 0.6958394 | 0.0000002 |
827 | GO:0005942 phosphatidylinositol 3-kinase complex | 6 | 0.0015315 | -0.6404979 | -0.8948402 | -0.5544928 | 0.6804142 | -0.5647206 | -0.7413217 | 0.6072130 | -0.5483715 | 0.0065896 | 0.0001469 | 0.0186729 | 0.0038983 | 0.0166027 | 0.0016624 | 0.0100044 | 0.0200171 | 1.875977 | 0.6137806 | 0.0197460 |
3196 | GO:0042613 MHC class II protein complex | 12 | 0.0000000 | -0.6734670 | -0.8492689 | -0.4110720 | 0.3985430 | -0.4513384 | -0.8054429 | 0.7589247 | 0.0315395 | 0.0000535 | 0.0000003 | 0.0136879 | 0.0168395 | 0.0067913 | 0.0000014 | 0.0000053 | 0.8499894 | 1.712319 | 0.5893394 | 0.0000000 |
368 | GO:0002503 peptide antigen assembly with MHC class II protein complex | 11 | 0.0000000 | -0.6442409 | -0.8375271 | -0.4341563 | 0.3513890 | -0.4085899 | -0.7894004 | 0.7419557 | 0.0894895 | 0.0002157 | 0.0000015 | 0.0126652 | 0.0436235 | 0.0189657 | 0.0000058 | 0.0000203 | 0.6073812 | 1.666454 | 0.5745726 | 0.0000002 |
3599 | GO:0045656 negative regulation of monocyte differentiation | 5 | 0.0607948 | -0.6818057 | -0.5468401 | -0.7133588 | 0.2757460 | -0.8536802 | -0.6190666 | 0.3223259 | -0.4089671 | 0.0082853 | 0.0342194 | 0.0057372 | 0.2856664 | 0.0009463 | 0.0165204 | 0.2120156 | 0.1132974 | 1.652867 | 0.4521965 | 0.2427435 |
1998 | GO:0019864 IgG binding | 6 | 0.0000005 | -0.2400847 | -0.4122988 | -0.8498227 | -0.6933966 | -0.7784579 | -0.7599918 | -0.3389956 | 0.0269340 | 0.3085439 | 0.0803309 | 0.0003119 | 0.0032677 | 0.0009588 | 0.0012643 | 0.1504835 | 0.9090523 | 1.652228 | 0.3124731 | 0.0000176 |
3042 | GO:0036402 proteasome-activating activity | 6 | 0.0000074 | 0.6538118 | 0.6682990 | -0.4381360 | -0.4924376 | 0.1339302 | 0.8059020 | -0.4419364 | 0.6542964 | 0.0055475 | 0.0045845 | 0.0631162 | 0.0367320 | 0.5700103 | 0.0006290 | 0.0608624 | 0.0055125 | 1.612259 | 0.5733972 | 0.0002037 |
1418 | GO:0008541 proteasome regulatory particle, lid subcomplex | 8 | 0.0000072 | 0.6482743 | 0.7791000 | -0.2373728 | -0.5253119 | 0.1988023 | 0.7245925 | -0.5180034 | 0.6246652 | 0.0014972 | 0.0001355 | 0.2450538 | 0.0100884 | 0.3302775 | 0.0003864 | 0.0111813 | 0.0022168 | 1.607061 | 0.5636140 | 0.0002012 |
3179 | GO:0042555 MCM complex | 10 | 0.0000007 | -0.1325679 | -0.2704937 | -0.6551856 | 0.0448220 | -0.7115653 | -0.6742595 | -0.5801760 | -0.8623957 | 0.4679831 | 0.1386309 | 0.0003335 | 0.8061596 | 0.0000975 | 0.0002223 | 0.0014888 | 0.0000023 | 1.601031 | 0.3203459 | 0.0000265 |
791 | GO:0005839 proteasome core complex | 18 | 0.0000000 | 0.5116285 | 0.6724022 | -0.2888617 | -0.8836299 | 0.1834520 | 0.4267358 | -0.2009905 | 0.8395922 | 0.0001714 | 0.0000008 | 0.0339042 | 0.0000000 | 0.1779540 | 0.0017245 | 0.1399772 | 0.0000000 | 1.593487 | 0.5782545 | 0.0000000 |
3678 | GO:0045987 positive regulation of smooth muscle contraction | 5 | 0.0304436 | 0.7642846 | 0.2450803 | 0.4784698 | 0.4037643 | 0.8009793 | 0.7751186 | -0.0646366 | 0.4513236 | 0.0030793 | 0.3426531 | 0.0639260 | 0.1179592 | 0.0019231 | 0.0026850 | 0.8023825 | 0.0805386 | 1.576833 | 0.2998493 | 0.1547700 |
4054 | GO:0051086 chaperone mediated protein folding independent of cofactor | 8 | 0.0000000 | 0.6631400 | 0.5788819 | -0.5599028 | -0.6193273 | -0.2695913 | 0.2913446 | -0.7399939 | 0.4717227 | 0.0011619 | 0.0045793 | 0.0061021 | 0.0024183 | 0.1867562 | 0.1536451 | 0.0002893 | 0.0208734 | 1.549061 | 0.5849751 | 0.0000014 |
4429 | GO:0070106 interleukin-27-mediated signaling pathway | 8 | 0.0000000 | -0.4298615 | -0.5672304 | -0.4150149 | 0.0131055 | 0.6358575 | 0.0347249 | 0.7889340 | 0.8283845 | 0.0352726 | 0.0054670 | 0.0421037 | 0.9488285 | 0.0018433 | 0.8649722 | 0.0001113 | 0.0000495 | 1.546964 | 0.5725046 | 0.0000000 |
3077 | GO:0038156 interleukin-3-mediated signaling pathway | 5 | 0.0117161 | -0.6956389 | -0.2021423 | -0.7019434 | -0.0579648 | -0.8949350 | -0.6255241 | 0.3069931 | -0.2623106 | 0.0070643 | 0.4338160 | 0.0065634 | 0.8224207 | 0.0005285 | 0.0154260 | 0.2345694 | 0.3097945 | 1.541460 | 0.4051056 | 0.0839876 |
105 | GO:0000727 double-strand break repair via break-induced replication | 8 | 0.0000074 | 0.0594819 | -0.0634040 | -0.6668707 | -0.2268118 | -0.6160366 | -0.6618007 | -0.6697597 | -0.7734752 | 0.7708341 | 0.7561878 | 0.0010895 | 0.2666861 | 0.0025507 | 0.0011890 | 0.0010362 | 0.0001514 | 1.538844 | 0.3231958 | 0.0002037 |
5226 | GO:1902254 negative regulation of intrinsic apoptotic signaling pathway by p53 class mediator | 6 | 0.0000509 | 0.2606167 | -0.1558650 | 0.6989568 | 0.3803913 | 0.6752366 | 0.5100110 | 0.5718877 | 0.7534114 | 0.2689995 | 0.5085675 | 0.0030273 | 0.1066535 | 0.0041793 | 0.0305194 | 0.0152748 | 0.0013933 | 1.528461 | 0.2999742 | 0.0011203 |
1213 | GO:0007221 positive regulation of transcription of Notch receptor target | 6 | 0.0012151 | -0.7492795 | -0.6390185 | -0.2336828 | 0.6810263 | -0.6974520 | -0.3394547 | -0.3012727 | -0.3577677 | 0.0014804 | 0.0067156 | 0.3216229 | 0.0038663 | 0.0030907 | 0.1499316 | 0.2013142 | 0.1291522 | 1.519408 | 0.4534699 | 0.0165078 |
3024 | GO:0036150 phosphatidylserine acyl-chain remodeling | 5 | 0.0466374 | -0.3938179 | -0.2743994 | -0.7995103 | -0.3382402 | -0.7624484 | -0.7507269 | 0.0714920 | -0.4165876 | 0.1272889 | 0.2880258 | 0.0019604 | 0.1903088 | 0.0031512 | 0.0036469 | 0.7819274 | 0.1067327 | 1.519074 | 0.2998225 | 0.2042221 |
47 | GO:0000221 vacuolar proton-transporting V-type ATPase, V1 domain | 8 | 0.0009809 | 0.5838371 | 0.7287059 | 0.5061414 | -0.6398179 | 0.5702916 | 0.2829839 | -0.5789776 | 0.1417311 | 0.0042430 | 0.0003579 | 0.0131799 | 0.0017257 | 0.0052199 | 0.1657999 | 0.0045726 | 0.4876413 | 1.515929 | 0.5318536 | 0.0138446 |
483 | GO:0004045 aminoacyl-tRNA hydrolase activity | 5 | 0.0974190 | 0.6869472 | 0.6803060 | 0.2182402 | -0.4733282 | 0.6134353 | 0.6534353 | -0.1540015 | 0.4813466 | 0.0078110 | 0.0084284 | 0.3981053 | 0.0668347 | 0.0175300 | 0.0113956 | 0.5509893 | 0.0623447 | 1.505016 | 0.4390754 | 0.3151987 |
4734 | GO:0075525 viral translational termination-reinitiation | 5 | 0.0030691 | -0.5858914 | 0.0003673 | -0.3707728 | -0.7438409 | -0.7521041 | -0.5903902 | -0.5181943 | 0.1986228 | 0.0232854 | 0.9988654 | 0.1511044 | 0.0039703 | 0.0035852 | 0.0222458 | 0.0447990 | 0.4418631 | 1.502078 | 0.3470666 | 0.0328751 |
3573 | GO:0045569 TRAIL binding | 5 | 0.0001069 | 0.3922265 | 0.3068707 | 0.5321500 | 0.3189594 | 0.8076205 | 0.5745371 | 0.4373986 | 0.6606274 | 0.1288335 | 0.2347561 | 0.0393427 | 0.2168281 | 0.0017625 | 0.0260984 | 0.0903328 | 0.0105220 | 1.497672 | 0.1742388 | 0.0021352 |
5277 | GO:1903238 positive regulation of leukocyte tethering or rolling | 5 | 0.0614689 | -0.7262739 | -0.5791584 | -0.5320888 | 0.0113236 | -0.6599847 | -0.6715532 | 0.2380413 | -0.3060444 | 0.0049163 | 0.0249198 | 0.0393654 | 0.9650290 | 0.0105976 | 0.0093087 | 0.3566952 | 0.2360188 | 1.477510 | 0.3550376 | 0.2435149 |
3067 | GO:0038094 Fc-gamma receptor signaling pathway | 7 | 0.0000070 | -0.3132625 | -0.3504744 | -0.6935808 | -0.6609384 | -0.7200140 | -0.6897547 | -0.1716297 | 0.0763698 | 0.1512631 | 0.1083681 | 0.0014837 | 0.0024599 | 0.0009703 | 0.0015760 | 0.4317329 | 0.7264559 | 1.472525 | 0.2968016 | 0.0001954 |
790 | GO:0005838 proteasome regulatory particle | 8 | 0.0000133 | 0.6499388 | 0.6285490 | -0.3504247 | -0.5342466 | 0.1046338 | 0.6050547 | -0.5018367 | 0.5546989 | 0.0014557 | 0.0020800 | 0.0861381 | 0.0088822 | 0.6083741 | 0.0030420 | 0.0139797 | 0.0065926 | 1.470470 | 0.5338718 | 0.0003458 |
4491 | GO:0070508 cholesterol import | 5 | 0.0368607 | 0.7091660 | 0.4615149 | 0.5840857 | 0.2861209 | 0.7674981 | 0.6108340 | -0.1312930 | -0.1997552 | 0.0060291 | 0.0739317 | 0.0237143 | 0.2679268 | 0.0029572 | 0.0180143 | 0.6112062 | 0.4392648 | 1.469097 | 0.3715114 | 0.1750331 |
4645 | GO:0071541 eukaryotic translation initiation factor 3 complex, eIF3m | 7 | 0.0000192 | -0.2418121 | 0.1148498 | -0.6186978 | -0.7476497 | -0.6903231 | -0.3655822 | -0.5852901 | 0.4374481 | 0.2679718 | 0.5988052 | 0.0045878 | 0.0006133 | 0.0015620 | 0.0939756 | 0.0073286 | 0.0450631 | 1.468861 | 0.4222876 | 0.0004778 |
479 | GO:0004017 adenylate kinase activity | 6 | 0.0312317 | 0.4048767 | 0.4351264 | 0.7712653 | 0.0001785 | 0.7461168 | 0.6452419 | 0.1156171 | 0.4480833 | 0.0859272 | 0.0649496 | 0.0010686 | 0.9993958 | 0.0015504 | 0.0061996 | 0.6238759 | 0.0573584 | 1.461261 | 0.2791026 | 0.1569463 |
1598 | GO:0010756 positive regulation of plasminogen activation | 5 | 0.0248233 | 0.3962663 | 0.8354093 | 0.2491813 | -0.6272992 | 0.2024178 | 0.3537567 | -0.7884009 | 0.1645907 | 0.1249407 | 0.0012154 | 0.3346372 | 0.0151365 | 0.4331898 | 0.1707650 | 0.0022647 | 0.5239431 | 1.457846 | 0.5409126 | 0.1355548 |
1132 | GO:0007006 mitochondrial membrane organization | 5 | 0.0283058 | 0.6815608 | 0.3571538 | 0.6098852 | 0.1513083 | 0.7026779 | 0.4737873 | -0.6112318 | 0.1861974 | 0.0083085 | 0.1666941 | 0.0181938 | 0.5579760 | 0.0065072 | 0.0665706 | 0.0179395 | 0.4709466 | 1.453768 | 0.4309087 | 0.1474869 |
4847 | GO:0097250 mitochondrial respirasome assembly | 6 | 0.0121684 | 0.1389293 | 0.7539980 | 0.7679241 | -0.5550539 | 0.4332900 | 0.4157676 | -0.3547071 | 0.3588390 | 0.5557008 | 0.0013813 | 0.0011235 | 0.0185537 | 0.0660897 | 0.0778189 | 0.1324602 | 0.1280097 | 1.449411 | 0.4812318 | 0.0860124 |
3206 | GO:0042719 mitochondrial intermembrane space protein transporter complex | 6 | 0.0332854 | 0.6409570 | 0.5807891 | 0.6859744 | -0.2810978 | 0.7625679 | 0.4160992 | -0.1625730 | 0.0887086 | 0.0065509 | 0.0137563 | 0.0036158 | 0.2331665 | 0.0012169 | 0.0775822 | 0.4904955 | 0.7067403 | 1.444530 | 0.4060402 | 0.1636840 |
1988 | GO:0019774 proteasome core complex, beta-subunit complex | 10 | 0.0000000 | 0.3595561 | 0.5088404 | -0.4429698 | -0.8605587 | 0.1021202 | 0.2054650 | -0.1294910 | 0.8272331 | 0.0490020 | 0.0053344 | 0.0152933 | 0.0000024 | 0.5761132 | 0.2606453 | 0.4783746 | 0.0000059 | 1.441773 | 0.5395857 | 0.0000000 |
349 | GO:0002260 lymphocyte homeostasis | 5 | 0.0763802 | -0.3490130 | -0.5455853 | -0.4410712 | 0.3204591 | -0.5092578 | -0.7122265 | -0.1585004 | -0.7523795 | 0.1765734 | 0.0346336 | 0.0876611 | 0.2146748 | 0.0486178 | 0.0058147 | 0.5394151 | 0.0035730 | 1.440319 | 0.3456082 | 0.2733027 |
5361 | GO:1904874 positive regulation of telomerase RNA localization to Cajal body | 9 | 0.0000001 | 0.6159498 | 0.5780907 | -0.4853819 | -0.5394493 | -0.2369679 | 0.3240642 | -0.7264826 | 0.3747470 | 0.0013753 | 0.0026729 | 0.0116917 | 0.0050748 | 0.2183919 | 0.0923292 | 0.0001605 | 0.0515914 | 1.438599 | 0.5435899 | 0.0000040 |
340 | GO:0002199 zona pellucida receptor complex | 5 | 0.0006480 | 0.6785922 | 0.4699311 | -0.4676052 | -0.4716450 | -0.1518592 | 0.3176435 | -0.7005356 | 0.5753022 | 0.0085947 | 0.0688156 | 0.0701995 | 0.0678102 | 0.5565434 | 0.2187306 | 0.0066724 | 0.0259000 | 1.438092 | 0.5425214 | 0.0097283 |
2053 | GO:0021952 central nervous system projection neuron axonogenesis | 5 | 0.0003197 | -0.7886764 | -0.4321653 | -0.3825861 | 0.1517674 | -0.4785922 | -0.2923336 | 0.6062127 | 0.6254323 | 0.0022566 | 0.0942528 | 0.1385036 | 0.5567821 | 0.0638580 | 0.2576739 | 0.0189036 | 0.0154411 | 1.432254 | 0.5248954 | 0.0054794 |
2110 | GO:0030091 protein repair | 5 | 0.0171208 | 0.6043152 | 0.6302372 | 0.2398470 | -0.3611324 | 0.3477276 | 0.5656924 | -0.3666412 | 0.7218669 | 0.0192798 | 0.0146679 | 0.3530590 | 0.1620198 | 0.1781724 | 0.0284887 | 0.1557118 | 0.0051836 | 1.430657 | 0.4371319 | 0.1077385 |
2924 | GO:0035456 response to interferon-beta | 9 | 0.0000000 | -0.5181047 | -0.5177645 | -0.3364457 | 0.1702638 | 0.5500791 | -0.0961103 | 0.9119853 | 0.4642924 | 0.0071166 | 0.0071544 | 0.0805408 | 0.3765123 | 0.0042701 | 0.6176478 | 0.0000022 | 0.0158765 | 1.427518 | 0.5329806 | 0.0000000 |
830 | GO:0005955 calcineurin complex | 5 | 0.0402599 | -0.0792655 | -0.6097934 | -0.7821882 | 0.6596480 | -0.5644070 | -0.3829839 | 0.0060903 | -0.3624178 | 0.7589146 | 0.0182113 | 0.0024531 | 0.0106373 | 0.0288513 | 0.1380937 | 0.9811870 | 0.1605309 | 1.421865 | 0.4570682 | 0.1853168 |
3765 | GO:0046934 1-phosphatidylinositol-4,5-bisphosphate 3-kinase activity | 7 | 0.0216895 | -0.2101098 | -0.7934103 | -0.3800560 | 0.5776160 | -0.2936071 | -0.6384844 | 0.4108400 | -0.4456469 | 0.3357929 | 0.0002775 | 0.0816654 | 0.0081363 | 0.1786141 | 0.0034410 | 0.0598158 | 0.0411881 | 1.418798 | 0.4810864 | 0.1233487 |
3578 | GO:0045588 positive regulation of gamma-delta T cell differentiation | 6 | 0.0151118 | -0.5740046 | -0.3755452 | -0.4383146 | -0.0854184 | -0.5340373 | -0.7198204 | 0.2007040 | -0.7043130 | 0.0149009 | 0.1111910 | 0.0630088 | 0.7171407 | 0.0234995 | 0.0022620 | 0.3946306 | 0.0028110 | 1.417606 | 0.3173303 | 0.1005647 |
2069 | GO:0022624 proteasome accessory complex | 17 | 0.0000000 | 0.6215167 | 0.5722253 | -0.3529592 | -0.4353608 | 0.1177822 | 0.6302109 | -0.4833728 | 0.5707928 | 0.0000091 | 0.0000441 | 0.0117669 | 0.0018877 | 0.4006185 | 0.0000068 | 0.0005602 | 0.0000461 | 1.413625 | 0.5079197 | 0.0000000 |
3504 | GO:0045053 protein retention in Golgi apparatus | 5 | 0.0677346 | -0.1715073 | -0.7837796 | -0.5359143 | 0.6868248 | -0.4174445 | -0.5554705 | 0.0175363 | -0.3243152 | 0.5066520 | 0.0024035 | 0.0379715 | 0.0078220 | 0.1060137 | 0.0314840 | 0.9458664 | 0.2092084 | 1.411011 | 0.4548209 | 0.2568466 |
2188 | GO:0030292 protein tyrosine kinase inhibitor activity | 5 | 0.0996089 | -0.7665800 | -0.3145830 | -0.4962510 | -0.2270543 | -0.7956848 | -0.5987758 | 0.0598011 | 0.0261056 | 0.0029916 | 0.2232012 | 0.0546616 | 0.3793262 | 0.0020606 | 0.0204155 | 0.8168935 | 0.9194889 | 1.407242 | 0.3314399 | 0.3186797 |
4570 | GO:0071162 CMG complex | 9 | 0.0000184 | 0.0238107 | -0.0541184 | -0.5460313 | -0.1770669 | -0.4902971 | -0.6644727 | -0.4695308 | -0.8599078 | 0.9015767 | 0.7786458 | 0.0045618 | 0.3577418 | 0.0108699 | 0.0005565 | 0.0147297 | 0.0000079 | 1.405281 | 0.3081155 | 0.0004594 |
2351 | GO:0031123 RNA 3’-end processing | 9 | 0.0063220 | -0.1621851 | -0.7052741 | -0.5452999 | 0.4007177 | -0.3891695 | -0.6810041 | 0.3025154 | -0.5133935 | 0.3995755 | 0.0002483 | 0.0046164 | 0.0373930 | 0.0432329 | 0.0004033 | 0.1161132 | 0.0076563 | 1.397122 | 0.4300608 | 0.0558947 |
4567 | GO:0071139 resolution of DNA recombination intermediates | 5 | 0.1149487 | -0.5222035 | -0.3285386 | -0.3625096 | 0.0632594 | -0.7061056 | -0.7176129 | -0.0635960 | -0.6463351 | 0.0431698 | 0.2033379 | 0.1604250 | 0.8065087 | 0.0062505 | 0.0054541 | 0.8054996 | 0.0123206 | 1.396924 | 0.2936489 | 0.3409436 |
4270 | GO:0060316 positive regulation of ryanodine-sensitive calcium-release channel activity | 5 | 0.0014582 | 0.1617445 | 0.7330681 | -0.2814384 | -0.8426626 | -0.1401989 | 0.0746748 | -0.7278041 | 0.1735272 | 0.5311453 | 0.0045286 | 0.2758372 | 0.0011010 | 0.5872431 | 0.7724805 | 0.0048265 | 0.5016596 | 1.392078 | 0.5137761 | 0.0189773 |
colfunc <- colorRampPalette(c("blue", "white", "red"))
mx <- top[,grep("^s\\.",colnames(top))]
mx <- mx[,-ncol(mx)]
rownames(mx) <- top$set
heatmap.2(as.matrix(mx),scale="none",trace="none",margins=c(6,25),
col=colfunc(25),cexRow=0.6,cexCol=0.8)
For reproducibility.
save.image("scanalysis.Rdata")
sessionInfo()
## R version 4.5.0 (2025-04-11)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0 LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] future_1.40.0 gplots_3.2.0
## [3] limma_3.64.0 SingleR_2.10.0
## [5] celldex_1.18.0 harmony_1.2.3
## [7] Rcpp_1.0.14 mitch_1.20.0
## [9] DESeq2_1.48.0 muscat_1.22.0
## [11] beeswarm_0.4.0 stringi_1.8.7
## [13] SingleCellExperiment_1.30.0 SummarizedExperiment_1.38.0
## [15] Biobase_2.68.0 GenomicRanges_1.60.0
## [17] GenomeInfoDb_1.44.0 IRanges_2.42.0
## [19] S4Vectors_0.46.0 BiocGenerics_0.54.0
## [21] generics_0.1.3 MatrixGenerics_1.20.0
## [23] matrixStats_1.5.0 hdf5r_1.3.12
## [25] Seurat_5.3.0 SeuratObject_5.1.0
## [27] sp_2.2-0 plyr_1.8.9
## [29] ggplot2_3.5.2 kableExtra_1.4.0
##
## loaded via a namespace (and not attached):
## [1] dichromat_2.0-0.1 progress_1.2.3
## [3] goftest_1.2-3 HDF5Array_1.36.0
## [5] Biostrings_2.76.0 vctrs_0.6.5
## [7] spatstat.random_3.3-3 digest_0.6.37
## [9] png_0.1-8 corpcor_1.6.10
## [11] shape_1.4.6.1 gypsum_1.4.0
## [13] ggrepel_0.9.6 echarts4r_0.4.5
## [15] deldir_2.0-4 parallelly_1.43.0
## [17] MASS_7.3-65 reshape2_1.4.4
## [19] httpuv_1.6.16 foreach_1.5.2
## [21] withr_3.0.2 xfun_0.52
## [23] survival_3.8-3 memoise_2.0.1.9000
## [25] ggbeeswarm_0.7.2 systemfonts_1.2.2
## [27] zoo_1.8-14 GlobalOptions_0.1.2
## [29] gtools_3.9.5 pbapply_1.7-2
## [31] prettyunits_1.2.0 GGally_2.2.1
## [33] KEGGREST_1.48.0 promises_1.3.2
## [35] httr_1.4.7 globals_0.17.0
## [37] fitdistrplus_1.2-2 rhdf5filters_1.20.0
## [39] rhdf5_2.52.0 rstudioapi_0.17.1
## [41] UCSC.utils_1.4.0 miniUI_0.1.2
## [43] curl_6.2.2 h5mread_1.0.0
## [45] ScaledMatrix_1.16.0 polyclip_1.10-7
## [47] GenomeInfoDbData_1.2.14 ExperimentHub_2.16.0
## [49] SparseArray_1.8.0 xtable_1.8-4
## [51] stringr_1.5.1 doParallel_1.0.17
## [53] evaluate_1.0.3 S4Arrays_1.8.0
## [55] BiocFileCache_2.16.0 hms_1.1.3
## [57] irlba_2.3.5.1 colorspace_2.1-1
## [59] filelock_1.0.3 ROCR_1.0-11
## [61] reticulate_1.42.0 spatstat.data_3.1-6
## [63] magrittr_2.0.3 lmtest_0.9-40
## [65] later_1.4.2 viridis_0.6.5
## [67] lattice_0.22-7 spatstat.geom_3.3-6
## [69] future.apply_1.11.3 scattermore_1.2
## [71] scuttle_1.18.0 cowplot_1.1.3
## [73] RcppAnnoy_0.0.22 pillar_1.10.2
## [75] nlme_3.1-168 iterators_1.0.14
## [77] caTools_1.18.3 compiler_4.5.0
## [79] beachmat_2.24.0 RSpectra_0.16-2
## [81] tensor_1.5 minqa_1.2.8
## [83] crayon_1.5.3 abind_1.4-8
## [85] scater_1.36.0 blme_1.0-6
## [87] locfit_1.5-9.12 bit_4.6.0
## [89] dplyr_1.1.4 codetools_0.2-20
## [91] BiocSingular_1.24.0 bslib_0.9.0
## [93] alabaster.ranges_1.8.0 GetoptLong_1.0.5
## [95] plotly_4.10.4 remaCor_0.0.18
## [97] mime_0.13 splines_4.5.0
## [99] circlize_0.4.16 fastDummies_1.7.5
## [101] dbplyr_2.5.0 sparseMatrixStats_1.20.0
## [103] knitr_1.50 blob_1.2.4
## [105] clue_0.3-66 BiocVersion_3.21.1
## [107] lme4_1.1-37 listenv_0.9.1
## [109] DelayedMatrixStats_1.30.0 Rdpack_2.6.4
## [111] tibble_3.2.1 Matrix_1.7-3
## [113] statmod_1.5.0 svglite_2.1.3
## [115] fANCOVA_0.6-1 pkgconfig_2.0.3
## [117] network_1.19.0 tools_4.5.0
## [119] cachem_1.1.0 RhpcBLASctl_0.23-42
## [121] rbibutils_2.3 RSQLite_2.3.9
## [123] viridisLite_0.4.2 DBI_1.2.3
## [125] numDeriv_2016.8-1.1 fastmap_1.2.0
## [127] rmarkdown_2.29 scales_1.4.0
## [129] grid_4.5.0 ica_1.0-3
## [131] broom_1.0.8 AnnotationHub_3.16.0
## [133] sass_0.4.10 patchwork_1.3.0
## [135] coda_0.19-4.1 BiocManager_1.30.25
## [137] ggstats_0.9.0 dotCall64_1.2
## [139] RANN_2.6.2 alabaster.schemas_1.8.0
## [141] farver_2.1.2 reformulas_0.4.0
## [143] aod_1.3.3 mgcv_1.9-3
## [145] yaml_2.3.10 cli_3.6.5
## [147] purrr_1.0.4 lifecycle_1.0.4
## [149] uwot_0.2.3 glmmTMB_1.1.11
## [151] mvtnorm_1.3-3 backports_1.5.0
## [153] BiocParallel_1.42.0 gtable_0.3.6
## [155] rjson_0.2.23 ggridges_0.5.6
## [157] progressr_0.15.1 jsonlite_2.0.0
## [159] edgeR_4.6.1 RcppHNSW_0.6.0
## [161] bitops_1.0-9 bit64_4.6.0-1
## [163] Rtsne_0.17 alabaster.matrix_1.8.0
## [165] spatstat.utils_3.1-3 BiocNeighbors_2.2.0
## [167] alabaster.se_1.8.0 jquerylib_0.1.4
## [169] spatstat.univar_3.1-2 pbkrtest_0.5.4
## [171] lazyeval_0.2.2 alabaster.base_1.8.0
## [173] shiny_1.10.0 htmltools_0.5.8.1
## [175] sctransform_0.4.1 rappdirs_0.3.3
## [177] glue_1.8.0 spam_2.11-1
## [179] httr2_1.1.2 XVector_0.48.0
## [181] gridExtra_2.3 EnvStats_3.1.0
## [183] boot_1.3-31 igraph_2.1.4
## [185] variancePartition_1.38.0 TMB_1.9.17
## [187] R6_2.6.1 tidyr_1.3.1
## [189] labeling_0.4.3 cluster_2.1.8.1
## [191] Rhdf5lib_1.30.0 nloptr_2.2.1
## [193] statnet.common_4.11.0 DelayedArray_0.34.1
## [195] tidyselect_1.2.1 vipor_0.4.7
## [197] xml2_1.3.8 AnnotationDbi_1.70.0
## [199] rsvd_1.0.5 KernSmooth_2.23-26
## [201] data.table_1.17.0 htmlwidgets_1.6.4
## [203] ComplexHeatmap_2.24.0 RColorBrewer_1.1-3
## [205] rlang_1.1.6 spatstat.sparse_3.1-0
## [207] spatstat.explore_3.4-2 lmerTest_3.1-3