There are 3 samples.
1-17032023-GEX
2-09032023-GEX
3-13032023-GEX
I had to make a new custom reference genome with the HIV sequence.
suppressPackageStartupMessages({
library("plyr")
library("Seurat")
library("hdf5r")
library("SingleCellExperiment")
library("parallel")
library("stringi")
library("beeswarm")
library("muscat")
library("DESeq2")
library("mitch")
library("limma")
library("kableExtra")
library("gplots")
})
Load data.
load("scanalyse1.Rdata")
cellmetadata <- data.frame(colnames(comb) ,sapply(strsplit(colnames(comb)," "),"[[",1))
colnames(cellmetadata) <- c("cell","patient")
comb <- CreateSeuratObject(comb, project = "nkmono", assay = "RNA", meta.data = cellmetadata)
comb <- NormalizeData(comb)
## Normalizing layer: counts
comb <- FindVariableFeatures(comb, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
comb <- ScaleData(comb)
## Centering and scaling data matrix
comb <- RunPCA(comb, features = VariableFeatures(object = comb))
## PC_ 1
## Positive: NAMPT, PLXDC2, FCN1, IRAK3, CYBB, CTSS, DMXL2, LYZ, LRMDA, FAM49A
## SLC8A1, DENND5A, KYNU, VCAN, GAB2, ACSL1, CST3, S100A9, GRK3, MCTP1
## IFI30, AIF1, HCK, RAB31, RBM47, TLR2, MNDA, LRRK2, CD83, UBE2E2
## Negative: SKAP1, CD247, NKG7, GNLY, GZMA, CCL5, GZMB, STAT4, RORA, FGFBP2
## IL32, NCALD, GZMH, TRBC2, CARD11, CD96, SPON2, C12orf75, KLRB1, YES1
## CD69, PPP2R2B, CLIC3, ISG20, BCL11B, TOX, TC2N, RHOH, KLRC3, PRSS23
## PC_ 2
## Positive: DPYD, NEAT1, FNDC3B, S100A9, GBP2, SAMSN1, S100A8, ARHGAP26, GNLY, CCL5
## NKG7, CD247, FCGR3A, GZMA, FGFBP2, CCL4, ATP2B1, S100A12, PLCB1, FCN1
## AQP9, BCL2A1, TNFAIP3, C5AR1, CD14, MT2A, VCAN, GZMH, SKAP1, G0S2
## Negative: RHEX, LINC01374, CLEC4C, COBLL1, ITM2C, SERPINF1, LILRA4, NIBAN3, AC023590.1, FAM160A1
## CUX2, LINC01478, DERL3, TSPAN13, EPHB1, PLD4, SCT, RGS7, LRRC26, BLNK
## PTPRS, SPIB, P2RY14, SCAMP5, JCHAIN, SCN9A, TCF4, TPM2, NRP1, AC007381.1
## PC_ 3
## Positive: TNFAIP3, TNFAIP6, PLCB1, CXCL8, AQP9, IL1B, CCL4, CLEC4E, IRAK2, NFKB1
## FNDC3B, CCL3, AZIN1-AS1, STEAP4, IVNS1ABP, SLC39A8, LIMK2, ACVR2A, PDE4D, STAT4
## ARHGAP26, S100A12, CD247, ACSL1, IER3, GZMB, EREG, SKAP1, LINC00910, CCL3L1
## Negative: CDKN1C, HES4, PAPSS2, CSF1R, SNED1, FMNL2, CKB, HLA-DPA1, AC104809.2, HMOX1
## MS4A7, LYPD2, CD86, CTSL, VMO1, SMIM25, AC020651.2, LST1, IFITM3, CCDC26
## AC005237.1, SPRED1, TIMP1, TMTC1, CD79B, HLA-DPB1, FAM20A, AIF1, MYOF, LINC02432
## PC_ 4
## Positive: HBEGF, SLC2A3, S100A12, ADAM28, VEGFA, GPAT3, RNF24, FOS, FCER1A, S100A8
## VCAN, IL7R, AC020656.1, CAMK4, TMEM170B, LYZ, LGALS2, PLBD1, SDC2, SLC25A37
## FOLR3, INPP4B, S100A9, LMNA, CD1C, CAMK2A, ARSI, SNHG29, PADI4, CLEC10A
## Negative: FCGR3A, CCL4, MTSS1, AC020651.2, TCF7L2, CDKN1C, CCL3, IL1B, HES4, IFITM3
## GCH1, SETBP1, MS4A7, LINC02085, KCNJ2, ZEB2, AZIN1-AS1, FMNL2, CCL4L2, MIR3142HG
## MIR155HG, SMIM25, GBP2, CSF1R, SERPINB9, MGLL, CCL3L1, BATF3, TNF, IL1A
## PC_ 5
## Positive: IL7R, CAMK4, LTB, INPP4B, BACH2, CD28, ZEB1, TRAC, NELL2, CD3D
## LEF1, CD3G, CD27, TNFAIP8, THEMIS, PATJ, ANK3, CCR7, MAL, BCL11B
## TRAF1, GPR183, GZMK, TNFAIP3, NR3C2, AQP3, FAAH2, SNHG29, IL1B, HLA-DQA1
## Negative: GZMB, FGFBP2, SPON2, CLIC3, FCGR3A, BNC2, PRSS23, GZMH, GNLY, NKG7
## S100A8, MEGF9, ZEB2, CLEC12A, S100A12, PPM1L, S100A9, PADI4, CYP1B1, RBP7
## LRRK2, DYSF, ARHGAP26, SLC15A4, KIF13A, ARHGAP24, GZMA, VCAN, CD36, LINGO2
DimHeatmap(comb, dims = 1, cells = 500, balanced = TRUE)
ElbowPlot(comb)
comb <- JackStraw(comb, num.replicate = 100)
comb <- FindNeighbors(comb, dims = 1:5)
## Computing nearest neighbor graph
## Computing SNN
comb <- FindClusters(comb, resolution = 0.2)
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 35603
## Number of edges: 1014624
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9460
## Number of communities: 9
## Elapsed time: 4 seconds
comb <- RunUMAP(comb, dims = 1:8)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 16:28:02 UMAP embedding parameters a = 0.9922 b = 1.112
## 16:28:02 Read 35603 rows and found 8 numeric columns
## 16:28:02 Using Annoy for neighbor search, n_neighbors = 30
## 16:28:02 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 16:28:04 Writing NN index file to temp file /tmp/Rtmp0kgzpt/file7484f316e3b4b
## 16:28:04 Searching Annoy index using 1 thread, search_k = 3000
## 16:28:14 Annoy recall = 100%
## 16:28:15 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 16:28:17 Initializing from normalized Laplacian + noise (using RSpectra)
## 16:28:18 Commencing optimization for 200 epochs, with 1424968 positive edges
## 16:28:27 Optimization finished
DimPlot(comb, reduction = "umap")
Cluster ID | Markers | Cell Type |
---|---|---|
0 | IL7R, CCR7 | Naive CD4+ T |
1 | CD14, LYZ | CD14+ Mono |
2 | IL7R, S100A4 | Memory CD4+ |
3 | MS4A1 | B |
4 | CD8A | CD8+ T |
5 | FCGR3A, MS4A7 | FCGR3A+ Mono |
6 | GNLY, NKG7 | NK |
7 | FCER1A, CST3 | DC |
8 | PPBP | Platelet |
message("Naive CD4+ T")
## Naive CD4+ T
VlnPlot(comb, features = c("IL7R", "CCR7"))
message("CD14+ Mono")
## CD14+ Mono
VlnPlot(comb, features = c("CD14", "LYZ"))
message("Memory CD4+ T")
## Memory CD4+ T
VlnPlot(comb, features = c("IL7R", "S100A4"))
message("B")
## B
VlnPlot(comb, features = c("MS4A1"))
message("CD8+ T")
## CD8+ T
VlnPlot(comb, features = c("CD8A"))
message("FCGR3A+ Mono")
## FCGR3A+ Mono
VlnPlot(comb, features = c("FCGR3A", "MS4A7"))
message("NK")
## NK
VlnPlot(comb, features = c("GNLY", "NKG7"))
message("DC")
## DC
VlnPlot(comb, features = c("FCER1A", "CST3"))
message("Platelet")
## Platelet
VlnPlot(comb, features = c("PPBP"))
#new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T",
# "FCGR3A+ Mono", "NK", "DC", "Platelet")
FeaturePlot(comb, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A",
"LYZ", "PPBP", "CD8A"))
#names(new.cluster.ids) <- levels(comb)
Now get the marker genes for each cluster.
myvec <- unique(comb[["seurat_clusters"]][,1])
markers <- mclapply(myvec, function(i) { FindMarkers(comb, ident.1 = i ) } , mc.cores=16)
length(markers)
## [1] 9
# NK 1 (cluster 0)
head(markers[[1]],10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## FGFBP2 0 4.405845 0.941 0.124 0
## GZMB 0 3.657251 0.981 0.185 0
## GZMA 0 3.273408 0.964 0.190 0
## PRF1 0 3.928052 0.912 0.145 0
## CST7 0 3.653445 0.984 0.219 0
## KLRF1 0 3.727494 0.879 0.121 0
## KLRD1 0 3.136655 0.943 0.185 0
## SPON2 0 4.307448 0.864 0.135 0
## GZMH 0 3.278490 0.855 0.132 0
## TRDC 0 3.759667 0.813 0.093 0
# CD14+ monocytes 1 (cluster 1)
head(markers[[2]],10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## AQP9 0 3.475060 0.880 0.230 0
## IRAK2 0 3.748144 0.800 0.162 0
## IL1B 0 4.677256 0.886 0.271 0
## CLIC4 0 3.276105 0.868 0.255 0
## ICAM1 0 2.600262 0.903 0.308 0
## AZIN1-AS1 0 3.748872 0.764 0.170 0
## IER3 0 2.314379 0.880 0.291 0
## NLRP3 0 2.662558 0.942 0.359 0
## CLEC4E 0 2.614319 0.794 0.213 0
## TNFAIP6 0 4.602969 0.654 0.079 0
# NK 2 (cluster 2)
head(markers[[3]],10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## CDKN1C 0 5.941590 0.894 0.071 0
## HES4 0 4.745219 0.753 0.041 0
## SMIM25 0 3.438883 0.909 0.233 0
## CSF1R 0 3.324781 0.879 0.205 0
## SNED1 0 4.117990 0.752 0.094 0
## MS4A7 0 3.433621 0.940 0.295 0
## TCF7L2 0 3.316507 0.989 0.361 0
## LRRC25 0 2.829461 0.888 0.261 0
## HMOX1 0 2.799216 0.847 0.223 0
## FMNL2 0 4.785793 0.665 0.051 0
# CD14+ monocytes 2 (cluster 3)
head(markers[[4]],10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## SEPTIN7 0 -2.610204 0.061 0.925 0
## YWHAZ 0 -2.023444 0.105 0.967 0
## KMT2E 0 -2.396477 0.075 0.934 0
## CDC42SE2 0 -2.315329 0.105 0.962 0
## BTG1 0 -2.389523 0.103 0.959 0
## CDC42 0 -2.129717 0.104 0.958 0
## HNRNPC 0 -2.536145 0.085 0.939 0
## ANKRD12 0 -2.067971 0.090 0.944 0
## ARHGAP15 0 -2.592570 0.097 0.949 0
## JAK1 0 -2.050399 0.100 0.951 0
# FCGR3A+ monocytes (cluster 4)
head(markers[[5]],10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## FCER1A 0 6.647756 0.837 0.035 0
## ADAM28 0 3.356873 0.897 0.139 0
## AFF3 0 2.785053 0.882 0.147 0
## CLEC10A 0 5.910158 0.768 0.044 0
## CCSER1 0 5.031951 0.756 0.051 0
## HLA-DQA1 0 4.165148 0.989 0.300 0
## FLT3 0 3.322687 0.751 0.085 0
## CD1C 0 6.237336 0.690 0.025 0
## PHACTR1 0 2.008151 0.897 0.247 0
## CIITA 0 2.767178 0.849 0.199 0
# cluster 5 unknown - probably T cell
# IL7R = Naive T-cells
# CD3D = CD4+ T cells
# CD3E = T cells
head(markers[[6]],10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## IL7R 0 6.644805 0.695 0.023 0
## CD3D 0 3.830768 0.691 0.063 0
## CD3E 0 1.959087 0.801 0.194 0
## CD3G 0 3.706040 0.643 0.050 0
## IL32 0 1.870267 0.838 0.273 0
## TC2N 0 2.537292 0.727 0.167 0
## ZEB1 0 3.176193 0.661 0.123 0
## DOCK5 0 -2.521629 0.166 0.701 0
## TRAC 0 4.678234 0.578 0.043 0
## CAMK4 0 5.860070 0.555 0.022 0
# DC (cluster 6)
head(markers[[7]],10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## RHEX 0 9.021711 0.980 0.010 0
## ITM2C 0 6.923569 0.992 0.037 0
## LINC01374 0 9.073702 0.964 0.011 0
## AC023590.1 0 7.189649 0.983 0.038 0
## NIBAN3 0 7.336635 0.955 0.011 0
## SERPINF1 0 7.432269 0.969 0.029 0
## CLEC4C 0 9.443771 0.943 0.004 0
## JCHAIN 0 5.052743 0.969 0.035 0
## PTPRS 0 6.421687 0.980 0.047 0
## COBLL1 0 7.473471 0.941 0.013 0
# cluster 7 unknown - probably macrophage
# CD14 = macrophages
# S100A12 = macrophages and monocytes
# MS4A6A = macrophages and monocytes
head(markers[[8]],10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## CD14 0 2.590196 0.943 0.215 0
## S100A12 0 2.831699 0.937 0.213 0
## MS4A6A 0 2.339090 0.943 0.246 0
## CSF3R 0 2.403534 0.986 0.304 0
## WDFY3 0 2.299412 0.927 0.258 0
## VCAN 0 2.897514 0.996 0.328 0
## CSTA 0 2.178795 0.962 0.297 0
## SLC11A1 0 2.272561 0.952 0.291 0
## AC020656.1 0 2.608471 0.918 0.261 0
## RBM47 0 2.340318 0.960 0.304 0
# B cells (cluster 8)
head(markers[[9]],10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## STRBP 0 3.616973 0.819 0.104 0
## COBLL1 0 4.245510 0.621 0.024 0
## GNG7 0 4.335929 0.677 0.096 0
## DENND5B 0 4.280196 0.641 0.066 0
## CD79A 0 8.257984 0.552 0.009 0
## BANK1 0 6.899614 0.596 0.053 0
## OSBPL10 0 6.749382 0.554 0.019 0
## IGHM 0 7.730666 0.563 0.043 0
## RAB30 0 4.310501 0.565 0.050 0
## FAM30A 0 7.040820 0.518 0.010 0
As there are two CD14+ mono and NK clusters, it might be a good idea to look at their differences.
# find all NK markers distinguishing cluster 0 (case) from cluster 2 (ctrl)
nk0.markers <- FindMarkers(comb, ident.1 = 0, ident.2 = 2,only.pos=TRUE)
## For a (much!) faster implementation of the Wilcoxon Rank Sum Test,
## (default method for FindMarkers) please install the presto package
## --------------------------------------------
## install.packages('devtools')
## devtools::install_github('immunogenomics/presto')
## --------------------------------------------
## After installation of presto, Seurat will automatically use the more
## efficient implementation (no further action necessary).
## This message will be shown once per session
head(nk0.markers, n = 10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## FCGR3A 0 2.745818 0.886 0.261 0
## FGFBP2 0 2.651611 0.941 0.317 0
## SPON2 0 3.045026 0.864 0.277 0
## KLRF1 0 1.891888 0.879 0.305 0
## GZMB 0 2.488239 0.981 0.409 0
## TRDC 0 1.766307 0.813 0.267 0
## BNC2 0 4.207183 0.575 0.058 0
## TYROBP 0 1.723822 0.954 0.446 0
## GZMH 0 1.259498 0.855 0.380 0
## PRF1 0 2.152961 0.912 0.438 0
nk2.markers <- FindMarkers(comb, ident.1 = 2, ident.2 = 0,only.pos=TRUE)
head(nk2.markers, n = 10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## IL7R 0 7.195133 0.695 0.018 0
## CD3D 0 2.458322 0.691 0.130 0
## CD3G 0 2.316037 0.643 0.105 0
## CAMK4 0 5.602151 0.555 0.023 0
## LTB 0 5.130821 0.608 0.082 0
## ZEB1 0 2.657739 0.661 0.160 0
## INPP4B 0 6.085176 0.512 0.018 0
## TRAC 0 3.473439 0.578 0.086 0
## CASK 0 2.261784 0.622 0.175 0
## BACH2 0 2.536058 0.610 0.189 0
# find all monocyte markers distinguishing cluster 1 (case) from cluster 3 (ctrl)
monocyte1.markers <- FindMarkers(comb, ident.1 = 1, ident.2 = 3, only.pos=TRUE)
head(monocyte1.markers, n = 10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## MAP3K1 0.000000e+00 0.9131158 0.956 0.842 0.000000e+00
## FOS 2.870720e-253 0.7017975 0.994 0.964 1.050770e-248
## TXNIP 2.558514e-252 0.6061089 0.991 0.938 9.364930e-248
## CD86 4.906385e-239 0.9719702 0.867 0.717 1.795884e-234
## HBEGF 8.447570e-238 1.5986423 0.616 0.341 3.092064e-233
## S100A6 6.590490e-225 0.4338555 0.996 0.979 2.412317e-220
## CLEC12A 1.099567e-207 0.8335866 0.871 0.756 4.024747e-203
## MEF2C 3.078758e-202 0.7487670 0.914 0.805 1.126918e-197
## TUBA1A 1.429381e-199 1.0066707 0.771 0.571 5.231964e-195
## PICALM 3.080819e-183 0.4269503 0.999 0.987 1.127672e-178
monocyte3.markers <- FindMarkers(comb, ident.1 = 3, ident.2 = 1, only.pos=TRUE)
head(monocyte3.markers, n = 10)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## CCL4 0 4.646652 0.684 0.140 0
## TNFAIP6 0 3.244527 0.654 0.197 0
## AZIN1-AS1 0 2.668943 0.764 0.313 0
## CCL3 0 3.026348 0.820 0.380 0
## SLC39A8 0 3.992489 0.509 0.093 0
## IRAK2 0 2.496833 0.800 0.387 0
## IL1B 0 3.840793 0.886 0.492 0
## CCL3L1 0 2.286813 0.606 0.231 0
## NOTCH2NLC 0 2.161316 0.695 0.337 0
## ACVR2A 0 2.670119 0.719 0.363 0
NK 1 (FCGR3A+)
CD14+ monocytes
NK 2 (IL7R+)
CD14+ monocytes (CCL4+)
FCGR3A+ monocytes
T
DC
macrophages
B
new.cluster.ids <- c("NK 1 (FCGRA3A+)", "CD14+ Mono", "NK 2 (IL7R+)", "CD14+ Mono (CCL4+)", "FCGR3A+ Mono", "T",
"DC", "Macrophage", "B")
names(new.cluster.ids) <- levels(comb)
comb <- RenameIdents(comb, new.cluster.ids)
DimPlot(comb, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
Sample | Plate | HTO |
---|---|---|
CC0003 | 1 | 1 |
AH0018 | 1 | 3 |
PM008 | 1 | 4 |
PM017 | 1 | 5 |
PM0032 | 2 | 1 |
PM0028 | 2 | 2 |
AH0005 | 2 | 3 |
AH0015 | 2 | 4 |
PM0027 | 3 | 2 |
PM0020 | 3 | 3 |
PM001 | 3 | 4 |
CC0016 | 3 | 5 |
str(Idents(comb))
## Factor w/ 9 levels "NK 1 (FCGRA3A+)",..: 1 4 4 1 4 1 4 1 1 1 ...
## - attr(*, "names")= chr [1:35603] "CC0003 AAACCCAAGAATTTGG" "CC0003 AAACCCAAGCTAGTTC" "CC0003 AAACCCACATGGCCCA" "CC0003 AAACGAACACATTACG" ...
table(Idents(comb))
##
## NK 1 (FCGRA3A+) CD14+ Mono NK 2 (IL7R+) CD14+ Mono (CCL4+)
## 10379 9021 5244 3761
## FCGR3A+ Mono T DC Macrophage
## 2819 1935 1441 644
## B
## 359
cells <- paste(Idents(comb),names(Idents(comb)))
cells2 <- strsplit((stringi::stri_reverse(cells)), " ")
cells2 <- lapply(cells2,function(x) { stringi::stri_reverse(paste(x[2:length(x)],collapse=" "))})
cells2 <- table(unlist(cells2))
cmx <- matrix(cells2,nrow=12)
colnames(cmx) <- unique(sapply(strsplit(gsub(" CC","@",gsub(" AH","@",gsub(" PM","@",names(cells2)))),"@"),"[[",1))
patient_id <- c("AH0005+","AH0015+","AH0018+","CC0003-","CC0016+","PM001+","PM0020-","PM0027-","PM0028-","PM0032-","PM008+","PM017+")
hiv_status <- c(1,1,1,0,1,1,0,0,0,0,1,1)
batch <- factor(c(2,2,1,1,3,3,3,3,2,2,1,1))
pat_df <- data.frame(patient_id,hiv_status,batch) # there were 3 chromium runs contianing multiple samples
pat_df
## patient_id hiv_status batch
## 1 AH0005+ 1 2
## 2 AH0015+ 1 2
## 3 AH0018+ 1 1
## 4 CC0003- 0 1
## 5 CC0016+ 1 3
## 6 PM001+ 1 3
## 7 PM0020- 0 3
## 8 PM0027- 0 3
## 9 PM0028- 0 2
## 10 PM0032- 0 2
## 11 PM008+ 1 1
## 12 PM017+ 1 1
rownames(cmx) <- patient_id
tcmx <- t(cmx)
tcmx |> kbl(caption="cell counts") |> kable_paper("hover", full_width = F)
AH0005+ | AH0015+ | AH0018+ | CC0003- | CC0016+ | PM001+ | PM0020- | PM0027- | PM0028- | PM0032- | PM008+ | PM017+ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 11 | 60 | 29 | 24 | 27 | 28 | 19 | 18 | 46 | 24 | 49 | 24 |
CD14+ Mono (CCL4+) | 20 | 87 | 212 | 854 | 608 | 280 | 48 | 129 | 98 | 196 | 1032 | 197 |
CD14+ Mono | 334 | 620 | 1356 | 29 | 114 | 1377 | 745 | 1625 | 935 | 1066 | 214 | 606 |
DC | 59 | 102 | 96 | 74 | 103 | 184 | 54 | 327 | 135 | 89 | 128 | 90 |
FCGR3A+ Mono | 114 | 159 | 487 | 156 | 293 | 208 | 328 | 206 | 244 | 120 | 320 | 184 |
Macrophage | 12 | 16 | 15 | 100 | 52 | 81 | 20 | 69 | 41 | 71 | 90 | 77 |
NK 1 (FCGRA3A+) | 1298 | 1049 | 251 | 1595 | 1083 | 563 | 972 | 80 | 475 | 264 | 1016 | 1733 |
NK 2 (IL7R+) | 353 | 459 | 339 | 221 | 971 | 468 | 400 | 451 | 439 | 195 | 398 | 550 |
T | 32 | 352 | 104 | 219 | 194 | 248 | 179 | 100 | 121 | 44 | 221 | 121 |
ntcmx <- apply(tcmx,2,function(x) { x/sum(x)*100 } )
ntcmx |> kbl(caption="cell proportions") |> kable_paper("hover", full_width = F)
AH0005+ | AH0015+ | AH0018+ | CC0003- | CC0016+ | PM001+ | PM0020- | PM0027- | PM0028- | PM0032- | PM008+ | PM017+ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 0.4926108 | 2.0661157 | 1.0038075 | 0.7334963 | 0.7837446 | 0.814664 | 0.6871609 | 0.5990017 | 1.815312 | 1.159981 | 1.412918 | 0.6700168 |
CD14+ Mono (CCL4+) | 0.8956561 | 2.9958678 | 7.3381793 | 26.1002445 | 17.6487663 | 8.146639 | 1.7359855 | 4.2928453 | 3.867403 | 9.473175 | 29.757786 | 5.4997208 |
CD14+ Mono | 14.9574563 | 21.3498623 | 46.9366563 | 0.8863081 | 3.3091437 | 40.064009 | 26.9439421 | 54.0765391 | 36.898185 | 51.522475 | 6.170704 | 16.9179229 |
DC | 2.6421854 | 3.5123967 | 3.3229491 | 2.2616137 | 2.9898403 | 5.353506 | 1.9529837 | 10.8818636 | 5.327545 | 4.301595 | 3.690888 | 2.5125628 |
FCGR3A+ Mono | 5.1052396 | 5.4752066 | 16.8570440 | 4.7677262 | 8.5050798 | 6.051789 | 11.8625678 | 6.8552413 | 9.629045 | 5.799903 | 9.227220 | 5.1367951 |
Macrophage | 0.5373936 | 0.5509642 | 0.5192108 | 3.0562347 | 1.5094340 | 2.356706 | 0.7233273 | 2.2961730 | 1.617995 | 3.431609 | 2.595156 | 2.1496371 |
NK 1 (FCGRA3A+) | 58.1280788 | 36.1225895 | 8.6881274 | 48.7469438 | 31.4368650 | 16.380564 | 35.1537071 | 2.6622296 | 18.745067 | 12.759787 | 29.296425 | 48.3807929 |
NK 2 (IL7R+) | 15.8083296 | 15.8057851 | 11.7341641 | 6.7542787 | 28.1857765 | 13.616526 | 14.4665461 | 15.0083195 | 17.324388 | 9.424843 | 11.476355 | 15.3545505 |
T | 1.4330497 | 12.1212121 | 3.5998615 | 6.6931540 | 5.6313498 | 7.215595 | 6.4737794 | 3.3277870 | 4.775059 | 2.126631 | 6.372549 | 3.3780011 |
tntcmx <- t(ntcmx)
tntcmx |> kbl(caption="cell proportions") |> kable_paper("hover", full_width = F)
B | CD14+ Mono (CCL4+) | CD14+ Mono | DC | FCGR3A+ Mono | Macrophage | NK 1 (FCGRA3A+) | NK 2 (IL7R+) | T | |
---|---|---|---|---|---|---|---|---|---|
AH0005+ | 0.4926108 | 0.8956561 | 14.9574563 | 2.642185 | 5.105240 | 0.5373936 | 58.128079 | 15.808330 | 1.433050 |
AH0015+ | 2.0661157 | 2.9958678 | 21.3498623 | 3.512397 | 5.475207 | 0.5509642 | 36.122589 | 15.805785 | 12.121212 |
AH0018+ | 1.0038075 | 7.3381793 | 46.9366563 | 3.322949 | 16.857044 | 0.5192108 | 8.688127 | 11.734164 | 3.599861 |
CC0003- | 0.7334963 | 26.1002445 | 0.8863081 | 2.261614 | 4.767726 | 3.0562347 | 48.746944 | 6.754279 | 6.693154 |
CC0016+ | 0.7837446 | 17.6487663 | 3.3091437 | 2.989840 | 8.505080 | 1.5094340 | 31.436865 | 28.185776 | 5.631350 |
PM001+ | 0.8146640 | 8.1466395 | 40.0640093 | 5.353506 | 6.051789 | 2.3567064 | 16.380564 | 13.616526 | 7.215595 |
PM0020- | 0.6871609 | 1.7359855 | 26.9439421 | 1.952984 | 11.862568 | 0.7233273 | 35.153707 | 14.466546 | 6.473779 |
PM0027- | 0.5990017 | 4.2928453 | 54.0765391 | 10.881864 | 6.855241 | 2.2961730 | 2.662230 | 15.008320 | 3.327787 |
PM0028- | 1.8153118 | 3.8674033 | 36.8981847 | 5.327545 | 9.629045 | 1.6179953 | 18.745067 | 17.324388 | 4.775059 |
PM0032- | 1.1599807 | 9.4731754 | 51.5224746 | 4.301595 | 5.799903 | 3.4316095 | 12.759787 | 9.424843 | 2.126631 |
PM008+ | 1.4129181 | 29.7577855 | 6.1707036 | 3.690888 | 9.227220 | 2.5951557 | 29.296425 | 11.476355 | 6.372549 |
PM017+ | 0.6700168 | 5.4997208 | 16.9179229 | 2.512563 | 5.136795 | 2.1496371 | 48.380793 | 15.354551 | 3.378001 |
tntcmx_pos <- tntcmx[grep("\\+",rownames(tntcmx)),]
tntcmx_neg <- tntcmx[grep("\\-",rownames(tntcmx)),]
par(mfrow=c(3,3))
lapply(1:ncol(cmx) , function(i) {
cellname=colnames(tntcmx)[i]
boxplot(tntcmx_neg[,i],tntcmx_pos[,i],col="white",main=cellname, names=c("HIV-","HIV+"))
beeswarm(list(tntcmx_neg[,i],tntcmx_pos[,i]),add=TRUE,cex=1.5,col="gray",pch=19)
tt <- t.test(tntcmx_neg[,i],tntcmx_pos[,i])
mtext(paste("P=",signif(tt$p.value,3)),cex=0.8)
})
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
##
## [[9]]
## NULL
summary(tntcmx_neg)
## B CD14+ Mono (CCL4+) CD14+ Mono DC
## Min. :0.5990 Min. : 1.736 Min. : 0.8863 Min. : 1.953
## 1st Qu.:0.6872 1st Qu.: 3.867 1st Qu.:26.9439 1st Qu.: 2.262
## Median :0.7335 Median : 4.293 Median :36.8982 Median : 4.302
## Mean :0.9990 Mean : 9.094 Mean :34.0655 Mean : 4.945
## 3rd Qu.:1.1600 3rd Qu.: 9.473 3rd Qu.:51.5225 3rd Qu.: 5.328
## Max. :1.8153 Max. :26.100 Max. :54.0765 Max. :10.882
## FCGR3A+ Mono Macrophage NK 1 (FCGRA3A+) NK 2 (IL7R+)
## Min. : 4.768 Min. :0.7233 Min. : 2.662 Min. : 6.754
## 1st Qu.: 5.800 1st Qu.:1.6180 1st Qu.:12.760 1st Qu.: 9.425
## Median : 6.855 Median :2.2962 Median :18.745 Median :14.467
## Mean : 7.783 Mean :2.2251 Mean :23.614 Mean :12.596
## 3rd Qu.: 9.629 3rd Qu.:3.0562 3rd Qu.:35.154 3rd Qu.:15.008
## Max. :11.863 Max. :3.4316 Max. :48.747 Max. :17.324
## T
## Min. :2.127
## 1st Qu.:3.328
## Median :4.775
## Mean :4.679
## 3rd Qu.:6.474
## Max. :6.693
summary(tntcmx_pos)
## B CD14+ Mono (CCL4+) CD14+ Mono DC
## Min. :0.4926 Min. : 0.8957 Min. : 3.309 Min. :2.513
## 1st Qu.:0.7269 1st Qu.: 4.2478 1st Qu.:10.564 1st Qu.:2.816
## Median :0.8147 Median : 7.3382 Median :16.918 Median :3.323
## Mean :1.0348 Mean :10.3261 Mean :21.387 Mean :3.432
## 3rd Qu.:1.2084 3rd Qu.:12.8977 3rd Qu.:30.707 3rd Qu.:3.602
## Max. :2.0661 Max. :29.7578 Max. :46.937 Max. :5.354
## FCGR3A+ Mono Macrophage NK 1 (FCGRA3A+) NK 2 (IL7R+)
## Min. : 5.105 Min. :0.5192 Min. : 8.688 Min. :11.48
## 1st Qu.: 5.306 1st Qu.:0.5442 1st Qu.:22.838 1st Qu.:12.68
## Median : 6.052 Median :1.5094 Median :31.437 Median :15.35
## Mean : 8.051 Mean :1.4598 Mean :32.633 Mean :16.00
## 3rd Qu.: 8.866 3rd Qu.:2.2532 3rd Qu.:42.252 3rd Qu.:15.81
## Max. :16.857 Max. :2.5952 Max. :58.128 Max. :28.19
## T
## Min. : 1.433
## 1st Qu.: 3.489
## Median : 5.631
## Mean : 5.679
## 3rd Qu.: 6.794
## Max. :12.121
ttres <- lapply(1:ncol(cmx) , function(i) {
t.test(tntcmx_neg[,i],tntcmx_pos[,i])
})
names(ttres) <- colnames(cmx)
ttres
## $B
##
## Welch Two Sample t-test
##
## data: tntcmx_neg[, i] and tntcmx_pos[, i]
## t = -0.11782, df = 9.1332, p-value = 0.9088
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7226046 0.6509059
## sample estimates:
## mean of x mean of y
## 0.9989903 1.0348396
##
##
## $`CD14+ Mono (CCL4+)`
##
## Welch Two Sample t-test
##
## data: tntcmx_neg[, i] and tntcmx_pos[, i]
## t = -0.21058, df = 8.8661, p-value = 0.838
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -14.49917 12.03486
## sample estimates:
## mean of x mean of y
## 9.093931 10.326088
##
##
## $`CD14+ Mono`
##
## Welch Two Sample t-test
##
## data: tntcmx_neg[, i] and tntcmx_pos[, i]
## t = 1.1042, df = 7.1775, p-value = 0.3051
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -14.33663 39.69453
## sample estimates:
## mean of x mean of y
## 34.06549 21.38654
##
##
## $DC
##
## Welch Two Sample t-test
##
## data: tntcmx_neg[, i] and tntcmx_pos[, i]
## t = 0.91617, df = 4.4017, p-value = 0.407
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.911907 5.938054
## sample estimates:
## mean of x mean of y
## 4.945120 3.432047
##
##
## $`FCGR3A+ Mono`
##
## Welch Two Sample t-test
##
## data: tntcmx_neg[, i] and tntcmx_pos[, i]
## t = -0.13025, df = 10, p-value = 0.8989
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.857908 4.321309
## sample estimates:
## mean of x mean of y
## 7.782897 8.051196
##
##
## $Macrophage
##
## Welch Two Sample t-test
##
## data: tntcmx_neg[, i] and tntcmx_pos[, i]
## t = 1.2737, df = 7.7835, p-value = 0.2395
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6269623 2.1575263
## sample estimates:
## mean of x mean of y
## 2.225068 1.459786
##
##
## $`NK 1 (FCGRA3A+)`
##
## Welch Two Sample t-test
##
## data: tntcmx_neg[, i] and tntcmx_pos[, i]
## t = -0.86324, df = 8.3708, p-value = 0.4121
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -32.93015 14.89054
## sample estimates:
## mean of x mean of y
## 23.61355 32.63335
##
##
## $`NK 2 (IL7R+)`
##
## Welch Two Sample t-test
##
## data: tntcmx_neg[, i] and tntcmx_pos[, i]
## t = -1.174, df = 9.8896, p-value = 0.2679
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -9.867640 3.064279
## sample estimates:
## mean of x mean of y
## 12.59568 15.99736
##
##
## $T
##
## Welch Two Sample t-test
##
## data: tntcmx_neg[, i] and tntcmx_pos[, i]
## t = -0.63272, df = 9.6951, p-value = 0.5415
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.534393 2.535352
## sample estimates:
## mean of x mean of y
## 4.679282 5.678803
par(mfrow=c(1,1))
There were no significant results of the cell counting, however there were some trends that might require further investigation. In particular relative counts of IL7R+ NK 2 cells were lower, CCL4+ CD14+ Monocytes were lower, while DCs were higher in HIV+ patients.
We are going to use muscat for pseudobulk analysis. First need to convert seurat obj to singlecellexperiment object. Then summarise counts to pseudobulk level.
sce <- Seurat::as.SingleCellExperiment(comb, assay = "RNA")
head(colData(sce),2)
## DataFrame with 2 rows and 8 columns
## orig.ident nCount_RNA nFeature_RNA
## <factor> <numeric> <integer>
## CC0003 AAACCCAAGAATTTGG nkmono 7148 2886
## CC0003 AAACCCAAGCTAGTTC nkmono 18524 3424
## cell patient RNA_snn_res.0.2
## <character> <character> <factor>
## CC0003 AAACCCAAGAATTTGG CC0003 AAACCCAAGAATT.. CC0003 0
## CC0003 AAACCCAAGCTAGTTC CC0003 AAACCCAAGCTAG.. CC0003 3
## seurat_clusters ident
## <factor> <factor>
## CC0003 AAACCCAAGAATTTGG 0 NK 1 (FCGRA3A+)
## CC0003 AAACCCAAGCTAGTTC 3 CD14+ Mono (CCL4+)
colnames(colData(sce))
## [1] "orig.ident" "nCount_RNA" "nFeature_RNA" "cell"
## [5] "patient" "RNA_snn_res.0.2" "seurat_clusters" "ident"
patient_id <- c("AH0005","AH0015","AH0018","CC0003","CC0016","PM001","PM0020","PM0027","PM0028","PM0032","PM008","PM017")
hiv_status <- c(1,1,1,0,1,1,0,0,0,0,1,1)
colData(sce)$sample_id <- colData(sce)$patient
colData(sce)$cluster_id <- colData(sce)$ident
colData(sce)$hiv <- pat_df[match(colData(sce)$patient,pat_df$patient_id),2]
#muscat library
pb <- aggregateData(sce,
assay = "counts", fun = "sum",
by = c("cluster_id", "sample_id"))
# one sheet per subpopulation
assayNames(pb)
## [1] "NK 1 (FCGRA3A+)" "CD14+ Mono" "NK 2 (IL7R+)"
## [4] "CD14+ Mono (CCL4+)" "FCGR3A+ Mono" "T"
## [7] "DC" "Macrophage" "B"
t(head(assay(pb)))
## gene-HIV1-1 gene-HIV1-2 MIR1302-2HG FAM138A OR4F5 AL627309.1
## AH0005 0 0 0 0 0 3
## AH0015 0 0 0 0 0 3
## AH0018 0 0 0 0 0 0
## CC0003 0 0 0 0 0 3
## CC0016 0 0 0 0 0 4
## PM001 0 0 0 0 0 0
## PM0020 0 0 0 0 0 0
## PM0027 0 0 0 0 0 0
## PM0028 0 0 0 0 0 0
## PM0032 0 0 0 0 0 0
## PM008 0 0 0 0 0 1
## PM017 0 0 0 0 0 4
plotMDS(assay(pb))
par(mfrow=c(3,3))
lapply(1:length(assays(pb)) , function(i) {
cellname=names(assays(pb))[i]
plotMDS(assays(pb)[[i]],cex=1.5,pch=19,col=hiv_status+1,main=paste(cellname))
mtext("red=HIV+",cex=0.7)
})
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
##
## [[9]]
## NULL
par(mfrow=c(1,1))
lapply(1:length(assays(pb)) , function(i) {
cellname=names(assays(pb))[i]
plotMDS(assays(pb)[[i]],cex=1.5,pch=19,labels=patient_id,col=hiv_status+1,main=paste("MDS",cellname,"red=HIV+"))
})
## [[1]]
## An object of class MDS
## $eigen.values
## [1] 1.179771e+09 1.660820e+07 3.764860e+06 2.606268e+06 1.042673e+06
## [6] 9.765118e+05 6.110725e+05 2.549219e+05 1.341464e+05 6.281942e+04
## [11] 6.138144e+04 7.445078e-08
##
## $eigen.vectors
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.24499847 0.43932629 -0.202701765 0.69167619 -0.05516877 0.297270678
## [2,] -0.08429061 -0.01776285 -0.330362269 0.07893745 0.41417513 -0.720759556
## [3,] 0.34175183 -0.13471045 0.165176069 -0.09368173 0.03630105 0.003467323
## [4,] -0.39868817 -0.76035801 -0.102308968 0.14436343 -0.33325109 0.014470883
## [5,] -0.09192006 0.36239526 -0.170955792 -0.48710403 -0.50377630 -0.136098483
## [6,] 0.19344373 0.03230844 -0.049743855 0.02224649 0.18287127 -0.078676470
## [7,] -0.07497148 0.13740234 -0.162973756 -0.17703993 -0.30890560 0.008280558
## [8,] 0.43034361 -0.07032515 0.237696298 0.05775455 -0.10988544 0.147779357
## [9,] 0.22285106 0.07985959 -0.003332729 0.01536062 0.07020151 -0.010326365
## [10,] 0.31534239 -0.10756792 0.185729191 0.24258397 -0.11418859 -0.048321520
## [11,] -0.09709505 -0.11343899 -0.316343931 -0.37334285 0.50218429 0.582496802
## [12,] -0.51176878 0.15287146 0.750121507 -0.12175417 0.21944253 -0.059583208
## [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] -0.13342450 0.05590963 -0.0455733513 0.01226410 0.171936314 0.2886751
## [2,] -0.17058906 -0.22681257 -0.0936631104 -0.11023172 0.037042354 0.2886751
## [3,] -0.11940640 0.09141224 -0.0805790379 0.38600216 0.752483571 0.2886751
## [4,] -0.02113199 0.14429607 0.0889191156 -0.08537691 0.023081265 0.2886751
## [5,] -0.41170839 0.23962470 0.0299621647 0.01334934 -0.100387959 0.2886751
## [6,] 0.43765483 0.72768914 -0.2619827277 -0.05237687 -0.207724768 0.2886751
## [7,] 0.68086654 -0.47597659 -0.1918444521 0.05771280 0.092215546 0.2886751
## [8,] -0.18843494 -0.20282337 -0.2476633341 -0.70275759 -0.030435931 0.2886751
## [9,] 0.18715124 0.00226901 0.8959777647 -0.13233149 -0.005104892 0.2886751
## [10,] -0.14465466 -0.21609656 -0.0473848985 0.55520717 -0.564637622 0.2886751
## [11,] -0.14632104 -0.12062934 -0.0453255532 0.07292211 -0.141730496 0.2886751
## [12,] 0.02999838 -0.01886236 -0.0008425799 -0.01438308 -0.026737382 0.2886751
##
## $var.explained
## [1] 9.783373e-01 1.377253e-02 3.122050e-03 2.161275e-03 8.646474e-04
## [6] 8.097826e-04 5.067383e-04 2.113966e-04 1.112423e-04 5.209366e-05
## [11] 5.090120e-05 6.173909e-17
##
## $dim.plot
## [1] 1 2
##
## $distance.matrix.squared
## AH0005 AH0015 AH0018 CC0003 CC0016 PM001
## AH0005 -151050375 -48813681 200079599 -220109721 -56981074 111317748
## AH0015 -48813681 -19067220 68299114 -79735070 -18105937 38259986
## AH0018 200079599 68299114 -276549438 318307941 75695701 -155738705
## CC0003 -220109721 -79735070 318307941 -394692061 -77458330 182830938
## CC0016 -56981074 -18105937 75695701 -77458330 -26558984 41861547
## PM001 111317748 38259986 -155738705 182830938 41861547 -88961016
## PM0020 -44875493 -14801430 61315799 -67206686 -18492779 33952636
## PM0027 249830923 86340229 -347580777 403124887 94492640 -196049768
## PM0028 127656604 44339549 -179284919 211674554 47565249 -101873877
## PM0032 183280988 63000814 -254856789 293835942 70357523 -143597960
## PM008 -53909004 -19668912 77949713 -93827317 -20426494 44379165
## PM017 -296426514 -100047442 412362761 -476745077 -111949063 233619306
## PM0020 PM0027 PM0028 PM0032 PM008 PM017
## AH0005 -44875493 249830923 127656604 183280988 -53909004 -296426514
## AH0015 -14801430 86340229 44339549 63000814 -19668912 -100047442
## AH0018 61315799 -347580777 -179284919 -254856789 77949713 412362761
## CC0003 -67206686 403124887 211674554 293835942 -93827317 -476745077
## CC0016 -18492779 94492640 47565249 70357523 -20426494 -111949063
## PM001 33952636 -196049768 -101873877 -143597960 44379165 233619306
## PM0020 -15145334 76820115 39004928 56721345 -16985648 -90307453
## PM0027 76820115 -437794696 -225987897 -320883814 98908925 518779234
## PM0028 39004928 -225987897 -117664995 -165475423 51361865 268684361
## PM0032 56721345 -320883814 -165475423 -235745198 72873964 380488610
## PM008 -16985648 98908925 51361865 72873964 -25377814 -115278444
## PM017 -90307453 518779234 268684361 380488610 -115278444 -623180278
##
## $top
## [1] 500
##
## $gene.selection
## [1] "pairwise"
##
## $axislabel
## [1] "Leading logFC dim"
##
## $x
## [1] -8415.157 -2895.196 11738.421 -13694.058 -3157.251 6644.365
## [7] -2575.105 14781.353 7654.442 10831.315 -3335.001 -17578.128
##
## $y
## [1] 1790.39350 -72.38924 -548.98768 -3098.69925 1476.87524 131.66709
## [7] 559.95797 -286.59721 325.45308 -438.37328 -462.29976 622.99953
##
##
## [[2]]
## An object of class MDS
## $eigen.values
## [1] 2.262292e+09 2.338745e+08 3.687864e+07 1.962398e+07 6.785555e+06
## [6] 3.189939e+06 2.566050e+06 1.708646e+06 1.227233e+06 3.038702e+05
## [11] 6.074439e+04 -1.735721e-07
##
## $eigen.vectors
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.21099277 0.10587475 -0.02868638 0.06771672 -0.12901380 0.167378644
## [2,] -0.08199674 -0.06345661 -0.13880812 -0.28712638 -0.09915371 -0.365195571
## [3,] 0.29017169 -0.56077719 -0.39910871 0.55006766 0.18288245 0.122046287
## [4,] -0.39562710 0.14951425 -0.05394657 0.06268717 0.15156046 0.301789109
## [5,] -0.35529235 0.12244102 -0.03068457 0.02555451 0.15453341 0.219689304
## [6,] 0.30519927 -0.22076871 0.06485829 -0.65421444 0.52724140 0.101485194
## [7,] -0.02500655 -0.05094730 0.39255788 0.09859098 -0.01656440 -0.064229224
## [8,] 0.57127801 0.73106446 -0.15820276 0.14920813 0.05152828 0.010950965
## [9,] 0.21369170 -0.14261248 0.74140843 0.18292482 -0.20394264 0.043409735
## [10,] 0.10743988 -0.14169127 -0.26996331 -0.32173813 -0.74069849 0.245485819
## [11,] -0.30093007 0.08148308 -0.01649323 0.04219360 0.14651762 -0.003273051
## [12,] -0.11793498 -0.01012399 -0.10293096 0.08413534 -0.02489058 -0.779537212
## [,7] [,8] [,9] [,10] [,11]
## [1,] 0.094607124 0.83210905 0.29624111 -0.1430726201 -0.0358618215
## [2,] -0.226474232 -0.26794839 0.73224556 0.0083073410 0.0408467339
## [3,] -0.011155491 -0.03723853 0.07902480 -0.0010475826 -0.0059457573
## [4,] -0.148322644 -0.11917497 -0.08974201 0.3945404085 0.6457446538
## [5,] -0.081296273 -0.18090444 -0.06067394 0.2912823507 -0.7575232235
## [6,] 0.027044462 0.17538694 -0.14949772 0.0140119259 0.0160466530
## [7,] 0.822514681 -0.21125735 0.13111319 0.0623958551 0.0545902071
## [8,] -0.001503039 -0.07053796 0.02828592 -0.0027754959 -0.0009649452
## [9,] -0.471487781 0.01069135 -0.03733553 0.0102932834 -0.0111497775
## [10,] 0.081997770 -0.11066661 -0.28420493 -0.0009904231 -0.0031008347
## [11,] -0.065829705 -0.22765292 -0.20597199 -0.8334051320 0.0528189137
## [12,] -0.020094873 0.20719383 -0.43948446 0.2004600892 0.0044991981
## [,12]
## [1,] -0.2886751
## [2,] -0.2886751
## [3,] -0.2886751
## [4,] -0.2886751
## [5,] -0.2886751
## [6,] -0.2886751
## [7,] -0.2886751
## [8,] -0.2886751
## [9,] -0.2886751
## [10,] -0.2886751
## [11,] -0.2886751
## [12,] -0.2886751
##
## $var.explained
## [1] 8.807795e-01 9.105451e-02 1.435798e-02 7.640217e-03 2.641824e-03
## [6] 1.241941e-03 9.990418e-04 6.652282e-04 4.777995e-04 1.183060e-04
## [11] 2.364965e-05 0.000000e+00
##
## $dim.plot
## [1] 1 2
##
## $distance.matrix.squared
## AH0005 AH0015 AH0018 CC0003 CC0016 PM001
## AH0005 -209953787 -74109857 302722195 -384915941 -344721906 304581803
## AH0015 -74109857 -39770343 93463220 -141404472 -127634772 101374556
## AH0018 302722195 93463220 -552255450 555081231 496556338 -443907913
## CC0003 -384915941 -141404472 555081231 -720235946 -645638433 562403126
## CC0016 -344721906 -127634772 496556338 -645638433 -579165784 502918322
## PM001 304581803 101374556 -443907913 562403126 502918322 -465357532
## PM0020 -20629723 -5305188 28980904 -39173070 -36141044 30144103
## PM0027 508696487 233683516 -566303299 970341408 875817986 -709119692
## PM0028 211969924 84054493 -299635062 394963531 353350604 -307187019
## PM0032 108791238 29345089 -177532526 202955235 181674266 -164873438
## PM008 -290449691 -108641508 414715398 -544834811 -488855642 424161589
## PM017 -111980742 -45054734 148114964 -209541858 -188159935 164862096
## PM0020 PM0027 PM0028 PM0032 PM008 PM017
## AH0005 -20629723.0 508696487 211969923.7 108791238 -290449691 -111980742
## AH0015 -5305188.2 233683516 84054493.0 29345089 -108641508 -45054734
## AH0018 28980904.4 -566303299 -299635062.2 -177532526 414715398 148114964
## CC0003 -39173070.0 970341408 394963530.9 202955235 -544834811 -209541858
## CC0016 -36141044.0 875817986 353350603.9 181674266 -488855642 -188159935
## PM001 30144102.8 -709119692 -307187019.2 -164873438 424161589 164862096
## PM0020 -19490565.4 86024217 586497.2 17440683 -31549768 -10887046
## PM0027 86024217.3 -1729403219 -495861186.8 -230029557 749394859 306758480
## PM0028 586497.2 -495861187 -259702384.0 -98200734 297235403 118425935
## PM0032 17440682.5 -230029557 -98200734.2 -79162355 153168499 56423602
## PM008 -31549767.8 749394859 297235402.5 153168499 -413954268 -160390060
## PM017 -10887045.7 306758480 118425935.2 56423602 -160390060 -68570703
##
## $top
## [1] 500
##
## $gene.selection
## [1] "pairwise"
##
## $axislabel
## [1] "Leading logFC dim"
##
## $x
## [1] -10035.567 -3900.057 13801.598 -18817.432 -16898.968 14516.363
## [7] -1189.400 27172.014 10163.937 5110.223 -14313.305 -5609.407
##
## $y
## [1] 1619.1379 -970.4392 -8575.9413 2286.5150 1872.4852 -3376.2064
## [7] -779.1349 11180.1372 -2180.9665 -2166.8785 1246.1172 -154.8258
##
##
## [[3]]
## An object of class MDS
## $eigen.values
## [1] 1.805114e+08 5.791190e+06 3.509207e+06 1.118331e+06 5.557315e+05
## [6] 4.925769e+05 2.064478e+05 1.622386e+05 1.415559e+05 9.883636e+04
## [11] 4.096141e+04 1.060176e-08
##
## $eigen.vectors
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.13254933 0.06976093 -0.10138504 -0.381490607 0.563974080 -0.29041266
## [2,] -0.03700583 -0.50538935 0.60302291 0.339417059 0.295429887 0.11731186
## [3,] 0.17557043 -0.14552803 -0.26521723 -0.008786209 -0.399064503 0.45748267
## [4,] 0.35079028 -0.05492723 -0.13105977 -0.011338461 -0.228623692 -0.01335748
## [5,] -0.79519743 -0.09258790 -0.09225138 -0.348965045 -0.179198190 -0.05271741
## [6,] -0.05359921 -0.06834056 0.12223761 -0.099552900 -0.004418229 0.41266568
## [7,] 0.01136963 0.02590694 0.12456089 0.029514934 -0.237019731 -0.11053979
## [8,] -0.03317872 0.81124839 0.27036020 0.264529034 -0.017123779 0.11675828
## [9,] -0.02635616 0.13652737 0.24209348 -0.214127045 -0.040476307 -0.17120057
## [10,] 0.39319135 -0.04544415 -0.05723155 -0.388837507 0.104597440 0.03999745
## [11,] 0.06024086 -0.14977514 -0.12420381 0.367546055 -0.297738930 -0.66200783
## [12,] -0.17837453 0.01854873 -0.59092632 0.452090693 0.439661954 0.15601978
## [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] 0.20607293 0.15475878 -0.33015406 0.34594871 0.20226697 -0.2886751
## [2,] 0.11195488 0.17059032 0.18449396 0.05758887 0.03174802 -0.2886751
## [3,] -0.05421481 0.46846989 -0.10654360 0.43202108 -0.07284229 -0.2886751
## [4,] 0.25753193 -0.01746251 0.17029887 -0.42612465 0.66605694 -0.2886751
## [5,] 0.24165233 0.06973011 0.20672249 -0.06657784 0.01233785 -0.2886751
## [6,] 0.03618495 -0.38372831 -0.66231241 -0.32815225 -0.13805671 -0.2886751
## [7,] -0.19215553 -0.66419931 0.13802043 0.54765778 0.18444276 -0.2886751
## [8,] 0.26067204 0.13379611 0.07570447 0.01642821 -0.09270142 -0.2886751
## [9,] -0.79087853 0.27092303 -0.02233565 -0.23001230 0.09814282 -0.2886751
## [10,] 0.06796316 -0.15576480 0.46313904 -0.16104173 -0.56892680 -0.2886751
## [11,] 0.11545176 0.06927670 -0.26897963 -0.09444505 -0.33732375 -0.2886751
## [12,] -0.26023510 -0.11639002 0.15194610 -0.09329082 0.01485561 -0.2886751
##
## $var.explained
## [1] 9.370961e-01 3.006404e-02 1.821749e-02 5.805635e-03 2.884991e-03
## [6] 2.557134e-03 1.071741e-03 8.422355e-04 7.348650e-04 5.130931e-04
## [11] 2.126446e-04 5.503737e-17
##
## $dim.plot
## [1] 1 2
##
## $distance.matrix.squared
## AH0005 AH0015 AH0018 CC0003 CC0016 PM001
## AH0005 -7316729.3 2740971.8 -8156432.0 -16692561 37861109 2722000.1
## AH0015 2740971.8 -6398131.2 2678463.6 4988204 -10470585 -1545871.6
## AH0018 -8156432.0 2678463.6 -12363819.4 -22613043 50019981 3386185.1
## CC0003 -16692560.9 4988204.5 -22613043.5 -44747225 100466039 6864527.0
## CC0016 37861109.5 -10470585.2 50019980.8 100466039 -228797297 -15399139.4
## PM001 2722000.1 -1545871.6 3386185.1 6864527 -15399139 -1581447.2
## PM0020 -312147.4 -123707.1 -444710.7 -1323684 3375708 167660.9
## PM0027 1373046.1 2929184.4 3904495.3 4946381 -8304108 -193503.6
## PM0028 1182569.0 -356816.6 2367008.5 3691384 -7376408 -560360.7
## PM0032 -19139656.5 5470047.3 -25035285.4 -49872320 112480834 7568817.4
## PM008 -2565635.7 355830.2 -4138495.7 -7902145 17248125 1449728.8
## PM017 8303465.3 -267590.0 10395653.3 22194443 -51104259 -2878596.9
## PM0020 PM0027 PM0028 PM0032 PM008 PM017
## AH0005 -312147.4 1373046.1 1182569.0 -19139657 -2565635.7 8303465.3
## AH0015 -123707.1 2929184.4 -356816.6 5470047 355830.2 -267590.0
## AH0018 -444710.7 3904495.3 2367008.5 -25035285 -4138495.7 10395653.3
## CC0003 -1323684.1 4946380.8 3691384.2 -49872320 -7902145.4 22194443.3
## CC0016 3375707.6 -8304108.5 -7376407.6 112480834 17248125.2 -51104258.9
## PM001 167660.9 -193503.6 -560360.7 7568817 1449728.8 -2878596.9
## PM0020 -465622.6 -306670.0 -139666.3 -1512927 -218616.1 1304383.2
## PM0027 -306670.0 -8739587.1 -1836966.0 5458527 2205667.6 -1436465.9
## PM0028 -139666.3 -1836966.0 -1304733.4 3771682 1100388.3 -538081.3
## PM0032 -1512927.3 5458526.9 3771681.9 -56314892 -8282822.1 25407995.9
## PM008 -218616.1 2205667.6 1100388.3 -8282822 -2549288.0 3297262.9
## PM017 1304383.2 -1436465.9 -538081.3 25407996 3297262.9 -14678210.8
##
## $top
## [1] 500
##
## $gene.selection
## [1] "pairwise"
##
## $axislabel
## [1] "Leading logFC dim"
##
## $x
## [1] 1780.8603 -497.1901 2358.8684 4713.0265 -10683.8382 -720.1297
## [7] 152.7562 -445.7712 -354.1070 5282.7042 809.3633 -2396.5427
##
## $y
## [1] 167.87892 -1216.21403 -350.21163 -132.18178 -222.81179 -164.46083
## [7] 62.34477 1952.26052 328.55164 -109.36086 -360.43225 44.63732
##
##
## [[4]]
## An object of class MDS
## $eigen.values
## [1] 9.439746e+08 1.384976e+07 5.807493e+06 3.337702e+06 1.330013e+06
## [6] 5.507348e+05 2.728622e+05 1.836520e+05 1.164764e+05 5.233760e+04
## [11] 1.534511e+04 -7.806144e-09
##
## $eigen.vectors
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.26472626 -0.170414555 0.26814178 -0.072268807 0.25387834
## [2,] -0.20173024 -0.042368423 0.11450484 -0.005734423 0.02207535
## [3,] -0.11681308 0.050090013 0.31172570 -0.040589527 -0.70549638
## [4,] 0.53680059 -0.760521118 -0.15732652 -0.080967186 -0.10974061
## [5,] 0.23344450 0.127603346 0.08956251 0.884534773 0.16981546
## [6,] -0.01449653 0.309091943 -0.56178415 0.057551663 -0.34650307
## [7,] -0.23539191 -0.106982165 0.15577710 -0.084633230 0.22285332
## [8,] -0.13623204 0.062808885 -0.59855153 -0.164697187 0.32288500
## [9,] -0.18844839 -0.020386399 0.11640330 -0.025837095 0.22792313
## [10,] -0.11847785 0.005327176 -0.05274178 0.036948322 -0.18564920
## [11,] 0.62796621 0.509186471 0.26007794 -0.388798397 0.18202391
## [12,] -0.12189499 0.036564826 0.05421081 -0.115508906 -0.05406525
## [,6] [,7] [,8] [,9] [,10]
## [1,] -0.148132804 0.07278886 0.072330582 0.185719103 0.54632772
## [2,] -0.037747567 0.19769499 0.249965772 0.656696655 -0.56868480
## [3,] 0.300846803 -0.32471294 0.295198785 -0.120286847 0.07551690
## [4,] -0.066227514 -0.03606280 -0.011012285 0.004763446 -0.03027055
## [5,] 0.130765865 -0.08005231 -0.005190058 0.016063837 0.05110008
## [6,] -0.578668178 -0.06936489 -0.041838643 0.131352855 0.14445061
## [7,] -0.198437665 -0.11050878 0.054726593 -0.055019425 0.28917778
## [8,] 0.554860843 -0.16788901 0.250001311 -0.052231976 0.03391596
## [9,] -0.328014663 -0.23261007 0.012918414 -0.587946537 -0.50623727
## [10,] 0.139789063 0.84310866 -0.072184572 -0.353889109 0.01843400
## [11,] -0.004360888 0.07223750 0.071053634 0.015600907 0.02409443
## [12,] 0.235326706 -0.16462921 -0.875969534 0.159177091 -0.07782486
## [,11] [,12]
## [1,] 0.557251940 -0.2886751
## [2,] -0.053860535 -0.2886751
## [3,] 0.026560537 -0.2886751
## [4,] 0.004714546 -0.2886751
## [5,] -0.014931025 -0.2886751
## [6,] 0.049013366 -0.2886751
## [7,] -0.792138639 -0.2886751
## [8,] 0.045632426 -0.2886751
## [9,] 0.225270446 -0.2886751
## [10,] -0.053175887 -0.2886751
## [11,] -0.002643967 -0.2886751
## [12,] 0.008306792 -0.2886751
##
## $var.explained
## [1] 9.736806e-01 1.428560e-02 5.990249e-03 3.442737e-03 1.371867e-03
## [6] 5.680659e-04 2.814489e-04 1.894314e-04 1.201418e-04 5.398462e-05
## [11] 1.582800e-05 0.000000e+00
##
## $dim.plot
## [1] 1 2
##
## $distance.matrix.squared
## AH0005 AH0015 AH0018 CC0003 CC0016 PM001
## AH0005 -134231113 -101412618 -58604962 265214860 117329895 -3880091
## AH0015 -101412618 -77214044 -44761567 203763645 88978480 -4412794
## AH0018 -58604962 -44761567 -28487977 119798550 51483317 -2040002
## CC0003 265214860 203763645 119798550 -560411929 -233197348 20062836
## CC0016 117329895 88978480 51483317 -233197348 -108752738 5776676
## PM001 -3880091 -4412794 -2040002 20062836 5776676 -7428674
## PM0020 -118857997 -89976617 -51895909 236593397 104381895 -4403363
## PM0027 -66134129 -51012033 -27645383 138337620 61182265 -7458821
## PM0028 -94803814 -71894447 -41478903 190789830 83097805 -4195871
## PM0032 -58875003 -45057714 -26182697 120080220 52136395 -3687116
## PM008 315126660 239375638 137084788 -625367523 -276617479 14841518
## PM017 -60871686 -46375928 -27269255 124335842 54200839 -3174297
## PM0020 PM0027 PM0028 PM0032 PM008 PM017
## AH0005 -118857997 -66134129 -94803814 -58875003 315126660 -60871686
## AH0015 -89976617 -51012033 -71894447 -45057714 239375638 -46375928
## AH0018 -51895909 -27645383 -41478903 -26182697 137084788 -27269255
## CC0003 236593397 138337620 190789830 120080220 -625367523 124335842
## CC0016 104381895 61182265 83097805 52136395 -276617479 54200839
## PM001 -4403363 -7458821 -4195871 -3687116 14841518 -3174297
## PM0020 -105468695 -59452401 -84241422 -52333894 279785339 -54130333
## PM0027 -59452401 -40145931 -47675913 -30654125 161853700 -31194848
## PM0028 -84241422 -47675913 -67614903 -41848175 223187625 -43321812
## PM0032 -52333894 -30654125 -41848175 -27075685 140704108 -27206314
## PM008 279785339 161853700 223187625 140704108 -753566229 143591855
## PM017 -54130333 -31194848 -43321812 -27206314 143591855 -28584062
##
## $top
## [1] 500
##
## $gene.selection
## [1] "pairwise"
##
## $axislabel
## [1] "Leading logFC dim"
##
## $x
## [1] -8133.4945 -6197.9943 -3588.9850 16492.7525 7172.3884 -445.3939
## [7] -7232.2209 -4185.6162 -5789.9205 -3640.1335 19293.7406 -3745.1225
##
## $y
## [1] -634.20223 -157.67520 186.41130 -2830.29928 474.87920 1150.29377
## [7] -398.13693 233.74491 -75.86852 19.82523 1894.95080 136.07696
##
##
## [[5]]
## An object of class MDS
## $eigen.values
## [1] 1.503535e+08 3.450944e+06 1.802376e+06 1.290274e+06 6.648787e+05
## [6] 5.266068e+05 2.197101e+05 1.696696e+05 1.379904e+05 7.954587e+04
## [11] 5.173911e+04 -3.114308e-09
##
## $eigen.vectors
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.33642554 -0.18413004 -0.09263789 0.05915310 0.17039263 0.14877149
## [2,] -0.21882848 -0.19882050 -0.14249871 -0.10604865 0.06082605 -0.07252855
## [3,] 0.73404401 -0.36117409 0.18650217 -0.34300841 0.17218374 0.18601028
## [4,] -0.20495868 -0.21431290 0.30411552 0.40811084 0.28445070 0.10746483
## [5,] 0.07970053 -0.07319032 -0.26357421 0.17446638 -0.75367397 0.34019076
## [6,] -0.03748048 0.04877688 -0.08369392 -0.34576872 -0.23924550 -0.22768980
## [7,] 0.23772411 0.33267056 -0.52885006 0.33343404 0.37544129 0.29587800
## [8,] -0.09356534 0.72523465 0.43485159 -0.25106930 -0.02971623 0.27345422
## [9,] 0.02610530 0.18419739 -0.37641522 -0.19222193 0.13500207 -0.58682884
## [10,] -0.33589801 -0.24835178 0.01754668 -0.18781847 -0.07720061 0.08891278
## [11,] 0.24854782 0.06579653 0.33662474 0.54398754 -0.22325928 -0.49016616
## [12,] -0.09896525 -0.07669637 0.20802929 -0.09321639 0.12479910 -0.06346902
## [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] -0.03746002 0.59247649 -0.27881784 -0.195758173 0.48768934 0.2886751
## [2,] -0.15561458 0.06676875 0.02615686 0.859558929 -0.14331461 0.2886751
## [3,] 0.07385915 0.14583618 0.05898499 0.002492127 0.02248626 0.2886751
## [4,] 0.22219896 -0.32896306 0.53097702 -0.027319243 0.19223679 0.2886751
## [5,] 0.30919518 -0.10928185 -0.03503622 0.048615635 0.10078878 0.2886751
## [6,] -0.60211703 -0.25887523 0.28869329 -0.192198137 0.35692537 0.2886751
## [7,] -0.27808577 -0.11782618 -0.04191641 -0.076996088 -0.17670181 0.2886751
## [8,] 0.11307303 0.15286233 0.06314419 0.117382095 -0.01538789 0.2886751
## [9,] 0.56336729 0.03895518 0.11247917 -0.093495746 0.02306396 0.2886751
## [10,] -0.05768790 0.12011649 0.10827870 -0.389519789 -0.71519627 0.2886751
## [11,] -0.21539880 0.25960611 -0.12103020 -0.001732668 -0.15090378 0.2886751
## [12,] 0.06467051 -0.56167522 -0.71191357 -0.051028940 0.01831386 0.2886751
##
## $var.explained
## [1] 0.9471251725 0.0217386024 0.0113537450 0.0081278517 0.0041882841
## [6] 0.0033172650 0.0013840244 0.0010688030 0.0008692456 0.0005010849
## [11] 0.0003259212 0.0000000000
##
## $dim.plot
## [1] 1 2
##
## $distance.matrix.squared
## AH0005 AH0015 AH0018 CC0003 CC0016 PM001
## AH0005 -34542452 -22404357 73822820 -20949044 7993541.4 -3574676.26
## AH0015 -22404357 -14917150 47810408 -13502536 5162140.4 -2540877.70
## AH0018 73822820 47810408 -163442990 44777341 -17341688.5 8271234.24
## CC0003 -20949044 -13502536 44777341 -13972243 5116617.0 -1686054.42
## CC0016 7993541 5162140 -17341688 5116617 -3201141.8 913638.74
## PM001 -3574676 -2540878 8271234 -1686054 913638.7 -1127446.58
## PM0020 24135738 15903220 -51121363 15220036 -5876254.7 2819252.41
## PM0027 -8416084 -4996224 21887115 -4928348 2997395.9 -1292929.17
## PM0028 2846067 1718828 -5158205 2443830 -531674.5 -10833.17
## PM0032 -34251635 -22438123 73342626 -20856184 7940663.2 -3866543.36
## PM008 25327363 16726210 -54299687 14684692 -5857485.5 3158493.75
## PM017 -9987281 -6521539 21452390 -6348107 2684248.4 -1063258.49
## PM0020 PM0027 PM0028 PM0032 PM008 PM017
## AH0005 24135738 -8416084.1 2846067.35 -34251635 25327363 -9987281
## AH0015 15903220 -4996224.3 1718827.99 -22438123 16726210 -6521539
## AH0018 -51121363 21887115.3 -5158205.38 73342626 -54299687 21452390
## CC0003 15220036 -4928348.3 2443830.42 -20856184 14684692 -6348107
## CC0016 -5876255 2997395.9 -531674.48 7940663 -5857486 2684248
## PM001 2819252 -1292929.2 -10833.17 -3866543 3158494 -1063258
## PM0020 -19375693 6019827.6 -2654818.34 24769057 -17500845 7661843
## PM0027 6019828 -7203791.3 422152.46 -8384590 6620001 -2724526
## PM0028 -2654818 422152.5 -1577046.14 2957248 -1517049 1061500
## PM0032 24769057 -8384589.9 2957248.27 -34548772 25459475 -10123221
## PM008 -17500845 6620001.4 -1517048.96 25459475 -20147471 7346303
## PM017 7661843 -2724525.7 1061499.96 -10123221 7346303 -3438351
##
## $top
## [1] 500
##
## $gene.selection
## [1] "pairwise"
##
## $axislabel
## [1] "Leading logFC dim"
##
## $x
## [1] -4125.2073 -2683.2471 9000.7547 -2513.1774 977.2778 -459.5809
## [7] 2914.9430 -1147.2864 320.0999 -4118.7388 3047.6619 -1213.4994
##
## $y
## [1] -342.05314 -369.34320 -670.94285 -398.12300 -135.96358 90.61143
## [7] 617.99265 1347.24782 342.17826 -461.35605 122.22834 -142.47667
##
##
## [[6]]
## An object of class MDS
## $eigen.values
## [1] 1.624726e+07 2.072002e+06 1.645040e+05 2.925670e+04 2.155713e+04
## [6] 1.109050e+04 6.653763e+03 5.443311e+03 3.324356e+03 1.324308e+03
## [11] 3.782650e+02 -8.571726e-10
##
## $eigen.vectors
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.37157376 0.08677345 0.42852207 -0.12182975 0.14431841 0.20488888
## [2,] -0.72252264 -0.18234450 0.35760872 -0.11125725 0.40137935 -0.17669701
## [3,] 0.14393844 -0.05997944 -0.39396197 -0.01946928 0.03816285 -0.24424533
## [4,] -0.08331470 -0.07496685 -0.58146735 0.16559247 0.31183676 0.38931016
## [5,] -0.03924526 -0.15020547 0.16647570 0.71775492 -0.32490009 -0.11374361
## [6,] -0.25499042 -0.16026624 -0.03687776 -0.43863959 -0.61710625 0.47189350
## [7,] -0.05124569 -0.14233535 -0.15765020 0.10969210 -0.30090745 -0.34739067
## [8,] 0.23101187 -0.04760474 -0.08843917 -0.46222290 -0.01431352 -0.54923326
## [9,] 0.07983698 -0.10555497 0.08769768 0.08815619 0.10999634 0.08381449
## [10,] 0.34449873 -0.02689452 0.34177840 0.04110713 -0.02400581 0.13344227
## [11,] -0.18926594 0.92900927 -0.03661573 0.04534740 -0.07624131 -0.03052837
## [12,] 0.16972487 -0.06563064 -0.08707039 -0.01423144 0.35178071 0.17848895
## [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] 0.10604965 0.154172783 -0.01343462 -0.44657944 -0.52455658 0.2886751
## [2,] 0.10392153 0.080940459 -0.09567866 -0.02211141 0.04236079 0.2886751
## [3,] 0.27394470 0.252853155 -0.61442585 0.30084672 -0.26200247 0.2886751
## [4,] 0.16792577 -0.185611406 0.06716224 -0.44179426 0.16562608 0.2886751
## [5,] 0.34075567 -0.146538933 0.24546903 0.11806322 -0.13927948 0.2886751
## [6,] 0.07102842 -0.002888953 0.02822330 0.13632533 -0.06525708 0.2886751
## [7,] -0.56259267 0.404492838 0.04554268 -0.39832016 0.06936583 0.2886751
## [8,] 0.22311259 -0.388765583 0.35060624 -0.05794957 0.10246768 0.2886751
## [9,] -0.58194368 -0.622477560 -0.27214149 0.20200877 -0.15348979 0.2886751
## [10,] 0.09491110 0.106123346 -0.27764463 0.02487189 0.74993543 0.2886751
## [11,] -0.04278733 -0.020919003 0.01555772 0.06045865 0.03846264 0.2886751
## [12,] -0.19432574 0.368618857 0.52076403 0.52418026 -0.02363304 0.2886751
##
## $var.explained
## [1] 8.752594e-01 1.116213e-01 8.862026e-03 1.576093e-03 1.161309e-03
## [6] 5.974585e-04 3.584462e-04 2.932377e-04 1.790871e-04 7.134206e-05
## [11] 2.037759e-05 0.000000e+00
##
## $dim.plot
## [1] 1 2
##
## $distance.matrix.squared
## AH0005 AH0015 AH0018 CC0003 CC0016 PM001
## AH0005 -4581884.9 8736181 -1660697.2 1111982.1 511919.42 3140222.5
## AH0015 8736180.7 -17151906 3377708.6 -1947148.7 -1044813.98 -6093830.0
## AH0018 -1660697.2 3377709 -745107.1 298021.8 168580.27 1150843.8
## CC0003 1111982.1 -1947149 298021.8 -370560.7 -123678.62 -738709.4
## CC0016 511919.4 -1044814 168580.3 -123678.6 -189875.39 -412370.1
## PM001 3140222.5 -6093830 1150843.8 -738709.4 -412370.08 -2252425.9
## PM0020 696063.6 -1287168 184067.3 -205551.9 -151757.93 -521926.3
## PM0027 -2760044.6 5393472 -1105509.6 601596.2 285462.65 1874668.2
## PM0028 -936785.3 1784531 -385378.1 197488.5 31366.78 597285.8
## PM0032 -4198204.8 8028397 -1574511.8 988514.6 402400.82 2839742.8
## PM008 1957438.1 -3735704 1111648.8 -229828.7 335977.75 -952194.4
## PM017 -2016189.6 3940282 -819666.8 417874.9 186788.30 1368693.2
## PM0020 PM0027 PM0028 PM0032 PM008 PM017
## AH0005 696063.62 -2760044.6 -936785.31 -4198204.8 1957438.1 -2016189.6
## AH0015 -1287168.04 5393472.3 1784530.93 8028396.9 -3735704.4 3940282.1
## AH0018 184067.34 -1105509.6 -385378.07 -1574511.8 1111648.8 -819666.8
## CC0003 -205551.94 601596.2 197488.48 988514.6 -229828.7 417874.9
## CC0016 -151757.93 285462.6 31366.78 402400.8 335977.8 186788.3
## PM001 -521926.26 1874668.2 597285.76 2839742.8 -952194.4 1368693.2
## PM0020 -191181.90 353774.2 75428.08 576291.8 229213.1 242747.8
## PM0027 353774.25 -1768426.0 -614333.47 -2577898.8 1603767.6 -1286528.7
## PM0028 75428.08 -614333.5 -266295.99 -914667.0 898141.3 -466781.6
## PM0032 576291.84 -2577898.8 -914666.97 -3899559.5 2226343.4 -1896848.5
## PM008 229213.09 1603767.6 898141.35 2226343.4 -4741396.8 1296594.1
## PM017 242747.84 -1286528.7 -466781.57 -1896848.5 1296594.1 -966965.4
##
## $top
## [1] 500
##
## $gene.selection
## [1] "pairwise"
##
## $axislabel
## [1] "Leading logFC dim"
##
## $x
## [1] 1497.7354 -2912.3362 580.1855 -335.8240 -158.1893 -1027.8125
## [7] -206.5606 931.1601 321.8060 1388.6016 -762.8910 684.1251
##
## $y
## [1] 124.90562 -262.47490 -86.33711 -107.91066 -216.21253 -230.69445
## [7] -204.88392 -68.52440 -151.94059 -38.71319 1337.25784 -94.47170
##
##
## [[7]]
## An object of class MDS
## $eigen.values
## [1] 1.348388e+08 4.588740e+06 1.015494e+06 4.645206e+05 2.400461e+05
## [6] 1.979490e+05 1.155072e+05 6.704047e+04 5.946306e+04 5.324812e+04
## [11] 3.721121e+04 -2.798162e-09
##
## $eigen.vectors
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.21656107 0.28974345 0.2457217173 0.03541434 -0.21228703 0.38997880
## [2,] -0.05768345 -0.14532756 0.2934475272 0.06262777 -0.52176369 -0.03525894
## [3,] -0.12749814 -0.06133246 -0.0661449295 -0.49275087 0.16117016 -0.68905364
## [4,] -0.17104655 0.23725892 -0.3562205821 -0.20817516 0.04283207 0.26554714
## [5,] -0.05757781 -0.07533413 0.0374990753 0.26832737 0.49371928 0.05064320
## [6,] 0.20409763 -0.59718046 0.2214329018 -0.36116803 0.27120580 0.41591254
## [7,] -0.26111394 0.36747378 0.0127718438 0.16288319 0.43104787 0.03750373
## [8,] 0.86880857 0.39545336 0.0001832576 -0.02107581 -0.01334379 -0.05149579
## [9,] 0.04560154 -0.26530049 0.0948432437 0.65986450 0.01046348 -0.30551608
## [10,] -0.11358371 0.02335053 0.3655950964 -0.13944649 -0.16459471 -0.10183638
## [11,] 0.02949311 -0.30346634 -0.7148007676 0.12592525 -0.24005972 0.10604319
## [12,] -0.14293618 0.13466139 -0.1343283840 -0.09242606 -0.25838972 -0.08246778
## [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] 0.23027389 -0.27062783 0.220659257 -0.08762147 0.58685654 -0.2886751
## [2,] -0.30478331 0.08610737 -0.616438254 -0.21857323 -0.02504464 -0.2886751
## [3,] 0.10581112 -0.08151260 -0.053534711 -0.11536226 0.33865202 -0.2886751
## [4,] 0.13188425 0.67191718 -0.214630056 0.26527007 0.05690033 -0.2886751
## [5,] -0.70419611 0.03755267 0.085055235 0.11345849 0.26558882 -0.2886751
## [6,] 0.21263019 -0.13147723 -0.079711124 0.09415095 -0.12107642 -0.2886751
## [7,] 0.19494529 -0.23978292 -0.251797189 -0.36977948 -0.45156190 -0.2886751
## [8,] -0.01895670 -0.01186401 -0.006291623 -0.03852416 0.01253275 -0.2886751
## [9,] 0.45939201 0.16757847 0.018951690 0.25138038 0.06051475 -0.2886751
## [10,] -0.10876279 0.36234254 0.626544566 -0.17274923 -0.38357678 -0.2886751
## [11,] -0.05725398 -0.13490838 0.224088512 -0.39427588 -0.02977328 -0.2886751
## [12,] -0.14098387 -0.45532526 0.047103696 0.67262582 -0.31001218 -0.2886751
##
## $var.explained
## [1] 0.9517270217 0.0323885098 0.0071676192 0.0032787068 0.0016943072
## [6] 0.0013971754 0.0008152800 0.0004731889 0.0004197057 0.0003758390
## [11] 0.0002626463 0.0000000000
##
## $dim.plot
## [1] 1 2
##
## $distance.matrix.squared
## AH0005 AH0015 AH0018 CC0003 CC0016 PM001 PM0020
## AH0005 -13677937 -3144038.9 -7134030.1 -10449323 -3121310.2 13364591 -16196428
## AH0015 -3144039 -1473655.2 -1963896.2 -2113421 -950377.2 2353840 -3491761
## AH0018 -7134030 -1963896.2 -4867013.3 -5817063 -1905771.8 6635379 -8720132
## CC0003 -10449323 -2113420.6 -5817062.9 -8811096 -2412418.9 10757055 -12795134
## CC0016 -3121310 -950377.2 -1905771.8 -2412419 -1256137.3 2794099 -3896009
## PM001 13364591 2353840.5 6635378.9 10757055 2794099.1 -14846680 16355897
## PM0020 -16196428 -3491760.8 -8720132.1 -12795134 -3896008.7 16355897 -19794554
## PM0027 49695339 14037083.4 30072042.2 39219087 13770477.0 -45648155 59850764
## PM0028 3328711 296734.3 1641555.0 2873330 426043.5 -3757649 4003082
## PM0032 -6856854 -1958830.5 -3903864.1 -5045379 -1715733.0 6222622 -8014117
## PM008 2831035 418801.4 849640.8 1553102 320417.0 -2902740 3136253
## PM017 -8639756 -2010480.2 -4886846.4 -6958741 -2053279.5 8671741 -10437862
## PM0027 PM0028 PM0032 PM008 PM017
## AH0005 49695339 3328711.1 -6856854 2831034.8 -8639756
## AH0015 14037083 296734.3 -1958830 418801.4 -2010480
## AH0018 30072042 1641555.0 -3903864 849640.8 -4886846
## CC0003 39219087 2873329.9 -5045379 1553101.8 -6958741
## CC0016 13770477 426043.5 -1715733 320417.0 -2053280
## PM001 -45648155 -3757649.0 6222622 -2902740.3 8671741
## PM0020 59850764 4003081.7 -8014117 3136253.0 -10437862
## PM0027 -204997307 -9711521.6 26521933 -5807353.8 32997612
## PM0028 -9711522 -1726108.5 1465587 -1007759.2 2167995
## PM0032 26521933 1465587.5 -3871973 1481123.0 -4324515
## PM008 -5807354 -1007759.2 1481123 -2190103.0 1317585
## PM017 32997612 2167995.5 -4324515 1317584.6 -5843454
##
## $top
## [1] 500
##
## $gene.selection
## [1] "pairwise"
##
## $axislabel
## [1] "Leading logFC dim"
##
## $x
## [1] -2514.7094 -669.8208 -1480.5098 -1986.1943 -668.5941 2369.9838
## [7] -3032.0579 10088.6143 529.5256 -1318.9352 342.4743 -1659.7764
##
## $y
## [1] 620.66940 -311.31115 -131.38236 508.24048 -161.37584 -1279.24077
## [7] 787.17820 847.11422 -568.30928 50.01998 -650.06567 288.46279
##
##
## [[8]]
## An object of class MDS
## $eigen.values
## [1] 1.208371e+07 2.559413e+05 1.334695e+05 5.803010e+04 3.156240e+04
## [6] 2.746692e+04 2.275065e+04 1.096778e+04 3.602062e+03 2.798498e+03
## [11] 1.764331e+03 3.386159e-10
##
## $eigen.vectors
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.40228618 -0.02776566 -0.037890160 -0.02865201 -0.05588595 0.12740053
## [2,] 0.34684339 -0.04486574 -0.076054464 0.04308398 0.04480435 -0.01414464
## [3,] 0.38035922 -0.19604628 -0.013813082 -0.05169892 -0.01389678 0.15624625
## [4,] -0.35406178 -0.17350798 -0.181253130 0.53837284 -0.49042516 0.41674314
## [5,] -0.01090287 -0.07326353 0.119111836 0.10582489 0.15899783 -0.23666285
## [6,] -0.16349354 0.03499592 0.577000908 0.09253604 0.55296172 0.41748102
## [7,] 0.32912902 -0.07036515 -0.140592531 -0.01319490 -0.03746638 0.06050215
## [8,] -0.13393869 0.80737412 -0.191125152 -0.33850304 -0.11137747 0.24132766
## [9,] 0.06924709 0.02615668 0.006223225 -0.10159593 -0.13119906 -0.40812729
## [10,] -0.16895123 0.09404652 0.569322420 0.02383472 -0.41854719 -0.41781498
## [11,] -0.44523937 -0.49233499 -0.186777720 -0.64634648 0.03783911 0.04455359
## [12,] -0.25127741 0.11557608 -0.444152150 0.37633881 0.46419498 -0.38750456
## [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] 0.19282070 0.100108844 0.12077578 8.936055e-02 0.81404983 -0.2886751
## [2,] 0.04661615 0.001573572 -0.22563273 7.864107e-01 -0.33612178 -0.2886751
## [3,] 0.05521746 -0.080402005 0.68478268 -2.579926e-01 -0.40135873 -0.2886751
## [4,] -0.12352274 -0.083662532 -0.01869846 3.786864e-02 0.01646988 -0.2886751
## [5,] -0.71153517 0.538050213 0.07157003 -2.879003e-02 0.05265575 -0.2886751
## [6,] 0.02988155 -0.228445128 -0.11273292 -2.883938e-02 0.02326533 -0.2886751
## [7,] 0.13098973 0.161712620 -0.64378333 -5.358289e-01 -0.18304667 -0.2886751
## [8,] -0.08865230 0.081082481 0.07125521 3.485128e-03 -0.07479278 -0.2886751
## [9,] -0.35768868 -0.748534010 -0.09243394 -8.316673e-02 0.11550197 -0.2886751
## [10,] 0.39940977 0.193433765 0.04473844 -1.308521e-05 -0.07670636 -0.2886751
## [11,] 0.08725042 0.066183787 -0.02834035 7.847867e-02 0.03183261 -0.2886751
## [12,] 0.33921312 -0.001101607 0.12849958 -6.097301e-02 0.01825095 -0.2886751
##
## $var.explained
## [1] 9.565904e-01 2.026124e-02 1.056592e-02 4.593872e-03 2.498593e-03
## [6] 2.174380e-03 1.801023e-03 8.682493e-04 2.851522e-04 2.215392e-04
## [11] 1.396708e-04 2.680606e-17
##
## $dim.plot
## [1] 1 2
##
## $distance.matrix.squared
## AH0005 AH0015 AH0018 CC0003 CC0016 PM001
## AH0005 -3917477.3 -3372739.05 -3701799.20 3436329.11 113594.817 1595475.72
## AH0015 -3372739.1 -2914603.06 -3190995.22 2959298.18 92760.356 1381185.41
## AH0018 -3701799.2 -3190995.22 -3522365.53 3236119.45 98531.886 1506048.24
## CC0003 3436329.1 2959298.18 3236119.45 -3113024.56 -93308.329 -1366432.52
## CC0016 113594.8 92760.36 98531.89 -93308.33 -44818.126 -57659.35
## PM001 1595475.7 1381185.41 1506048.24 -1366432.52 -57659.345 -766650.76
## PM0020 -3203037.5 -2762302.22 -3031566.05 2802577.01 92491.596 1323475.64
## PM0027 1309267.0 1139770.11 1307235.80 -1071779.56 5626.634 -511666.31
## PM0028 -666173.1 -578024.39 -631036.09 603399.33 13554.794 283851.28
## PM0032 1647455.6 1429788.11 1566958.48 -1412048.13 -49977.122 -732532.60
## PM008 4316485.0 3719655.15 4038648.17 -3821444.59 -119640.159 -1716851.02
## PM017 2442618.8 2096206.64 2324220.06 -2159685.39 -51157.001 -938243.75
## PM0020 PM0027 PM0028 PM0032 PM008 PM017
## AH0005 -3203037.5 1309266.985 -666173.05 1647455.65 4316485.0 2442618.8
## AH0015 -2762302.2 1139770.107 -578024.39 1429788.11 3719655.1 2096206.6
## AH0018 -3031566.1 1307235.802 -631036.09 1566958.48 4038648.2 2324220.1
## CC0003 2802577.0 -1071779.564 603399.33 -1412048.13 -3821444.6 -2159685.4
## CC0016 92491.6 5626.634 13554.79 -49977.12 -119640.2 -51157.0
## PM001 1323475.6 -511666.307 283851.28 -732532.60 -1716851.0 -938243.8
## PM0020 -2632144.8 1086232.622 -544555.43 1366152.55 3515102.2 1987574.4
## PM0027 1086232.6 -794815.738 214121.89 -551952.22 -1272737.6 -859302.6
## PM0028 -544555.4 214121.890 -145941.35 277723.88 748223.5 424855.7
## PM0032 1366152.6 -551952.221 277723.88 -809726.14 -1763915.9 -967926.5
## PM008 3515102.2 -1272737.625 748223.46 -1763915.94 -4973466.0 -2670058.7
## PM017 1987574.4 -859302.585 424855.68 -967926.52 -2670058.7 -1629101.6
##
## $top
## [1] 500
##
## $gene.selection
## [1] "pairwise"
##
## $axislabel
## [1] "Leading logFC dim"
##
## $x
## [1] 1398.41261 1205.68439 1322.19092 -1230.77672 -37.90017 -568.33030
## [7] 1144.10636 -465.59282 240.71421 -587.30214 -1547.72493 -873.48141
##
## $y
## [1] -14.04682 -22.69786 -99.18107 -87.77880 -37.06449 17.70466
## [7] -35.59818 408.45574 13.23283 47.57874 -249.07543 58.47068
##
##
## [[9]]
## An object of class MDS
## $eigen.values
## [1] 2.705127e+07 1.874315e+06 8.069168e+05 1.686456e+05 6.331511e+04
## [6] 3.321878e+04 2.150973e+04 1.587891e+04 1.035439e+04 4.486565e+03
## [11] 3.341495e+03 -1.159923e-09
##
## $eigen.vectors
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.16231973 0.285341234 0.175381387 0.01090552 0.332647027
## [2,] -0.90872962 0.217840186 0.007105863 -0.10839728 0.048366303
## [3,] 0.16277096 -0.005801096 -0.110885781 -0.12662349 -0.107229356
## [4,] 0.11765224 0.100122499 -0.107796661 0.14580899 0.341270474
## [5,] 0.17821126 0.050356747 -0.031076250 -0.01547422 -0.012617805
## [6,] 0.09049539 -0.226406478 -0.518434363 -0.68516849 -0.053589406
## [7,] 0.07324513 0.243753384 -0.046337219 0.05770197 0.425283020
## [8,] 0.18862836 0.106668473 0.084965086 0.17472089 -0.003963641
## [9,] -0.04696411 -0.674541106 0.602418798 -0.09456650 0.148620700
## [10,] 0.04129980 0.100211250 0.318141810 -0.16219147 -0.410770780
## [11,] -0.13189638 -0.453679763 -0.443939411 0.61306999 -0.095487339
## [12,] 0.07296723 0.256134671 0.070456742 0.19021410 -0.612529196
## [,6] [,7] [,8] [,9] [,10]
## [1,] -0.073982845 -0.599370484 -0.12927635 0.136938577 0.398370764
## [2,] 0.061080085 0.035595589 -0.04189178 0.147455161 -0.025842435
## [3,] -0.084545147 0.078696806 -0.72359793 0.184170005 0.103640562
## [4,] 0.506773598 0.541839553 -0.07606035 -0.289452048 0.272549911
## [5,] 0.093165155 0.046165612 -0.21552040 0.246134078 -0.742102217
## [6,] -0.040031881 -0.040512134 0.28529356 0.005682509 0.136993620
## [7,] -0.549407564 0.077739507 0.21145092 -0.373160857 -0.293289925
## [8,] 0.293347633 -0.002006901 0.51424333 0.554440249 -0.029517633
## [9,] -0.165767581 0.164635917 0.02673382 0.047108676 0.064942654
## [10,] 0.368282447 -0.320925214 0.04546348 -0.560533134 -0.154307372
## [11,] -0.002060733 -0.306858069 -0.00779765 -0.130757289 0.001722081
## [12,] -0.406853167 0.324999817 0.11095935 0.031974073 0.266839991
## [,11] [,12]
## [1,] -0.329371362 -0.2886751
## [2,] 0.010928734 -0.2886751
## [3,] 0.518378566 -0.2886751
## [4,] -0.170861014 -0.2886751
## [5,] -0.460922422 -0.2886751
## [6,] -0.112604358 -0.2886751
## [7,] 0.296094920 -0.2886751
## [8,] 0.416133792 -0.2886751
## [9,] -0.061486926 -0.2886751
## [10,] 0.173106146 -0.2886751
## [11,] -0.007904589 -0.2886751
## [12,] -0.271491487 -0.2886751
##
## $var.explained
## [1] 0.9001112186 0.0623664710 0.0268495675 0.0056115604 0.0021067642
## [6] 0.0011053306 0.0007157205 0.0005283593 0.0003445349 0.0001492872
## [11] 0.0001111858 0.0000000000
##
## $dim.plot
## [1] 1 2
##
## $distance.matrix.squared
## AH0005 AH0015 AH0018 CC0003 CC0016 PM001
## AH0005 -1813266.9 7744465 -1387976.2 -1109087.2 -1607810.8 -401859.48
## AH0015 7744464.7 -44860351 8003284.9 5705011.2 8718801.9 4615901.06
## AH0018 -1387976.2 8003285 -1480210.8 -1041628.5 -1577921.4 -917910.64
## CC0003 -1109087.2 5705011 -1041628.5 -859613.0 -1159334.7 -542679.15
## CC0016 -1607810.8 8718802 -1577921.4 -1159334.7 -1739180.8 -856634.09
## PM001 -401859.5 4615901 -917910.6 -542679.1 -856634.1 -1230702.11
## PM0020 -906041.0 3405494 -637592.4 -570974.6 -748007.8 -176895.53
## PM0027 -1792187.1 9189932 -1626246.4 -1239065.6 -1833696.2 -725158.62
## PM0028 960569.9 -1769083 503794.0 657000.2 610986.7 140095.19
## PM0032 -545782.9 1942313 -311211.4 -227016.6 -401631.9 109148.31
## PM008 1763386.5 -6085195 1098472.2 912985.7 1339348.6 29865.87
## PM017 -904409.4 3389426 -624853.3 -525597.6 -744919.5 -43170.83
## PM0020 PM0027 PM0028 PM0032 PM008 PM017
## AH0005 -906041.0 -1792187.1 960569.90 -545782.94 1763386.47 -904409.37
## AH0015 3405494.3 9189932.1 -1769083.17 1942312.71 -6085194.87 3389426.05
## AH0018 -637592.4 -1626246.4 503793.97 -311211.44 1098472.25 -624853.33
## CC0003 -570974.6 -1239065.6 657000.15 -227016.63 912985.67 -525597.64
## CC0016 -748007.8 -1833696.2 610986.66 -401631.92 1339348.64 -744919.50
## PM001 -176895.5 -725158.6 140095.19 109148.31 29865.87 -43170.83
## PM0020 -566446.2 -831142.8 835224.70 -197028.38 897243.57 -503833.94
## PM0027 -831142.8 -2011251.9 674503.86 -497851.77 1553807.44 -861642.97
## PM0028 835224.7 674503.9 -2419588.77 58589.35 -1027077.66 774985.81
## PM0032 -197028.4 -497851.8 58589.35 -343936.43 715960.85 -301551.71
## PM008 897243.6 1553807.4 -1027077.66 715960.85 -2163158.67 964360.46
## PM017 -503833.9 -861643.0 774985.81 -301551.71 964360.46 -618793.04
##
## $top
## [1] 500
##
## $gene.selection
## [1] "pairwise"
##
## $axislabel
## [1] "Leading logFC dim"
##
## $x
## [1] 844.2384 -4726.3784 846.5853 611.9191 926.8916 470.6741
## [7] 380.9540 981.0718 -244.2643 214.8037 -686.0040 379.5087
##
## $y
## [1] 390.648211 298.235477 -7.942027 137.073337 68.941222 -309.963213
## [7] 333.712103 146.035145 -923.484746 137.194842 -621.113134 350.662782
plotMDS(assays(pb)[[1]],cex=1.5,labels=patient_id,col=hiv_status+1,main="MDS red=HIV+")
Differential expression without batch correction.
rownames(pat_df) <- gsub("-","",gsub("\\+","",pat_df[,1]))
deres <- lapply(1:length(assays(pb)), function(i) {
counts <- assays(pb)[[i]]
cellname <- names(assays(pb))[i]
fcounts <- counts[which(rowMeans(counts)>=5),]
fcounts <- fcounts+1
dds <- DESeqDataSetFromMatrix(countData = fcounts , colData = pat_df, design = ~ hiv_status)
res <- DESeq(dds)
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz<-cbind(as.data.frame(z),assay(vsd),fcounts)
de <- as.data.frame(zz[order(zz$pvalue),])
return(de)
})
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 21 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 47 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 12 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 42 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 22 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 2 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 63 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 10 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 30 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
names(deres) <- names(assays(pb))
nsig1 <- lapply(deres,function(x) {
nrow(subset(x,padj<0.05))
})
nsig1
## $`NK 1 (FCGRA3A+)`
## [1] 11
##
## $`CD14+ Mono`
## [1] 17
##
## $`NK 2 (IL7R+)`
## [1] 3
##
## $`CD14+ Mono (CCL4+)`
## [1] 3
##
## $`FCGR3A+ Mono`
## [1] 1
##
## $T
## [1] 0
##
## $DC
## [1] 4
##
## $Macrophage
## [1] 0
##
## $B
## [1] 0
make_volcano <- function(dm,name) {
sig <- subset(dm,padj<0.05)
N_SIG=nrow(sig)
N_UP=nrow(subset(sig,log2FoldChange>0))
N_DN=nrow(subset(sig,log2FoldChange<0))
HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn")
plot(dm$log2FoldChange,-log10(dm$pval),cex=0.5,pch=19,col="darkgray",
main=name, xlab="log FC", ylab="-log10 pval")
mtext(HEADER)
grid()
points(sig$log2FoldChange,-log10(sig$pval),cex=0.5,pch=19,col="red")
}
lapply(1:length(deres),function(i) {
x <- deres[[i]][,1:6]
myname <- names(deres)[i]
make_volcano(dm=x,name=myname)
})
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
##
## [[9]]
## NULL
message("Up-regulated")
## Up-regulated
lapply(deres,function(x) {
x <- x[,1:6]
head(subset(x,log2FoldChange>0),10)
})
## $`NK 1 (FCGRA3A+)`
## baseMean log2FoldChange lfcSE stat pvalue padj
## LINC02446 130.85455 1.8802099 0.3551046 5.294806 1.191431e-07 0.00174771
## MSC-AS1 34.45640 2.0193514 0.4391843 4.597959 4.266504e-06 0.01043089
## FCGR3A 1984.77882 0.8208262 0.2020907 4.061672 4.872253e-05 0.05955924
## RPTOR 363.38288 0.6232042 0.1548078 4.025663 5.681491e-05 0.06057268
## NECTIN3 11.60475 1.5748953 0.3979056 3.957962 7.559204e-05 0.06057268
## MTM1 39.80513 1.5978273 0.4062433 3.933178 8.383001e-05 0.06148512
## WNK1 670.37485 0.4087957 0.1050969 3.889702 1.003676e-04 0.06534174
## ATXN1 1212.75777 0.4439386 0.1171485 3.789538 1.509276e-04 0.07634335
## ZBTB38 465.73316 0.5250362 0.1401219 3.746996 1.789652e-04 0.08750803
## ARHGAP10 321.68658 0.9123738 0.2447249 3.728161 1.928820e-04 0.08841832
##
## $`CD14+ Mono`
## baseMean log2FoldChange lfcSE stat pvalue
## AC239799.2 219.57657 1.8277552 0.3289869 5.555707 2.764900e-08
## TEX14 6013.21823 1.5241394 0.2751144 5.540020 3.024371e-08
## AP001160.1 54.83798 2.0976703 0.3988444 5.259369 1.445502e-07
## TMEM107 329.92437 1.3416959 0.2645624 5.071377 3.949474e-07
## L3MBTL4 257.89909 1.1985093 0.2445787 4.900302 9.568934e-07
## THSD8 17.18787 2.7849343 0.5706311 4.880446 1.058463e-06
## WDR74 894.73858 1.2207754 0.2546816 4.793339 1.640282e-06
## LINC00623 270.50423 0.6194504 0.1370612 4.519518 6.198070e-06
## AC103591.3 730.87389 0.7549738 0.1682938 4.486047 7.255663e-06
## AC253572.2 1564.63259 1.4883339 0.3319639 4.483421 7.345574e-06
## padj
## AC239799.2 0.0001934690
## TEX14 0.0001934690
## AP001160.1 0.0006164583
## TMEM107 0.0012632394
## L3MBTL4 0.0022569968
## THSD8 0.0022569968
## WDR74 0.0029979668
## LINC00623 0.0093979278
## AC103591.3 0.0093979278
## AC253572.2 0.0093979278
##
## $`NK 2 (IL7R+)`
## baseMean log2FoldChange lfcSE stat pvalue padj
## HBB 854.17620 6.4604258 1.4568707 4.434454 9.230600e-06 0.006286038
## MYO5A 269.96402 0.5097731 0.1274009 4.001331 6.298708e-05 NA
## HBA2 214.66410 5.8524453 1.4660681 3.991933 6.553694e-05 NA
## HLA-DPA1 316.83019 0.6160100 0.1576249 3.908075 9.303425e-05 NA
## PDLIM1 28.75687 1.0136619 0.2681838 3.779728 1.569995e-04 NA
## HLA-DPB1 495.40166 0.6627458 0.1759387 3.766912 1.652790e-04 NA
## FCGR3A 211.86079 1.0398103 0.2795584 3.719474 1.996382e-04 NA
## CEP152 37.25640 0.8001486 0.2184655 3.662586 2.496821e-04 NA
## FABP5 108.44360 0.8482006 0.2349648 3.609904 3.063098e-04 NA
## CDYL2 59.09071 0.6422554 0.1786973 3.594098 3.255176e-04 NA
##
## $`CD14+ Mono (CCL4+)`
## baseMean log2FoldChange lfcSE stat pvalue padj
## AP001160.1 26.480955 1.6122615 0.3986995 4.043801 5.259161e-05 0.1214866
## AC239799.2 97.170627 1.7160044 0.4858228 3.532161 4.121787e-04 0.6423212
## CEP152 44.307348 0.8303066 0.2352792 3.529026 4.170917e-04 0.6423212
## ASTL 141.510950 1.5458773 0.4470673 3.457818 5.445690e-04 0.7547726
## CXCL9 6.076817 2.8413820 0.8391106 3.386183 7.087213e-04 0.7690969
## GCNT2 126.163599 1.1418177 0.3387022 3.371155 7.485374e-04 0.7690969
## AL035446.1 5.602586 1.9533227 0.5811889 3.360908 7.768656e-04 0.7690969
## NAA25 167.565629 0.5081391 0.1533547 3.313488 9.214012e-04 0.8018431
## TMEM107 139.182578 1.1795972 0.3614019 3.263949 1.098711e-03 0.8313600
## WDR74 377.811964 1.1301621 0.3471447 3.255593 1.131557e-03 0.8313600
##
## $`FCGR3A+ Mono`
## baseMean log2FoldChange lfcSE stat pvalue padj
## ASTL 27.033978 2.2631404 0.5863014 3.860029 0.0001133737 0.2497641
## AC018755.4 50.426490 0.8807728 0.2282901 3.858129 0.0001142582 0.2497641
## LINC01366 8.145255 1.8845263 0.5108783 3.688797 0.0002253171 0.4109784
## LINC01004 104.658034 0.5404469 0.1490028 3.627091 0.0002866322 0.4574650
## ANK3 13.763878 1.9490374 0.5448397 3.577267 0.0003472051 0.4925683
## CXCL10 26.077754 2.7758707 0.7872721 3.525935 0.0004219901 0.5387969
## DGKH 13.472268 1.3451211 0.3916618 3.434394 0.0005938795 0.5456725
## NLRC5 185.855270 0.5215871 0.1519611 3.432373 0.0005983251 0.5456725
## AC245014.3 103.033028 1.2574038 0.3801056 3.308038 0.0009395214 0.5999629
## NHEJ1 36.013002 0.7815564 0.2392068 3.267284 0.0010858486 0.5999629
##
## $T
## baseMean log2FoldChange lfcSE stat pvalue padj
## TMEM131 4.548092 1.6733488 0.5552052 3.013929 0.002578885 0.99875
## YES1 7.043204 1.3803585 0.4989873 2.766320 0.005669294 0.99875
## HBA1 205.640292 4.3108808 1.5613958 2.760915 0.005763971 0.99875
## HBA2 603.820281 4.3008982 1.6432064 2.617382 0.008860724 0.99875
## HBB 2814.201545 4.5858501 1.7787880 2.578076 0.009935221 0.99875
## NCOR1 10.841539 0.8809492 0.3725593 2.364588 0.018050135 0.99875
## NAP1L4 5.135122 1.0879024 0.4995827 2.177622 0.029434177 0.99875
## MYL9 7.648986 2.0836212 0.9610446 2.168080 0.030152630 0.99875
## SEM1 5.619102 1.0334194 0.4966629 2.080726 0.037459001 0.99875
## BOD1L1 6.914654 0.9253759 0.4540496 2.038050 0.041544896 0.99875
##
## $DC
## baseMean log2FoldChange lfcSE stat pvalue padj
## AC253572.2 220.28201 1.3173819 0.3048641 4.321210 1.551761e-05 0.04877858
## TMEM107 91.13860 0.9318133 0.2206358 4.223310 2.407407e-05 0.05158641
## AL035446.2 13.04327 2.5905329 0.6285129 4.121686 3.761097e-05 0.06536248
## AC239799.2 51.00850 1.2393312 0.3148959 3.935685 8.295960e-05 0.12615045
## TRIM14 88.44710 0.5999574 0.1619304 3.705033 2.113631e-04 0.21738206
## AC245014.3 108.39832 0.9174370 0.2492345 3.681020 2.323031e-04 0.21738206
## TEX14 894.05488 0.9107811 0.2509955 3.628675 2.848792e-04 0.24097488
## SLC12A2 47.96101 0.8005622 0.2212851 3.617787 2.971330e-04 0.24097488
## AC007952.4 217.50458 0.8142990 0.2314026 3.518971 4.332238e-04 0.30600822
## AC144652.1 13.96332 1.4626216 0.4193092 3.488169 4.863399e-04 0.30600822
##
## $Macrophage
## baseMean log2FoldChange lfcSE stat pvalue padj
## TCL1A 93.867915 1.0902743 0.2768075 3.938745 8.190880e-05 0.3375802
## KCNQ5 6.500180 2.1783939 0.5580180 3.903806 9.469175e-05 0.3375802
## NR4A3 45.271498 1.5191660 0.3928868 3.866676 1.103288e-04 0.3375802
## HLA-C 548.900354 0.8209086 0.2192877 3.743522 1.814584e-04 0.3375802
## PLEKHG2 17.590340 1.3389923 0.3596670 3.722866 1.969738e-04 0.3375802
## PKD2 34.867400 0.8070777 0.2314593 3.486909 4.886375e-04 0.6280824
## AL355075.4 34.568710 1.1212111 0.3405454 3.292399 9.933670e-04 0.8736046
## AC239799.2 16.968088 1.0861180 0.3373227 3.219819 1.282716e-03 0.9421552
## XACT 9.112779 2.1174527 0.6745234 3.139183 1.694193e-03 0.9995856
## SP4 31.731192 0.7298792 0.2352729 3.102266 1.920456e-03 0.9995856
##
## $B
## baseMean log2FoldChange lfcSE stat pvalue padj
## PRG2 19.494272 3.8372680 0.8942474 4.291058 1.778235e-05 0.1601123
## TPSAB1 16.225058 3.3887905 1.0126806 3.346357 8.188094e-04 0.9986398
## BX284613.2 10.353411 1.9679315 0.5995178 3.282524 1.028823e-03 0.9986398
## SLC24A3 55.632919 1.7235976 0.5353291 3.219697 1.283262e-03 0.9986398
## MS4A2 15.534285 3.1782027 0.9887487 3.214368 1.307318e-03 0.9986398
## DCAF6 33.153706 0.8652989 0.2737851 3.160504 1.574962e-03 0.9986398
## RAD51B 85.942680 0.6396572 0.2065131 3.097417 1.952148e-03 0.9986398
## DTL 11.769723 1.4877069 0.4886389 3.044594 2.329949e-03 0.9986398
## APOE 4.905372 2.7528424 0.9067484 3.035950 2.397794e-03 0.9986398
## APOC1 13.934261 1.9130840 0.6312286 3.030731 2.439627e-03 0.9986398
message("Down-regulated")
## Down-regulated
lapply(deres,function(x) {
x <- x[,1:6]
head(subset(x,log2FoldChange<0),10)
})
## $`NK 1 (FCGRA3A+)`
## baseMean log2FoldChange lfcSE stat pvalue
## BEX4 203.78365 -0.7457956 0.1504036 -4.958630 7.099216e-07
## AC120193.1 44.98166 -0.9418390 0.1947843 -4.835292 1.329504e-06
## PIWIL3 11.50857 -3.6677527 0.7801865 -4.701123 2.587347e-06
## SCRN1 64.16911 -1.3644860 0.2944586 -4.633881 3.588737e-06
## AC233976.1 27.14550 -1.5961076 0.3565531 -4.476493 7.587902e-06
## MIR4458HG 15.14060 -1.4397897 0.3274941 -4.396384 1.100694e-05
## ZDBF2 60.08055 -1.1772282 0.2808669 -4.191409 2.772276e-05
## ZNF442 14.05453 -1.3466068 0.3214443 -4.189238 2.798926e-05
## RNF217 22.12022 -1.5743284 0.3787806 -4.156307 3.234335e-05
## CCDC144NL-AS1 13.14685 -1.4412699 0.3594410 -4.009754 6.078207e-05
## padj
## BEX4 0.005206920
## AC120193.1 0.006500831
## PIWIL3 0.009488447
## SCRN1 0.010430890
## AC233976.1 0.015900990
## MIR4458HG 0.020182595
## ZDBF2 0.041057444
## ZNF442 0.041057444
## RNF217 0.043131324
## CCDC144NL-AS1 0.060572677
##
## $`CD14+ Mono`
## baseMean log2FoldChange lfcSE stat pvalue padj
## SULT1A1 483.86190 -0.5670462 0.1313671 -4.316503 1.585207e-05 0.01448653
## AC009974.2 14.12940 -1.3969767 0.3440152 -4.060800 4.890490e-05 0.03680525
## TNNI2 109.55689 -0.8742316 0.2248029 -3.888881 1.007075e-04 0.06611554
## SLC9A3R1 681.92293 -0.7262460 0.1873961 -3.875459 1.064241e-04 0.06611554
## FAM157C 157.93069 -0.8418565 0.2174944 -3.870704 1.085217e-04 0.06611554
## ZEB1 20.74069 -2.4279480 0.6405255 -3.790557 1.503101e-04 0.08271126
## ZNF697 116.55545 -0.9031815 0.2387684 -3.782668 1.551563e-04 0.08271126
## TBP 137.49069 -0.5924773 0.1655371 -3.579121 3.447519e-04 0.13365928
## AL032821.1 13.63233 -1.3708945 0.3933250 -3.485399 4.914041e-04 0.17463956
## AL133297.2 35.56103 -3.0297488 0.8921313 -3.396079 6.835855e-04 0.22027929
##
## $`NK 2 (IL7R+)`
## baseMean log2FoldChange lfcSE stat pvalue padj
## AC009041.2 13.758496 -1.680409 0.3117613 -5.390049 7.043860e-08 NA
## USP44 10.777769 -1.830992 0.3633235 -5.039562 4.665981e-07 NA
## CTNNA3 13.364414 -2.041420 0.4366013 -4.675709 2.929403e-06 NA
## AP000787.1 151.177374 -1.340340 0.3036941 -4.413454 1.017344e-05 NA
## LINC00511 13.901981 -1.328786 0.3072483 -4.324794 1.526742e-05 NA
## ZNF10 126.951708 -0.712087 0.1658735 -4.292953 1.763121e-05 NA
## SLC22A23 17.461782 -1.296894 0.3082939 -4.206680 2.591496e-05 NA
## FXYD7 68.749330 -1.073189 0.2560751 -4.190914 2.778324e-05 NA
## MACROD2 9.987173 -1.671438 0.3996142 -4.182629 2.881574e-05 NA
## LRRN1 7.699828 -1.615234 0.3892157 -4.149971 3.325175e-05 NA
##
## $`CD14+ Mono (CCL4+)`
## baseMean log2FoldChange lfcSE stat pvalue padj
## PPARG 113.271484 -2.6220999 0.5732726 -4.573915 4.786948e-06 0.03591472
## ARRDC3 273.716433 -1.0751425 0.2390590 -4.497394 6.879153e-06 0.03591472
## GSG1 15.388658 -1.3041880 0.2916784 -4.471322 7.773749e-06 0.03591472
## PLPP3 21.386384 -3.0358517 0.7149270 -4.246380 2.172521e-05 0.06453717
## RUBCNL 44.498469 -1.4686478 0.3471290 -4.230842 2.328181e-05 0.06453717
## GPAT3 138.095157 -0.8225436 0.2235564 -3.679356 2.338240e-04 0.46297150
## SELENOK 277.429668 -0.4819702 0.1422976 -3.387058 7.064654e-04 0.76909693
## ZSCAN18 12.387733 -1.2428788 0.3752425 -3.312201 9.256485e-04 0.80184306
## DLEC1 17.000186 -0.9059846 0.2797947 -3.238034 1.203566e-03 0.83407148
## HORMAD2 7.251243 -1.8448525 0.6037576 -3.055618 2.245973e-03 0.99997103
##
## $`FCGR3A+ Mono`
## baseMean log2FoldChange lfcSE stat pvalue
## PTGES 80.905477 -2.0005062 0.4054784 -4.933694 8.068881e-07
## TNNI2 110.306026 -0.8233175 0.2037307 -4.041205 5.317731e-05
## WDR86 6.112729 -2.3075881 0.5743551 -4.017702 5.876833e-05
## PUS10 58.468056 -0.5960076 0.1547447 -3.851555 1.173704e-04
## AF127577.2 17.771134 -1.1453710 0.3311580 -3.458684 5.428217e-04
## TWF2 181.379711 -0.4112220 0.1190295 -3.454791 5.507199e-04
## ARRDC3 258.761311 -0.8112621 0.2415165 -3.359034 7.821554e-04
## AC021752.1 18.581098 -0.9091475 0.2730268 -3.329883 8.688242e-04
## ARG2 10.353223 -1.1346791 0.3412402 -3.325162 8.836703e-04
## NAPB 46.012153 -0.7575819 0.2294716 -3.301419 9.619696e-04
## padj
## PTGES 0.01030235
## TNNI2 0.24976414
## WDR86 0.24976414
## PUS10 0.24976414
## AF127577.2 0.54567246
## TWF2 0.54567246
## ARRDC3 0.59996295
## AC021752.1 0.59996295
## ARG2 0.59996295
## NAPB 0.59996295
##
## $T
## baseMean log2FoldChange lfcSE stat pvalue padj
## BCL6 5.278050 -1.0019682 0.4167210 -2.404410 0.01619859 0.99875
## YPEL3 8.045802 -0.8840448 0.3780896 -2.338188 0.01937748 0.99875
## CYBB 14.296499 -0.8015324 0.3518583 -2.277998 0.02272671 0.99875
## ATP5F1C 6.239390 -0.9863001 0.4401401 -2.240878 0.02503401 0.99875
## REL 9.739690 -0.7762767 0.3536059 -2.195316 0.02814096 0.99875
## USP34 10.886515 -0.7929194 0.3714329 -2.134758 0.03278080 0.99875
## SFT2D1 6.453705 -0.9300804 0.4366068 -2.130247 0.03315120 0.99875
## IGHM 10.772156 -1.4059945 0.6728276 -2.089680 0.03664653 0.99875
## KCNAB2 6.145091 -0.9089676 0.4483915 -2.027174 0.04264463 0.99875
## LNPEP 5.636824 -0.8554812 0.4237925 -2.018632 0.04352545 0.99875
##
## $DC
## baseMean log2FoldChange lfcSE stat pvalue padj
## FAM118A 205.012845 -0.6563038 0.1425586 -4.603747 4.149570e-06 0.04777184
## LILRA5 122.388767 -0.9295040 0.2079834 -4.469126 7.853981e-06 0.04777184
## C5AR1 68.797820 -1.2797005 0.2966449 -4.313913 1.603899e-05 0.04877858
## APOBEC3A 38.319594 -1.4648867 0.3478854 -4.210831 2.544336e-05 0.05158641
## ERG 14.169042 -1.5294657 0.3993192 -3.830183 1.280479e-04 0.15587043
## CHST15 85.193328 -1.1620252 0.3033989 -3.830025 1.281302e-04 0.15587043
## TNFSF9 39.573427 -1.2374361 0.3355322 -3.687980 2.260412e-04 0.21738206
## GK5 48.861849 -0.7707061 0.2169967 -3.551695 3.827582e-04 0.29101584
## EXTL3 42.582870 -0.9016178 0.2585327 -3.487442 4.876646e-04 0.30600822
## TBC1D30 9.180131 -1.4077049 0.4046173 -3.479102 5.030961e-04 0.30600822
##
## $Macrophage
## baseMean log2FoldChange lfcSE stat pvalue padj
## ARRDC3 38.373223 -1.0111753 0.2690872 -3.757797 0.0001714155 0.3375802
## TFPI 15.112197 -1.1872938 0.3265052 -3.636370 0.0002765073 0.4061892
## VEGFA 7.101706 -1.7629414 0.5148229 -3.424365 0.0006162379 0.7040860
## EXT1 229.095337 -0.6489528 0.1919741 -3.380419 0.0007237551 0.7442374
## AC025159.1 33.863651 -0.9010538 0.2752763 -3.273271 0.0010631048 0.8736046
## LINC02076 4.914336 -2.1352349 0.6544827 -3.262477 0.0011044306 0.8736046
## TIGAR 43.810748 -0.5699251 0.1781626 -3.198905 0.0013795083 0.9456990
## ST3GAL1 49.433197 -0.9621846 0.3056546 -3.147948 0.0016442107 0.9995856
## AC138649.1 8.549846 -1.1672439 0.4077142 -2.862897 0.0041978686 0.9995856
## LINC01765 6.269495 -1.2807672 0.4476461 -2.861116 0.0042215281 0.9995856
##
## $B
## baseMean log2FoldChange lfcSE stat pvalue padj
## ID1 10.275158 -2.4210039 0.6511455 -3.718069 0.0002007513 0.9037823
## ID2 24.157156 -1.0047805 0.2894791 -3.470994 0.0005185347 0.9986398
## IGHG4 17.950157 -3.5236269 1.0165537 -3.466248 0.0005277767 0.9986398
## ZRANB2-AS2 6.245355 -1.6698395 0.5002739 -3.337850 0.0008442922 0.9986398
## HIST1H2BF 10.249874 -1.7313542 0.5526680 -3.132720 0.0017319449 0.9986398
## H3F3B 903.748686 -1.2445832 0.4032188 -3.086620 0.0020244614 0.9986398
## H1FX 194.847009 -1.3846936 0.4516522 -3.065841 0.0021705890 0.9986398
## SLC25A29 11.322208 -1.1278562 0.3693570 -3.053566 0.0022613871 0.9986398
## MYADM 26.590013 -0.9077363 0.3013125 -3.012608 0.0025901362 0.9986398
## ATP10A 19.934320 -1.2811993 0.4320608 -2.965322 0.0030236632 0.9986398
if ( ! dir.exists("de_analysis") ) {
dir.create("de_analysis")
}
lapply(1:length(assays(pb)),function(i) {
cellname=names(assays(pb))[[i]]
myres <- deres[[i]]
filename <- paste(cellname,".tsv",sep="")
filename <- gsub("\\)","",gsub("\\(","",gsub(" ","_",filename)))
filename <- paste("de_analysis/",filename,sep="")
write.table(x=myres,file=filename,sep="\t",quote=FALSE)
})
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
##
## [[9]]
## NULL
Differential expression with batch correction.
deres <- lapply(1:length(assays(pb)), function(i) {
counts <- assays(pb)[[i]]
cellname <- names(assays(pb))[i]
fcounts <- counts[which(rowMeans(counts)>=5),]
fcounts <- fcounts+1
dds <- DESeqDataSetFromMatrix(countData = fcounts , colData = pat_df, design = ~ batch + hiv_status)
res <- DESeq(dds)
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz<-cbind(as.data.frame(z),assay(vsd),fcounts)
de <- as.data.frame(zz[order(zz$pvalue),])
return(de)
})
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
names(deres) <- names(assays(pb))
nsig2 <- lapply(deres,function(x) {
nrow(subset(x,padj<0.05))
})
nsig2
## $`NK 1 (FCGRA3A+)`
## [1] 27
##
## $`CD14+ Mono`
## [1] 12
##
## $`NK 2 (IL7R+)`
## [1] 20
##
## $`CD14+ Mono (CCL4+)`
## [1] 3
##
## $`FCGR3A+ Mono`
## [1] 1
##
## $T
## [1] 0
##
## $DC
## [1] 4
##
## $Macrophage
## [1] 0
##
## $B
## [1] 0
bc <- t(rbind(as.data.frame(nsig1),as.data.frame(nsig2)))
colnames(bc) <- c("uncorrected","corrected")
lapply(1:length(deres),function(i) {
x <- deres[[i]][,1:6]
myname <- names(deres)[i]
make_volcano(dm=x,name=myname)
})
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
##
## [[9]]
## NULL
message("Up-regulated")
## Up-regulated
lapply(deres,function(x) {
x <- x[,1:6]
head(subset(x,log2FoldChange>0),10)
})
## $`NK 1 (FCGRA3A+)`
## baseMean log2FoldChange lfcSE stat pvalue
## LINC02446 130.85455 2.1286856 0.36093761 5.897655 3.687032e-09
## MSC-AS1 34.45640 2.1828503 0.47394921 4.605663 4.111538e-06
## MYO6 270.60487 0.8594049 0.19091451 4.501517 6.747026e-06
## IFI27L2 399.41849 0.3413644 0.07735526 4.412944 1.019746e-05
## PTTG1 48.34220 0.9210436 0.21805042 4.223994 2.400108e-05
## NECTIN3 11.60475 1.5859468 0.37948522 4.179206 2.925290e-05
## HLA-DPB1 803.55713 0.7887473 0.18968936 4.158100 3.209056e-05
## CDYL2 37.08550 1.4068589 0.35278034 3.987917 6.665584e-05
## RPTOR 363.38288 0.5663943 0.14266502 3.970099 7.184267e-05
## MTM1 39.80513 1.5043277 0.39188416 3.838705 1.236849e-04
## padj
## LINC02446 4.992241e-05
## MSC-AS1 9.278371e-03
## MYO6 1.305068e-02
## IFI27L2 1.725919e-02
## PTTG1 2.413923e-02
## NECTIN3 2.413923e-02
## HLA-DPB1 2.413923e-02
## CDYL2 3.610080e-02
## RPTOR 3.741345e-02
## MTM1 5.315696e-02
##
## $`CD14+ Mono`
## baseMean log2FoldChange lfcSE stat pvalue
## AC239799.2 219.57657 1.7930081 0.3648274 4.914675 8.892974e-07
## AP001160.1 54.83798 2.2304076 0.4569053 4.881553 1.052535e-06
## TEX14 6013.21823 1.5007373 0.3097678 4.844716 1.267926e-06
## AC079753.2 68.93448 2.9246800 0.6251852 4.678102 2.895424e-06
## TMEM107 329.92437 1.3325466 0.3012027 4.424086 9.685136e-06
## THSD8 17.18787 2.7940047 0.6351446 4.399006 1.087478e-05
## LINC00623 270.50423 0.6009981 0.1374083 4.373813 1.220950e-05
## L3MBTL4 257.89909 1.1966444 0.2756084 4.341828 1.413021e-05
## AC253572.2 1564.63259 1.4227830 0.3399987 4.184672 2.855777e-05
## WDR74 894.73858 1.1893822 0.2847557 4.176851 2.955722e-05
## padj
## AC239799.2 0.005803720
## AP001160.1 0.005803720
## TEX14 0.005803720
## AC079753.2 0.007951994
## TMEM107 0.020957602
## THSD8 0.020957602
## LINC00623 0.020957602
## L3MBTL4 0.021559560
## AC253572.2 0.036898162
## WDR74 0.036898162
##
## $`NK 2 (IL7R+)`
## baseMean log2FoldChange lfcSE stat pvalue
## CCL5 4304.09113 0.6725337 0.1099411 6.117218 9.522328e-10
## HLA-DPA1 316.83019 0.6997432 0.1243654 5.626509 1.838933e-08
## HLA-DPB1 495.40166 0.7422984 0.1461530 5.078913 3.795998e-07
## FABP5 108.44360 0.9488743 0.1939154 4.893238 9.919049e-07
## LINC02384 119.51675 1.3255419 0.2874366 4.611597 3.995871e-06
## CDYL2 59.09071 0.6990216 0.1870673 3.736739 1.864226e-04
## PDLIM1 28.75687 1.0227229 0.2799873 3.652747 2.594494e-04
## MT1E 90.94295 1.1979482 0.3314307 3.614475 3.009568e-04
## IRF4 50.84447 0.9102567 0.2520683 3.611151 3.048406e-04
## HLA-DRB1 391.68535 0.6263100 0.1758522 3.561570 3.686438e-04
## padj
## CCL5 6.848101e-06
## HLA-DPA1 8.365305e-05
## HLA-DPB1 8.633998e-04
## FABP5 1.692066e-03
## LINC02384 4.544305e-03
## CDYL2 9.086103e-02
## PDLIM1 1.011630e-01
## MT1E 1.124367e-01
## IRF4 1.124367e-01
## HLA-DRB1 1.257720e-01
##
## $`CD14+ Mono (CCL4+)`
## baseMean log2FoldChange lfcSE stat pvalue padj
## AP001160.1 26.480955 1.6854217 0.4069666 4.141425 3.451549e-05 0.1107013
## AC239799.2 97.170627 1.8810784 0.4578595 4.108418 3.983782e-05 0.1107013
## CEP152 44.307348 0.8916622 0.2256789 3.951021 7.781843e-05 0.1608326
## GCNT2 126.163599 1.0815122 0.2903733 3.724559 1.956573e-04 0.2827138
## CEP57L1 23.654725 0.9794998 0.2636851 3.714658 2.034791e-04 0.2827138
## SPTLC2 598.402198 0.6196831 0.1725033 3.592298 3.277753e-04 0.3276574
## STMN1 25.025196 0.9859338 0.2763163 3.568134 3.595322e-04 0.3276574
## SLC27A1 59.323226 0.7244196 0.2032486 3.564204 3.649618e-04 0.3276574
## CXCL9 6.076817 2.9344859 0.8267323 3.549499 3.859642e-04 0.3276574
## NHSL1 154.860422 0.8993505 0.2611959 3.443202 5.748690e-04 0.3953403
##
## $`FCGR3A+ Mono`
## baseMean log2FoldChange lfcSE stat pvalue padj
## AC253572.2 220.559222 1.3870540 0.3787469 3.662219 0.0002500401 0.6223815
## C1QB 110.990994 1.0835604 0.3079490 3.518636 0.0004337719 0.6223815
## ASTL 27.033978 1.7700031 0.5061190 3.497207 0.0004701562 0.6223815
## LINC01004 104.658034 0.5378581 0.1542118 3.487788 0.0004870346 0.6223815
## AC018755.4 50.426490 0.7671552 0.2329744 3.292874 0.0009916898 0.7825801
## NBEA 13.638682 1.5048965 0.4649165 3.236917 0.0012082835 0.7825801
## TMEM254 19.713148 0.9636004 0.2989950 3.222798 0.0012694508 0.7825801
## NLRC5 185.855270 0.5015769 0.1600344 3.134183 0.0017233351 0.7825801
## DLGAP2 7.615759 2.7779664 0.8904268 3.119815 0.0018096493 0.7825801
## TMEM14C 167.682450 0.4795074 0.1537004 3.119754 0.0018100209 0.7825801
##
## $T
## baseMean log2FoldChange lfcSE stat pvalue padj
## HBB 2814.201545 6.3474978 1.6888234 3.758533 0.0001709127 0.3202905
## HBA2 603.820281 5.6657502 1.6205505 3.496189 0.0004719551 0.4422220
## HBA1 205.640292 4.7273107 1.4999612 3.151622 0.0016236629 0.9983424
## TMEM131 4.548092 1.6631390 0.6006673 2.768819 0.0056259877 0.9983424
## YES1 7.043204 1.4687778 0.5364013 2.738207 0.0061775209 0.9983424
## IGKC 50.052168 1.1274159 0.5114053 2.204545 0.0274860373 0.9983424
## NCOR1 10.841539 0.8735788 0.3972474 2.199080 0.0278722434 0.9983424
## OGA 10.861904 0.8482265 0.4037803 2.100713 0.0356661716 0.9983424
## SEM1 5.619102 1.0688826 0.5363421 1.992912 0.0462711077 0.9983424
## NAP1L4 5.135122 1.0345238 0.5465827 1.892712 0.0583961564 0.9983424
##
## $DC
## baseMean log2FoldChange lfcSE stat pvalue padj
## TMEM107 91.13860 1.0367159 0.2144978 4.833224 1.343395e-06 0.00820747
## AC007952.4 217.50458 0.9029977 0.2173708 4.154181 3.264552e-05 0.07641274
## AC253572.2 220.28201 1.2886481 0.3126092 4.122234 3.752160e-05 0.07641274
## AL035446.2 13.04327 2.3432527 0.6228719 3.762014 1.685505e-04 0.22883546
## AC245014.3 108.39832 0.9304942 0.2629809 3.538257 4.027775e-04 0.38098156
## AC239799.2 51.00850 1.2221272 0.3455668 3.536587 4.053327e-04 0.38098156
## CCDC26 203.71458 0.9401338 0.2709768 3.469426 5.215719e-04 0.45522054
## AC144652.1 13.96332 1.5396345 0.4476805 3.439137 5.835719e-04 0.47537771
## TRIM14 88.44710 0.5855962 0.1761214 3.324958 8.843193e-04 0.56512644
## TEX14 894.05488 0.9106514 0.2741285 3.321988 8.937867e-04 0.56512644
##
## $Macrophage
## baseMean log2FoldChange lfcSE stat pvalue padj
## HLA-C 548.900354 0.8963731 0.2236572 4.007800 6.128706e-05 0.4275123
## TCL1A 93.867915 1.1527714 0.2929327 3.935277 8.310085e-05 0.4275123
## KCNQ5 6.500180 2.1601742 0.5823952 3.709121 2.079802e-04 0.4279816
## XACT 9.112779 2.4965598 0.6985797 3.573765 3.518844e-04 0.4566354
## PTK2 105.007602 0.5813482 0.1627778 3.571423 3.550474e-04 0.4566354
## PCNT 30.631747 0.9139271 0.2637367 3.465302 5.296365e-04 0.6033991
## HLA-B 1104.947793 0.4452650 0.1295201 3.437805 5.864507e-04 0.6033991
## NR4A3 45.271498 1.4504572 0.4387491 3.305892 9.467444e-04 0.7532456
## AC118549.1 75.847610 0.4990188 0.1510153 3.304425 9.517147e-04 0.7532456
## PKD2 34.867400 0.7914444 0.2412539 3.280545 1.036068e-03 0.7614360
##
## $B
## baseMean log2FoldChange lfcSE stat pvalue padj
## PRG2 19.494272 4.1189844 0.9465727 4.351472 1.352267e-05 0.1218122
## DTL 11.769723 1.8877447 0.4900108 3.852455 1.169392e-04 0.2916381
## BX284613.2 10.353411 2.0672414 0.5993348 3.449226 5.621951e-04 0.8829858
## HPGD 14.647625 1.9288985 0.5612111 3.437028 5.881344e-04 0.8829858
## APOC1 13.934261 2.1692484 0.6467004 3.354333 7.955658e-04 0.9476717
## ORC6 5.943184 2.0943681 0.6817683 3.071965 2.126549e-03 0.9999354
## TPSAB1 16.225058 3.3075888 1.1090810 2.982279 2.861112e-03 0.9999354
## DCAF6 33.153706 0.8318079 0.2884822 2.883394 3.934148e-03 0.9999354
## CDC42BPA 41.013362 0.8583532 0.2991827 2.868994 4.117796e-03 0.9999354
## ANTKMT 15.220412 1.0233334 0.3704153 2.762665 5.733161e-03 0.9999354
message("Down-regulated")
## Down-regulated
lapply(deres,function(x) {
x <- x[,1:6]
head(subset(x,log2FoldChange<0),10)
})
## $`NK 1 (FCGRA3A+)`
## baseMean log2FoldChange lfcSE stat pvalue
## AC120193.1 44.981664 -0.9622082 0.1769880 -5.436574 5.431493e-08
## BEX4 203.783646 -0.7063573 0.1425121 -4.956471 7.178508e-07
## TEX14 410.364373 -0.8321431 0.1695461 -4.908063 9.198032e-07
## MIR4458HG 15.140604 -1.4840070 0.3089691 -4.803092 1.562341e-06
## DHRS3 203.271030 -1.0367044 0.2385539 -4.345787 1.387775e-05
## CASC8 29.770529 -1.3671683 0.3158507 -4.328527 1.501100e-05
## ATP9A 95.576152 -1.9225314 0.4514093 -4.258954 2.053861e-05
## SCRN1 64.169106 -1.3544800 0.3213921 -4.214417 2.504247e-05
## AC051619.5 9.036788 -1.6490063 0.3923756 -4.202622 2.638407e-05
## TTTY14 123.218048 -0.7335551 0.1763472 -4.159721 3.186366e-05
## padj
## AC120193.1 0.0003677121
## BEX4 0.0031135340
## TEX14 0.0031135340
## MIR4458HG 0.0042308202
## DHRS3 0.0203248894
## CASC8 0.0203248894
## ATP9A 0.0241392319
## SCRN1 0.0241392319
## AC051619.5 0.0241392319
## TTTY14 0.0241392319
##
## $`CD14+ Mono`
## baseMean log2FoldChange lfcSE stat pvalue
## SLC9A3R1 681.92293 -0.8002175 0.1695943 -4.718422 2.376806e-06
## SULT1A1 483.86190 -0.5668832 0.1365613 -4.151125 3.308447e-05
## TBP 137.49069 -0.6748776 0.1711221 -3.943837 8.018817e-05
## AC009974.2 14.12940 -1.3162658 0.3620560 -3.635531 2.774091e-04
## AL032821.1 13.63233 -1.5261433 0.4228696 -3.609017 3.073598e-04
## TNNI2 109.55689 -0.8454082 0.2372711 -3.563047 3.665749e-04
## AL592183.1 154.62901 -1.7208623 0.5099573 -3.374522 7.394389e-04
## AC011603.2 98.71458 -0.7843998 0.2419760 -3.241643 1.188428e-03
## ZEB1 20.74069 -2.1129987 0.6518860 -3.241362 1.189600e-03
## SNX18 750.67309 -0.8042320 0.2498108 -3.219365 1.284750e-03
## padj
## SLC9A3R1 0.007951994
## SULT1A1 0.037859665
## TBP 0.073409598
## AC009974.2 0.173153733
## AL032821.1 0.183507147
## TNNI2 0.201352251
## AL592183.1 0.312292690
## AC011603.2 0.398428859
## ZEB1 0.398428859
## SNX18 0.410283373
##
## $`NK 2 (IL7R+)`
## baseMean log2FoldChange lfcSE stat pvalue
## AP000787.1 151.17737 -1.4275746 0.2336901 -6.108836 1.003605e-09
## CTNNA3 13.36441 -2.1364248 0.4033586 -5.296589 1.179856e-07
## SESN3 297.49087 -1.3118149 0.2544716 -5.155054 2.535582e-07
## AC009041.2 13.75850 -1.7104642 0.3413227 -5.011282 5.406851e-07
## ADAM23 22.69418 -2.5515787 0.5249462 -4.860648 1.170020e-06
## USP44 10.77777 -1.8143459 0.3868689 -4.689821 2.734442e-06
## AL589693.1 153.25046 -1.3866088 0.2977091 -4.657597 3.199221e-06
## KANK1 39.15477 -1.3029381 0.2884380 -4.517221 6.265644e-06
## FXYD7 68.74933 -1.1449563 0.2542699 -4.502918 6.702687e-06
## CDKN1B 389.46428 -0.5010516 0.1137194 -4.406034 1.052806e-05
## padj
## AP000787.1 6.848101e-06
## CTNNA3 4.025372e-04
## SESN3 6.920618e-04
## AC009041.2 1.054104e-03
## ADAM23 1.774140e-03
## USP44 3.731693e-03
## AL589693.1 3.969070e-03
## KANK1 6.533684e-03
## FXYD7 6.533684e-03
## CDKN1B 9.578429e-03
##
## $`CD14+ Mono (CCL4+)`
## baseMean log2FoldChange lfcSE stat pvalue
## GPAT3 138.095157 -0.9168031 0.1714880 -5.346166 8.983703e-08
## RUBCNL 44.498469 -1.6507620 0.3503579 -4.711645 2.457254e-06
## ARRDC3 273.716433 -1.0777376 0.2371544 -4.544456 5.507726e-06
## GSG1 15.388658 -1.1738141 0.2978216 -3.941334 8.102983e-05
## PLPP3 21.386384 -2.5109896 0.6641582 -3.780710 1.563819e-04
## PPARG 113.271484 -2.0127696 0.5597499 -3.595838 3.233494e-04
## DNAJC25 72.558825 -0.8098307 0.2285502 -3.543339 3.950952e-04
## GRAMD2B 25.088827 -1.2215689 0.3451259 -3.539487 4.009051e-04
## AL669970.3 4.845053 -1.9350225 0.5563098 -3.478318 5.045710e-04
## H3F3B 4088.262249 -0.5395627 0.1581471 -3.411778 6.454073e-04
## padj
## GPAT3 0.001248196
## RUBCNL 0.017070545
## ARRDC3 0.025508116
## GSG1 0.160832643
## PLPP3 0.271596185
## PPARG 0.327657388
## DNAJC25 0.327657388
## GRAMD2B 0.327657388
## AL669970.3 0.389472734
## H3F3B 0.395340255
##
## $`FCGR3A+ Mono`
## baseMean log2FoldChange lfcSE stat pvalue
## PTGES 80.90548 -2.0745952 0.3943210 -5.261183 1.431314e-07
## TNNI2 110.30603 -0.8419628 0.1999974 -4.209869 2.555193e-05
## AF127577.2 17.77113 -1.1946666 0.3237292 -3.690327 2.239655e-04
## CKB 211.14827 -0.5983243 0.1664447 -3.594732 3.247254e-04
## PUS10 58.46806 -0.6224566 0.1756193 -3.544353 3.935785e-04
## OASL 46.74276 -1.1408812 0.3237139 -3.524350 4.245227e-04
## ODF2L 101.39500 -0.5062969 0.1529856 -3.309441 9.348233e-04
## PRR7 25.89491 -1.2972399 0.3922860 -3.306872 9.434388e-04
## HSBP1 577.49415 -0.4346097 0.1320913 -3.290222 1.001082e-03
## GNS 470.88475 -0.4022688 0.1230384 -3.269457 1.077542e-03
## padj
## PTGES 0.001829077
## TNNI2 0.163264045
## AF127577.2 0.622381461
## CKB 0.622381461
## PUS10 0.622381461
## OASL 0.622381461
## ODF2L 0.782580136
## PRR7 0.782580136
## HSBP1 0.782580136
## GNS 0.782580136
##
## $T
## baseMean log2FoldChange lfcSE stat pvalue padj
## CYBB 14.296499 -0.8872705 0.3608141 -2.459079 0.01392939 0.9983424
## ATP5F1C 6.239390 -1.1671048 0.4815303 -2.423741 0.01536155 0.9983424
## SFT2D1 6.453705 -1.1138868 0.4747278 -2.346369 0.01895731 0.9983424
## BCL6 5.278050 -1.0570873 0.4613071 -2.291504 0.02193425 0.9983424
## LYZ 231.429719 -0.4427538 0.1958985 -2.260119 0.02381386 0.9983424
## MTRNR2L1 38.828218 -2.5782990 1.1461494 -2.249531 0.02447871 0.9983424
## REL 9.739690 -0.8005290 0.3745836 -2.137117 0.03258847 0.9983424
## YPEL3 8.045802 -0.8760953 0.4119422 -2.126744 0.03344139 0.9983424
## VMP1 14.801753 -0.6772379 0.3392266 -1.996418 0.04588847 0.9983424
## ATP2B1-AS1 5.738598 -0.9390538 0.4770244 -1.968565 0.04900301 0.9983424
##
## $DC
## baseMean log2FoldChange lfcSE stat pvalue
## SLC9A3R1 157.19622 -0.8008697 0.1434666 -5.582275 2.373928e-08
## LILRA5 122.38877 -0.9867012 0.2221278 -4.442043 8.910869e-06
## FAM118A 205.01285 -0.6973272 0.1574683 -4.428367 9.494935e-06
## C5AR1 68.79782 -1.0543492 0.2669514 -3.949592 7.828454e-05
## APOBEC3A 38.31959 -1.2569278 0.3320899 -3.784903 1.537688e-04
## GK5 48.86185 -0.7305331 0.2057571 -3.550463 3.845542e-04
## CHST15 85.19333 -0.9306613 0.2625800 -3.544297 3.936617e-04
## FCN1 1472.89421 -0.6878119 0.2057424 -3.343073 8.285611e-04
## ERG 14.16904 -1.5063235 0.4540741 -3.317352 9.087517e-04
## BTG3 72.47695 -1.1699251 0.3541385 -3.303581 9.545844e-04
## padj
## SLC9A3R1 0.0002900703
## LILRA5 0.0290046522
## FAM118A 0.0290046522
## C5AR1 0.1366512476
## APOBEC3A 0.2288354613
## GK5 0.3809815635
## CHST15 0.3809815635
## FCN1 0.5651264359
## ERG 0.5651264359
## BTG3 0.5651264359
##
## $Macrophage
## baseMean log2FoldChange lfcSE stat pvalue padj
## EXT1 229.095337 -0.7140498 0.1894806 -3.768459 0.0001642587 0.4279816
## ARRDC3 38.373223 -0.7884409 0.2118195 -3.722230 0.0001974714 0.4279816
## TFPI 15.112197 -1.1593352 0.3235935 -3.582690 0.0003400746 0.4566354
## CCDC82 36.672770 -0.7019713 0.2115315 -3.318519 0.0009049618 0.7532456
## VEGFA 7.101706 -1.7449049 0.5491279 -3.177593 0.0014850321 0.8987938
## PJVK 20.376723 -1.6909953 0.5365021 -3.151889 0.0016221779 0.9272549
## ST3GAL1 49.433197 -1.0374753 0.3357297 -3.090210 0.0020001490 0.9990035
## PDE8A 31.649752 -1.0191106 0.3323116 -3.066731 0.0021641320 0.9990035
## UBE2Q2 55.306975 -0.6194901 0.2028154 -3.054454 0.0022547079 0.9990035
## TIGAR 43.810748 -0.5880053 0.1951981 -3.012351 0.0025923278 0.9990035
##
## $B
## baseMean log2FoldChange lfcSE stat pvalue padj
## IGHV3-15 10.498845 -3.4397435 0.8479845 -4.056376 0.0000498401 0.2244798
## CRHBP 31.060840 -1.2709966 0.3320780 -3.827404 0.0001295018 0.2916381
## ID1 10.275158 -2.2715472 0.6803629 -3.338729 0.0008416267 0.9476717
## JAM3 13.399800 -1.3601758 0.4156905 -3.272088 0.0010675633 0.9999354
## PRR11 18.250469 -3.0332235 0.9533345 -3.181699 0.0014641390 0.9999354
## CHMP1B 14.060580 -1.1177545 0.3553718 -3.145310 0.0016591075 0.9999354
## SLC25A29 11.322208 -1.1486275 0.3658656 -3.139480 0.0016924807 0.9999354
## RBPMS 23.075623 -0.9647895 0.3137937 -3.074598 0.0021078672 0.9999354
## ZRANB2-AS2 6.245355 -1.5962932 0.5246160 -3.042784 0.0023440043 0.9999354
## SNED1 18.301063 -1.0725222 0.3528598 -3.039514 0.0023696021 0.9999354
if ( ! dir.exists("de_analysis") ) {
dir.create("de_analysis")
}
lapply(1:length(assays(pb)),function(i) {
cellname=names(assays(pb))[[i]]
myres <- deres[[i]]
filename <- paste(cellname,".tsv",sep="")
filename <- gsub("\\)","",gsub("\\(","",gsub(" ","_",filename)))
filename <- paste("de_analysis/",filename,sep="")
write.table(x=myres,file=filename,sep="\t",quote=FALSE)
})
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
##
## [[9]]
## NULL
Using mitch package with gene ontology terms.
go <- gmt_import("c5.go.v2023.2.Hs.symbols.gmt")
names(go) <- gsub("_"," ",names(go))
str(deres)
## List of 9
## $ NK 1 (FCGRA3A+) :'data.frame': 14682 obs. of 30 variables:
## ..$ baseMean : num [1:14682] 130.9 45 203.8 410.4 15.1 ...
## ..$ log2FoldChange: num [1:14682] 2.129 -0.962 -0.706 -0.832 -1.484 ...
## ..$ lfcSE : num [1:14682] 0.361 0.177 0.143 0.17 0.309 ...
## ..$ stat : num [1:14682] 5.9 -5.44 -4.96 -4.91 -4.8 ...
## ..$ pvalue : num [1:14682] 3.69e-09 5.43e-08 7.18e-07 9.20e-07 1.56e-06 ...
## ..$ padj : num [1:14682] 4.99e-05 3.68e-04 3.11e-03 3.11e-03 4.23e-03 ...
## ..$ AH0005 : num [1:14682] 7.41 6.2 7.6 8.18 5.23 ...
## ..$ AH0015 : num [1:14682] 7.73 6.16 7.67 8.6 5.19 ...
## ..$ AH0018 : num [1:14682] 7.77 5.72 7.47 8.83 5.57 ...
## ..$ CC0003 : num [1:14682] 5.51 6.78 8.1 9.7 5.84 ...
## ..$ CC0016 : num [1:14682] 8.61 6.06 7.7 8.26 5.14 ...
## ..$ PM001 : num [1:14682] 7.62 5.95 7.58 8.09 5.22 ...
## ..$ PM0020 : num [1:14682] 6.42 6.68 8.23 8.64 5.54 ...
## ..$ PM0027 : num [1:14682] 6.41 6.25 8.88 8.93 5.6 ...
## ..$ PM0028 : num [1:14682] 6.88 6.75 7.97 9.52 6.03 ...
## ..$ PM0032 : num [1:14682] 6.7 6.59 8.08 8.68 6.07 ...
## ..$ PM008 : num [1:14682] 7.94 6.15 7.39 8.75 5.43 ...
## ..$ PM017 : num [1:14682] 7.21 6.24 7.67 8.65 5.24 ...
## ..$ AH0005 : num [1:14682] 254 74 298 482 15 122 689 934 184 11 ...
## ..$ AH0015 : num [1:14682] 268 56 255 539 11 60 421 758 234 28 ...
## ..$ AH0018 : num [1:14682] 82 9 63 189 7 31 99 135 95 8 ...
## ..$ CC0003 : num [1:14682] 35 186 600 2010 60 5 332 672 854 162 ...
## ..$ CC0016 : num [1:14682] 559 51 270 426 10 70 594 805 203 25 ...
## ..$ PM001 : num [1:14682] 126 22 121 186 6 33 287 417 86 17 ...
## ..$ PM0020 : num [1:14682] 78 103 411 563 23 23 441 671 314 56 ...
## ..$ PM0027 : num [1:14682] 6 5 53 55 2 2 29 45 61 3 ...
## ..$ PM0028 : num [1:14682] 55 48 144 472 21 16 131 267 112 25 ...
## ..$ PM0032 : num [1:14682] 27 24 93 149 13 4 53 143 95 23 ...
## ..$ PM008 : num [1:14682] 345 60 217 654 20 112 520 581 277 56 ...
## ..$ PM017 : num [1:14682] 330 121 493 1078 24 ...
## $ CD14+ Mono :'data.frame': 15548 obs. of 30 variables:
## ..$ baseMean : num [1:15548] 219.6 54.8 6013.2 681.9 68.9 ...
## ..$ log2FoldChange: num [1:15548] 1.79 2.23 1.5 -0.8 2.92 ...
## ..$ lfcSE : num [1:15548] 0.365 0.457 0.31 0.17 0.625 ...
## ..$ stat : num [1:15548] 4.91 4.88 4.84 -4.72 4.68 ...
## ..$ pvalue : num [1:15548] 8.89e-07 1.05e-06 1.27e-06 2.38e-06 2.90e-06 ...
## ..$ padj : num [1:15548] 0.0058 0.0058 0.0058 0.00795 0.00795 ...
## ..$ AH0005 : num [1:15548] 7.09 6.06 12.13 9.04 6.31 ...
## ..$ AH0015 : num [1:15548] 8.92 7.26 13.11 8.72 6.97 ...
## ..$ AH0018 : num [1:15548] 8.89 7.21 13.49 8.92 5.97 ...
## ..$ CC0003 : num [1:15548] 7.23 5.62 11.85 10.25 5.96 ...
## ..$ CC0016 : num [1:15548] 8.44 7.09 13.03 8.84 8.66 ...
## ..$ PM001 : num [1:15548] 8.53 6.79 13.65 9.39 6.51 ...
## ..$ PM0020 : num [1:15548] 7.32 5.03 11.27 9.8 4.86 ...
## ..$ PM0027 : num [1:15548] 6.55 5.3 10.91 9.94 4.81 ...
## ..$ PM0028 : num [1:15548] 6.75 5.29 11.11 9.44 5.08 ...
## ..$ PM0032 : num [1:15548] 6.35 5.83 12.04 9.69 5.5 ...
## ..$ PM008 : num [1:15548] 8.4 6.11 12.56 9.28 6.3 ...
## ..$ PM017 : num [1:15548] 7.82 5.98 12.53 9.51 6.51 ...
## ..$ AH0005 : num [1:15548] 74 28 3041 341 36 ...
## ..$ AH0015 : num [1:15548] 649 179 12503 557 139 ...
## ..$ AH0018 : num [1:15548] 1317 356 33816 1339 109 ...
## ..$ CC0003 : num [1:15548] 10 2 300 97 3 12 1 11 20 126 ...
## ..$ CC0016 : num [1:15548] 70 24 1836 95 83 ...
## ..$ PM001 : num [1:15548] 904 220 33942 1698 170 ...
## ..$ PM0020 : num [1:15548] 183 14 3397 1201 10 ...
## ..$ PM0027 : num [1:15548] 153 36 4348 2181 15 ...
## ..$ PM0028 : num [1:15548] 176 34 4776 1455 24 ...
## ..$ PM0032 : num [1:15548] 117 67 8836 1689 44 ...
## ..$ PM008 : num [1:15548] 136 19 2643 262 23 ...
## ..$ PM017 : num [1:15548] 243 46 7224 862 79 ...
## $ NK 2 (IL7R+) :'data.frame': 13653 obs. of 30 variables:
## ..$ baseMean : num [1:13653] 4304.1 151.2 316.8 13.4 297.5 ...
## ..$ log2FoldChange: num [1:13653] 0.673 -1.428 0.7 -2.136 -1.312 ...
## ..$ lfcSE : num [1:13653] 0.11 0.234 0.124 0.403 0.254 ...
## ..$ stat : num [1:13653] 6.12 -6.11 5.63 -5.3 -5.16 ...
## ..$ pvalue : num [1:13653] 9.52e-10 1.00e-09 1.84e-08 1.18e-07 2.54e-07 ...
## ..$ padj : num [1:13653] 6.85e-06 6.85e-06 8.37e-05 4.03e-04 6.92e-04 ...
## ..$ AH0005 : num [1:13653] 12.63 6.57 8.78 5.06 7.69 ...
## ..$ AH0015 : num [1:13653] 12.46 6.87 8.45 4.93 7.63 ...
## ..$ AH0018 : num [1:13653] 11.92 7.16 8.48 4.86 8.06 ...
## ..$ CC0003 : num [1:13653] 11.14 9.05 7.77 6.48 10.08 ...
## ..$ CC0016 : num [1:13653] 12.46 6.69 9.02 4.76 7.25 ...
## ..$ PM001 : num [1:13653] 12.33 6.9 8.87 4.7 7.67 ...
## ..$ PM0020 : num [1:13653] 12.04 7.16 8.11 5.26 8.04 ...
## ..$ PM0027 : num [1:13653] 11.64 8.08 8.27 5.28 8.96 ...
## ..$ PM0028 : num [1:13653] 11.79 7.65 8.23 5.48 8.3 ...
## ..$ PM0032 : num [1:13653] 11.96 7.51 8.03 5.48 7.98 ...
## ..$ PM008 : num [1:13653] 11.91 7.08 8.43 4.89 8.11 ...
## ..$ PM017 : num [1:13653] 12.09 7.2 8.43 4.96 7.89 ...
## ..$ AH0005 : num [1:13653] 5254 54 337 7 145 ...
## ..$ AH0015 : num [1:13653] 7855 121 444 9 233 ...
## ..$ AH0018 : num [1:13653] 3557 104 301 5 218 ...
## ..$ CC0003 : num [1:13653] 1277 286 107 34 603 ...
## ..$ CC0016 : num [1:13653] 12298 160 1070 9 265 ...
## ..$ PM001 : num [1:13653] 6014 104 514 4 202 ...
## ..$ PM0020 : num [1:13653] 4363 117 256 13 241 ...
## ..$ PM0027 : num [1:13653] 2687 204 236 11 397 ...
## ..$ PM0028 : num [1:13653] 3568 172 272 18 287 ...
## ..$ PM0032 : num [1:13653] 1792 68 104 8 100 ...
## ..$ PM008 : num [1:13653] 3963 108 325 6 254 ...
## ..$ PM017 : num [1:13653] 6991 187 503 11 332 ...
## $ CD14+ Mono (CCL4+):'data.frame': 13897 obs. of 30 variables:
## ..$ baseMean : num [1:13897] 138.1 44.5 273.7 26.5 97.2 ...
## ..$ log2FoldChange: num [1:13897] -0.917 -1.651 -1.078 1.685 1.881 ...
## ..$ lfcSE : num [1:13897] 0.171 0.35 0.237 0.407 0.458 ...
## ..$ stat : num [1:13897] -5.35 -4.71 -4.54 4.14 4.11 ...
## ..$ pvalue : num [1:13897] 8.98e-08 2.46e-06 5.51e-06 3.45e-05 3.98e-05 ...
## ..$ padj : num [1:13897] 0.00125 0.01707 0.02551 0.1107 0.1107 ...
## ..$ AH0005 : num [1:13897] 6.45 5.14 7.98 5.14 6.77 ...
## ..$ AH0015 : num [1:13897] 6.7 5.05 7.6 6.54 7.59 ...
## ..$ AH0018 : num [1:13897] 7.28 6.01 7.83 6.24 7.68 ...
## ..$ CC0003 : num [1:13897] 7.79 7.11 9.08 5.18 7.23 ...
## ..$ CC0016 : num [1:13897] 6.92 5.98 7.93 5.99 7.43 ...
## ..$ PM001 : num [1:13897] 7.25 5.46 7.61 5.67 7.34 ...
## ..$ PM0020 : num [1:13897] 8.08 5.78 8.4 4.91 5.08 ...
## ..$ PM0027 : num [1:13897] 8 6.79 9.32 4.66 5.54 ...
## ..$ PM0028 : num [1:13897] 7.14 6.31 8.23 4.93 5.58 ...
## ..$ PM0032 : num [1:13897] 7.45 6.57 8.1 5.33 5.11 ...
## ..$ PM008 : num [1:13897] 6.91 5.64 7.68 5.94 7.59 ...
## ..$ PM017 : num [1:13897] 7.22 5.34 7.47 5.27 6.69 ...
## ..$ AH0005 : num [1:13897] 9 2 32 2 12 6 2 1 16 4 ...
## ..$ AH0015 : num [1:13897] 45 7 96 39 95 43 7 2 131 26 ...
## ..$ AH0018 : num [1:13897] 146 46 227 58 202 79 11 4 296 36 ...
## ..$ CC0003 : num [1:13897] 683 395 1796 52 437 ...
## ..$ CC0016 : num [1:13897] 264 109 597 110 404 127 25 14 390 67 ...
## ..$ PM001 : num [1:13897] 216 37 288 48 232 74 13 9 160 41 ...
## ..$ PM0020 : num [1:13897] 76 10 97 3 4 8 6 10 16 4 ...
## ..$ PM0027 : num [1:13897] 191 71 505 5 20 20 19 130 36 11 ...
## ..$ PM0028 : num [1:13897] 69 33 162 6 15 20 14 2 32 9 ...
## ..$ PM0032 : num [1:13897] 154 73 256 19 14 38 30 7 73 19 ...
## ..$ PM008 : num [1:13897] 463 132 874 184 808 219 46 40 718 121 ...
## ..$ PM017 : num [1:13897] 132 20 162 18 84 60 8 5 164 30 ...
## $ FCGR3A+ Mono :'data.frame': 12783 obs. of 30 variables:
## ..$ baseMean : num [1:12783] 80.9 110.3 17.8 220.6 211.1 ...
## ..$ log2FoldChange: num [1:12783] -2.075 -0.842 -1.195 1.387 -0.598 ...
## ..$ lfcSE : num [1:12783] 0.394 0.2 0.324 0.379 0.166 ...
## ..$ stat : num [1:12783] -5.26 -4.21 -3.69 3.66 -3.59 ...
## ..$ pvalue : num [1:12783] 1.43e-07 2.56e-05 2.24e-04 2.50e-04 3.25e-04 ...
## ..$ padj : num [1:12783] 0.00183 0.16326 0.62238 0.62238 0.62238 ...
## ..$ AH0005 : num [1:12783] 5.98 6.42 5.01 6.53 8.35 ...
## ..$ AH0015 : num [1:12783] 5.58 6.49 5.18 7.91 8.02 ...
## ..$ AH0018 : num [1:12783] 6.17 6.9 5.24 9.52 7.23 ...
## ..$ CC0003 : num [1:12783] 7.7 7.16 5.83 8.17 8.01 ...
## ..$ CC0016 : num [1:12783] 6.26 7.24 5.4 8.23 7.74 ...
## ..$ PM001 : num [1:12783] 5.84 6.83 5.36 8.7 7.5 ...
## ..$ PM0020 : num [1:12783] 6.6 7.51 5.79 6.55 8.47 ...
## ..$ PM0027 : num [1:12783] 8.43 7.82 6.33 6.42 8.04 ...
## ..$ PM0028 : num [1:12783] 6.08 7.33 5.4 6.57 8.32 ...
## ..$ PM0032 : num [1:12783] 7.41 7.66 5.5 6.83 8.33 ...
## ..$ PM008 : num [1:12783] 6.22 6.84 5.36 8.09 7.26 ...
## ..$ PM017 : num [1:12783] 6.2 7.07 5.43 8.32 7.17 ...
## ..$ AH0005 : num [1:12783] 15 25 3 28 135 26 15 94 1 52 ...
## ..$ AH0015 : num [1:12783] 14 43 7 154 167 35 16 166 14 85 ...
## ..$ AH0018 : num [1:12783] 113 239 29 1939 323 ...
## ..$ CC0003 : num [1:12783] 123 77 19 179 158 62 72 38 12 68 ...
## ..$ CC0016 : num [1:12783] 61 160 19 361 244 60 26 69 43 208 ...
## ..$ PM001 : num [1:12783] 29 86 14 406 157 54 39 94 39 121 ...
## ..$ PM0020 : num [1:12783] 94 216 37 89 465 103 44 41 7 126 ...
## ..$ PM0027 : num [1:12783] 253 157 40 44 187 58 91 31 5 75 ...
## ..$ PM0028 : num [1:12783] 39 136 15 67 305 79 49 144 7 70 ...
## ..$ PM0032 : num [1:12783] 74 91 9 44 156 32 22 50 5 41 ...
## ..$ PM008 : num [1:12783] 69 130 21 379 191 74 62 218 81 187 ...
## ..$ PM017 : num [1:12783] 43 103 15 289 112 44 45 230 24 110 ...
## $ T :'data.frame': 1874 obs. of 30 variables:
## ..$ baseMean : num [1:1874] 2814.2 603.82 205.64 4.55 7.04 ...
## ..$ log2FoldChange: num [1:1874] 6.35 5.67 4.73 1.66 1.47 ...
## ..$ lfcSE : num [1:1874] 1.689 1.621 1.5 0.601 0.536 ...
## ..$ stat : num [1:1874] 3.76 3.5 3.15 2.77 2.74 ...
## ..$ pvalue : num [1:1874] 0.000171 0.000472 0.001624 0.005626 0.006178 ...
## ..$ padj : num [1:1874] 0.32 0.442 0.998 0.998 0.998 ...
## ..$ AH0005 : num [1:1874] 13.36 11.1 8.62 2.91 4.12 ...
## ..$ AH0015 : num [1:1874] 11.45 9.83 8.78 3.7 3.8 ...
## ..$ AH0018 : num [1:1874] 4.03 2.39 2.39 3.05 3.46 ...
## ..$ CC0003 : num [1:1874] 9.9 7.93 6.35 2.56 2.72 ...
## ..$ CC0016 : num [1:1874] 3.13 2.44 2.15 3.56 4.26 ...
## ..$ PM001 : num [1:1874] 10.18 8.9 6.37 3.47 3.05 ...
## ..$ PM0020 : num [1:1874] 2.96 2.53 2.53 2.53 2.76 ...
## ..$ PM0027 : num [1:1874] 3.07 2.79 2.4 2.4 2.4 ...
## ..$ PM0028 : num [1:1874] 2.77 3.04 2.77 3.04 3.62 ...
## ..$ PM0032 : num [1:1874] 4.27 3.38 2.85 2.85 3.38 ...
## ..$ PM008 : num [1:1874] 14.16 11.74 10.53 3.73 3.73 ...
## ..$ PM017 : num [1:1874] 2.88 3.04 2.7 3.41 3.94 ...
## ..$ AH0005 : num [1:1874] 3354 698 124 1 4 ...
## ..$ AH0015 : num [1:1874] 6458 2090 1004 19 21 ...
## ..$ AH0018 : num [1:1874] 9 1 1 3 5 12 3 4 4 171 ...
## ..$ CC0003 : num [1:1874] 1617 406 130 3 4 ...
## ..$ CC0016 : num [1:1874] 6 2 1 10 20 12 1 3 4 323 ...
## ..$ PM001 : num [1:1874] 1806 738 121 10 6 ...
## ..$ PM0020 : num [1:1874] 4 2 2 2 3 17 8 11 8 424 ...
## ..$ PM0027 : num [1:1874] 3 2 1 1 1 8 10 7 4 219 ...
## ..$ PM0028 : num [1:1874] 2 3 2 3 6 12 6 5 7 187 ...
## ..$ PM0032 : num [1:1874] 5 2 1 1 2 12 2 5 2 58 ...
## ..$ PM008 : num [1:1874] 34563 6458 2789 16 16 ...
## ..$ PM017 : num [1:1874] 4 5 3 8 14 12 9 7 6 226 ...
## $ DC :'data.frame': 12221 obs. of 30 variables:
## ..$ baseMean : num [1:12221] 157.2 91.1 122.4 205 217.5 ...
## ..$ log2FoldChange: num [1:12221] -0.801 1.037 -0.987 -0.697 0.903 ...
## ..$ lfcSE : num [1:12221] 0.143 0.214 0.222 0.157 0.217 ...
## ..$ stat : num [1:12221] -5.58 4.83 -4.44 -4.43 4.15 ...
## ..$ pvalue : num [1:12221] 2.37e-08 1.34e-06 8.91e-06 9.49e-06 3.26e-05 ...
## ..$ padj : num [1:12221] 0.00029 0.00821 0.029 0.029 0.07641 ...
## ..$ AH0005 : num [1:12221] 7.16 7.35 7.04 7.37 8.39 ...
## ..$ AH0015 : num [1:12221] 6.85 7.27 6.33 7.49 8.21 ...
## ..$ AH0018 : num [1:12221] 7.42 7.31 7.24 7.93 8.21 ...
## ..$ CC0003 : num [1:12221] 8.32 6.3 7.81 8.05 7.29 ...
## ..$ CC0016 : num [1:12221] 6.96 7.28 7.01 7.64 8.15 ...
## ..$ PM001 : num [1:12221] 7.34 7.23 6.75 7.44 8.75 ...
## ..$ PM0020 : num [1:12221] 7.84 6.24 7.56 8.01 7.75 ...
## ..$ PM0027 : num [1:12221] 7.81 6.24 7.58 8.27 7.42 ...
## ..$ PM0028 : num [1:12221] 7.56 6.37 7.17 8.08 7.09 ...
## ..$ PM0032 : num [1:12221] 7.58 6.92 7.91 8.43 7.79 ...
## ..$ PM008 : num [1:12221] 7.4 6.74 6.75 7.56 7.44 ...
## ..$ PM017 : num [1:12221] 7.6 6.72 6.82 7.71 7.91 ...
## ..$ AH0005 : num [1:12221] 61 72 55 73 163 153 33 9 5 16 ...
## ..$ AH0015 : num [1:12221] 90 130 55 156 276 307 46 28 10 41 ...
## ..$ AH0018 : num [1:12221] 148 135 127 223 277 413 44 30 52 28 ...
## ..$ CC0003 : num [1:12221] 213 38 144 173 94 164 38 21 3 46 ...
## ..$ CC0016 : num [1:12221] 104 137 108 183 274 293 53 20 21 62 ...
## ..$ PM001 : num [1:12221] 227 206 135 245 681 538 73 39 32 64 ...
## ..$ PM0020 : num [1:12221] 99 24 79 113 92 32 51 46 6 38 ...
## ..$ PM0027 : num [1:12221] 417 104 348 599 306 259 427 230 1 168 ...
## ..$ PM0028 : num [1:12221] 195 68 141 296 132 84 96 47 3 63 ...
## ..$ PM0032 : num [1:12221] 151 86 197 293 178 103 81 35 1 50 ...
## ..$ PM008 : num [1:12221] 192 108 109 220 199 177 49 19 19 44 ...
## ..$ PM017 : num [1:12221] 144 68 74 158 185 309 25 23 13 34 ...
## $ Macrophage :'data.frame': 10290 obs. of 30 variables:
## ..$ baseMean : num [1:10290] 548.9 93.9 229.1 38.4 6.5 ...
## ..$ log2FoldChange: num [1:10290] 0.896 1.153 -0.714 -0.788 2.16 ...
## ..$ lfcSE : num [1:10290] 0.224 0.293 0.189 0.212 0.582 ...
## ..$ stat : num [1:10290] 4.01 3.94 -3.77 -3.72 3.71 ...
## ..$ pvalue : num [1:10290] 6.13e-05 8.31e-05 1.64e-04 1.97e-04 2.08e-04 ...
## ..$ padj : num [1:10290] 0.428 0.428 0.428 0.428 0.428 ...
## ..$ AH0005 : num [1:10290] 9.18 6.9 7.34 5.6 4.44 ...
## ..$ AH0015 : num [1:10290] 9.84 7.75 7.66 5.88 4.67 ...
## ..$ AH0018 : num [1:10290] 9.57 7.18 7.56 5.25 4.28 ...
## ..$ CC0003 : num [1:10290] 8.59 6.65 8.83 5.84 4.14 ...
## ..$ CC0016 : num [1:10290] 9.11 7.52 7.98 5.84 5.24 ...
## ..$ PM001 : num [1:10290] 9.77 6.92 7.57 5.86 5.12 ...
## ..$ PM0020 : num [1:10290] 9.09 5.85 8.32 6.09 4.24 ...
## ..$ PM0027 : num [1:10290] 9 5.82 7.84 6.28 4.18 ...
## ..$ PM0028 : num [1:10290] 8.14 6.04 8.03 6.68 4.55 ...
## ..$ PM0032 : num [1:10290] 8.24 6.81 8.31 6.33 4.21 ...
## ..$ PM008 : num [1:10290] 9.47 6.86 7.79 5.32 5.13 ...
## ..$ PM017 : num [1:10290] 8.86 6.86 7.93 5.36 4.78 ...
## ..$ AH0005 : num [1:10290] 146 25 36 7 1 2 6 35 11 268 ...
## ..$ AH0015 : num [1:10290] 415 89 83 17 3 3 12 71 26 616 ...
## ..$ AH0018 : num [1:10290] 305 50 68 7 1 5 1 35 10 568 ...
## ..$ CC0003 : num [1:10290] 764 163 914 74 3 ...
## ..$ CC0016 : num [1:10290] 723 219 313 48 23 ...
## ..$ PM001 : num [1:10290] 1327 152 259 56 22 ...
## ..$ PM0020 : num [1:10290] 253 17 143 22 1 5 3 37 10 501 ...
## ..$ PM0027 : num [1:10290] 569 40 240 64 2 ...
## ..$ PM0028 : num [1:10290] 306 51 282 94 6 38 6 97 33 969 ...
## ..$ PM0032 : num [1:10290] 444 142 469 92 3 ...
## ..$ PM008 : num [1:10290] 1763 238 505 48 37 ...
## ..$ PM017 : num [1:10290] 824 173 410 37 15 ...
## $ B :'data.frame': 9017 obs. of 30 variables:
## ..$ baseMean : num [1:9017] 19.5 10.5 11.8 31.1 10.4 ...
## ..$ log2FoldChange: num [1:9017] 4.12 -3.44 1.89 -1.27 2.07 ...
## ..$ lfcSE : num [1:9017] 0.947 0.848 0.49 0.332 0.599 ...
## ..$ stat : num [1:9017] 4.35 -4.06 3.85 -3.83 3.45 ...
## ..$ pvalue : num [1:9017] 1.35e-05 4.98e-05 1.17e-04 1.30e-04 5.62e-04 ...
## ..$ padj : num [1:9017] 0.122 0.224 0.292 0.292 0.883 ...
## ..$ AH0005 : num [1:9017] 4.24 3.95 5.22 4.9 5.22 ...
## ..$ AH0015 : num [1:9017] 6.62 3.52 5.23 4.58 5.68 ...
## ..$ AH0018 : num [1:9017] 3.9 3.71 4.52 5.6 4.44 ...
## ..$ CC0003 : num [1:9017] 3.75 3.75 3.75 6.49 4.1 ...
## ..$ CC0016 : num [1:9017] 6.19 3.8 4.97 4.82 4.89 ...
## ..$ PM001 : num [1:9017] 5.49 3.9 5.32 5.37 4.62 ...
## ..$ PM0020 : num [1:9017] 3.76 6.92 4.13 5.75 3.76 ...
## ..$ PM0027 : num [1:9017] 3.93 3.93 3.93 6.2 4.84 ...
## ..$ PM0028 : num [1:9017] 4.26 4.06 4.81 5.12 4.06 ...
## ..$ PM0032 : num [1:9017] 3.76 4.57 4.48 5.72 3.76 ...
## ..$ PM008 : num [1:9017] 5.34 3.57 5.15 5.07 4.81 ...
## ..$ PM017 : num [1:9017] 5.57 3.74 4.52 6.01 4.33 ...
## ..$ AH0005 : num [1:9017] 2 1 9 6 9 18 1 5 3 2 ...
## ..$ AH0015 : num [1:9017] 240 1 63 26 102 41 72 7 8 12 ...
## ..$ AH0018 : num [1:9017] 2 1 8 32 7 1 36 2 13 37 ...
## ..$ CC0003 : num [1:9017] 1 1 1 63 3 3 1 23 25 20 ...
## ..$ CC0016 : num [1:9017] 40 1 11 9 10 16 15 3 8 1 ...
## ..$ PM001 : num [1:9017] 42 3 35 37 14 48 42 7 12 1 ...
## ..$ PM0020 : num [1:9017] 1 84 3 30 1 4 14 7 14 2 ...
## ..$ PM0027 : num [1:9017] 1 1 1 26 6 3 2 23 20 37 ...
## ..$ PM0028 : num [1:9017] 8 5 20 30 5 14 6 5 15 26 ...
## ..$ PM0032 : num [1:9017] 1 7 6 29 1 6 1 7 2 29 ...
## ..$ PM008 : num [1:9017] 52 1 42 38 27 21 56 2 16 12 ...
## ..$ PM017 : num [1:9017] 27 1 7 42 5 23 4 2 11 10 ...
if ( ! dir.exists("enrichment_analysis") ) {
dir.create("enrichment_analysis")
}
# mitch multi
m0 <- mitch_import(deres,DEtype="deseq2",joinType="full")
## Note: Mean no. genes in input = 11551.6666666667
## Note: no. genes in output = 17578
## Note: estimated proportion of input genes in output = 1.52
summary(m0)
## NK 1 (FCGRA3A+) CD14+ Mono NK 2 (IL7R+) CD14+ Mono (CCL4+)
## Min. :-5.4366 Min. :-4.7184 Min. :-6.109 Min. :-5.346
## 1st Qu.:-0.6267 1st Qu.:-0.5812 1st Qu.:-0.697 1st Qu.:-0.642
## Median : 0.0271 Median :-0.0019 Median :-0.012 Median :-0.037
## Mean : 0.0001 Mean : 0.0111 Mean :-0.045 Mean :-0.046
## 3rd Qu.: 0.6493 3rd Qu.: 0.5927 3rd Qu.: 0.649 3rd Qu.: 0.551
## Max. : 5.8977 Max. : 4.9147 Max. : 6.117 Max. : 4.141
## NA's :2896 NA's :2030 NA's :3925 NA's :3681
## FCGR3A+ Mono T DC Macrophage
## Min. :-5.261 Min. :-2.459 Min. :-5.582 Min. :-3.768
## 1st Qu.:-0.625 1st Qu.:-0.550 1st Qu.:-0.680 1st Qu.:-0.599
## Median :-0.034 Median :-0.055 Median :-0.045 Median :-0.009
## Mean :-0.036 Mean :-0.043 Mean :-0.048 Mean :-0.001
## 3rd Qu.: 0.544 3rd Qu.: 0.462 3rd Qu.: 0.587 3rd Qu.: 0.587
## Max. : 3.662 Max. : 3.759 Max. : 4.833 Max. : 4.008
## NA's :4795 NA's :15704 NA's :5357 NA's :7288
## B
## Min. :-4.056
## 1st Qu.:-0.578
## Median : 0.033
## Mean : 0.012
## 3rd Qu.: 0.611
## Max. : 4.351
## NA's :8561
dim(m0)
## [1] 17578 9
# remove genes with 7/9 or more NA values
m0 <- m0[which(apply(m0,1,function(x) { length(which(is.na(x)))<7 } )),]
dim(m0)
## [1] 14197 9
mres0 <- mitch_calc(m0,genesets=go,minsetsize=5,cores=16,priority="effect")
## Warning in mitch_rank(input_profile): Warning: >60% of genes have the same score. This isn't
## optimal for rank based enrichment analysis.
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres0$enrichment_result,20) |> kbl(caption="top enrichments") |> kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.NK.1._FCGRA3A_ | s.CD14_.Mono | s.NK.2._IL7R__ | s.CD14_.Mono._CC | s.FCGR3A_.Mono | s.T | s.DC | s.Macrophage | s.B | p.NK.1._FCGRA3A_ | p.CD14_.Mono | p.NK.2._IL7R__ | p.CD14_.Mono._CC | p.FCGR3A_.Mono | p.T | p.DC | p.Macrophage | p.B | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2982 | GOBP OLFACTORY BULB INTERNEURON DIFFERENTIATION | 5 | NA | -0.0468749 | 0.8043468 | 0.1758761 | 0.5312906 | 0.8282821 | NaN | 0.5369625 | 0.6497791 | -0.5030506 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1.616176 | NA | NA |
4807 | GOBP REGULATION OF MAST CELL CHEMOTAXIS | 5 | 0.1785184 | -0.4478405 | -0.6542047 | -0.4143465 | -0.7841459 | -0.6071991 | 0.0491473 | -0.6102114 | -0.4354625 | 0.3217278 | 0.2912088 | 0.1732911 | 0.9214028 | 0.0681412 | 0.3123475 | 0.3616198 | 0.4227267 | 0.8620933 | 0.0398392 | 1.565795 | 0.3580592 | 0.5616839 |
3718 | GOBP POSITIVE REGULATION OF PLASMINOGEN ACTIVATION | 5 | 0.0119994 | 0.5291795 | -0.3319079 | 0.8061593 | -0.6852716 | -0.6504084 | -0.0309716 | -0.2954518 | 0.2476856 | 0.2270875 | 0.0289418 | 0.2340076 | 0.0153699 | 0.0783854 | 0.0273005 | 0.4774223 | 0.6498655 | 0.0778675 | 0.3172920 | 1.460782 | 0.5160093 | 0.1478370 |
3051 | GOBP OXYGEN TRANSPORT | 5 | NA | 0.5259709 | -0.3531877 | 0.7299719 | -0.4734019 | 0.4563189 | 0.1319997 | -0.3753044 | 0.3643384 | 0.5918118 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1.416984 | 0.4642098 | NA |
1305 | GOBP GAS TRANSPORT | 6 | NA | 0.5259709 | -0.2559393 | 0.7299719 | -0.3472933 | 0.5273332 | 0.1319997 | -0.3498009 | 0.3643384 | 0.5918118 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1.377124 | 0.4312128 | NA |
4004 | GOBP PROTECTION FROM NATURAL KILLER CELL MEDIATED CYTOTOXICITY | 5 | 0.0629256 | 0.6667297 | 0.5702412 | 0.6011061 | 0.1216200 | 0.5122965 | 0.0515253 | 0.1058671 | 0.6463433 | 0.1903025 | 0.1717262 | 0.0697088 | 0.0374350 | 0.3339561 | 0.0278640 | 0.2414559 | 0.0599051 | 0.0008635 | 0.0494734 | 1.369711 | 0.2601175 | 0.3538561 |
8353 | GOMF TAP BINDING | 7 | 0.0012174 | 0.4829519 | 0.5249227 | 0.6958258 | 0.2327653 | 0.5372819 | -0.0145913 | 0.4519257 | 0.4479907 | 0.3543498 | 0.0683936 | 0.0047148 | 0.0082078 | 0.1991973 | 0.0061077 | 0.6638393 | 0.0082569 | 0.0001158 | 0.0012943 | 1.366207 | 0.2044362 | 0.0319599 |
6658 | GOCC MHC CLASS I PROTEIN COMPLEX | 9 | 0.0000753 | 0.5665346 | 0.3851823 | 0.6270524 | 0.2250644 | 0.5407100 | 0.0189379 | 0.2158746 | 0.6686127 | 0.2793852 | 0.0244583 | 0.0031301 | 0.0029526 | 0.3246875 | 0.0048458 | 0.5453798 | 0.0005602 | 0.0000035 | 0.0012697 | 1.333268 | 0.2222422 | 0.0036524 |
6204 | GOBP VOCALIZATION BEHAVIOR | 5 | 0.1605311 | -0.4090008 | -0.2720991 | -0.6703139 | 0.2295531 | 0.0620398 | 0.1112801 | -0.4039157 | -0.7112066 | -0.5858199 | 0.0564491 | 0.8819581 | 0.1110161 | 0.6186341 | 0.2823321 | 0.1431443 | 0.3630028 | 0.1101123 | 0.1700284 | 1.331058 | 0.3520904 | 0.5390386 |
4393 | GOBP REGULATION OF CARDIAC MUSCLE CELL MEMBRANE POTENTIAL | 6 | NA | -0.2046661 | -0.1940215 | -0.2175527 | -0.7199074 | -0.5816907 | NaN | -0.5878752 | 0.0963401 | 0.6073098 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1.306597 | NA | NA |
1981 | GOBP METANEPHRIC TUBULE MORPHOGENESIS | 5 | NA | -0.6310979 | 0.3847268 | 0.8024147 | 0.4596475 | -0.1365636 | NaN | 0.4913820 | 0.0400124 | NaN | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1.289632 | NA | NA |
8435 | GOMF T CELL RECEPTOR BINDING | 10 | 0.0112284 | 0.6777235 | 0.2409427 | 0.7388547 | 0.2245939 | 0.3339541 | -0.0144500 | 0.1962596 | 0.5710660 | 0.1390028 | 0.0129919 | 0.0123559 | 0.0012610 | 0.1335496 | 0.0464063 | 0.6668601 | 0.0208861 | 0.0006015 | 0.1340639 | 1.268622 | 0.2588778 | 0.1432891 |
1992 | GOBP MHC CLASS I BIOSYNTHETIC PROCESS | 5 | 0.5116188 | 0.7508423 | 0.4405615 | 0.3022701 | 0.1866155 | 0.5251212 | 0.0713912 | 0.5839697 | 0.1379711 | 0.2781425 | 0.1673626 | 0.0759881 | 0.1602780 | 0.0383058 | 0.0536662 | 0.3480692 | 0.0325116 | 0.1149339 | 0.1136828 | 1.265828 | 0.2261669 | 0.7842342 |
1233 | GOBP FAT PAD DEVELOPMENT | 7 | 0.0959703 | -0.1373445 | -0.6942792 | -0.1368530 | -0.6334599 | -0.3220268 | -0.0618352 | -0.5453595 | -0.2047893 | -0.4547057 | 0.0688706 | 0.0092969 | 0.2542712 | 0.0382769 | 0.0324928 | 0.1024039 | 0.0788183 | 0.8997600 | 0.0402398 | 1.254801 | 0.2354210 | 0.4356463 |
5568 | GOBP RESPONSE TO ZINC ION STARVATION | 6 | 0.0658774 | -0.2349679 | 0.5042035 | -0.3900053 | 0.5176162 | 0.6481535 | -0.0061313 | 0.4867260 | 0.4173652 | -0.0478135 | 0.0604735 | 0.0975426 | 0.1030263 | 0.0375966 | 0.1765629 | 0.9337724 | 0.2367782 | 0.0957241 | 0.1280322 | 1.250194 | 0.3814315 | 0.3612959 |
7032 | GOCC TRANSCRIPTION FACTOR AP 1 COMPLEX | 5 | 0.0000387 | -0.6595987 | 0.6557830 | -0.4343584 | 0.4994734 | 0.1212707 | 0.0453881 | 0.2488312 | 0.0114729 | -0.4251616 | 0.0006091 | 0.0057771 | 0.0069127 | 0.0051467 | 0.1936047 | 0.2338071 | 0.2540453 | 0.2643002 | 0.0048440 | 1.250136 | 0.4419273 | 0.0022199 |
7175 | GOMF ALPHA GLUCOSIDASE ACTIVITY | 5 | NA | -0.0911521 | 0.6768655 | -0.1006862 | 0.3561507 | 0.3129819 | NaN | 0.6524657 | 0.5384256 | 0.3661407 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1.245418 | NA | NA |
6442 | GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT | 38 | 0.0000000 | 0.1201205 | -0.2315719 | -0.7901520 | -0.7030446 | -0.4385926 | -0.0260576 | -0.3605943 | -0.1198536 | -0.1093560 | 0.9334185 | 0.0129775 | 0.0000000 | 0.0000000 | 0.0000086 | 0.0397258 | 0.0182402 | 0.4839131 | 0.3457008 | 1.239379 | 0.3062706 | 0.0000000 |
7881 | GOMF NEUROPEPTIDE RECEPTOR ACTIVITY | 5 | NA | 0.3120706 | 0.1721393 | 0.1936572 | -0.2844895 | 0.3692500 | NaN | 0.8247493 | -0.6272369 | NaN | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1.206416 | NA | NA |
3799 | GOBP POSITIVE REGULATION OF RESPONSE TO TYPE II INTERFERON | 5 | 0.5116188 | 0.0382196 | 0.2286658 | 0.4385018 | 0.4528001 | 0.7681868 | 0.0713912 | 0.3258101 | 0.3534541 | 0.4144303 | 0.1673626 | 0.0759881 | 0.1602780 | 0.0383058 | 0.0536662 | 0.3480692 | 0.0325116 | 0.1149339 | 0.1136828 | 1.203787 | 0.2200000 | 0.7842342 |
head(subset(mres0$enrichment_result,p.adjustMANOVA<0.01),20) |> kbl(caption="top enrichments") |> kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.NK.1._FCGRA3A_ | s.CD14_.Mono | s.NK.2._IL7R__ | s.CD14_.Mono._CC | s.FCGR3A_.Mono | s.T | s.DC | s.Macrophage | s.B | p.NK.1._FCGRA3A_ | p.CD14_.Mono | p.NK.2._IL7R__ | p.CD14_.Mono._CC | p.FCGR3A_.Mono | p.T | p.DC | p.Macrophage | p.B | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6658 | GOCC MHC CLASS I PROTEIN COMPLEX | 9 | 0.0000753 | 0.5665346 | 0.3851823 | 0.6270524 | 0.2250644 | 0.5407100 | 0.0189379 | 0.2158746 | 0.6686127 | 0.2793852 | 0.0244583 | 0.0031301 | 0.0029526 | 0.3246875 | 0.0048458 | 0.5453798 | 0.0005602 | 0.0000035 | 0.0012697 | 1.3332676 | 0.2222422 | 0.0036524 |
7032 | GOCC TRANSCRIPTION FACTOR AP 1 COMPLEX | 5 | 0.0000387 | -0.6595987 | 0.6557830 | -0.4343584 | 0.4994734 | 0.1212707 | 0.0453881 | 0.2488312 | 0.0114729 | -0.4251616 | 0.0006091 | 0.0057771 | 0.0069127 | 0.0051467 | 0.1936047 | 0.2338071 | 0.2540453 | 0.2643002 | 0.0048440 | 1.2501362 | 0.4419273 | 0.0022199 |
6442 | GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT | 38 | 0.0000000 | 0.1201205 | -0.2315719 | -0.7901520 | -0.7030446 | -0.4385926 | -0.0260576 | -0.3605943 | -0.1198536 | -0.1093560 | 0.9334185 | 0.0129775 | 0.0000000 | 0.0000000 | 0.0000086 | 0.0397258 | 0.0182402 | 0.4839131 | 0.3457008 | 1.2393792 | 0.3062706 | 0.0000000 |
6439 | GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT | 55 | 0.0000000 | 0.0961184 | -0.1961419 | -0.7620206 | -0.6334597 | -0.4608439 | -0.0534745 | -0.3453907 | -0.1050807 | -0.1091125 | 0.6202175 | 0.0036791 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000009 | 0.0009514 | 0.4279397 | 0.3125547 | 1.1777673 | 0.2858315 | 0.0000000 |
5404 | GOBP RESPONSE TO CORTICOSTERONE | 5 | 0.0000328 | -0.6013291 | 0.4675347 | -0.5289375 | 0.0438001 | 0.1831392 | -0.0741955 | 0.2963820 | 0.3174463 | -0.5341676 | 0.0181473 | 0.0295909 | 0.0479713 | 0.0242020 | 0.6951540 | 0.0897141 | 0.0163049 | 0.0149522 | 0.0253029 | 1.1725498 | 0.4114452 | 0.0019258 |
6840 | GOCC POLYSOMAL RIBOSOME | 29 | 0.0000000 | 0.1547316 | -0.2034595 | -0.6811214 | -0.5806937 | -0.3924367 | -0.0474010 | -0.2155780 | -0.0408350 | -0.1359172 | 0.7686282 | 0.0240706 | 0.0000000 | 0.0000021 | 0.0002819 | 0.0014712 | 0.1785882 | 0.9332046 | 0.1306343 | 1.0437133 | 0.2690732 | 0.0000000 |
174 | GOBP ANTIGEN PROCESSING AND PRESENTATION OF PEPTIDE ANTIGEN VIA MHC CLASS IB | 11 | 0.0000753 | 0.2937478 | 0.1916904 | 0.4493864 | 0.2911307 | 0.4443277 | 0.0189379 | 0.3137475 | 0.4946513 | 0.2929602 | 0.0244583 | 0.0031301 | 0.0029526 | 0.3246875 | 0.0048458 | 0.5453798 | 0.0005602 | 0.0000035 | 0.0012697 | 1.0180702 | 0.1462906 | 0.0036524 |
6441 | GOCC CYTOSOLIC RIBOSOME | 109 | 0.0000000 | 0.1161091 | -0.1764938 | -0.6725459 | -0.5333003 | -0.3614297 | -0.0410408 | -0.2913931 | -0.0980106 | -0.0993839 | 0.6696618 | 0.0000852 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000006 | 0.0000219 | 0.2090952 | 0.1027037 | 1.0089934 | 0.2502180 | 0.0000000 |
176 | GOBP ANTIGEN PROCESSING AND PRESENTATION VIA MHC CLASS IB | 15 | 0.0000466 | 0.3608409 | 0.1693360 | 0.4305613 | 0.2903743 | 0.3626802 | 0.0349164 | 0.2956653 | 0.4141032 | 0.2896287 | 0.0128205 | 0.0128543 | 0.0009335 | 0.1918178 | 0.0050656 | 0.2265488 | 0.0002358 | 0.0000017 | 0.0007852 | 0.9508529 | 0.1249792 | 0.0025152 |
6659 | GOCC MHC PROTEIN COMPLEX | 23 | 0.0000003 | 0.5681298 | 0.3962081 | 0.5247028 | 0.0960257 | 0.1828663 | -0.0184568 | 0.1158107 | 0.2689914 | 0.0560049 | 0.0000323 | 0.0001241 | 0.0000033 | 0.4580556 | 0.0385879 | 0.3433688 | 0.0012273 | 0.0002209 | 0.0201574 | 0.9417919 | 0.2103373 | 0.0000312 |
167 | GOBP ANTIGEN PROCESSING AND PRESENTATION OF ENDOGENOUS PEPTIDE ANTIGEN | 18 | 0.0000073 | 0.3142297 | 0.3132263 | 0.4080091 | 0.2888417 | 0.3575872 | -0.0107346 | 0.2545613 | 0.3878129 | 0.2545520 | 0.0090751 | 0.0006357 | 0.0002508 | 0.3427793 | 0.0062512 | 0.6669084 | 0.0015929 | 0.0000014 | 0.0022661 | 0.9245176 | 0.1234645 | 0.0005054 |
166 | GOBP ANTIGEN PROCESSING AND PRESENTATION OF ENDOGENOUS ANTIGEN | 22 | 0.0000015 | 0.3688583 | 0.3207871 | 0.4387995 | 0.2625187 | 0.3080397 | -0.0213437 | 0.2178141 | 0.3582927 | 0.2535950 | 0.0035693 | 0.0001433 | 0.0000729 | 0.3086087 | 0.0043460 | 0.3709845 | 0.0015246 | 0.0000038 | 0.0054468 | 0.9142718 | 0.1310309 | 0.0001295 |
2955 | GOBP NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN CONTAINING 1 SIGNALING PATHWAY | 8 | 0.0000351 | -0.5972616 | 0.3439327 | -0.2572630 | 0.1071635 | -0.0473110 | 0.0453168 | -0.3612653 | -0.1750879 | -0.2594565 | 0.0082670 | 0.0138654 | 0.0405996 | 0.0941705 | 0.6667040 | 0.3031575 | 0.0505378 | 0.1979762 | 0.0974319 | 0.8862604 | 0.2795373 | 0.0020469 |
814 | GOBP CYTOPLASMIC TRANSLATION | 145 | 0.0000000 | 0.1048847 | -0.1507584 | -0.5622229 | -0.4459800 | -0.3124125 | -0.0296235 | -0.2950924 | -0.0958619 | -0.0806266 | 0.8203869 | 0.0006220 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000750 | 0.0000073 | 0.6924361 | 0.1227815 | 0.8660083 | 0.2128332 | 0.0000000 |
6656 | GOCC MHC CLASS II PROTEIN COMPLEX | 15 | 0.0000309 | 0.5750827 | 0.4151557 | 0.4664390 | -0.0349946 | -0.0356225 | -0.0381978 | 0.0940893 | 0.0783623 | -0.0341459 | 0.0002842 | 0.0061125 | 0.0002527 | 0.8617487 | 0.6274633 | 0.1105671 | 0.0738715 | 0.1472738 | 0.4761403 | 0.8606693 | 0.2488325 | 0.0018363 |
6909 | GOCC RESPIRATORY CHAIN COMPLEX IV | 19 | 0.0000775 | 0.2793538 | -0.0407092 | 0.2859999 | -0.5105143 | -0.4052640 | -0.0140489 | -0.3117625 | -0.0923801 | 0.2077131 | 0.1230326 | 0.9368514 | 0.0601170 | 0.0050836 | 0.0031573 | 0.4551236 | 0.2000152 | 0.9801178 | 0.0011654 | 0.8575707 | 0.2947907 | 0.0037114 |
4038 | GOBP PROTEIN FOLDING IN ENDOPLASMIC RETICULUM | 11 | 0.0000002 | -0.1304684 | -0.3853033 | 0.1047656 | -0.5590238 | 0.0797084 | -0.0321894 | -0.3242935 | -0.0867069 | 0.2833130 | 0.2647324 | 0.0446577 | 0.1969039 | 0.0067013 | 0.1189970 | 0.2598919 | 0.1584910 | 0.4305702 | 0.0012820 | 0.8302435 | 0.2661668 | 0.0000159 |
6636 | GOCC LUMENAL SIDE OF ENDOPLASMIC RETICULUM MEMBRANE | 25 | 0.0000268 | 0.4181203 | 0.2401054 | 0.5218601 | -0.0357808 | 0.1371478 | -0.0154094 | 0.0862629 | 0.1816953 | 0.1158959 | 0.0031850 | 0.0024039 | 0.0000044 | 0.4047116 | 0.0196980 | 0.3856381 | 0.0169014 | 0.0025228 | 0.0019700 | 0.7609380 | 0.1859315 | 0.0016190 |
1411 | GOBP GRANZYME MEDIATED PROGRAMMED CELL DEATH SIGNALING PATHWAY | 8 | 0.0000523 | -0.0092681 | 0.1976203 | 0.5969394 | 0.0243153 | -0.3052574 | 0.0144625 | -0.2367026 | 0.0905486 | -0.0643403 | 0.5638743 | 0.2407642 | 0.0202236 | 0.4940534 | 0.0495646 | 0.8355094 | 0.0654979 | 0.4176601 | 0.3923827 | 0.7468773 | 0.2615491 | 0.0027412 |
7796 | GOMF MHC CLASS II PROTEIN COMPLEX BINDING | 25 | 0.0001173 | 0.4876772 | 0.3763988 | 0.3719490 | -0.0033635 | -0.0359561 | -0.0123617 | 0.0959476 | 0.0988246 | 0.0831951 | 0.0004898 | 0.0003410 | 0.0004746 | 0.4961881 | 0.4003801 | 0.5103417 | 0.0095958 | 0.0158837 | 0.0737933 | 0.7383778 | 0.1960889 | 0.0052071 |
sig <- head(subset(mres0$enrichment_result,p.adjustMANOVA<0.01),30)
sig <- sig[,c(1,4:12)]
rownames(sig) <- sig[,1]
sig[,1]=NULL
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(as.matrix(sig),trace="none",scale="none",
margin=c(10,22),col=colfunc(25),cexCol=0.8, cexRow=0.7)
pdf("multimitch_heatmap.pdf")
heatmap.2(as.matrix(sig),trace="none",scale="none",
margin=c(10,22),col=colfunc(25),cexCol=0.8, cexRow=0.7)
dev.off()
## png
## 2
mitch single
par(mfrow=c(1,1))
par(mar=c(5,27,3,1))
message("NK 1 (FCGRA3A+)")
## NK 1 (FCGRA3A+)
m1 <- mitch_import(deres[[1]],DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 14682
## Note: no. genes in output = 14682
## Note: estimated proportion of input genes in output = 1
mres1 <- mitch_calc(m1,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres1$enrichment_result
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
head(resup,10)
## set
## 607 GOBP CELL MOTILITY INVOLVED IN CEREBRAL CORTEX RADIAL GLIA GUIDED MIGRATION
## 6134 GOCC ALPHA BETA T CELL RECEPTOR COMPLEX
## 3570 GOBP POSITIVE REGULATION OF MYELOID CELL APOPTOTIC PROCESS
## 8306 GOMF T CELL RECEPTOR BINDING
## 6764 GOCC PROTEASOME CORE COMPLEX ALPHA SUBUNIT COMPLEX
## 1807 GOBP MACROPHAGE APOPTOTIC PROCESS
## 6545 GOCC MHC CLASS II PROTEIN COMPLEX
## 6548 GOCC MHC PROTEIN COMPLEX
## 6149 GOCC ARP2 3 PROTEIN COMPLEX
## 3004 GOBP PEPTIDE ANTIGEN ASSEMBLY WITH MHC CLASS II PROTEIN COMPLEX
## setSize pANOVA s.dist p.adjustANOVA
## 607 6 1.336535e-03 0.7562233 0.0450649390
## 6134 8 5.093048e-04 0.7096054 0.0230205753
## 3570 8 9.939413e-04 0.6721412 0.0379513123
## 8306 11 1.283127e-04 0.6668009 0.0075559906
## 6764 8 1.251880e-03 0.6587842 0.0435129920
## 1807 10 5.862996e-04 0.6278081 0.0255354350
## 6545 13 9.366443e-05 0.6256994 0.0058449403
## 6548 20 1.609046e-06 0.6195471 0.0002038613
## 6149 9 1.403971e-03 0.6147876 0.0461341417
## 3004 12 3.393236e-04 0.5973756 0.0163070330
head(resdn,10)
## set setSize
## 3431 GOBP POSITIVE REGULATION OF HORMONE METABOLIC PROCESS 9
## 3589 GOBP POSITIVE REGULATION OF NEUROINFLAMMATORY RESPONSE 9
## 3532 GOBP POSITIVE REGULATION OF MIRNA METABOLIC PROCESS 37
## 7305 GOMF DNA BINDING TRANSCRIPTION FACTOR ACTIVITY 862
## 1163 GOBP EXTERNAL ENCAPSULATING STRUCTURE ORGANIZATION 132
## 7220 GOMF CIS REGULATORY REGION SEQUENCE SPECIFIC DNA BINDING 730
## 7307 GOMF DNA BINDING TRANSCRIPTION REPRESSOR ACTIVITY 220
## 8130 GOMF SEQUENCE SPECIFIC DNA BINDING 1064
## 7304 GOMF DNA BINDING TRANSCRIPTION ACTIVATOR ACTIVITY 263
## 8257 GOMF TRANSCRIPTION REGULATOR ACTIVITY 1283
## pANOVA s.dist p.adjustANOVA
## 3431 1.767636e-04 -0.7218171 9.987144e-03
## 3589 1.216441e-03 -0.6227084 4.310118e-02
## 3532 8.642574e-04 -0.3165641 3.457857e-02
## 7305 8.818343e-23 -0.1988221 3.686949e-19
## 1163 2.522602e-04 -0.1847256 1.302098e-02
## 7220 1.257236e-14 -0.1688533 1.340581e-11
## 7307 1.715056e-05 -0.1685709 1.419930e-03
## 8130 1.218288e-11 -0.1244816 7.276658e-09
## 7304 1.403581e-03 -0.1147285 4.613414e-02
## 8257 6.428257e-10 -0.1042064 2.150123e-07
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
if( length(s) > 1 ) {
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="NK 1 (FCGRA3A+)")
if (! file.exists("enrichment_analysis/NK1.html") ) {
mitch_report(mres1,outfile="enrichment_analysis/NK1.html")
}
}
message("CD14+ Mono")
## CD14+ Mono
m2 <- mitch_import(deres[[2]],DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 15548
## Note: no. genes in output = 15548
## Note: estimated proportion of input genes in output = 1
mres2 <- mitch_calc(m2,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres2$enrichment_result
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
head(resup,10)
## set setSize pANOVA s.dist
## 5746 GOBP RRNA METABOLIC PROCESS 245 2.167667e-05 0.15786447
## 2274 GOBP NCRNA METABOLIC PROCESS 542 2.285731e-05 0.10688222
## 7284 GOMF ADENYL NUCLEOTIDE BINDING 1263 9.192851e-07 0.08316133
## 6809 GOCC MITOCHONDRION 1395 1.287532e-05 0.07066010
## p.adjustANOVA
## 5746 0.049354640
## 2274 0.049354640
## 7284 0.007939866
## 6809 0.049354640
head(resdn,10)
## [1] set setSize pANOVA s.dist p.adjustANOVA
## <0 rows> (or 0-length row.names)
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
if( length(s) > 1 ) {
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="CD14+ Mono")
if (! file.exists("enrichment_analysis/CD14mono.html") ) {
mitch_report(mres2,outfile="enrichment_analysis/CD14mono.html")
}
}
message("NK 2 (IL7R+)")
## NK 2 (IL7R+)
m3 <- mitch_import(deres[[3]],DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 13653
## Note: no. genes in output = 13653
## Note: estimated proportion of input genes in output = 1
mres3 <- mitch_calc(m3,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres3$enrichment_result
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
head(resup,10)
## set setSize
## 1958 GOBP MITOCHONDRIAL DNA REPAIR 5
## 8213 GOMF T CELL RECEPTOR BINDING 10
## 1261 GOBP GAS TRANSPORT 5
## 2953 GOBP OXYGEN TRANSPORT 5
## 6075 GOCC ALPHA DNA POLYMERASE PRIMASE COMPLEX 5
## 6467 GOCC MCM COMPLEX 8
## 6414 GOCC IKAPPAB KINASE COMPLEX 5
## 8133 GOMF TAP BINDING 7
## 3996 GOBP PROTEIN LOCALIZATION TO SITE OF DOUBLE STRAND BREAK 6
## 7681 GOMF NITRIC OXIDE SYNTHASE BINDING 6
## pANOVA s.dist p.adjustANOVA
## 1958 1.192887e-03 0.8367819 0.0252953136
## 8213 8.148082e-06 0.8145862 0.0003743591
## 1261 1.817635e-03 0.8052755 0.0356204693
## 2953 1.817635e-03 0.8052755 0.0356204693
## 6075 2.134640e-03 0.7929660 0.0395817850
## 6467 1.085471e-04 0.7901796 0.0036196940
## 6414 2.269908e-03 0.7882181 0.0413717646
## 8133 4.348307e-04 0.7677812 0.0114635145
## 3996 1.382433e-03 0.7539386 0.0286817885
## 7681 1.536415e-03 0.7467331 0.0309182405
head(resdn,10)
## set
## 6265 GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT
## 6262 GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT
## 2407 GOBP NEGATIVE REGULATION OF INTERLEUKIN 4 PRODUCTION
## 6660 GOCC POLYSOMAL RIBOSOME
## 6264 GOCC CYTOSOLIC RIBOSOME
## 8226 GOMF UBIQUITIN LIGASE INHIBITOR ACTIVITY
## 3426 GOBP POSITIVE REGULATION OF INTRINSIC APOPTOTIC SIGNALING PATHWAY BY P53 CLASS MEDIATOR
## 6192 GOCC CILIARY ROOTLET
## 787 GOBP CYTOPLASMIC TRANSLATION
## 7965 GOMF PROTEIN TYROSINE THREONINE PHOSPHATASE ACTIVITY
## setSize pANOVA s.dist p.adjustANOVA
## 6265 38 2.644742e-20 -0.8646346 3.645336e-17
## 6262 55 9.476974e-27 -0.8335183 2.612486e-23
## 2407 6 1.030183e-03 -0.7736987 2.230265e-02
## 6660 29 4.119946e-12 -0.7435003 9.577164e-10
## 6264 109 4.297979e-40 -0.7335778 3.554429e-36
## 8226 8 3.861486e-04 -0.7246244 1.047032e-02
## 3426 6 2.908866e-03 -0.7018392 4.919493e-02
## 6192 10 7.254935e-04 -0.6172103 1.731043e-02
## 787 145 3.406841e-37 -0.6124881 1.408729e-33
## 7965 9 2.431660e-03 -0.5836021 4.352776e-02
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
if( length(s) > 1 ) {
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="NK 2 (IL7R+)")
if (! file.exists("enrichment_analysis/NK2.html") ) {
mitch_report(mres3,outfile="enrichment_analysis/NK2.html")
}
}
message("CD14+ Mono (CCL4+)")
## CD14+ Mono (CCL4+)
m4 <- mitch_import(deres[[4]],DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 13897
## Note: no. genes in output = 13897
## Note: estimated proportion of input genes in output = 1
mres4 <- mitch_calc(m4,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres4$enrichment_result
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
head(resup,10)
## set setSize pANOVA
## 2012 GOBP MITOCHONDRIAL DNA REPLICATION 13 2.553776e-04
## 6735 GOCC NUCLEAR REPLICATION FORK 30 2.557647e-05
## 1978 GOBP MICROTUBULE ANCHORING 20 6.003216e-04
## 7682 GOMF LIGASE ACTIVITY FORMING CARBON SULFUR BONDS 30 8.749009e-05
## 4422 GOBP REGULATION OF CELL CYCLE CHECKPOINT 39 2.595989e-04
## 8185 GOMF RNA METHYLTRANSFERASE ACTIVITY 59 4.383457e-04
## 7195 GOMF ATP DEPENDENT ACTIVITY ACTING ON DNA 99 3.338083e-05
## 2942 GOBP NUCLEOTIDE EXCISION REPAIR 80 3.617883e-04
## 959 GOBP DNA TEMPLATED DNA REPLICATION 139 4.980879e-06
## 6007 GOBP TRNA MODIFICATION 89 2.864340e-04
## s.dist p.adjustANOVA
## 2012 0.5857434 0.027665907
## 6735 0.4441143 0.005271248
## 1978 0.4432658 0.046969604
## 7682 0.4138795 0.013441659
## 4422 0.3381070 0.027767229
## 8185 0.2647953 0.039828186
## 7195 0.2415633 0.006131914
## 2942 0.2308497 0.033967903
## 959 0.2246405 0.001503158
## 6007 0.2226669 0.028813899
head(resdn,10)
## set setSize
## 6416 GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT 38
## 8405 GOMF UBIQUITIN LIGASE INHIBITOR ACTIVITY 8
## 6413 GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT 55
## 6814 GOCC POLYSOMAL RIBOSOME 29
## 7503 GOMF GLUTATHIONE PEROXIDASE ACTIVITY 14
## 6415 GOCC CYTOSOLIC RIBOSOME 109
## 6883 GOCC RESPIRATORY CHAIN COMPLEX IV 19
## 3753 GOBP POSITIVE REGULATION OF PROTEIN POLYUBIQUITINATION 15
## 807 GOBP CYTOPLASMIC TRANSLATION 145
## 2685 GOBP NEGATIVE REGULATION OF RNA SPLICING 23
## pANOVA s.dist p.adjustANOVA
## 6416 3.695736e-15 -0.7368649 7.807242e-12
## 8405 4.847777e-04 -0.7123083 4.267054e-02
## 6413 1.624688e-17 -0.6636272 4.576205e-14
## 6814 1.448120e-08 -0.6079687 1.019718e-05
## 7503 1.812481e-04 -0.5778804 2.243126e-02
## 6415 7.168268e-24 -0.5583448 6.057187e-20
## 6883 5.546334e-05 -0.5342192 9.012793e-03
## 3753 4.320260e-04 -0.5249004 3.968065e-02
## 807 3.262761e-22 -0.4663898 1.378517e-18
## 2685 5.328409e-04 -0.4172710 4.446468e-02
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
if( length(s) > 1 ) {
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="CD14+ Mono (CCL4+)")
if (! file.exists("enrichment_analysis/CD14monoCCL4.html") ) {
mitch_report(mres4,outfile="enrichment_analysis/CD14monoCCL4.html")
}
}
message("FCGR3A+ Mono")
## FCGR3A+ Mono
m5 <- mitch_import(deres[[5]],DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 12783
## Note: no. genes in output = 12783
## Note: estimated proportion of input genes in output = 1
mres5 <- mitch_calc(m5,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres5$enrichment_result
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
head(resup,10)
## set setSize pANOVA s.dist p.adjustANOVA
## 6107 GOCC CAVEOLA 45 3.268335e-05 0.3580573 0.01672774
head(resdn,10)
## set setSize pANOVA s.dist
## 6220 GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT 55 3.685613e-11 -0.5157905
## 6223 GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT 38 1.654984e-07 -0.4907642
## 6608 GOCC POLYSOMAL RIBOSOME 29 4.273153e-05 -0.4391266
## 6222 GOCC CYTOSOLIC RIBOSOME 109 3.176493e-13 -0.4043038
## 779 GOBP CYTOPLASMIC TRANSLATION 144 4.931039e-13 -0.3493706
## 8030 GOMF STRUCTURAL CONSTITUENT OF RIBOSOME 156 2.585689e-10 -0.2938230
## 6397 GOCC LARGE RIBOSOMAL SUBUNIT 112 1.540361e-07 -0.2874195
## 6609 GOCC POLYSOME 61 1.203706e-04 -0.2848841
## 6683 GOCC RIBOSOMAL SUBUNIT 180 1.319753e-09 -0.2626888
## 2928 GOBP OXIDATIVE PHOSPHORYLATION 127 4.399774e-07 -0.2599508
## p.adjustANOVA
## 6220 1.006049e-07
## 6223 1.936095e-04
## 6608 1.944047e-02
## 6222 2.019014e-09
## 779 2.019014e-09
## 8030 5.293552e-07
## 6397 1.936095e-04
## 6609 4.928576e-02
## 6683 2.161491e-06
## 2928 4.503718e-04
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
if( length(s) > 1 ) {
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="FCGR3A+ Mono")
if (! file.exists("enrichment_analysis/FCGR3Amono.html") ) {
mitch_report(mres5,outfile="enrichment_analysis/FCGR3Amono.html")
}
}
message("T")
## T
m6 <- mitch_import(deres[[6]],DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 1874
## Note: no. genes in output = 1874
## Note: estimated proportion of input genes in output = 1
mres6 <- mitch_calc(m6,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres6$enrichment_result
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
head(resup,10)
## [1] set setSize pANOVA s.dist p.adjustANOVA
## <0 rows> (or 0-length row.names)
head(resdn,10)
## set setSize pANOVA s.dist
## 3033 GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT 49 1.179107e-06 -0.4051104
## 3111 GOCC LARGE RIBOSOMAL SUBUNIT 51 5.443373e-06 -0.3719252
## 3754 GOMF STRUCTURAL CONSTITUENT OF RIBOSOME 86 7.829888e-07 -0.3140185
## 3035 GOCC CYTOSOLIC RIBOSOME 88 7.631607e-07 -0.3109157
## 3252 GOCC RIBOSOMAL SUBUNIT 87 2.416460e-06 -0.2981881
## 3253 GOCC RIBOSOME 100 4.696085e-07 -0.2981623
## p.adjustANOVA
## 3033 0.0011242785
## 3111 0.0034601708
## 3754 0.0009954398
## 3035 0.0009954398
## 3252 0.0018432758
## 3253 0.0009954398
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
if( length(s) > 1 ) {
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="T")
if (! file.exists("enrichment_analysis/T.html") ) {
mitch_report(mres6,outfile="enrichment_analysis/T.html")
}
}
message("DC")
## DC
m7 <- mitch_import(deres[[7]],DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 12221
## Note: no. genes in output = 12221
## Note: estimated proportion of input genes in output = 1
mres7 <- mitch_calc(m7,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres7$enrichment_result
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
head(resup,10)
## set setSize
## 1955 GOBP MITOCHONDRIAL RNA MODIFICATION 10
## 824 GOBP DEOXYRIBONUCLEOTIDE BIOSYNTHETIC PROCESS 12
## 1962 GOBP MITOCHONDRIAL TRNA PROCESSING 14
## 5789 GOBP TRNA THREONYLCARBAMOYLADENOSINE METABOLIC PROCESS 17
## 7007 GOMF CATALYTIC ACTIVITY ACTING ON A RRNA 21
## 1932 GOBP MITOCHONDRIAL DNA METABOLIC PROCESS 20
## 4341 GOBP REGULATION OF DNA DAMAGE CHECKPOINT 24
## 5784 GOBP TRNA METHYLATION 40
## 7866 GOMF RNA METHYLTRANSFERASE ACTIVITY 58
## 2772 GOBP NON MOTILE CILIUM ASSEMBLY 52
## pANOVA s.dist p.adjustANOVA
## 1955 6.217545e-04 0.6249283 0.034116677
## 824 6.367725e-04 0.5694433 0.034474862
## 1962 2.820269e-04 0.5605449 0.022022501
## 5789 8.070495e-05 0.5522972 0.009747546
## 7007 1.543346e-04 0.4770570 0.015473470
## 1932 5.379888e-04 0.4471273 0.031431703
## 4341 4.323557e-04 0.4151226 0.028089285
## 5784 1.587838e-04 0.3452836 0.015559997
## 7866 1.854729e-04 0.2840015 0.017514251
## 2772 7.958755e-04 0.2690917 0.040395656
head(resdn,10)
## set setSize
## 7844 GOMF RAGE RECEPTOR BINDING 9
## 2437 GOBP NEGATIVE REGULATION OF MIRNA METABOLIC PROCESS 18
## 7177 GOMF EXTRACELLULAR MATRIX BINDING 17
## 451 GOBP CELLULAR RESPONSE TO ARSENIC CONTAINING SUBSTANCE 17
## 5755 GOBP TRANSFORMING GROWTH FACTOR BETA PRODUCTION 21
## 2243 GOBP NEGATIVE REGULATION OF CELL MATRIX ADHESION 20
## 6179 GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT 38
## 6176 GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT 55
## 1833 GOBP MEGAKARYOCYTE DIFFERENTIATION 36
## 780 GOBP CYTOPLASMIC TRANSLATION 144
## pANOVA s.dist p.adjustANOVA
## 7844 6.307889e-04 -0.6579503 3.438011e-02
## 2437 2.482072e-04 -0.4989028 2.037190e-02
## 7177 7.101974e-04 -0.4743479 3.720976e-02
## 451 1.118235e-03 -0.4566102 4.962395e-02
## 5755 4.046300e-04 -0.4459407 2.663725e-02
## 2243 8.829575e-04 -0.4296041 4.242898e-02
## 6179 6.389808e-06 -0.4232127 1.921912e-03
## 6176 1.995367e-07 -0.4055326 1.620438e-04
## 1833 1.256902e-04 -0.3694707 1.360676e-02
## 780 7.664105e-13 -0.3465449 6.224019e-09
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
if( length(s) > 1 ) {
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="DC")
if (! file.exists("enrichment_analysis/DC.html") ) {
mitch_report(mres7,outfile="enrichment_analysis/DC.html")
}
}
message("Macrophage")
## Macrophage
m8 <- mitch_import(deres[[8]],DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 10290
## Note: no. genes in output = 10290
## Note: estimated proportion of input genes in output = 1
mres8 <- mitch_calc(m8,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres8$enrichment_result
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
head(resup,10)
## [1] set setSize pANOVA s.dist p.adjustANOVA
## <0 rows> (or 0-length row.names)
head(resdn,10)
## [1] set setSize pANOVA s.dist p.adjustANOVA
## <0 rows> (or 0-length row.names)
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
if( length(s) > 1 ) {
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="Macrophage")
if (! file.exists("enrichment_analysis/macrophage.html") ) {
mitch_report(mres8,outfile="enrichment_analysis/macrophage.html")
}
}
message("B")
## B
m9 <- mitch_import(deres[[9]],DEtype="deseq2",joinType="full")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 9017
## Note: no. genes in output = 9017
## Note: estimated proportion of input genes in output = 1
mres9 <- mitch_calc(m9,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res <- mres9$enrichment_result
res <- subset(res,p.adjustANOVA<0.05)
resup <- subset(res,s.dist>0)
resdn <- subset(res,s.dist<0)
head(resup,10)
## set setSize
## 5626 GOCC HIGH DENSITY LIPOPROTEIN PARTICLE 5
## 5372 GOCC BRCA1 C COMPLEX 6
## 5891 GOCC PROTEASOME CORE COMPLEX ALPHA SUBUNIT COMPLEX 7
## 7130 GOMF THREONINE TYPE ENDOPEPTIDASE ACTIVITY 7
## 5449 GOCC CMG COMPLEX 7
## 823 GOBP DOUBLE STRAND BREAK REPAIR VIA BREAK INDUCED REPLICATION 9
## 5801 GOCC OLIGOSACCHARYLTRANSFERASE COMPLEX 12
## 6365 GOMF DNA REPLICATION ORIGIN BINDING 12
## 6063 GOCC U4 SNRNP 10
## 5890 GOCC PROTEASOME CORE COMPLEX 18
## pANOVA s.dist p.adjustANOVA
## 5626 5.925268e-04 0.8869951 0.024073897
## 5372 1.407879e-03 0.7527466 0.043143139
## 5891 8.123685e-04 0.7308705 0.030128456
## 7130 1.213907e-03 0.7062312 0.039818305
## 5449 1.220103e-03 0.7059141 0.039818305
## 823 7.239726e-04 0.6507549 0.027889882
## 5801 1.051229e-04 0.6466593 0.006497852
## 6365 1.787836e-04 0.6248010 0.010022970
## 6063 7.389734e-04 0.6163650 0.028127663
## 5890 2.062864e-05 0.5798052 0.001676251
head(resdn,10)
## set setSize
## 1450 GOBP LEUKOCYTE MIGRATION INVOLVED IN INFLAMMATORY RESPONSE 8
## 3980 GOBP REGULATION OF HETEROTYPIC CELL CELL ADHESION 10
## 5635 GOCC IGG IMMUNOGLOBULIN COMPLEX 10
## 5194 GOBP T HELPER 17 CELL DIFFERENTIATION 13
## 5 GOBP 3 UTR MEDIATED MRNA STABILIZATION 16
## 4683 GOBP RESPONSE TO LECTIN 13
## 868 GOBP ENDOCRINE HORMONE SECRETION 13
## 6728 GOMF NUCLEAR RECEPTOR ACTIVITY 20
## 1224 GOBP HETEROTYPIC CELL CELL ADHESION 25
## 3047 GOBP POSITIVE REGULATION OF MIRNA TRANSCRIPTION 25
## pANOVA s.dist p.adjustANOVA
## 1450 0.0006736342 -0.6942224 0.02662143
## 3980 0.0005996965 -0.6267792 0.02422536
## 5635 0.0013626676 -0.5849228 0.04284701
## 5194 0.0010280319 -0.5259543 0.03574388
## 5 0.0003753240 -0.5137346 0.01753697
## 4683 0.0013558676 -0.5133274 0.04284701
## 868 0.0015978700 -0.5057069 0.04678460
## 6728 0.0004311410 -0.4548738 0.01936653
## 1224 0.0003731442 -0.4113701 0.01753697
## 3047 0.0004073432 -0.4087011 0.01852771
s <- c(head(resup$s.dist,10), head(resdn$s.dist,10))
names(s) <- c(head(resup$set,10),head(resdn$set,10))
s <- s[order(s)]
cols <- gsub("1","red",gsub("-1","blue",as.character(sign(s))))
if( length(s) > 1 ) {
barplot(abs(s),las=1,horiz=TRUE,col=cols,xlab="ES",cex.names=0.8,main="B")
if (! file.exists("enrichment_analysis/B.html") ) {
mitch_report(mres9,outfile="enrichment_analysis/B.html")
}
}
Heatmap of combined results
pw <- unique(c(head(subset(mres1$enrichment_result,p.adjustANOVA<0.01 & s.dist>0.3),5)$set,
head(subset(mres2$enrichment_result,p.adjustANOVA<0.01 & s.dist>0.3),6)$set,
head(subset(mres3$enrichment_result,p.adjustANOVA<0.01 & s.dist>0.3),6)$set,
head(subset(mres4$enrichment_result,p.adjustANOVA<0.01 & s.dist>0.3),6)$set,
head(subset(mres5$enrichment_result,p.adjustANOVA<0.01 & s.dist>0.3),6)$set,
head(subset(mres6$enrichment_result,p.adjustANOVA<0.01 & s.dist>0.3),6)$set,
head(subset(mres7$enrichment_result,p.adjustANOVA<0.01 & s.dist>0.3),6)$set,
head(subset(mres8$enrichment_result,p.adjustANOVA<0.01 & s.dist>0.3),6)$set,
head(subset(mres9$enrichment_result,p.adjustANOVA<0.01 & s.dist>0.3),6)$set,
head(subset(mres1$enrichment_result,p.adjustANOVA<0.01 & s.dist< -0.3),6)$set,
head(subset(mres2$enrichment_result,p.adjustANOVA<0.01 & s.dist< -0.3),6)$set,
head(subset(mres3$enrichment_result,p.adjustANOVA<0.01 & s.dist< -0.3),6)$set,
head(subset(mres4$enrichment_result,p.adjustANOVA<0.01 & s.dist< -0.3),6)$set,
head(subset(mres5$enrichment_result,p.adjustANOVA<0.01 & s.dist< -0.3),6)$set,
head(subset(mres6$enrichment_result,p.adjustANOVA<0.01 & s.dist< -0.3),6)$set,
head(subset(mres7$enrichment_result,p.adjustANOVA<0.01 & s.dist< -0.3),6)$set,
head(subset(mres8$enrichment_result,p.adjustANOVA<0.01 & s.dist< -0.3),6)$set,
head(subset(mres9$enrichment_result,p.adjustANOVA<0.01 & s.dist< -0.3),6)$set))
x1 <- mres1$enrichment_result[which(mres1$enrichment_result$set %in% pw),c("set","s.dist")]
x2 <- mres2$enrichment_result[which(mres2$enrichment_result$set %in% pw),c("set","s.dist")]
x3 <- mres3$enrichment_result[which(mres3$enrichment_result$set %in% pw),c("set","s.dist")]
x4 <- mres4$enrichment_result[which(mres4$enrichment_result$set %in% pw),c("set","s.dist")]
x5 <- mres5$enrichment_result[which(mres5$enrichment_result$set %in% pw),c("set","s.dist")]
x6 <- mres6$enrichment_result[which(mres6$enrichment_result$set %in% pw),c("set","s.dist")]
x7 <- mres7$enrichment_result[which(mres7$enrichment_result$set %in% pw),c("set","s.dist")]
x8 <- mres8$enrichment_result[which(mres8$enrichment_result$set %in% pw),c("set","s.dist")]
x9 <- mres9$enrichment_result[which(mres9$enrichment_result$set %in% pw),c("set","s.dist")]
jlist <- list(x1,x2,x3,x4,x5,x6,x7,x8,x9)
jj <- join_all(jlist,by="set")
rownames(jj) <- jj$set
jj$set=NULL
colnames(jj) <- names(deres)
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(as.matrix(jj),trace="none",scale="none",
margin=c(10,20),col=colfunc(25),cexCol=0.8)
We are going to use muscat for pseudobulk analysis. First need to convert seurat obj to singlecellexperiment object. Then summarise counts to pseudobulk level.
Cells to look at:
sc <- assay(sce)
table(sc[which(rownames(sc)=="KIR3DL2"),])
##
## 0 1 2 3 4 5 6
## 34093 1144 281 64 14 6 1
KIR3DL2_2 <- sc[,sc[which(rownames(sc)=="KIR3DL2"),]>1]
KIR3DL2_0 <- sc[,sc[which(rownames(sc)=="KIR3DL2"),]<1]
summary(colSums(KIR3DL2_2))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3430 5991 7220 10079 9602 77471
summary(colSums(KIR3DL2_0))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 507 6003 9366 11375 15524 106134
par(mfrow=c(2,1))
hist(colSums(KIR3DL2_2),breaks=50,xlim=c(0,1e5),main="KIR3DL2+")
hist(colSums(KIR3DL2_0),breaks=50,xlim=c(0,1e5),main="KIR3DL2-")
par(mfrow=c(1,1))
low <- as.numeric(sc[which(rownames(sc)=="KIR3DL2"),]==0) * 1
med <- as.numeric(sc[which(rownames(sc)=="KIR3DL2"),]==1) * 2
high <- as.numeric(sc[which(rownames(sc)=="KIR3DL2"),]>1) * 3
KIR3DL2 <- data.frame(low,med,high)
KIR3DL2$sum <- rowSums(KIR3DL2)
head(KIR3DL2)
## low med high sum
## 1 1 0 0 1
## 2 1 0 0 1
## 3 1 0 0 1
## 4 1 0 0 1
## 5 1 0 0 1
## 6 1 0 0 1
table(KIR3DL2$sum)
##
## 1 2 3
## 34093 1144 366
colData(sce)$KIR3DL2 <- KIR3DL2$sum
# change cluster id names to incorporate KIR3DL2 counts
colData(sce)$cluster_id <- paste(colData(sce)$cluster_id,colData(sce)$KIR3DL2)
sc_low <- sc[,KIR3DL2$sum==1]
sc_med <- sc[,KIR3DL2$sum==2]
sc_hi <- sc[,KIR3DL2$sum==3]
summary(colSums(sc_low))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 507 6003 9366 11375 15524 106134
summary(colSums(sc_med))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 661 5570 6750 9066 9322 48659
summary(colSums(sc_hi))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3430 5991 7220 10079 9602 77471
dim(sc_low)
## [1] 36603 34093
dim(sc_med)
## [1] 36603 1144
dim(sc_hi)
## [1] 36603 366
colDat_hi <- subset(colData(sce),KIR3DL2==3)
colDat_med <- subset(colData(sce),KIR3DL2==2)
colDat_low <- subset(colData(sce),KIR3DL2==1)
table(colDat_low$ident)/nrow(colDat_low)*100
##
## NK 1 (FCGRA3A+) CD14+ Mono NK 2 (IL7R+) CD14+ Mono (CCL4+)
## 27.225530 26.184261 14.844690 10.773473
## FCGR3A+ Mono T DC Macrophage
## 8.189364 5.666852 4.185610 1.883085
## B
## 1.047136
table(colDat_med$ident)/nrow(colDat_med)*100
##
## NK 1 (FCGRA3A+) CD14+ Mono NK 2 (IL7R+) CD14+ Mono (CCL4+)
## 71.59090909 7.77972028 11.62587413 5.85664336
## FCGR3A+ Mono T DC Macrophage
## 1.83566434 0.26223776 0.87412587 0.08741259
## B
## 0.08741259
table(colDat_hi$ident)/nrow(colDat_hi)*100
##
## NK 1 (FCGRA3A+) CD14+ Mono NK 2 (IL7R+) CD14+ Mono (CCL4+)
## 75.956284 1.366120 13.661202 5.737705
## FCGR3A+ Mono T DC Macrophage
## 1.639344 0.000000 1.092896 0.273224
## B
## 0.273224
message("Focus on NK 1 (FCGRA3A+) now")
## Focus on NK 1 (FCGRA3A+) now
sc_low <- sc[,colData(sce)$KIR3DL2==1 & colData(sce)$ident=="NK 1 (FCGRA3A+)"]
sc_med <- sc[,colData(sce)$KIR3DL2==2 & colData(sce)$ident=="NK 1 (FCGRA3A+)"]
sc_hi <- sc[,colData(sce)$KIR3DL2==3 & colData(sce)$ident=="NK 1 (FCGRA3A+)"]
colDat_hi <- subset(colData(sce),KIR3DL2==3 & ident=="NK 1 (FCGRA3A+)")
sc_hi <- SingleCellExperiment(list(counts=sc_hi), colData=colDat_hi)
colDat_med <- subset(colData(sce),KIR3DL2==2 & ident=="NK 1 (FCGRA3A+)")
sc_med <- SingleCellExperiment(list(counts=sc_med), colData=colDat_med)
colDat_low <- subset(colData(sce),KIR3DL2==1 & ident=="NK 1 (FCGRA3A+)")
sc_low <- SingleCellExperiment(list(counts=sc_low), colData=colDat_low)
#muscat aggregation of NK 1 (FCGRA3A+) cells
pbhi <- aggregateData(sc_hi, assay="counts", fun = "sum", by = c("sample_id"))
pbmed <- aggregateData(sc_med, assay="counts", fun = "sum", by = c("sample_id"))
pblow <- aggregateData(sc_low, assay="counts", fun = "sum", by = c("sample_id"))
colnames(pbhi) <- paste(colnames(pbhi),"hi")
colnames(pbmed) <- paste(colnames(pbmed),"med")
colnames(pblow) <- paste(colnames(pblow),"low")
kx <- cbind(assay(pbhi),assay(pbmed),assay(pblow))
dfhi <- pat_df
dfhi$KIR3DL2 <- 3
dfmed <- pat_df
dfmed$KIR3DL2 <- 2
dflow <- pat_df
dflow$KIR3DL2 <- 1
kdf <- rbind(dfhi,dfmed,dflow)
rownames(kdf) <- colnames(kx)
## focus on HIV negative
kdf1 <- subset(kdf,hiv_status==0 & KIR3DL2!=2)
kx1 <- kx[,which(colnames(kx) %in% rownames(kdf1))]
colSums(kx1)
## CC0003 hi PM0020 hi PM0027 hi PM0028 hi PM0032 hi CC0003 low PM0020 low
## 442207 324598 12808 21053 35073 8850484 5276990
## PM0027 low PM0028 low PM0032 low
## 424172 2643361 1440032
plotMDS(kx1)
kx1f <- kx1[which(rowMeans(kx1)>=5),]
kx1f <- kx1f+1
dds <- DESeqDataSetFromMatrix(countData = kx1f , colData = kdf1, design = ~ batch + KIR3DL2)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd),kx1f)
kx1de <- as.data.frame(zz[order(zz$pvalue),])
kx1de[1:50,1:6] |> kbl(caption="KIR3DL2 associatedc genes in HIV- cells") |> kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
KIR3DL2 | 52.106641 | 4.7020539 | 0.3426424 | 13.722917 | 0.0000000 | 0.0000000 |
C4orf45 | 5.850221 | 1.1112152 | 0.2736121 | 4.061279 | 0.0000488 | NA |
C20orf96 | 5.007717 | 1.0546415 | 0.2758804 | 3.822822 | 0.0001319 | NA |
AC004083.1 | 4.882308 | 1.1073538 | 0.2899995 | 3.818468 | 0.0001343 | NA |
AC008083.3 | 8.027470 | 0.8413549 | 0.2209043 | 3.808685 | 0.0001397 | NA |
EIF1 | 819.805875 | -0.5729001 | 0.1508867 | -3.796890 | 0.0001465 | 0.0692332 |
SPTLC3 | 5.425260 | 1.1176408 | 0.2947932 | 3.791270 | 0.0001499 | NA |
KLRC1 | 45.991607 | -0.6270414 | 0.1654733 | -3.789382 | 0.0001510 | NA |
AC007114.2 | 4.876752 | 1.0176296 | 0.2725145 | 3.734221 | 0.0001883 | NA |
CBLB | 267.617835 | -0.4797514 | 0.1297975 | -3.696154 | 0.0002189 | 0.0692332 |
TUBG2 | 4.334305 | 1.0777302 | 0.2938131 | 3.668081 | 0.0002444 | NA |
AC069277.1 | 6.823230 | 1.0633761 | 0.2908060 | 3.656652 | 0.0002555 | NA |
CMC1 | 173.725959 | -0.5767568 | 0.1602494 | -3.599120 | 0.0003193 | 0.0692332 |
ETV2 | 4.584710 | 1.0131687 | 0.2845123 | 3.561071 | 0.0003693 | NA |
ADCY4 | 4.276397 | 1.0637218 | 0.2989170 | 3.558586 | 0.0003729 | NA |
ZFP69 | 5.351868 | 0.9859325 | 0.2781532 | 3.544566 | 0.0003933 | NA |
ZBED6CL | 4.215899 | 1.0807571 | 0.3057829 | 3.534394 | 0.0004087 | NA |
AL136418.1 | 5.235093 | 0.9877834 | 0.2808625 | 3.516964 | 0.0004365 | NA |
OLFM2 | 4.889633 | 1.0227135 | 0.2931494 | 3.488711 | 0.0004854 | NA |
PRKCA-AS1 | 5.192120 | 0.9837238 | 0.2822064 | 3.485831 | 0.0004906 | NA |
SSBP2 | 19.028518 | -0.8406370 | 0.2430361 | -3.458898 | 0.0005424 | NA |
HIC1 | 5.380199 | 0.9674838 | 0.2801605 | 3.453320 | 0.0005537 | NA |
LRRFIP2 | 41.575811 | -0.5307578 | 0.1550092 | -3.424040 | 0.0006170 | NA |
MAP3K8 | 208.334170 | -0.5161858 | 0.1509093 | -3.420504 | 0.0006251 | 0.0692332 |
HNRNPC | 195.069124 | -0.5223392 | 0.1532174 | -3.409137 | 0.0006517 | 0.0692332 |
AC007066.2 | 4.271557 | 1.0181100 | 0.2991027 | 3.403881 | 0.0006644 | NA |
AZIN2 | 4.654714 | 0.9791401 | 0.2876622 | 3.403785 | 0.0006646 | NA |
PNRC1 | 214.430451 | -0.4924397 | 0.1448863 | -3.398800 | 0.0006768 | 0.0692332 |
ZNF283 | 4.460224 | 0.9622871 | 0.2868157 | 3.355071 | 0.0007934 | NA |
OCA2 | 4.423250 | 1.0753846 | 0.3231032 | 3.328301 | 0.0008738 | NA |
PIDD1 | 6.488632 | 0.8367719 | 0.2515700 | 3.326199 | 0.0008804 | NA |
RPL10A | 516.382035 | -0.4308291 | 0.1297381 | -3.320760 | 0.0008977 | 0.0692332 |
YME1L1 | 81.255256 | -0.5217900 | 0.1579361 | -3.303805 | 0.0009538 | 0.0692332 |
FBXL22 | 4.846118 | 0.8899058 | 0.2703309 | 3.291913 | 0.0009951 | NA |
PET100 | 71.462458 | -0.4927422 | 0.1496916 | -3.291716 | 0.0009958 | 0.0692332 |
MCTP2 | 283.086344 | -0.6205048 | 0.1885512 | -3.290909 | 0.0009986 | 0.0692332 |
PODN | 4.267074 | 0.9929022 | 0.3019045 | 3.288796 | 0.0010062 | NA |
HINT1 | 145.591336 | -0.4852409 | 0.1478355 | -3.282303 | 0.0010296 | 0.0692332 |
S100A10 | 125.090792 | -0.4272536 | 0.1301768 | -3.282102 | 0.0010304 | 0.0692332 |
ACSF2 | 4.319117 | 0.9902032 | 0.3032651 | 3.265141 | 0.0010941 | NA |
PSMD6-AS1 | 4.234843 | 1.0591708 | 0.3254203 | 3.254778 | 0.0011348 | NA |
EEF1A1 | 1392.010484 | -0.4845508 | 0.1493585 | -3.244213 | 0.0011778 | 0.0692332 |
KCTD3 | 4.642128 | 1.0073970 | 0.3118112 | 3.230791 | 0.0012345 | NA |
RSL1D1 | 28.281129 | -0.5555478 | 0.1720146 | -3.229655 | 0.0012394 | NA |
RPS10 | 269.903342 | -0.4826707 | 0.1498178 | -3.221719 | 0.0012742 | 0.0692332 |
RPS25 | 607.763430 | -0.5028058 | 0.1571536 | -3.199454 | 0.0013769 | 0.0692332 |
KLRB1 | 324.068178 | -0.5903132 | 0.1846262 | -3.197343 | 0.0013870 | 0.0692332 |
SNHG29 | 83.136073 | -0.4475459 | 0.1403459 | -3.188877 | 0.0014283 | 0.0692332 |
RAB3A | 4.529164 | 1.0857122 | 0.3405551 | 3.188066 | 0.0014323 | NA |
AC109454.2 | 5.305082 | 0.9331262 | 0.2928082 | 3.186818 | 0.0014385 | NA |
## select HIV positive
kdf2 <- subset(kdf,hiv_status==1 & KIR3DL2!=2)
kx2 <- kx[,which(colnames(kx) %in% rownames(kdf2))]
colSums(kx2)
## AH0005 hi AH0015 hi AH0018 hi CC0016 hi PM001 hi PM008 hi PM017 hi
## 217038 297540 39159 250893 61946 147293 265861
## AH0005 low AH0015 low AH0018 low CC0016 low PM001 low PM008 low PM017 low
## 7345282 5384408 1506339 5759154 3078125 6244346 10425498
plotMDS(kx2)
kx2f <- kx2[which(rowMeans(kx2)>=5),]
kx2f <- kx2f+1
dds <- DESeqDataSetFromMatrix(countData = kx2f , colData = kdf2, design = ~ batch + KIR3DL2)
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd),kx2f)
kx2de <- as.data.frame(zz[order(zz$pvalue),])
kx2de[1:50,1:6] |> kbl(caption="KIR3DL2 associatedc genes in HIV- cells") |> kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
KIR3DL2 | 111.251600 | 5.1688446 | 0.2779886 | 18.593730 | 0.0e+00 | 0.0000000 |
ANXA1 | 330.695628 | -0.3571074 | 0.0564729 | -6.323517 | 0.0e+00 | 0.0000017 |
RPL14 | 1339.849913 | -0.3246228 | 0.0530914 | -6.114419 | 0.0e+00 | 0.0000042 |
RPS13 | 1055.770716 | -0.2646047 | 0.0443627 | -5.964575 | 0.0e+00 | 0.0000079 |
MTRNR2L12 | 745.895516 | -0.2572095 | 0.0449080 | -5.727476 | 0.0e+00 | 0.0000264 |
RPS9 | 962.893860 | -0.2508178 | 0.0441028 | -5.687120 | 0.0e+00 | 0.0000278 |
ZFP36L2 | 268.298087 | -0.3216007 | 0.0568442 | -5.657584 | 0.0e+00 | 0.0000283 |
MYL6 | 674.762201 | -0.2478012 | 0.0449192 | -5.516598 | 0.0e+00 | 0.0000558 |
ENSA | 119.471549 | -0.3650545 | 0.0670936 | -5.440969 | 1.0e-07 | 0.0000761 |
KLRF1 | 388.167538 | -0.3601608 | 0.0670454 | -5.371895 | 1.0e-07 | 0.0001007 |
ZNF793 | 7.513469 | 1.0932337 | 0.2064566 | 5.295224 | 1.0e-07 | 0.0001359 |
PFDN5 | 480.414165 | -0.2765681 | 0.0523375 | -5.284320 | 1.0e-07 | 0.0001359 |
RPS4Y1 | 336.046167 | -0.2997723 | 0.0571280 | -5.247380 | 2.0e-07 | 0.0001534 |
RPL36AL | 537.139944 | -0.2791345 | 0.0534097 | -5.226288 | 2.0e-07 | 0.0001597 |
SERF2 | 753.238525 | -0.2129074 | 0.0409663 | -5.197137 | 2.0e-07 | 0.0001744 |
COX7C | 324.658202 | -0.2213873 | 0.0428444 | -5.167239 | 2.0e-07 | 0.0001919 |
SRSF5 | 434.366284 | -0.2174878 | 0.0423934 | -5.130233 | 3.0e-07 | 0.0002026 |
SLCO3A1 | 138.342138 | -0.3364410 | 0.0656454 | -5.125130 | 3.0e-07 | 0.0002026 |
ARPC3 | 487.775569 | -0.1969847 | 0.0384371 | -5.124859 | 3.0e-07 | 0.0002026 |
MT-ATP6 | 7923.155688 | -0.2780958 | 0.0548326 | -5.071727 | 4.0e-07 | 0.0002548 |
RPS21 | 1432.921696 | -0.2880248 | 0.0573086 | -5.025855 | 5.0e-07 | 0.0003085 |
FAU | 1403.069146 | -0.2961102 | 0.0590991 | -5.010398 | 5.0e-07 | 0.0003191 |
EEF1B2 | 570.653008 | -0.3179521 | 0.0637808 | -4.985079 | 6.0e-07 | 0.0003481 |
CRIP1 | 428.229053 | -0.2426964 | 0.0489161 | -4.961481 | 7.0e-07 | 0.0003768 |
CYBA | 1019.415429 | -0.2671190 | 0.0539279 | -4.953263 | 7.0e-07 | 0.0003772 |
SPRED2 | 9.427582 | 1.1186816 | 0.2262969 | 4.943425 | 8.0e-07 | 0.0003772 |
MT-ND3 | 4330.574779 | -0.2498882 | 0.0506015 | -4.938355 | 8.0e-07 | 0.0003772 |
RPL31 | 482.551773 | -0.2504642 | 0.0510465 | -4.906587 | 9.0e-07 | 0.0004080 |
MYL12B | 404.083840 | -0.2112882 | 0.0430969 | -4.902633 | 9.0e-07 | 0.0004080 |
DDX5 | 1159.083946 | -0.2370850 | 0.0483613 | -4.902367 | 9.0e-07 | 0.0004080 |
RPL41 | 3845.669904 | -0.2905363 | 0.0597830 | -4.859844 | 1.2e-06 | 0.0004797 |
MT-ND5 | 1165.181446 | -0.2529116 | 0.0520705 | -4.857104 | 1.2e-06 | 0.0004797 |
ATP5F1E | 825.740823 | -0.2150538 | 0.0443261 | -4.851623 | 1.2e-06 | 0.0004797 |
RRAS2 | 110.081277 | -0.3598003 | 0.0742934 | -4.842962 | 1.3e-06 | 0.0004863 |
RPL37A | 1461.770259 | -0.2428534 | 0.0508757 | -4.773464 | 1.8e-06 | 0.0006688 |
RPS15 | 1564.271198 | -0.2413148 | 0.0506966 | -4.759985 | 1.9e-06 | 0.0006879 |
RPL10 | 3746.676756 | -0.2587117 | 0.0543905 | -4.756560 | 2.0e-06 | 0.0006879 |
RPS27A | 2898.049396 | -0.2796611 | 0.0589381 | -4.744995 | 2.1e-06 | 0.0007093 |
MT-CO2 | 7043.701193 | -0.2552830 | 0.0539275 | -4.733815 | 2.2e-06 | 0.0007303 |
RPL23A | 1668.021337 | -0.2987048 | 0.0631943 | -4.726765 | 2.3e-06 | 0.0007372 |
ZFP41 | 6.321451 | 1.0558292 | 0.2246751 | 4.699361 | 2.6e-06 | 0.0008228 |
RPL27A | 1387.033833 | -0.2886663 | 0.0618622 | -4.666276 | 3.1e-06 | 0.0009439 |
GTF3A | 171.201269 | -0.2903334 | 0.0623229 | -4.658534 | 3.2e-06 | 0.0009573 |
RPS8 | 1562.798207 | -0.2468416 | 0.0534194 | -4.620827 | 3.8e-06 | 0.0011228 |
ATP5ME | 200.767163 | -0.2510822 | 0.0545132 | -4.605895 | 4.1e-06 | 0.0011734 |
LRTOMT | 6.152779 | 1.0284531 | 0.2235787 | 4.599959 | 4.2e-06 | 0.0011734 |
CHCHD2 | 346.353623 | -0.2153823 | 0.0468800 | -4.594337 | 4.3e-06 | 0.0011734 |
SRSF11 | 245.848464 | -0.2710483 | 0.0590062 | -4.593558 | 4.4e-06 | 0.0011734 |
NDUFB7 | 168.463219 | -0.2577164 | 0.0563309 | -4.575044 | 4.8e-06 | 0.0012449 |
NSMCE2 | 138.313155 | -0.3204694 | 0.0700837 | -4.572666 | 4.8e-06 | 0.0012449 |
Pathway analysis.
k1 <- mitch_import(kx1de,DEtype="deseq2")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 12037
## Note: no. genes in output = 12037
## Note: estimated proportion of input genes in output = 1
k1m <- mitch_calc(k1,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(k1m$enrichment_result, s.dist > 0),20) |> kbl(caption="top enrichments (positive correl)") |> kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
2613 | GOBP NEURON CELL CELL ADHESION | 5 | 0.0021734 | 0.7915891 | 0.0125380 |
7314 | GOMF NEUROPEPTIDE RECEPTOR ACTIVITY | 5 | 0.0065832 | 0.7016955 | 0.0302007 |
1979 | GOBP MUCOCILIARY CLEARANCE | 5 | 0.0076384 | 0.6888963 | 0.0341866 |
374 | GOBP CARNITINE TRANSPORT | 5 | 0.0084152 | 0.6804521 | 0.0368477 |
6303 | GOCC OUTER DYNEIN ARM | 5 | 0.0094338 | 0.6703790 | 0.0403661 |
698 | GOBP COMPLEMENT RECEPTOR MEDIATED SIGNALING PATHWAY | 5 | 0.0100335 | 0.6648936 | 0.0424712 |
7119 | GOMF INTRACELLULAR CHLORIDE CHANNEL ACTIVITY | 6 | 0.0071402 | 0.6342227 | 0.0323050 |
1505 | GOBP INTRACELLULAR PH ELEVATION | 5 | 0.0146879 | 0.6301197 | 0.0574262 |
7088 | GOMF HYDROLASE ACTIVITY ACTING ON CARBON NITROGEN BUT NOT PEPTIDE BONDS IN CYCLIC AMIDES | 6 | 0.0093206 | 0.6129720 | 0.0399250 |
1254 | GOBP GLYCINE METABOLIC PROCESS | 8 | 0.0029074 | 0.6079059 | 0.0158667 |
6740 | GOMF BICARBONATE MONOATOMIC ANION ANTIPORTER ACTIVITY | 6 | 0.0121207 | 0.5914166 | 0.0491687 |
6876 | GOMF C METHYLTRANSFERASE ACTIVITY | 7 | 0.0074369 | 0.5842299 | 0.0334173 |
3889 | GOBP PYRIDINE CONTAINING COMPOUND CATABOLIC PROCESS | 6 | 0.0164375 | 0.5655944 | 0.0622604 |
5153 | GOBP RETINAL ROD CELL DEVELOPMENT | 5 | 0.0285290 | 0.5655585 | 0.0952496 |
839 | GOBP DIACYLGLYCEROL BIOSYNTHETIC PROCESS | 5 | 0.0292560 | 0.5629987 | 0.0971421 |
5786 | GOCC AMPA GLUTAMATE RECEPTOR COMPLEX | 6 | 0.0172185 | 0.5615770 | 0.0645672 |
6579 | GOCC UBIQUINONE BIOSYNTHESIS COMPLEX | 6 | 0.0186533 | 0.5545951 | 0.0682600 |
2837 | GOBP PEPTIDYL LYSINE HYDROXYLATION | 6 | 0.0192148 | 0.5519907 | 0.0699251 |
7663 | GOMF SCAVENGER RECEPTOR ACTIVITY | 5 | 0.0338525 | 0.5479721 | 0.1081690 |
2805 | GOBP OXALATE TRANSPORT | 5 | 0.0343751 | 0.5463763 | 0.1093514 |
head(subset(k1m$enrichment_result, s.dist < 0),20) |> kbl(caption="top enrichments (negative correl)") |> kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
5972 | GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT | 38 | 0.0000000 | -0.9425303 | 0.0000000 |
3247 | GOBP POSITIVE REGULATION OF INTRINSIC APOPTOTIC SIGNALING PATHWAY BY P53 CLASS MEDIATOR | 5 | 0.0002763 | -0.9389960 | 0.0022719 |
5969 | GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT | 55 | 0.0000000 | -0.9031305 | 0.0000000 |
309 | GOBP CALCIUM ION EXPORT ACROSS PLASMA MEMBRANE | 5 | 0.0006623 | -0.8791556 | 0.0047657 |
6356 | GOCC POLYSOMAL RIBOSOME | 29 | 0.0000000 | -0.8651646 | 0.0000000 |
3401 | GOBP POSITIVE REGULATION OF OXIDATIVE STRESS INDUCED INTRINSIC APOPTOTIC SIGNALING PATHWAY | 5 | 0.0008291 | -0.8631981 | 0.0057575 |
5799 | GOCC ARP2 3 PROTEIN COMPLEX | 9 | 0.0000138 | -0.8365850 | 0.0001680 |
6654 | GOMF ADENYLATE CYCLASE REGULATOR ACTIVITY | 5 | 0.0012905 | -0.8309840 | 0.0082540 |
5971 | GOCC CYTOSOLIC RIBOSOME | 109 | 0.0000000 | -0.8234268 | 0.0000000 |
1656 | GOBP LYMPHOCYTE ANERGY | 5 | 0.0016555 | -0.8123670 | 0.0101281 |
7777 | GOMF TPR DOMAIN BINDING | 6 | 0.0005712 | -0.8120688 | 0.0041978 |
1857 | GOBP MITOCHONDRIAL ELECTRON TRANSPORT CYTOCHROME C TO OXYGEN | 18 | 0.0000000 | -0.8102172 | 0.0000001 |
5945 | GOCC CRD MEDIATED MRNA STABILITY COMPLEX | 5 | 0.0017140 | -0.8097407 | 0.0103940 |
2239 | GOBP NEGATIVE REGULATION OF FIBROBLAST MIGRATION | 5 | 0.0017589 | -0.8077793 | 0.0105928 |
6169 | GOCC MCRD MEDIATED MRNA STABILITY COMPLEX | 5 | 0.0019447 | -0.8001330 | 0.0115219 |
6181 | GOCC MHC CLASS I PROTEIN COMPLEX | 7 | 0.0002699 | -0.7949650 | 0.0022314 |
593 | GOBP CELL SUBSTRATE JUNCTION DISASSEMBLY | 5 | 0.0021042 | -0.7940824 | 0.0122024 |
4264 | GOBP REGULATION OF FOCAL ADHESION DISASSEMBLY | 5 | 0.0021042 | -0.7940824 | 0.0122024 |
4528 | GOBP REGULATION OF NATURAL KILLER CELL CHEMOTAXIS | 5 | 0.0022943 | -0.7874003 | 0.0130824 |
6540 | GOCC TRANSCRIPTION FACTOR AP 1 COMPLEX | 5 | 0.0026196 | -0.7770612 | 0.0145891 |
up <- head(subset(k1m$enrichment_result, s.dist > 0 & p.adjustANOVA < 0.05),20)
dn <- head(subset(k1m$enrichment_result, s.dist < 0 & p.adjustANOVA < 0.05),20)
top <- rbind(up,dn)
top <- top[order(top$s.dist),]
par(mar=c(5.1, 25.1, 4.1, 2.1))
gsn <- substr(top$set, start = 1, stop = 70 )
barplot(top$s.dist,horiz=TRUE,las=1,xlab="ES",names.arg=gsn,cex.names=0.6,main="HIV neg")
mitch_plots(k1m,outfile="KIR3DL2_assoc_hivneg.pdf")
## png
## 2
if ( ! file.exists("KIR3DL2_assoc_hivneg.html") ) {
mitch_report(res=k1m,outfile="KIR3DL2_assoc_hivneg.html")
}
# pos
k2 <- mitch_import(kx2de,DEtype="deseq2")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 12931
## Note: no. genes in output = 12931
## Note: estimated proportion of input genes in output = 1
k2m <- mitch_calc(k2,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(k2m$enrichment_result, s.dist > 0),20) |> kbl(caption="top enrichments (positive correl)") |> kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
2670 | GOBP NEURON CELL CELL ADHESION | 5 | 0.0043995 | 0.7354479 | 0.0242289 |
637 | GOBP CEREBROSPINAL FLUID CIRCULATION | 5 | 0.0050641 | 0.7238125 | 0.0272738 |
441 | GOBP CELLULAR RESPONSE TO CAFFEINE | 7 | 0.0020426 | 0.6730999 | 0.0128297 |
127 | GOBP AMYLOID BETA CLEARANCE BY CELLULAR CATABOLIC PROCESS | 5 | 0.0096870 | 0.6680179 | 0.0455827 |
514 | GOBP CELLULAR RESPONSE TO PURINE CONTAINING COMPOUND | 8 | 0.0015824 | 0.6449934 | 0.0104075 |
3020 | GOBP POLYOL TRANSMEMBRANE TRANSPORT | 5 | 0.0130893 | 0.6407860 | 0.0577868 |
828 | GOBP DETECTION OF MOLECULE OF BACTERIAL ORIGIN | 6 | 0.0068814 | 0.6371115 | 0.0346090 |
1056 | GOBP ERBB4 SIGNALING PATHWAY | 6 | 0.0074205 | 0.6311799 | 0.0369054 |
1153 | GOBP FATTY ACYL COA CATABOLIC PROCESS | 6 | 0.0078378 | 0.6268472 | 0.0384355 |
2988 | GOBP PIRNA PROCESSING | 5 | 0.0161310 | 0.6213214 | 0.0673405 |
2021 | GOBP MUCOCILIARY CLEARANCE | 5 | 0.0166897 | 0.6181030 | 0.0691356 |
2880 | GOBP PARTURITION | 5 | 0.0167662 | 0.6176698 | 0.0693455 |
7679 | GOMF POSTSYNAPTIC NEUROTRANSMITTER RECEPTOR ACTIVITY | 9 | 0.0013424 | 0.6172935 | 0.0090428 |
648 | GOBP CHEMOSENSORY BEHAVIOR | 6 | 0.0089316 | 0.6164023 | 0.0428092 |
7154 | GOMF GLYCERALDEHYDE 3 PHOSPHATE DEHYDROGENASE NADPLUS NON PHOSPHORYLATING ACTIVITY | 5 | 0.0203407 | 0.5991335 | 0.0799407 |
7827 | GOMF SCAVENGER RECEPTOR ACTIVITY | 8 | 0.0056341 | 0.5652325 | 0.0297082 |
8050 | GOMF VOLTAGE GATED SODIUM CHANNEL ACTIVITY | 5 | 0.0302019 | 0.5597401 | 0.1065865 |
1200 | GOBP FRUCTOSE METABOLIC PROCESS | 10 | 0.0022610 | 0.5576813 | 0.0140255 |
7600 | GOMF PHOSPHATE ION BINDING | 6 | 0.0194246 | 0.5510251 | 0.0771717 |
6798 | GOMF ADP D RIBOSE MODIFICATION DEPENDENT PROTEIN BINDING | 5 | 0.0335761 | 0.5488163 | 0.1147367 |
head(subset(k2m$enrichment_result, s.dist < 0),20) |> kbl(caption="top enrichments (negative correl)") |> kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
6099 | GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT | 38 | 0.0000000 | -0.9505525 | 0.0000000 |
6337 | GOCC MITOCHONDRIAL PROTON TRANSPORTING ATP SYNTHASE COMPLEX COUPLING FACTOR F O | 10 | 0.0000002 | -0.9438279 | 0.0000042 |
6539 | GOCC PROTON TRANSPORTING ATP SYNTHASE COMPLEX CATALYTIC CORE F 1 | 6 | 0.0000993 | -0.9174726 | 0.0009754 |
6096 | GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT | 55 | 0.0000000 | -0.9150527 | 0.0000000 |
6538 | GOCC PROTON TRANSPORTING ATP SYNTHASE COMPLEX | 18 | 0.0000000 | -0.9053839 | 0.0000000 |
6540 | GOCC PROTON TRANSPORTING ATP SYNTHASE COMPLEX COUPLING FACTOR F O | 13 | 0.0000000 | -0.9010921 | 0.0000004 |
6490 | GOCC POLYSOMAL RIBOSOME | 29 | 0.0000000 | -0.8931574 | 0.0000000 |
7924 | GOMF TAP BINDING | 7 | 0.0000509 | -0.8841358 | 0.0005440 |
8015 | GOMF UBIQUITIN LIGASE INHIBITOR ACTIVITY | 8 | 0.0000173 | -0.8772150 | 0.0002134 |
5926 | GOCC ARP2 3 PROTEIN COMPLEX | 9 | 0.0000056 | -0.8738241 | 0.0000776 |
7761 | GOMF PROTON TRANSPORTING ATP SYNTHASE ACTIVITY ROTATIONAL MECHANISM | 16 | 0.0000000 | -0.8699187 | 0.0000000 |
3325 | GOBP POSITIVE REGULATION OF INTRINSIC APOPTOTIC SIGNALING PATHWAY BY P53 CLASS MEDIATOR | 5 | 0.0009716 | -0.8517716 | 0.0069581 |
6098 | GOCC CYTOSOLIC RIBOSOME | 109 | 0.0000000 | -0.8320275 | 0.0000000 |
1901 | GOBP MITOCHONDRIAL ELECTRON TRANSPORT UBIQUINOL TO CYTOCHROME C | 12 | 0.0000006 | -0.8308048 | 0.0000103 |
6470 | GOCC PICLN SM PROTEIN COMPLEX | 6 | 0.0004743 | -0.8238298 | 0.0038211 |
6610 | GOCC SIGNAL PEPTIDASE COMPLEX | 5 | 0.0014482 | -0.8224045 | 0.0096514 |
6792 | GOMF ADENYLATE CYCLASE REGULATOR ACTIVITY | 5 | 0.0014810 | -0.8207334 | 0.0098127 |
6423 | GOCC NURF COMPLEX | 6 | 0.0006112 | -0.8077369 | 0.0047215 |
5599 | GOBP TELOMERASE HOLOENZYME COMPLEX ASSEMBLY | 6 | 0.0006267 | -0.8061380 | 0.0048098 |
8009 | GOMF UBIQUINOL CYTOCHROME C REDUCTASE ACTIVITY | 6 | 0.0006277 | -0.8060348 | 0.0048098 |
up <- head(subset(k2m$enrichment_result, s.dist > 0 & p.adjustANOVA < 0.05),20)
dn <- head(subset(k2m$enrichment_result, s.dist < 0 & p.adjustANOVA < 0.05),20)
top <- rbind(up,dn)
top <- top[order(top$s.dist),]
par(mar=c(5.1, 25.1, 4.1, 2.1))
gsn <- substr(top$set, start = 1, stop = 70 )
barplot(top$s.dist,horiz=TRUE,las=1,xlab="ES",names.arg=gsn,cex.names=0.6,main="HIV pos")
mitch_plots(k2m,outfile="KIR3DL2_assoc_hivpos.pdf")
## png
## 2
if ( ! file.exists("KIR3DL2_assoc_hivpos.html") ) {
mitch_report(res=k2m,outfile="KIR3DL2_assoc_hivpos.html")
}
par(mar=c(5.1, 4.1, 4.1, 2.1))
Multi-contrast enrichment
km <- merge(k1,k2,by=0)
rownames(km) <- km[,1]
km[,1]=NULL
colnames(km) <- c("neg","pos")
dim(km)
## [1] 11958 2
kmm <- mitch_calc(km,genesets=go,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(kmm$enrichment_result, s.dist > 0),20) |> kbl(caption="top multi-enrichment") |> kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.neg | s.pos | p.neg | p.pos | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
5960 | GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT | 38 | 0.0000000 | -0.9421494 | -0.9465162 | 0.0000000 | 0.0000000 | 1.335492 | 0.0030878 | 0.0000000 |
5957 | GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT | 55 | 0.0000000 | -0.9024875 | -0.9081271 | 0.0000000 | 0.0000000 | 1.280304 | 0.0039877 | 0.0000000 |
3238 | GOBP POSITIVE REGULATION OF INTRINSIC APOPTOTIC SIGNALING PATHWAY BY P53 CLASS MEDIATOR | 5 | 0.0008915 | -0.9385928 | -0.8397055 | 0.0002780 | 0.0011465 | 1.259389 | 0.0699239 | 0.0067230 |
6344 | GOCC POLYSOMAL RIBOSOME | 29 | 0.0000000 | -0.8642717 | -0.8844427 | 0.0000000 | 0.0000000 | 1.236610 | 0.0142631 | 0.0000000 |
5788 | GOCC ARP2 3 PROTEIN COMPLEX | 9 | 0.0000119 | -0.8355046 | -0.8635497 | 0.0000142 | 0.0000072 | 1.201577 | 0.0198309 | 0.0001543 |
6195 | GOCC MITOCHONDRIAL PROTON TRANSPORTING ATP SYNTHASE COMPLEX COUPLING FACTOR F O | 10 | 0.0000015 | -0.7472548 | -0.9392534 | 0.0000427 | 0.0000003 | 1.200244 | 0.1357636 | 0.0000244 |
5959 | GOCC CYTOSOLIC RIBOSOME | 109 | 0.0000000 | -0.8222805 | -0.8183844 | 0.0000000 | 0.0000000 | 1.160129 | 0.0027550 | 0.0000000 |
6641 | GOMF ADENYLATE CYCLASE REGULATOR ACTIVITY | 5 | 0.0029100 | -0.8298670 | -0.8061407 | 0.0013102 | 0.0017973 | 1.156954 | 0.0167770 | 0.0180824 |
6169 | GOCC MHC CLASS I PROTEIN COMPLEX | 7 | 0.0002927 | -0.7936096 | -0.8361165 | 0.0002765 | 0.0001275 | 1.152782 | 0.0300569 | 0.0026125 |
7833 | GOMF UBIQUITIN LIGASE INHIBITOR ACTIVITY | 8 | 0.0000790 | -0.7549791 | -0.8672176 | 0.0002173 | 0.0000215 | 1.149809 | 0.0793646 | 0.0008399 |
3392 | GOBP POSITIVE REGULATION OF OXIDATIVE STRESS INDUCED INTRINSIC APOPTOTIC SIGNALING PATHWAY | 5 | 0.0029154 | -0.8622940 | -0.7510583 | 0.0008397 | 0.0036324 | 1.143521 | 0.0786555 | 0.0180877 |
7743 | GOMF TAP BINDING | 7 | 0.0002695 | -0.7227728 | -0.8747027 | 0.0009276 | 0.0000612 | 1.134683 | 0.1074307 | 0.0024475 |
6394 | GOCC PROTON TRANSPORTING ATP SYNTHASE COMPLEX COUPLING FACTOR F O | 13 | 0.0000002 | -0.6990566 | -0.8930354 | 0.0000127 | 0.0000000 | 1.134104 | 0.1371637 | 0.0000030 |
7584 | GOMF PROTON TRANSPORTING ATP SYNTHASE ACTIVITY ROTATIONAL MECHANISM | 16 | 0.0000000 | -0.7004166 | -0.8593200 | 0.0000012 | 0.0000000 | 1.108609 | 0.1123617 | 0.0000003 |
6392 | GOCC PROTON TRANSPORTING ATP SYNTHASE COMPLEX | 18 | 0.0000000 | -0.6499814 | -0.8976736 | 0.0000018 | 0.0000000 | 1.108284 | 0.1751448 | 0.0000000 |
6464 | GOCC SIGNAL PEPTIDASE COMPLEX | 5 | 0.0047404 | -0.7534008 | -0.8079478 | 0.0035283 | 0.0017551 | 1.104714 | 0.0385705 | 0.0268339 |
1853 | GOBP MITOCHONDRIAL ELECTRON TRANSPORT CYTOCHROME C TO OXYGEN | 18 | 0.0000000 | -0.8089708 | -0.7324028 | 0.0000000 | 0.0000001 | 1.091260 | 0.0541418 | 0.0000002 |
2235 | GOBP NEGATIVE REGULATION OF FIBROBLAST MIGRATION | 5 | 0.0053152 | -0.8065088 | -0.7331214 | 0.0017886 | 0.0045262 | 1.089919 | 0.0518928 | 0.0293249 |
6393 | GOCC PROTON TRANSPORTING ATP SYNTHASE COMPLEX CATALYTIC CORE F 1 | 6 | 0.0005209 | -0.5848951 | -0.9107541 | 0.0131037 | 0.0001116 | 1.082393 | 0.2304171 | 0.0042945 |
309 | GOBP CALCIUM ION EXPORT ACROSS PLASMA MEMBRANE | 5 | 0.0030725 | -0.8783569 | -0.6319920 | 0.0006699 | 0.0143958 | 1.082093 | 0.1742063 | 0.0188833 |
mitch_plots(kmm,outfile="KIR3DL2_assoc_hivnegpos.pdf")
## png
## 2
if ( ! file.exists("KIR3DL2_assoc_hivnegpos.html") ) {
mitch_report(res=kmm,outfile="KIR3DL2_assoc_hivnegpos.html")
}
For reproducibility.
save.image("scanalyse2.Rdata")
sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] gplots_3.2.0 kableExtra_1.4.0
## [3] limma_3.60.6 DESeq2_1.44.0
## [5] muscat_1.18.0 beeswarm_0.4.0
## [7] stringi_1.8.4 SingleCellExperiment_1.26.0
## [9] SummarizedExperiment_1.34.0 Biobase_2.64.0
## [11] GenomicRanges_1.56.2 GenomeInfoDb_1.40.1
## [13] IRanges_2.38.1 S4Vectors_0.42.1
## [15] BiocGenerics_0.50.0 MatrixGenerics_1.16.0
## [17] matrixStats_1.4.1 hdf5r_1.3.11
## [19] Seurat_5.1.0 SeuratObject_5.0.2
## [21] sp_2.1-4 plyr_1.8.9
## [23] mitch_1.19.3
##
## loaded via a namespace (and not attached):
## [1] spatstat.sparse_3.1-0 bitops_1.0-9
## [3] httr_1.4.7 RColorBrewer_1.1-3
## [5] doParallel_1.0.17 numDeriv_2016.8-1.1
## [7] backports_1.5.0 tools_4.4.1
## [9] sctransform_0.4.1 utf8_1.2.4
## [11] R6_2.5.1 lazyeval_0.2.2
## [13] uwot_0.2.2 mgcv_1.9-1
## [15] GetoptLong_1.0.5 withr_3.0.2
## [17] prettyunits_1.2.0 GGally_2.2.1
## [19] gridExtra_2.3 progressr_0.15.1
## [21] cli_3.6.3 spatstat.explore_3.3-3
## [23] fastDummies_1.7.4 labeling_0.4.3
## [25] sass_0.4.9 mvtnorm_1.3-2
## [27] spatstat.data_3.1-4 blme_1.0-6
## [29] ggridges_0.5.6 pbapply_1.7-2
## [31] systemfonts_1.1.0 svglite_2.1.3
## [33] scater_1.32.1 parallelly_1.39.0
## [35] rstudioapi_0.17.1 generics_0.1.3
## [37] shape_1.4.6.1 gtools_3.9.5
## [39] ica_1.0-3 spatstat.random_3.3-2
## [41] dplyr_1.1.4 Matrix_1.7-1
## [43] ggbeeswarm_0.7.2 fansi_1.0.6
## [45] abind_1.4-8 lifecycle_1.0.4
## [47] yaml_2.3.10 edgeR_4.2.2
## [49] SparseArray_1.4.8 Rtsne_0.17
## [51] grid_4.4.1 promises_1.3.1
## [53] crayon_1.5.3 miniUI_0.1.1.1
## [55] lattice_0.22-6 beachmat_2.20.0
## [57] echarts4r_0.4.5 cowplot_1.1.3
## [59] pillar_1.9.0 knitr_1.49
## [61] ComplexHeatmap_2.20.0 rjson_0.2.23
## [63] boot_1.3-31 corpcor_1.6.10
## [65] future.apply_1.11.3 codetools_0.2-20
## [67] leiden_0.4.3.1 glue_1.8.0
## [69] spatstat.univar_3.1-1 data.table_1.16.2
## [71] vctrs_0.6.5 png_0.1-8
## [73] spam_2.11-0 Rdpack_2.6.2
## [75] gtable_0.3.6 cachem_1.1.0
## [77] xfun_0.49 rbibutils_2.3
## [79] S4Arrays_1.4.1 mime_0.12
## [81] reformulas_0.4.0 survival_3.7-0
## [83] iterators_1.0.14 statmod_1.5.0
## [85] fitdistrplus_1.2-1 ROCR_1.0-11
## [87] nlme_3.1-166 pbkrtest_0.5.3
## [89] bit64_4.5.2 EnvStats_3.0.0
## [91] progress_1.2.3 RcppAnnoy_0.0.22
## [93] bslib_0.8.0 TMB_1.9.15
## [95] irlba_2.3.5.1 vipor_0.4.7
## [97] KernSmooth_2.23-24 colorspace_2.1-1
## [99] ggrastr_1.0.2 tidyselect_1.2.1
## [101] bit_4.5.0 compiler_4.4.1
## [103] BiocNeighbors_1.22.0 xml2_1.3.6
## [105] DelayedArray_0.30.1 plotly_4.10.4
## [107] scales_1.3.0 caTools_1.18.3
## [109] remaCor_0.0.18 lmtest_0.9-40
## [111] stringr_1.5.1 digest_0.6.37
## [113] goftest_1.2-3 spatstat.utils_3.1-1
## [115] minqa_1.2.8 variancePartition_1.34.0
## [117] rmarkdown_2.29 aod_1.3.3
## [119] RhpcBLASctl_0.23-42 XVector_0.44.0
## [121] htmltools_0.5.8.1 pkgconfig_2.0.3
## [123] lme4_1.1-35.5 sparseMatrixStats_1.16.0
## [125] fastmap_1.2.0 rlang_1.1.4
## [127] GlobalOptions_0.1.2 htmlwidgets_1.6.4
## [129] UCSC.utils_1.0.0 shiny_1.9.1
## [131] DelayedMatrixStats_1.26.0 farver_2.1.2
## [133] jquerylib_0.1.4 zoo_1.8-12
## [135] jsonlite_1.8.9 BiocParallel_1.38.0
## [137] BiocSingular_1.20.0 magrittr_2.0.3
## [139] scuttle_1.14.0 GenomeInfoDbData_1.2.12
## [141] dotCall64_1.2 patchwork_1.3.0
## [143] munsell_0.5.1 Rcpp_1.0.13-1
## [145] viridis_0.6.5 reticulate_1.40.0
## [147] zlibbioc_1.50.0 MASS_7.3-61
## [149] ggstats_0.7.0 listenv_0.9.1
## [151] ggrepel_0.9.6 deldir_2.0-4
## [153] splines_4.4.1 tensor_1.5
## [155] hms_1.1.3 circlize_0.4.16
## [157] locfit_1.5-9.10 igraph_2.1.1
## [159] spatstat.geom_3.3-4 RcppHNSW_0.6.0
## [161] ScaledMatrix_1.12.0 reshape2_1.4.4
## [163] evaluate_1.0.1 nloptr_2.1.1
## [165] foreach_1.5.2 httpuv_1.6.15
## [167] RANN_2.6.2 tidyr_1.3.1
## [169] purrr_1.0.2 polyclip_1.10-7
## [171] future_1.34.0 clue_0.3-66
## [173] scattermore_1.2 ggplot2_3.5.1
## [175] rsvd_1.0.5 broom_1.0.7
## [177] xtable_1.8-4 fANCOVA_0.6-1
## [179] RSpectra_0.16-2 later_1.4.0
## [181] viridisLite_0.4.2 tibble_3.2.1
## [183] lmerTest_3.1-3 glmmTMB_1.1.10
## [185] cluster_2.1.6 globals_0.16.3