Source: TBA
Will conduct mitch analysis on reactome pathways for scRNA-seq data. Comparisons include naive vs bystander, bystander vs latent and latent vs productive. The focus is on apoptosis pathways and their member genes.
suppressPackageStartupMessages({
library("mitch")
library("gplots")
library("kableExtra")
})
CORES=16
The following comparisons were analyzed:
latent_vs_bystander_markers.csv
latent_vs_prod_markers.csv
productive_vs_all_markers.csv
productive_vs_mock_markers.csv
latent_vs_mock_markers.csv
Multi-dimensional (incl 1-5)
Note that in these comparisons, the 1st term is the “case” and the 2nd term is the “control”.
lat_v_by <- read.csv("latent_vs_bystander_markers.csv",row.names=1)
lat_v_prod <- read.csv("latent_vs_productive_markers.csv",row.names=1)
prod_v_all <- read.csv("productive_vs_all_markers.csv",row.names=1)
prod_v_mock <- read.csv("productive_vs_mock_markers.csv",row.names=1)
lat_v_mock <- read.csv("latent_vs_mock_markers.csv",row.names=1)
Anna, please check the spelling of the gene names.
gset <- gmt_import("ReactomePathways_2023-09-20.gmt")
apop <- c("BID","BCL2","BAD","BAK1","BAX","BBC3","BCL2L1","BCL2L2","BCL2L11","BCL2L13",
"BCL2L14", "HRK", "MCL1", "BOK", "CYCS", "CCL5", "CCR5", "CDKN2A", "GHSR", "Gm14461",
"MEF2C", "NOD2", "PLEKHO2", "PTEN", "SELENOS", "SIRT1", "ST6GAL1", "CASP3", "CASP7",
"CASP8", "CASP9")
apop
## [1] "BID" "BCL2" "BAD" "BAK1" "BAX" "BBC3" "BCL2L1"
## [8] "BCL2L2" "BCL2L11" "BCL2L13" "BCL2L14" "HRK" "MCL1" "BOK"
## [15] "CYCS" "CCL5" "CCR5" "CDKN2A" "GHSR" "Gm14461" "MEF2C"
## [22] "NOD2" "PLEKHO2" "PTEN" "SELENOS" "SIRT1" "ST6GAL1" "CASP3"
## [29] "CASP7" "CASP8" "CASP9"
lat_v_by
m1 <- mitch_import(lat_v_by,DEtype="seurat")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 10939
## Note: no. genes in output = 10939
## Note: estimated proportion of input genes in output = 1
mres1 <- mitch_calc(x=m1,genesets=gset,cores=CORES,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(mres1$enrichment_result,s.dist>0),20) %>%
kbl(caption="pathways upregulated in latent compared to bystander") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
311 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 11 | 0.0006482 | 0.5939205 | 0.0032408 |
174 | Cohesin Loading onto Chromatin | 10 | 0.0015531 | 0.5779669 | 0.0072628 |
627 | Mitotic Telophase/Cytokinesis | 10 | 0.0015531 | 0.5779669 | 0.0072628 |
635 | Myogenesis | 15 | 0.0002546 | 0.5455145 | 0.0013508 |
911 | Regulation of PTEN mRNA translation | 11 | 0.0017694 | 0.5444563 | 0.0080710 |
655 | NRAGE signals death through JNK | 36 | 0.0000002 | 0.5046521 | 0.0000013 |
435 | HDMs demethylate histones | 21 | 0.0000683 | 0.5020717 | 0.0003945 |
178 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 10 | 0.0060072 | 0.5018025 | 0.0221228 |
335 | FOXO-mediated transcription of cell cycle genes | 11 | 0.0039619 | 0.5017636 | 0.0157026 |
896 | Regulation of CDH11 Expression and Function | 15 | 0.0008500 | 0.4975711 | 0.0040933 |
1124 | Synthesis of PIPs at the late endosome membrane | 10 | 0.0069741 | 0.4927990 | 0.0248393 |
908 | Regulation of NPAS4 gene expression | 11 | 0.0047523 | 0.4916977 | 0.0180117 |
1028 | Signaling by BMP | 14 | 0.0021691 | 0.4733573 | 0.0095242 |
1123 | Synthesis of PIPs at the early endosome membrane | 15 | 0.0021666 | 0.4573782 | 0.0095242 |
1098 | Signaling by cytosolic FGFR1 fusion mutants | 17 | 0.0017685 | 0.4381012 | 0.0080710 |
1125 | Synthesis of PIPs at the plasma membrane | 44 | 0.0000013 | 0.4213943 | 0.0000096 |
898 | Regulation of Expression and Function of Type II Classical Cadherins | 16 | 0.0036227 | 0.4201913 | 0.0145462 |
901 | Regulation of Homotypic Cell-Cell Adhesion | 16 | 0.0036227 | 0.4201913 | 0.0145462 |
871 | RND3 GTPase cycle | 26 | 0.0003806 | 0.4027236 | 0.0019794 |
1199 | Transcriptional Regulation by NPAS4 | 24 | 0.0007405 | 0.3980226 | 0.0036191 |
head(subset(mres1$enrichment_result,s.dist<0),20) %>%
kbl(caption="pathways downregulated in latent compared to bystander") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
317 | Eukaryotic Translation Termination | 90 | 0.00e+00 | -0.7990742 | 0.0000000 |
1259 | Viral mRNA Translation | 87 | 0.00e+00 | -0.7936818 | 0.0000000 |
315 | Eukaryotic Translation Elongation | 90 | 0.00e+00 | -0.7831812 | 0.0000000 |
745 | Peptide chain elongation | 87 | 0.00e+00 | -0.7795205 | 0.0000000 |
353 | Formation of a pool of free 40S subunits | 98 | 0.00e+00 | -0.7728446 | 0.0000000 |
986 | SRP-dependent cotranslational protein targeting to membrane | 109 | 0.00e+00 | -0.7706795 | 0.0000000 |
970 | SARS-CoV-1 modulates host translation machinery | 36 | 0.00e+00 | -0.7665729 | 0.0000000 |
1006 | Selenocysteine synthesis | 90 | 0.00e+00 | -0.7614834 | 0.0000000 |
344 | Folding of actin by CCT/TriC | 10 | 3.37e-05 | -0.7573062 | 0.0002054 |
687 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 93 | 0.00e+00 | -0.7461013 | 0.0000000 |
976 | SARS-CoV-2 modulates host translation machinery | 47 | 0.00e+00 | -0.7457787 | 0.0000000 |
345 | Formation of ATP by chemiosmotic coupling | 18 | 1.00e-07 | -0.7353620 | 0.0000005 |
394 | GTP hydrolysis and joining of the 60S ribosomal subunit | 109 | 0.00e+00 | -0.7240184 | 0.0000000 |
360 | Formation of the ternary complex, and subsequently, the 43S complex | 50 | 0.00e+00 | -0.7218294 | 0.0000000 |
1005 | Selenoamino acid metabolism | 101 | 0.00e+00 | -0.7139292 | 0.0000000 |
541 | L13a-mediated translational silencing of Ceruloplasmin expression | 108 | 0.00e+00 | -0.7137503 | 0.0000000 |
192 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 25 | 0.00e+00 | -0.7113725 | 0.0000000 |
955 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 98 | 0.00e+00 | -0.7112530 | 0.0000000 |
927 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 48 | 0.00e+00 | -0.7084137 | 0.0000000 |
930 | Regulation of expression of SLITs and ROBOs | 155 | 0.00e+00 | -0.7072485 | 0.0000000 |
# focus on apoptosis
mres1$enrichment_result[grep("apop",mres1$enrichment_result$set),] %>%
kbl(caption="apoptosis pathways in latent compared to bystander") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
133 | Caspase activation via extrinsic apoptotic signalling pathway | 21 | 0.1265246 | 0.1927006 | 0.2590267 |
201 | Cytochrome c-mediated apoptotic response | 12 | 0.3159844 | 0.1672310 | 0.4863258 |
1157 | TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain | 11 | 0.4754008 | 0.1243178 | 0.6280702 |
354 | Formation of apoptosome | 10 | 0.5635228 | 0.1055174 | 0.6996301 |
942 | Regulation of the apoptosome activity | 10 | 0.5635228 | 0.1055174 | 0.6996301 |
1145 | TNFR1-induced proapoptotic signaling | 23 | 0.6001937 | 0.0631701 | 0.7326308 |
if (!file.exists("latent_v_by_mitch.html")) {
mitch_report(res=mres1,outfile="latent_v_by_mitch.html",overwrite=TRUE)
}
# custom apop list
a1 <- m1[which(rownames(m1) %in% apop),,drop=FALSE]
a1[order(-a1$x),,drop=FALSE]
## x
## PTEN 21.32051053
## ST6GAL1 19.92884203
## BCL2L11 8.61209030
## MEF2C 7.76316507
## BCL2 6.86792163
## CASP9 6.83892720
## CASP3 6.44055866
## CASP7 5.63773348
## CASP8 5.56686954
## HRK 5.02172480
## SIRT1 4.48002582
## BCL2L2 4.14001595
## MCL1 3.77807893
## BCL2L1 3.49356694
## BCL2L13 1.55612052
## BBC3 0.62738833
## CDKN2A -0.02386415
## PLEKHO2 -0.87675679
## CCR5 -1.13990223
## BAK1 -1.17457054
## BAD -2.92209762
## BID -3.46668487
## SELENOS -3.71681388
## CYCS -19.97075249
## BAX -30.76251252
ares1 <- mitch_calc(m1,genesets=list("custom_apop"=apop))
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
ares1$enrichment_result
## set setSize pANOVA s.dist p.adjustANOVA
## 1 custom_apop 25 0.8522829 -0.02152831 0.8522829
lat_v_prod
m2 <- mitch_import(lat_v_prod,DEtype="seurat")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 11129
## Note: no. genes in output = 11129
## Note: estimated proportion of input genes in output = 1
mres2 <- mitch_calc(x=m2,genesets=gset,cores=CORES,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(mres2$enrichment_result,s.dist>0),20) %>%
kbl(caption="pathways upregulated in latent as compared to productive") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
316 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 11 | 0.0002434 | 0.6388984 | 0.0019655 |
918 | Regulation of PTEN mRNA translation | 11 | 0.0016236 | 0.5488397 | 0.0103090 |
1306 | tRNA processing in the mitochondrion | 18 | 0.0000602 | 0.5462555 | 0.0005668 |
182 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 10 | 0.0031086 | 0.5400306 | 0.0173024 |
661 | NRAGE signals death through JNK | 36 | 0.0000000 | 0.5385679 | 0.0000003 |
440 | HDMs demethylate histones | 21 | 0.0000260 | 0.5302828 | 0.0002611 |
660 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflux | 34 | 0.0000003 | 0.5110675 | 0.0000034 |
327 | FASTK family proteins regulate processing and stability of mitochondrial RNAs | 17 | 0.0003603 | 0.4998518 | 0.0027889 |
903 | Regulation of CDH11 Expression and Function | 15 | 0.0009837 | 0.4914762 | 0.0066327 |
915 | Regulation of NPAS4 gene expression | 11 | 0.0051956 | 0.4866964 | 0.0260375 |
641 | Myogenesis | 15 | 0.0011318 | 0.4855738 | 0.0074017 |
1106 | Signaling by cytosolic FGFR1 fusion mutants | 17 | 0.0006134 | 0.4799792 | 0.0044820 |
905 | Regulation of Expression and Function of Type II Classical Cadherins | 16 | 0.0010964 | 0.4714748 | 0.0072430 |
908 | Regulation of Homotypic Cell-Cell Adhesion | 16 | 0.0010964 | 0.4714748 | 0.0072430 |
312 | Endosomal/Vacuolar pathway | 10 | 0.0107292 | 0.4660131 | 0.0457125 |
659 | NR1H2 and NR1H3-mediated signaling | 39 | 0.0000007 | 0.4595593 | 0.0000085 |
1232 | Translocation of ZAP-70 to Immunological synapse | 10 | 0.0131426 | 0.4529544 | 0.0527315 |
334 | FGFR1 mutant receptor activation | 20 | 0.0005644 | 0.4454856 | 0.0041711 |
526 | Interleukin-6 signaling | 10 | 0.0149014 | 0.4447163 | 0.0575054 |
9 | ALK mutants bind TKIs | 12 | 0.0083224 | 0.4400018 | 0.0365291 |
head(subset(mres2$enrichment_result,s.dist<0),20) %>%
kbl(caption="pathways downregulated in latent as compared to productive") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
18 | APOBEC3G mediated resistance to HIV-1 infection | 10 | 0.0000265 | -0.7671913 | 0.0002629 |
624 | Mitochondrial translation termination | 88 | 0.0000000 | -0.6680328 | 0.0000000 |
622 | Mitochondrial translation elongation | 88 | 0.0000000 | -0.6673803 | 0.0000000 |
623 | Mitochondrial translation initiation | 88 | 0.0000000 | -0.6654103 | 0.0000000 |
621 | Mitochondrial translation | 94 | 0.0000000 | -0.6547369 | 0.0000000 |
599 | Metabolism of polyamines | 54 | 0.0000000 | -0.6408227 | 0.0000000 |
946 | Regulation of ornithine decarboxylase (ODC) | 49 | 0.0000000 | -0.6285641 | 0.0000000 |
98 | Binding and entry of HIV virion | 11 | 0.0004553 | -0.6104761 | 0.0034625 |
349 | Folding of actin by CCT/TriC | 10 | 0.0009415 | -0.6040471 | 0.0063805 |
1264 | Vif-mediated degradation of APOBEC3G | 53 | 0.0000000 | -0.5915902 | 0.0000000 |
1115 | Somitogenesis | 46 | 0.0000000 | -0.5856364 | 0.0000000 |
328 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 52 | 0.0000000 | -0.5849300 | 0.0000000 |
675 | Negative regulation of NOTCH4 signaling | 53 | 0.0000000 | -0.5769844 | 0.0000000 |
934 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 48 | 0.0000000 | -0.5740344 | 0.0000000 |
619 | Mitochondrial protein import | 63 | 0.0000000 | -0.5725244 | 0.0000000 |
199 | Cross-presentation of soluble exogenous antigens (endosomes) | 46 | 0.0000000 | -0.5701878 | 0.0000000 |
1254 | Ubiquitin-dependent degradation of Cyclin D | 50 | 0.0000000 | -0.5636971 | 0.0000000 |
1253 | Ubiquitin Mediated Degradation of Phosphorylated Cdc25A | 49 | 0.0000000 | -0.5622596 | 0.0000000 |
1293 | p53-Independent DNA Damage Response | 49 | 0.0000000 | -0.5622596 | 0.0000000 |
1294 | p53-Independent G1/S DNA damage checkpoint | 49 | 0.0000000 | -0.5622596 | 0.0000000 |
# focus on apoptosis
mres2$enrichment_result[grep("apop",mres2$enrichment_result$set),] %>%
kbl(caption="apoptosis pathways in latent compared to productive") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
136 | Caspase activation via extrinsic apoptotic signalling pathway | 21 | 0.1559307 | 0.1789444 | 0.3209608 |
1165 | TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain | 11 | 0.5955956 | 0.0924463 | 0.7645133 |
1153 | TNFR1-induced proapoptotic signaling | 23 | 0.6692313 | 0.0514880 | 0.8108062 |
205 | Cytochrome c-mediated apoptotic response | 12 | 0.7745703 | 0.0477647 | 0.8809895 |
359 | Formation of apoptosome | 10 | 0.9685042 | -0.0072129 | 0.9807009 |
949 | Regulation of the apoptosome activity | 10 | 0.9685042 | -0.0072129 | 0.9807009 |
if (!file.exists("latent_v_prod_mitch.html")) {
mitch_report(res=mres2,outfile="latent_v_prod_mitch.html",overwrite=TRUE)
}
# custom apop list
a2 <- m2[which(rownames(m2) %in% apop),,drop=FALSE]
a2[order(-a2$x),,drop=FALSE]
## x
## ST6GAL1 13.53052980
## BCL2L11 10.56552806
## PTEN 4.92530925
## MCL1 4.27711111
## CASP9 4.15765685
## CASP3 4.08280387
## HRK 3.18041204
## PLEKHO2 1.33181829
## SIRT1 1.20325251
## CASP8 1.13464266
## CDKN2A 1.11444415
## CCR5 0.85072500
## CASP7 0.68857954
## BCL2L1 0.25803111
## BCL2L2 0.25370945
## MEF2C 0.19693914
## BCL2 0.02468332
## BBC3 -0.39134438
## BCL2L13 -1.53199007
## BAK1 -1.67359684
## SELENOS -3.45887483
## BID -9.77445785
## BAD -10.94394139
## BAX -11.92870938
## CYCS -31.55237715
ares2 <- mitch_calc(m2,genesets=list("custom_apop"=apop))
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
ares2$enrichment_result
## set setSize pANOVA s.dist p.adjustANOVA
## 1 custom_apop 25 0.691536 -0.04587176 0.691536
prod_v_all
m3 <- mitch_import(prod_v_all,DEtype="seurat")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 10703
## Note: no. genes in output = 10703
## Note: estimated proportion of input genes in output = 1
mres3 <- mitch_calc(x=m3,genesets=gset,cores=CORES,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(mres3$enrichment_result,s.dist>0),20) %>%
kbl(caption="pathways upregulated in productive as compared to all other cell clusters") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
158 | Chemokine receptors bind chemokines | 10 | 0.0016100 | 0.5760591 | 0.0175472 |
1275 | mRNA decay by 3’ to 5’ exoribonuclease | 13 | 0.0026381 | 0.4817587 | 0.0259210 |
18 | APOBEC3G mediated resistance to HIV-1 infection | 10 | 0.0100276 | 0.4703077 | 0.0710700 |
589 | Metabolism of folate and pterines | 14 | 0.0041997 | 0.4419898 | 0.0373081 |
1 | 2-LTR circle formation | 12 | 0.0120528 | 0.4186543 | 0.0811532 |
785 | Processing and activation of SUMO | 10 | 0.0248828 | 0.4097447 | 0.1407099 |
97 | Binding and entry of HIV virion | 11 | 0.0194416 | 0.4070163 | 0.1156685 |
10 | APC truncation mutants have impaired AXIN binding | 12 | 0.0369386 | 0.3479406 | 0.1751986 |
24 | AXIN missense mutants destabilize the destruction complex | 12 | 0.0369386 | 0.3479406 | 0.1751986 |
1026 | Signaling by AMER1 mutants | 12 | 0.0369386 | 0.3479406 | 0.1751986 |
1027 | Signaling by APC mutants | 12 | 0.0369386 | 0.3479406 | 0.1751986 |
1028 | Signaling by AXIN mutants | 12 | 0.0369386 | 0.3479406 | 0.1751986 |
1240 | Truncations of AMER1 destabilize the destruction complex | 12 | 0.0369386 | 0.3479406 | 0.1751986 |
500 | Integration of provirus | 14 | 0.0354679 | 0.3247130 | 0.1751986 |
505 | Interconversion of nucleotide di- and triphosphates | 24 | 0.0072996 | 0.3165168 | 0.0564554 |
481 | Inactivation, recovery and regulation of the phototransduction cascade | 16 | 0.0299433 | 0.3135702 | 0.1585163 |
256 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 18 | 0.0221585 | 0.3115687 | 0.1278173 |
1248 | VEGFR2 mediated cell proliferation | 15 | 0.0386276 | 0.3085205 | 0.1795697 |
1174 | The phototransduction cascade | 17 | 0.0368939 | 0.2924662 | 0.1751986 |
1279 | p38MAPK events | 11 | 0.0967718 | 0.2892562 | 0.3125264 |
head(subset(mres3$enrichment_result,s.dist<0),20) %>%
kbl(caption="pathways downregulated in productive as compared to all other cell clusters") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
318 | Eukaryotic Translation Elongation | 90 | 0.00e+00 | -0.7595119 | 0.0000000 |
746 | Peptide chain elongation | 87 | 0.00e+00 | -0.7570908 | 0.0000000 |
1256 | Viral mRNA Translation | 87 | 0.00e+00 | -0.7430846 | 0.0000000 |
355 | Formation of a pool of free 40S subunits | 98 | 0.00e+00 | -0.7329956 | 0.0000000 |
1222 | Translocation of ZAP-70 to Immunological synapse | 10 | 6.39e-05 | -0.7300664 | 0.0011201 |
971 | SARS-CoV-1 modulates host translation machinery | 36 | 0.00e+00 | -0.7203551 | 0.0000000 |
542 | L13a-mediated translational silencing of Ceruloplasmin expression | 108 | 0.00e+00 | -0.6969229 | 0.0000000 |
396 | GTP hydrolysis and joining of the 60S ribosomal subunit | 109 | 0.00e+00 | -0.6936807 | 0.0000000 |
1007 | Selenocysteine synthesis | 90 | 0.00e+00 | -0.6841222 | 0.0000000 |
987 | SRP-dependent cotranslational protein targeting to membrane | 109 | 0.00e+00 | -0.6726440 | 0.0000000 |
688 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 93 | 0.00e+00 | -0.6719011 | 0.0000000 |
398 | Gap junction assembly | 10 | 2.99e-04 | -0.6603947 | 0.0042159 |
1230 | Transport of connexons to the plasma membrane | 10 | 2.99e-04 | -0.6603947 | 0.0042159 |
320 | Eukaryotic Translation Termination | 91 | 0.00e+00 | -0.6590766 | 0.0000000 |
956 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 98 | 0.00e+00 | -0.6559873 | 0.0000000 |
408 | Generation of second messenger molecules | 18 | 1.60e-06 | -0.6540633 | 0.0000341 |
127 | Cap-dependent Translation Initiation | 116 | 0.00e+00 | -0.6480386 | 0.0000000 |
319 | Eukaryotic Translation Initiation | 116 | 0.00e+00 | -0.6480386 | 0.0000000 |
362 | Formation of the ternary complex, and subsequently, the 43S complex | 50 | 0.00e+00 | -0.6359467 | 0.0000000 |
756 | Phosphorylation of CD3 and TCR zeta chains | 14 | 5.50e-05 | -0.6225759 | 0.0009913 |
# focus on apoptosis
mres3$enrichment_result[grep("apop",mres3$enrichment_result$set),] %>%
kbl(caption="apoptosis pathways in productive compared to all other cell clusters") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
356 | Formation of apoptosome | 10 | 0.2732745 | 0.2001309 | 0.5389376 |
943 | Regulation of the apoptosome activity | 10 | 0.2732745 | 0.2001309 | 0.5389376 |
204 | Cytochrome c-mediated apoptotic response | 12 | 0.2636585 | 0.1864185 | 0.5297198 |
1146 | TNFR1-induced proapoptotic signaling | 23 | 0.3913076 | 0.1033219 | 0.6432522 |
1156 | TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain | 10 | 0.6132225 | 0.0923408 | 0.7961457 |
135 | Caspase activation via extrinsic apoptotic signalling pathway | 20 | 0.5637497 | 0.0746045 | 0.7652250 |
if (!file.exists("prod_v_all_mitch.html")) {
mitch_report(res=mres3,outfile="prod_v_all_mitch.html",overwrite=TRUE)
}
# custom apop list
a3 <- m3[which(rownames(m3) %in% apop),,drop=FALSE]
a3[order(-a3$x),,drop=FALSE]
## x
## PTEN 14.92296985
## BCL2 14.50872197
## MEF2C 14.10634431
## BCL2L13 12.43608061
## BAD 11.99443548
## BID 9.38496521
## CYCS 9.36009013
## CASP7 6.22697375
## BCL2L1 5.49833946
## BCL2L2 5.28215310
## BBC3 3.96761906
## CASP8 3.77896500
## SELENOS -0.03685491
## CCR5 -0.03688655
## HRK -0.12479074
## CASP9 -0.26071214
## CASP3 -0.41067524
## ST6GAL1 -0.68162839
## BAK1 -1.09534842
## MCL1 -1.47518417
## SIRT1 -1.78976622
## CDKN2A -2.58024064
## BCL2L11 -3.29009416
## BAX -9.03875061
## PLEKHO2 -11.74504340
ares3 <- mitch_calc(m3,genesets=list("custom_apop"=apop))
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
ares3$enrichment_result
## set setSize pANOVA s.dist p.adjustANOVA
## 1 custom_apop 25 0.6553037 0.05161266 0.6553037
prod_v_mock
m4 <- mitch_import(prod_v_mock,DEtype="seurat")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 10713
## Note: no. genes in output = 10713
## Note: estimated proportion of input genes in output = 1
mres4 <- mitch_calc(x=m4,genesets=gset,cores=CORES,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(mres4$enrichment_result,s.dist>0),20) %>%
kbl(caption="pathways upregulated in productive as compared to mock-infected") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
158 | Chemokine receptors bind chemokines | 10 | 0.0006616 | 0.6218630 | 0.0080975 |
1273 | mRNA decay by 3’ to 5’ exoribonuclease | 13 | 0.0005141 | 0.5564198 | 0.0064636 |
18 | APOBEC3G mediated resistance to HIV-1 infection | 10 | 0.0046658 | 0.5167523 | 0.0351290 |
97 | Binding and entry of HIV virion | 11 | 0.0179723 | 0.4121065 | 0.0908421 |
1 | 2-LTR circle formation | 12 | 0.0295174 | 0.3629567 | 0.1239547 |
588 | Metabolism of folate and pterines | 14 | 0.0299192 | 0.3352383 | 0.1249852 |
612 | Mitochondrial iron-sulfur cluster biogenesis | 13 | 0.0404781 | 0.3282818 | 0.1583659 |
784 | Processing and activation of SUMO | 10 | 0.0846328 | 0.3149958 | 0.2469055 |
258 | Diseases associated with N-glycosylation of proteins | 20 | 0.0150291 | 0.3142149 | 0.0787963 |
593 | Metabolism of polyamines | 54 | 0.0000681 | 0.3136282 | 0.0012424 |
134 | Caspase activation via Death Receptors in the presence of ligand | 14 | 0.0451757 | 0.3092812 | 0.1690823 |
536 | KSRP (KHSRP) binds and destabilizes mRNA | 16 | 0.0354422 | 0.3038118 | 0.1434303 |
1237 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 17 | 0.0329030 | 0.2989573 | 0.1348398 |
939 | Regulation of ornithine decarboxylase (ODC) | 49 | 0.0004208 | 0.2914938 | 0.0053952 |
884 | Receptor Mediated Mitophagy | 11 | 0.0951539 | 0.2906678 | 0.2661431 |
1150 | TP53 Regulates Transcription of Cell Death Genes | 36 | 0.0038017 | 0.2789381 | 0.0306345 |
586 | Metabolism of cofactors | 16 | 0.0577821 | 0.2740722 | 0.1958993 |
1246 | VEGFR2 mediated cell proliferation | 15 | 0.0694315 | 0.2708544 | 0.2209184 |
361 | Formation of the cornified envelope | 14 | 0.0905623 | 0.2613328 | 0.2603593 |
539 | Keratinization | 14 | 0.0905623 | 0.2613328 | 0.2603593 |
head(subset(mres4$enrichment_result,s.dist<0),20) %>%
kbl(caption="pathways downregulated in productive as compared to mock-infected") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
745 | Peptide chain elongation | 87 | 0.0000000 | -0.7112180 | 0.0000000 |
318 | Eukaryotic Translation Elongation | 90 | 0.0000000 | -0.7043982 | 0.0000000 |
1254 | Viral mRNA Translation | 87 | 0.0000000 | -0.6986377 | 0.0000000 |
1221 | Translocation of ZAP-70 to Immunological synapse | 10 | 0.0001366 | -0.6965524 | 0.0021059 |
355 | Formation of a pool of free 40S subunits | 98 | 0.0000000 | -0.6847914 | 0.0000000 |
970 | SARS-CoV-1 modulates host translation machinery | 36 | 0.0000000 | -0.6779058 | 0.0000000 |
541 | L13a-mediated translational silencing of Ceruloplasmin expression | 108 | 0.0000000 | -0.6525905 | 0.0000000 |
396 | GTP hydrolysis and joining of the 60S ribosomal subunit | 109 | 0.0000000 | -0.6457006 | 0.0000000 |
1006 | Selenocysteine synthesis | 90 | 0.0000000 | -0.6394908 | 0.0000000 |
407 | Generation of second messenger molecules | 18 | 0.0000027 | -0.6388343 | 0.0000673 |
325 | FASTK family proteins regulate processing and stability of mitochondrial RNAs | 17 | 0.0000052 | -0.6384245 | 0.0001266 |
687 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 93 | 0.0000000 | -0.6296357 | 0.0000000 |
986 | SRP-dependent cotranslational protein targeting to membrane | 109 | 0.0000000 | -0.6178281 | 0.0000000 |
320 | Eukaryotic Translation Termination | 91 | 0.0000000 | -0.6175034 | 0.0000000 |
1293 | tRNA processing in the mitochondrion | 18 | 0.0000069 | -0.6121552 | 0.0001659 |
755 | Phosphorylation of CD3 and TCR zeta chains | 14 | 0.0000742 | -0.6116593 | 0.0013163 |
955 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 98 | 0.0000000 | -0.6102012 | 0.0000000 |
127 | Cap-dependent Translation Initiation | 116 | 0.0000000 | -0.6072652 | 0.0000000 |
319 | Eukaryotic Translation Initiation | 116 | 0.0000000 | -0.6072652 | 0.0000000 |
362 | Formation of the ternary complex, and subsequently, the 43S complex | 50 | 0.0000000 | -0.5892826 | 0.0000000 |
# focus on apoptosis
mres4$enrichment_result[grep("apop",mres4$enrichment_result$set),] %>%
kbl(caption="apoptosis pathways in productive compared to mock-infected") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
356 | Formation of apoptosome | 10 | 0.2139934 | 0.2270018 | 0.4384833 |
942 | Regulation of the apoptosome activity | 10 | 0.2139934 | 0.2270018 | 0.4384833 |
204 | Cytochrome c-mediated apoptotic response | 12 | 0.3215775 | 0.1653117 | 0.5394338 |
1155 | TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain | 10 | 0.6824221 | 0.0747454 | 0.8337138 |
135 | Caspase activation via extrinsic apoptotic signalling pathway | 20 | 0.6112032 | 0.0656972 | 0.7881025 |
1145 | TNFR1-induced proapoptotic signaling | 23 | 0.7249732 | 0.0424045 | 0.8566061 |
if (!file.exists("prod_v_mock_mitch.html")) {
mitch_report(res=mres4,outfile="prod_v_mock_mitch.html",overwrite=TRUE)
}
# custom apop list
a4 <- m4[which(rownames(m4) %in% apop),,drop=FALSE]
a4[order(-a4$x),,drop=FALSE]
## x
## PTEN 11.27138605
## BAD 8.90529930
## BID 8.71811788
## BCL2 8.12345445
## BCL2L13 7.85896810
## MEF2C 6.56896458
## CYCS 4.74623047
## CASP7 4.66258312
## BBC3 4.09279560
## BCL2L1 3.58884604
## BCL2L2 2.47850099
## BAK1 1.59402864
## HRK -0.09151097
## CCR5 -0.17021668
## CASP9 -0.33859942
## SELENOS -0.46553562
## SIRT1 -0.64886280
## CDKN2A -1.32598799
## ST6GAL1 -1.37049203
## CASP8 -1.85377861
## MCL1 -2.22019479
## BCL2L11 -3.82304227
## CASP3 -4.04225029
## BAX -5.32460664
## PLEKHO2 -16.28613144
ares4 <- mitch_calc(m4,genesets=list("custom_apop"=apop))
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
ares4$enrichment_result
## set setSize pANOVA s.dist p.adjustANOVA
## 1 custom_apop 25 0.917809 -0.01193114 0.917809
lat_v_mock
m5 <- mitch_import(prod_v_mock,DEtype="seurat")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 10713
## Note: no. genes in output = 10713
## Note: estimated proportion of input genes in output = 1
mres5 <- mitch_calc(x=m5,genesets=gset,cores=CORES,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(mres5$enrichment_result,s.dist>0),20) %>%
kbl(caption="pathways upregulated in latent as compared to mock-infected") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
158 | Chemokine receptors bind chemokines | 10 | 0.0006616 | 0.6218630 | 0.0080975 |
1273 | mRNA decay by 3’ to 5’ exoribonuclease | 13 | 0.0005141 | 0.5564198 | 0.0064636 |
18 | APOBEC3G mediated resistance to HIV-1 infection | 10 | 0.0046658 | 0.5167523 | 0.0351290 |
97 | Binding and entry of HIV virion | 11 | 0.0179723 | 0.4121065 | 0.0908421 |
1 | 2-LTR circle formation | 12 | 0.0295174 | 0.3629567 | 0.1239547 |
588 | Metabolism of folate and pterines | 14 | 0.0299192 | 0.3352383 | 0.1249852 |
612 | Mitochondrial iron-sulfur cluster biogenesis | 13 | 0.0404781 | 0.3282818 | 0.1583659 |
784 | Processing and activation of SUMO | 10 | 0.0846328 | 0.3149958 | 0.2469055 |
258 | Diseases associated with N-glycosylation of proteins | 20 | 0.0150291 | 0.3142149 | 0.0787963 |
593 | Metabolism of polyamines | 54 | 0.0000681 | 0.3136282 | 0.0012424 |
134 | Caspase activation via Death Receptors in the presence of ligand | 14 | 0.0451757 | 0.3092812 | 0.1690823 |
536 | KSRP (KHSRP) binds and destabilizes mRNA | 16 | 0.0354422 | 0.3038118 | 0.1434303 |
1237 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 17 | 0.0329030 | 0.2989573 | 0.1348398 |
939 | Regulation of ornithine decarboxylase (ODC) | 49 | 0.0004208 | 0.2914938 | 0.0053952 |
884 | Receptor Mediated Mitophagy | 11 | 0.0951539 | 0.2906678 | 0.2661431 |
1150 | TP53 Regulates Transcription of Cell Death Genes | 36 | 0.0038017 | 0.2789381 | 0.0306345 |
586 | Metabolism of cofactors | 16 | 0.0577821 | 0.2740722 | 0.1958993 |
1246 | VEGFR2 mediated cell proliferation | 15 | 0.0694315 | 0.2708544 | 0.2209184 |
361 | Formation of the cornified envelope | 14 | 0.0905623 | 0.2613328 | 0.2603593 |
539 | Keratinization | 14 | 0.0905623 | 0.2613328 | 0.2603593 |
head(subset(mres5$enrichment_result,s.dist<0),20) %>%
kbl(caption="pathways downregulated in latent as compared to mock-infected") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
745 | Peptide chain elongation | 87 | 0.0000000 | -0.7112180 | 0.0000000 |
318 | Eukaryotic Translation Elongation | 90 | 0.0000000 | -0.7043982 | 0.0000000 |
1254 | Viral mRNA Translation | 87 | 0.0000000 | -0.6986377 | 0.0000000 |
1221 | Translocation of ZAP-70 to Immunological synapse | 10 | 0.0001366 | -0.6965524 | 0.0021059 |
355 | Formation of a pool of free 40S subunits | 98 | 0.0000000 | -0.6847914 | 0.0000000 |
970 | SARS-CoV-1 modulates host translation machinery | 36 | 0.0000000 | -0.6779058 | 0.0000000 |
541 | L13a-mediated translational silencing of Ceruloplasmin expression | 108 | 0.0000000 | -0.6525905 | 0.0000000 |
396 | GTP hydrolysis and joining of the 60S ribosomal subunit | 109 | 0.0000000 | -0.6457006 | 0.0000000 |
1006 | Selenocysteine synthesis | 90 | 0.0000000 | -0.6394908 | 0.0000000 |
407 | Generation of second messenger molecules | 18 | 0.0000027 | -0.6388343 | 0.0000673 |
325 | FASTK family proteins regulate processing and stability of mitochondrial RNAs | 17 | 0.0000052 | -0.6384245 | 0.0001266 |
687 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 93 | 0.0000000 | -0.6296357 | 0.0000000 |
986 | SRP-dependent cotranslational protein targeting to membrane | 109 | 0.0000000 | -0.6178281 | 0.0000000 |
320 | Eukaryotic Translation Termination | 91 | 0.0000000 | -0.6175034 | 0.0000000 |
1293 | tRNA processing in the mitochondrion | 18 | 0.0000069 | -0.6121552 | 0.0001659 |
755 | Phosphorylation of CD3 and TCR zeta chains | 14 | 0.0000742 | -0.6116593 | 0.0013163 |
955 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 98 | 0.0000000 | -0.6102012 | 0.0000000 |
127 | Cap-dependent Translation Initiation | 116 | 0.0000000 | -0.6072652 | 0.0000000 |
319 | Eukaryotic Translation Initiation | 116 | 0.0000000 | -0.6072652 | 0.0000000 |
362 | Formation of the ternary complex, and subsequently, the 43S complex | 50 | 0.0000000 | -0.5892826 | 0.0000000 |
# focus on apoptosis
mres5$enrichment_result[grep("apop",mres5$enrichment_result$set),] %>%
kbl(caption="apoptosis pathways in latent compared to mock-infected") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
356 | Formation of apoptosome | 10 | 0.2139934 | 0.2270018 | 0.4384833 |
942 | Regulation of the apoptosome activity | 10 | 0.2139934 | 0.2270018 | 0.4384833 |
204 | Cytochrome c-mediated apoptotic response | 12 | 0.3215775 | 0.1653117 | 0.5394338 |
1155 | TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain | 10 | 0.6824221 | 0.0747454 | 0.8337138 |
135 | Caspase activation via extrinsic apoptotic signalling pathway | 20 | 0.6112032 | 0.0656972 | 0.7881025 |
1145 | TNFR1-induced proapoptotic signaling | 23 | 0.7249732 | 0.0424045 | 0.8566061 |
if (!file.exists("latent_v_mock_mitch.html")) {
mitch_report(res=mres5,outfile="latent_v_mock_mitch.html",overwrite=TRUE)
}
# custom apop list
a5 <- m5[which(rownames(m5) %in% apop),,drop=FALSE]
a5[order(-a5$x),,drop=FALSE]
## x
## PTEN 11.27138605
## BAD 8.90529930
## BID 8.71811788
## BCL2 8.12345445
## BCL2L13 7.85896810
## MEF2C 6.56896458
## CYCS 4.74623047
## CASP7 4.66258312
## BBC3 4.09279560
## BCL2L1 3.58884604
## BCL2L2 2.47850099
## BAK1 1.59402864
## HRK -0.09151097
## CCR5 -0.17021668
## CASP9 -0.33859942
## SELENOS -0.46553562
## SIRT1 -0.64886280
## CDKN2A -1.32598799
## ST6GAL1 -1.37049203
## CASP8 -1.85377861
## MCL1 -2.22019479
## BCL2L11 -3.82304227
## CASP3 -4.04225029
## BAX -5.32460664
## PLEKHO2 -16.28613144
ares5 <- mitch_calc(m5,genesets=list("custom_apop"=apop))
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
ares5$enrichment_result
## set setSize pANOVA s.dist p.adjustANOVA
## 1 custom_apop 25 0.917809 -0.01193114 0.917809
ml <- list("lat_v_by"= lat_v_by,
"lat_v_prod" = lat_v_prod,
"prod_v_all" = prod_v_all,
"prod_v_mock" = prod_v_mock,
"lat_v_mock" = lat_v_mock)
str(ml)
## List of 5
## $ lat_v_by :'data.frame': 10939 obs. of 5 variables:
## ..$ p_val : num [1:10939] 0.00 1.07e-175 5.21e-162 1.99e-143 5.99e-125 ...
## ..$ avg_log2FC: num [1:10939] 0.777 0.371 0.272 0.316 0.353 ...
## ..$ pct.1 : num [1:10939] 0.987 0.599 0.434 0.484 0.582 0.198 1 0.998 0.133 1 ...
## ..$ pct.2 : num [1:10939] 0.327 0.121 0.06 0.09 0.155 0.018 1 1 0.008 0.999 ...
## ..$ p_val_adj : num [1:10939] 0.00 3.93e-171 1.91e-157 7.29e-139 2.19e-120 ...
## $ lat_v_prod :'data.frame': 11129 obs. of 5 variables:
## ..$ p_val : num [1:11129] 3.27e-213 2.00e-197 1.11e-195 1.30e-182 2.45e-182 ...
## ..$ avg_log2FC: num [1:11129] -1.37 -1.07 -1.25 -1.09 -1.03 ...
## ..$ pct.1 : num [1:11129] 0.484 0.582 0.599 0.987 0.434 0.198 0.133 0.061 1 1 ...
## ..$ pct.2 : num [1:11129] 0.956 0.953 0.946 0.971 0.922 0.8 0.741 0.647 1 1 ...
## ..$ p_val_adj : num [1:11129] 1.20e-208 7.34e-193 4.06e-191 4.75e-178 8.96e-178 ...
## $ prod_v_all :'data.frame': 10703 obs. of 5 variables:
## ..$ p_val : num [1:10703] 0 0 0 0 0 0 0 0 0 0 ...
## ..$ avg_log2FC: num [1:10703] 0.0807 -0.1934 -0.2092 1.5865 1.6545 ...
## ..$ pct.1 : num [1:10703] 1 1 1 0.946 0.956 0.971 0.8 0.498 0.922 0.647 ...
## ..$ pct.2 : num [1:10703] 1 1 1 0.156 0.124 0.366 0.033 0.009 0.086 0.016 ...
## ..$ p_val_adj : num [1:10703] 0 0 0 0 0 0 0 0 0 0 ...
## $ prod_v_mock:'data.frame': 10713 obs. of 5 variables:
## ..$ p_val : num [1:10713] 0 0 0 0 0 ...
## ..$ avg_log2FC: num [1:10713] 1.627 1.684 1.886 0.806 1.314 ...
## ..$ pct.1 : num [1:10713] 0.946 0.956 0.971 0.8 0.922 0.647 0.741 0.953 0.603 1 ...
## ..$ pct.2 : num [1:10713] 0.101 0.092 0.269 0.019 0.039 0.015 0.009 0.082 0.004 0.999 ...
## ..$ p_val_adj : num [1:10713] 0 0 0 0 0 ...
## $ lat_v_mock :'data.frame': 10951 obs. of 5 variables:
## ..$ p_val : num [1:10951] 1.99e-272 1.75e-152 4.60e-143 3.08e-132 2.60e-100 ...
## ..$ avg_log2FC: num [1:10951] 0.798 0.391 0.378 0.282 0.316 ...
## ..$ pct.1 : num [1:10951] 0.987 0.582 0.599 0.434 0.484 1 0.993 1 0.198 1 ...
## ..$ pct.2 : num [1:10951] 0.269 0.082 0.101 0.039 0.092 0.998 0.982 1 0.019 1 ...
## ..$ p_val_adj : num [1:10951] 7.29e-268 6.40e-148 1.68e-138 1.13e-127 9.54e-96 ...
mm <- mitch_import(ml,DEtype="seurat")
## Note: Mean no. genes in input = 10887
## Note: no. genes in output = 11135
## Note: estimated proportion of input genes in output = 1.02
str(mm)
## 'data.frame': 11135 obs. of 5 variables:
## $ lat_v_by : num 175 175 161 143 124 ...
## $ lat_v_prod : num -182 -195 -182 -212 -197 ...
## $ prod_v_all : num 221 221 221 221 221 ...
## $ prod_v_mock: num 261 261 261 261 261 ...
## $ lat_v_mock : num 271.7 142.3 131.5 99.6 151.8 ...
head(mm)
## lat_v_by lat_v_prod prod_v_all prod_v_mock lat_v_mock
## pol 174.97945 -181.8869 221.219 260.9277 271.70110
## env 174.96945 -194.9551 221.219 260.9277 142.33738
## tat 161.28311 -181.6113 221.219 260.9277 131.51163
## gag 142.70074 -212.4848 221.219 260.9277 99.58430
## nef 124.22267 -196.6982 221.219 260.9277 151.75740
## vif 90.52759 -139.3709 221.219 260.9277 53.39414
tail(mm)
## lat_v_by lat_v_prod prod_v_all prod_v_mock lat_v_mock
## SMC5-AS1 NA 0.11864561 10.942156 6.308547 NA
## AL157938.2 NA -0.08461744 5.984703 4.721785 NA
## BX537318.1 NA 0.07932208 2.314550 3.143039 NA
## PCLAF NA NA -29.005164 -40.016357 -3.5194260
## LINC01678 NA NA NA -4.533175 -0.7921354
## COL22A1 NA NA NA -1.824147 -4.5226730
mresm <- mitch_calc(x=mm,genesets=gset,cores=CORES,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mresm$enrichment_result,50) %>%
kbl(caption="pathways dysregulated in all") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pMANOVA | s.lat_v_by | s.lat_v_prod | s.prod_v_all | s.prod_v_mock | s.lat_v_mock | p.lat_v_by | p.lat_v_prod | p.prod_v_all | p.prod_v_mock | p.lat_v_mock | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1267 | Viral mRNA Translation | 87 | 0.0000000 | -0.7797113 | 0.1712763 | -0.7142555 | -0.6721604 | -0.6629507 | 0.0000000 | 0.0043935 | 0.0000000 | 0.0000000 | 0.0000000 | 1.427848 | 0.3955906 | 0.0000000 |
751 | Peptide chain elongation | 87 | 0.0000000 | -0.7657992 | 0.1890858 | -0.7277183 | -0.6842639 | -0.6415616 | 0.0000000 | 0.0017222 | 0.0000000 | 0.0000000 | 0.0000000 | 1.425340 | 0.4024747 | 0.0000000 |
320 | Eukaryotic Translation Elongation | 90 | 0.0000000 | -0.7693956 | 0.1681593 | -0.7300454 | -0.6777026 | -0.6447621 | 0.0000000 | 0.0044285 | 0.0000000 | 0.0000000 | 0.0000000 | 1.424153 | 0.3936173 | 0.0000000 |
358 | Formation of a pool of free 40S subunits | 98 | 0.0000000 | -0.7592409 | 0.1747784 | -0.7045579 | -0.6588389 | -0.6360596 | 0.0000000 | 0.0020592 | 0.0000000 | 0.0000000 | 0.0000000 | 1.393570 | 0.3894577 | 0.0000000 |
978 | SARS-CoV-1 modulates host translation machinery | 36 | 0.0000000 | -0.7530796 | 0.0836163 | -0.6924078 | -0.6522142 | -0.6202899 | 0.0000000 | 0.3529491 | 0.0000000 | 0.0000000 | 0.0000000 | 1.365171 | 0.3448570 | 0.0000000 |
322 | Eukaryotic Translation Termination | 91 | 0.0000000 | -0.7850087 | 0.1093175 | -0.6335067 | -0.5941009 | -0.6598258 | 0.0000000 | 0.0416377 | 0.0000000 | 0.0000000 | 0.0000000 | 1.348275 | 0.3549381 | 0.0000000 |
1014 | Selenocysteine synthesis | 90 | 0.0000000 | -0.7480796 | 0.1504679 | -0.6575806 | -0.6152551 | -0.6242130 | 0.0000000 | 0.0105557 | 0.0000000 | 0.0000000 | 0.0000000 | 1.335237 | 0.3668074 | 0.0000000 |
994 | SRP-dependent cotranslational protein targeting to membrane | 109 | 0.0000000 | -0.7571139 | 0.0818686 | -0.6465477 | -0.5944134 | -0.6394890 | 0.0000000 | 0.1139386 | 0.0000000 | 0.0000000 | 0.0000000 | 1.326733 | 0.3368626 | 0.0000000 |
693 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 93 | 0.0000000 | -0.7329683 | 0.1423701 | -0.6458337 | -0.6057734 | -0.6166383 | 0.0000000 | 0.0137135 | 0.0000000 | 0.0000000 | 0.0000000 | 1.312180 | 0.3579926 | 0.0000000 |
399 | GTP hydrolysis and joining of the 60S ribosomal subunit | 109 | 0.0000000 | -0.7112741 | 0.1524794 | -0.6667682 | -0.6212295 | -0.5987246 | 0.0000000 | 0.0043968 | 0.0000000 | 0.0000000 | 0.0000000 | 1.310778 | 0.3612573 | 0.0000000 |
546 | L13a-mediated translational silencing of Ceruloplasmin expression | 108 | 0.0000000 | -0.7011868 | 0.1617369 | -0.6698847 | -0.6278583 | -0.5890318 | 0.0000000 | 0.0026940 | 0.0000000 | 0.0000000 | 0.0000000 | 1.306802 | 0.3641492 | 0.0000000 |
350 | Formation of ATP by chemiosmotic coupling | 18 | 0.0000000 | -0.7224181 | -0.4827246 | -0.4922313 | -0.4008032 | -0.7206277 | 0.0000001 | 0.0004842 | 0.0002121 | 0.0026019 | 0.0000001 | 1.295048 | 0.1483390 | 0.0000000 |
963 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 98 | 0.0000000 | -0.6987334 | 0.1605868 | -0.6305372 | -0.5870755 | -0.5860275 | 0.0000000 | 0.0045136 | 0.0000000 | 0.0000000 | 0.0000000 | 1.264784 | 0.3545724 | 0.0000000 |
128 | Cap-dependent Translation Initiation | 116 | 0.0000000 | -0.6868869 | 0.1219781 | -0.6228969 | -0.5842508 | -0.5770241 | 0.0000000 | 0.0176566 | 0.0000000 | 0.0000000 | 0.0000000 | 1.244588 | 0.3336775 | 0.0000000 |
321 | Eukaryotic Translation Initiation | 116 | 0.0000000 | -0.6868869 | 0.1219781 | -0.6228969 | -0.5842508 | -0.5770241 | 0.0000000 | 0.0176566 | 0.0000000 | 0.0000000 | 0.0000000 | 1.244588 | 0.3336775 | 0.0000000 |
365 | Formation of the ternary complex, and subsequently, the 43S complex | 50 | 0.0000000 | -0.7091236 | 0.0754102 | -0.6112741 | -0.5669496 | -0.5846938 | 0.0000000 | 0.3201406 | 0.0000000 | 0.0000000 | 0.0000000 | 1.243181 | 0.3149324 | 0.0000000 |
1013 | Selenoamino acid metabolism | 101 | 0.0000000 | -0.7013625 | 0.1059072 | -0.5803125 | -0.5419502 | -0.5823026 | 0.0000000 | 0.0526854 | 0.0000000 | 0.0000000 | 0.0000000 | 1.213538 | 0.3219688 | 0.0000000 |
1232 | Translocation of ZAP-70 to Immunological synapse | 10 | 0.0000007 | -0.2897665 | 0.4527103 | -0.7017423 | -0.6701541 | -0.4457775 | 0.1246647 | 0.0122509 | 0.0000752 | 0.0001561 | 0.0158844 | 1.195482 | 0.4694548 | 0.0000049 |
349 | Folding of actin by CCT/TriC | 10 | 0.0000733 | -0.7439760 | -0.6037216 | -0.2047523 | -0.0520319 | -0.6817182 | 0.0000281 | 0.0003503 | 0.2883756 | 0.8072446 | 0.0000707 | 1.194718 | 0.3090342 | 0.0004131 |
622 | Mitochondrial translation elongation | 88 | 0.0000000 | -0.6921542 | -0.6670206 | 0.0859292 | 0.2193056 | -0.6412883 | 0.0000000 | 0.0000000 | 0.1093302 | 0.0001374 | 0.0000000 | 1.179289 | 0.4516535 | 0.0000000 |
624 | Mitochondrial translation termination | 88 | 0.0000000 | -0.6746850 | -0.6676728 | 0.1097298 | 0.2324849 | -0.6256711 | 0.0000000 | 0.0000000 | 0.0451621 | 0.0000546 | 0.0000000 | 1.165565 | 0.4554906 | 0.0000000 |
623 | Mitochondrial translation initiation | 88 | 0.0000000 | -0.6769320 | -0.6650518 | 0.0987463 | 0.2219028 | -0.6310600 | 0.0000000 | 0.0000000 | 0.0691170 | 0.0001150 | 0.0000000 | 1.165229 | 0.4504657 | 0.0000000 |
984 | SARS-CoV-2 modulates host translation machinery | 47 | 0.0000000 | -0.7326514 | -0.1199920 | -0.4830142 | -0.4257719 | -0.6168887 | 0.0000000 | 0.1787794 | 0.0000000 | 0.0000002 | 0.0000000 | 1.160307 | 0.2318581 | 0.0000000 |
971 | Ribosomal scanning and start codon recognition | 57 | 0.0000000 | -0.6334491 | 0.0824174 | -0.5935089 | -0.5536607 | -0.5221832 | 0.0000000 | 0.2491757 | 0.0000000 | 0.0000000 | 0.0000000 | 1.157376 | 0.2972782 | 0.0000000 |
946 | Regulation of ornithine decarboxylase (ODC) | 49 | 0.0000000 | -0.6932697 | -0.6282254 | 0.1665645 | 0.2804466 | -0.5844761 | 0.0000000 | 0.0000000 | 0.0267969 | 0.0002946 | 0.0000000 | 1.150346 | 0.4737044 | 0.0000000 |
1221 | Translation initiation complex formation | 57 | 0.0000000 | -0.6168285 | 0.0867883 | -0.5945860 | -0.5555520 | -0.5072511 | 0.0000000 | 0.2265856 | 0.0000000 | 0.0000000 | 0.0000000 | 1.143453 | 0.2960213 | 0.0000000 |
316 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 11 | 0.0025018 | 0.5834663 | 0.6385542 | -0.3321371 | -0.4501663 | 0.4952683 | 0.0005375 | 0.0002229 | 0.0527631 | 0.0080554 | 0.0031994 | 1.142996 | 0.5318835 | 0.0101625 |
621 | Mitochondrial translation | 94 | 0.0000000 | -0.6589061 | -0.6543841 | 0.1136986 | 0.2357808 | -0.6049635 | 0.0000000 | 0.0000000 | 0.0324285 | 0.0000237 | 0.0000000 | 1.138805 | 0.4485159 | 0.0000000 |
196 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 25 | 0.0000000 | -0.6988509 | -0.4677521 | -0.3461136 | -0.2128252 | -0.6275953 | 0.0000000 | 0.0000336 | 0.0028535 | 0.0692309 | 0.0000000 | 1.125233 | 0.1991851 | 0.0000000 |
599 | Metabolism of polyamines | 54 | 0.0000000 | -0.6481897 | -0.6404774 | 0.2069916 | 0.3017422 | -0.5471073 | 0.0000000 | 0.0000000 | 0.0042361 | 0.0000448 | 0.0000000 | 1.124091 | 0.4773296 | 0.0000000 |
44 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S | 58 | 0.0000000 | -0.6214857 | 0.0688256 | -0.5709758 | -0.5314124 | -0.5128567 | 0.0000000 | 0.3250797 | 0.0000000 | 0.0000000 | 0.0000000 | 1.123573 | 0.2839250 | 0.0000000 |
692 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 113 | 0.0000000 | -0.6314519 | 0.0988086 | -0.5483800 | -0.5102736 | -0.5363730 | 0.0000000 | 0.0550157 | 0.0000000 | 0.0000000 | 0.0000000 | 1.121290 | 0.2966035 | 0.0000000 |
694 | Nonsense-Mediated Decay (NMD) | 113 | 0.0000000 | -0.6314519 | 0.0988086 | -0.5483800 | -0.5102736 | -0.5363730 | 0.0000000 | 0.0550157 | 0.0000000 | 0.0000000 | 0.0000000 | 1.121290 | 0.2966035 | 0.0000000 |
411 | Generation of second messenger molecules | 18 | 0.0000000 | -0.3519137 | 0.3853261 | -0.6286879 | -0.6146235 | -0.4491742 | 0.0117011 | 0.0041531 | 0.0000020 | 0.0000034 | 0.0011145 | 1.116731 | 0.4173076 | 0.0000000 |
934 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 48 | 0.0000000 | -0.6959441 | -0.5737251 | 0.0784878 | 0.1863686 | -0.5971654 | 0.0000000 | 0.0000000 | 0.2751249 | 0.0159677 | 0.0000000 | 1.100454 | 0.4176518 | 0.0000000 |
1115 | Somitogenesis | 46 | 0.0000000 | -0.6688323 | -0.5853209 | 0.1221077 | 0.2339324 | -0.5900579 | 0.0000000 | 0.0000000 | 0.1091570 | 0.0032842 | 0.0000000 | 1.098972 | 0.4372670 | 0.0000000 |
787 | Prefoldin mediated transfer of substrate to CCT/TriC | 24 | 0.0000000 | -0.6875960 | -0.4495250 | -0.3253785 | -0.1877325 | -0.6133934 | 0.0000000 | 0.0000910 | 0.0061292 | 0.1183004 | 0.0000001 | 1.091892 | 0.2045893 | 0.0000000 |
328 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 52 | 0.0000000 | -0.6816868 | -0.5846148 | 0.0856324 | 0.1961995 | -0.5785338 | 0.0000000 | 0.0000000 | 0.2192121 | 0.0084083 | 0.0000000 | 1.089495 | 0.4178528 | 0.0000000 |
675 | Negative regulation of NOTCH4 signaling | 53 | 0.0000000 | -0.6773215 | -0.5766735 | 0.0547688 | 0.1754186 | -0.5949953 | 0.0000000 | 0.0000000 | 0.4035726 | 0.0169357 | 0.0000000 | 1.085867 | 0.4046612 | 0.0000000 |
1264 | Vif-mediated degradation of APOBEC3G | 53 | 0.0000000 | -0.6649836 | -0.5912714 | 0.0828122 | 0.2034176 | -0.5642545 | 0.0000000 | 0.0000000 | 0.2288520 | 0.0058710 | 0.0000000 | 1.076302 | 0.4146149 | 0.0000000 |
1254 | Ubiquitin-dependent degradation of Cyclin D | 50 | 0.0000000 | -0.6733679 | -0.5633933 | 0.1023407 | 0.2047238 | -0.5768484 | 0.0000000 | 0.0000000 | 0.1562229 | 0.0070869 | 0.0000000 | 1.075163 | 0.4189392 | 0.0000000 |
1271 | Vpu mediated degradation of CD4 | 51 | 0.0000000 | -0.6824801 | -0.5524564 | 0.0698858 | 0.1806959 | -0.5855744 | 0.0000000 | 0.0000000 | 0.4378497 | 0.0287473 | 0.0000000 | 1.073042 | 0.4057351 | 0.0000000 |
1161 | TP53 Regulates Transcription of Death Receptors and Ligands | 10 | 0.0017944 | 0.2851102 | -0.2311372 | 0.6656098 | 0.6384848 | 0.3908374 | 0.2185210 | 0.0775232 | 0.0002562 | 0.0004821 | 0.0660997 | 1.066848 | 0.3627780 | 0.0075958 |
199 | Cross-presentation of soluble exogenous antigens (endosomes) | 46 | 0.0000000 | -0.6528929 | -0.5698806 | 0.1262175 | 0.2205876 | -0.5618807 | 0.0000000 | 0.0000000 | 0.0984802 | 0.0054885 | 0.0000000 | 1.063641 | 0.4236303 | 0.0000000 |
401 | Gap junction assembly | 10 | 0.0000451 | -0.5248444 | -0.1120360 | -0.6347736 | -0.5301865 | -0.3979925 | 0.0028763 | 0.3188506 | 0.0008072 | 0.0046578 | 0.0160653 | 1.063225 | 0.2016147 | 0.0002655 |
1240 | Transport of connexons to the plasma membrane | 10 | 0.0000451 | -0.5248444 | -0.1120360 | -0.6347736 | -0.5301865 | -0.3979925 | 0.0028763 | 0.3188506 | 0.0008072 | 0.0046578 | 0.0160653 | 1.063225 | 0.2016147 | 0.0002655 |
1253 | Ubiquitin Mediated Degradation of Phosphorylated Cdc25A | 49 | 0.0000000 | -0.6687139 | -0.5619567 | 0.0649142 | 0.1810283 | -0.5745787 | 0.0000000 | 0.0000000 | 0.3517092 | 0.0179208 | 0.0000000 | 1.063061 | 0.4011894 | 0.0000000 |
1293 | p53-Independent DNA Damage Response | 49 | 0.0000000 | -0.6687139 | -0.5619567 | 0.0649142 | 0.1810283 | -0.5745787 | 0.0000000 | 0.0000000 | 0.3517092 | 0.0179208 | 0.0000000 | 1.063061 | 0.4011894 | 0.0000000 |
1294 | p53-Independent G1/S DNA damage checkpoint | 49 | 0.0000000 | -0.6687139 | -0.5619567 | 0.0649142 | 0.1810283 | -0.5745787 | 0.0000000 | 0.0000000 | 0.3517092 | 0.0179208 | 0.0000000 | 1.063061 | 0.4011894 | 0.0000000 |
961 | Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins. | 123 | 0.0000000 | -0.6324767 | -0.5142019 | -0.2122707 | -0.1221275 | -0.6350041 | 0.0000000 | 0.0000000 | 0.0000153 | 0.0123202 | 0.0000000 | 1.061901 | 0.2408708 | 0.0000000 |
mypalette <- colorRampPalette(c("blue","white","red"))(n=25)
mmx <- head(mresm$enrichment_result,50)[,c(1,4:8)]
rownames(mmx) <- mmx[,1]
mmx[,1]=NULL
heatmap.2(as.matrix(mmx),scale="none",trace="none",
margin=c(8,22), col=mypalette,cexCol=0.8)
# focus on apoptosis
mresm$enrichment_result[grep("apop",mresm$enrichment_result$set),] %>%
kbl(caption="apoptosis pathways in productive compared to mock-infected") %>%
kable_paper("hover",full_width=FALSE)
set | setSize | pMANOVA | s.lat_v_by | s.lat_v_prod | s.prod_v_all | s.prod_v_mock | s.lat_v_mock | p.lat_v_by | p.lat_v_prod | p.prod_v_all | p.prod_v_mock | p.lat_v_mock | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
136 | Caspase activation via extrinsic apoptotic signalling pathway | 21 | 0.1936749 | 0.1893086 | 0.1788480 | 0.0717101 | 0.0632074 | 0.2823470 | 0.1881514 | 0.2448373 | 0.5154099 | 0.5721466 | 0.0394881 | 0.3958304 | 0.0912475 | 0.3194536 |
359 | Formation of apoptosome | 10 | 0.3912958 | 0.1036601 | -0.0072090 | 0.1923665 | 0.2183987 | 0.0330072 | 0.5202848 | 0.9954584 | 0.2504322 | 0.1991188 | 0.8061831 | 0.3107889 | 0.0977515 | 0.5097758 |
949 | Regulation of the apoptosome activity | 10 | 0.3912958 | 0.1036601 | -0.0072090 | 0.1923665 | 0.2183987 | 0.0330072 | 0.5202848 | 0.9954584 | 0.2504322 | 0.1991188 | 0.8061831 | 0.3107889 | 0.0977515 | 0.5097758 |
205 | Cytochrome c-mediated apoptotic response | 12 | 0.1851160 | 0.1642874 | 0.0477389 | 0.1791861 | 0.1590466 | 0.0475600 | 0.2837528 | 0.7472528 | 0.2394247 | 0.3002126 | 0.7209370 | 0.2982193 | 0.0660630 | 0.3084481 |
1165 | TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain | 11 | 0.9792885 | 0.1221296 | 0.0923965 | 0.0887583 | 0.0719127 | 0.1491150 | 0.7343021 | 0.8847747 | 0.5772069 | 0.6532901 | 0.6233959 | 0.2423582 | 0.0306467 | 0.9822924 |
1153 | TNFR1-induced proapoptotic signaling | 23 | 0.0706112 | 0.0620582 | 0.0514603 | 0.0993134 | 0.0407975 | 0.1738252 | 0.5316731 | 0.6335161 | 0.3490543 | 0.6802378 | 0.1196193 | 0.2196410 | 0.0540802 | 0.1547409 |
if (!file.exists("multi_mitch.html")) {
mitch_report(res=mres5,outfile="multi_mitch.html",overwrite=TRUE)
}
# custom apop list
am <- mm[which(rownames(mm) %in% apop),,drop=FALSE]
am
## lat_v_by lat_v_prod prod_v_all prod_v_mock lat_v_mock
## BAX -30.76251252 -11.92870938 -9.03875061 -5.32460664 -21.3976648
## PTEN 21.32051053 4.92530925 14.92296985 11.27138605 16.3910356
## CYCS -19.97075249 -31.55237715 9.36009013 4.74623047 -14.0007153
## ST6GAL1 19.92884203 13.53052980 -0.68162839 -1.37049203 16.4314650
## BCL2L11 8.61209030 10.56552806 -3.29009416 -3.82304227 3.5419553
## MEF2C 7.76316507 0.19693914 14.10634431 6.56896458 3.7846933
## BCL2 6.86792163 0.02468332 14.50872197 8.12345445 4.0604840
## CASP9 6.83892720 4.15765685 -0.26071214 -0.33859942 5.0047795
## CASP3 6.44055866 4.08280387 -0.41067524 -4.04225029 0.5560729
## CASP7 5.63773348 0.68857954 6.22697375 4.66258312 4.4844346
## CASP8 5.56686954 1.13464266 3.77896500 -1.85377861 3.0321282
## HRK 5.02172480 3.18041204 -0.12479074 -0.09151097 3.3197164
## SIRT1 4.48002582 1.20325251 -1.78976622 -0.64886280 2.1062324
## BCL2L2 4.14001595 0.25370945 5.28215310 2.47850099 2.0388448
## MCL1 3.77807893 4.27711111 -1.47518417 -2.22019479 1.4901105
## SELENOS -3.71681388 -3.45887483 -0.03685491 -0.46553562 -3.8725593
## BCL2L1 3.49356694 0.25803111 5.49833946 3.58884604 2.4349476
## BID -3.46668487 -9.77445785 9.38496521 8.71811788 -1.3141669
## BAD -2.92209762 -10.94394139 11.99443548 8.90529930 -1.5041995
## BCL2L13 1.55612052 -1.53199007 12.43608061 7.85896810 1.1259759
## BAK1 -1.17457054 -1.67359684 -1.09534842 1.59402864 -0.3351071
## CCR5 -1.13990223 0.85072500 -0.03688655 -0.17021668 -0.5885146
## PLEKHO2 -0.87675679 1.33181829 -11.74504340 -16.28613144 -3.9381234
## BBC3 0.62738833 -0.39134438 3.96761906 4.09279560 1.2129514
## CDKN2A -0.02386415 1.11444415 -2.58024064 -1.32598799 -0.1290172
heatmap.2(as.matrix(am),scale="none",trace="none",
margin=c(8,22), col=mypalette,cexCol=0.8)
aresm <- mitch_calc(mm,genesets=list("custom_apop"=apop))
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
t(aresm$enrichment_result)
## 1
## set "custom_apop"
## setSize "25"
## pMANOVA "0.7283974"
## s.lat_v_by "-0.02114937"
## s.lat_v_prod "-0.04584704"
## s.prod_v_all "0.04961027"
## s.prod_v_mock "-0.01147897"
## s.lat_v_mock "-0.08558379"
## p.lat_v_by "0.9394897"
## p.lat_v_prod "0.7322448"
## p.prod_v_all "0.5977598"
## p.prod_v_mock "0.9672335"
## p.lat_v_mock "0.5144553"
## s.dist "0.1116547"
## SD "0.0496162"
## p.adjustMANOVA "0.7283974"
For reproducibility
sessionInfo()
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] pkgload_1.3.2.1 GGally_2.1.2 ggplot2_3.4.3 reshape2_1.4.4
## [5] beeswarm_0.4.0 gtools_3.9.4 tibble_3.2.1 dplyr_1.1.3
## [9] echarts4r_0.4.5 kableExtra_1.3.4 gplots_3.1.3 mitch_1.12.0
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.4 xfun_0.40 bslib_0.5.1 htmlwidgets_1.6.2
## [5] caTools_1.18.2 vctrs_0.6.3 tools_4.3.1 bitops_1.0-7
## [9] generics_0.1.3 parallel_4.3.1 fansi_1.0.4 highr_0.10
## [13] pkgconfig_2.0.3 KernSmooth_2.23-22 RColorBrewer_1.1-3 webshot_0.5.5
## [17] lifecycle_1.0.3 compiler_4.3.1 stringr_1.5.0 munsell_0.5.0
## [21] httpuv_1.6.11 htmltools_0.5.6 sass_0.4.7 yaml_2.3.7
## [25] later_1.3.1 pillar_1.9.0 jquerylib_0.1.4 MASS_7.3-60
## [29] ellipsis_0.3.2 cachem_1.0.8 mime_0.12 tidyselect_1.2.0
## [33] rvest_1.0.3 digest_0.6.33 stringi_1.7.12 fastmap_1.1.1
## [37] grid_4.3.1 colorspace_2.1-0 cli_3.6.1 magrittr_2.0.3
## [41] utf8_1.2.3 withr_2.5.0 scales_1.2.1 promises_1.2.1
## [45] rmarkdown_2.25 httr_1.4.7 gridExtra_2.3 shiny_1.7.5
## [49] evaluate_0.21 knitr_1.44 viridisLite_0.4.2 rlang_1.1.1
## [53] Rcpp_1.0.11 xtable_1.8-4 glue_1.6.2 xml2_1.3.5
## [57] svglite_2.1.1 rstudioapi_0.15.0 reshape_0.8.9 jsonlite_1.8.7
## [61] R6_2.5.1 plyr_1.8.8 systemfonts_1.0.4