Source: https://github.com/markziemann/asd_meth
Here I will be running a comparison of differential methylation data from guthrie and fresh blood samples.
Here are the files that I’m using:
limma_blood_ADOS.csv
limma_guthrie_ADOS.csv
limma_buccal_ADOS.csv
suppressPackageStartupMessages({
library("limma")
library("parallel")
library("mitch")
library("HGNChelper")
library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
source("meth_functions.R")
library("data.table")
library("kableExtra")
library("eulerr")
library("GenomicRanges")
# data("dualmap850kEID")
library("RhpcBLASctl")
})
source("meth_functions.R")
RhpcBLASctl::blas_set_num_threads(1)
anno <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
myann <- data.frame(anno[,c("UCSC_RefGene_Name","UCSC_RefGene_Group","Islands_Name","Relation_to_Island")])
head(myann)
## UCSC_RefGene_Name UCSC_RefGene_Group Islands_Name
## cg18478105 YTHDF1 TSS200 chr20:61846843-61848103
## cg09835024 EIF2S3 TSS1500 chrX:24072558-24073135
## cg14361672 PKN3 TSS1500 chr9:131464843-131465830
## cg01763666 CCDC57 Body
## cg12950382 INF2;INF2 Body;Body
## cg02115394 CDC16;CDC16 TSS200;TSS200 chr13:115000148-115000874
## Relation_to_Island
## cg18478105 Island
## cg09835024 Island
## cg14361672 N_Shore
## cg01763666 OpenSea
## cg12950382 OpenSea
## cg02115394 Island
gp <- myann[,"UCSC_RefGene_Name",drop=FALSE]
gp2 <- strsplit(gp$UCSC_RefGene_Name,";")
names(gp2) <- rownames(gp)
gp2 <- lapply(gp2,unique)
gt <- stack(gp2)
colnames(gt) <- c("gene","probe")
gt$probe <- as.character(gt$probe)
dim(gt)
## [1] 684970 2
head(gt)
## gene probe
## 1 YTHDF1 cg18478105
## 2 EIF2S3 cg09835024
## 3 PKN3 cg14361672
## 4 CCDC57 cg01763666
## 5 INF2 cg12950382
## 6 CDC16 cg02115394
#update gene symbols
new.hgnc.table <- readRDS("new.hgnc.table.rds")
fix <- checkGeneSymbols(gt$gene,map=new.hgnc.table)
## Warning in checkGeneSymbols(gt$gene, map = new.hgnc.table): Human gene symbols
## should be all upper-case except for the 'orf' in open reading frames. The case
## of some letters was corrected.
## Warning in checkGeneSymbols(gt$gene, map = new.hgnc.table): x contains
## non-approved gene symbols
fix2 <- fix[which(fix$x != fix$Suggested.Symbol),]
length(unique(fix2$x))
## [1] 3254
gt$gene <- fix$Suggested.Symbol
bl_mvals <- readRDS(file="bl_mvals.rds")
gu_mvals <- readRDS(file="gu_mvals.rds")
bu_mvals <- readRDS(file="buccal_mvals.rds")
bl_design <- readRDS(file="bl_design_ados.rds")
gu_design <- readRDS(file="gu_design_ados.rds")
bu_design <- readRDS(file="buccal_design_ados.rds")
bl_lim <- read.csv("limma_blood_ADOS.csv")
gu_lim <- read.csv("limma_guthrie_ADOS.csv")
bu_lim <- read.csv("limma_buccal_ADOS.csv")
For each gene, calculate the mean probe t-statistic.
blm <- mitch_import(bl_lim,DEtype="limma",geneTable=gt,geneIDcol="Name")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 802647
## Note: no. genes in output = 22285
## Warning in mitch_import(bl_lim, DEtype = "limma", geneTable = gt, geneIDcol = "Name"): Warning: less than half of the input genes are also in the
## output
gum <- mitch_import(gu_lim,DEtype="limma",geneTable=gt,geneIDcol="Name")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 790658
## Note: no. genes in output = 22269
## Warning in mitch_import(gu_lim, DEtype = "limma", geneTable = gt, geneIDcol = "Name"): Warning: less than half of the input genes are also in the
## output
bum <- mitch_import(bu_lim,DEtype="limma",geneTable=gt,geneIDcol="Name")
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 801260
## Note: no. genes in output = 22286
## Warning in mitch_import(bu_lim, DEtype = "limma", geneTable = gt, geneIDcol = "Name"): Warning: less than half of the input genes are also in the
## output
dim(bl_lim)
## [1] 802647 14
par(mfrow=c(2,1))
hist(bl_lim$t,xlab="probe t-stat",main="blood at assessment", breaks=30, xlim=c(-4,4))
grid() ; abline(v=0,lty=1,lwd=3)
hist(blm$x,xlab="gene mean t-stat",main="blood at assessment", breaks=30, xlim=c(-2,2))
grid() ; abline(v=0,lty=1,lwd=3)
hist(gu_lim$t,xlab="probe t-stat",main="neonatal Guthrie card", breaks=30, xlim=c(-4,4))
grid() ; abline(v=0,lty=1,lwd=3)
hist(gum$x,xlab="gene mean t-stat",main="neonatal Guthrie card", breaks=30, xlim=c(-2,2))
grid() ; abline(v=0,lty=1,lwd=3)
hist(bu_lim$t,xlab="probe t-stat",main="buccal swab", breaks=30, xlim=c(-4,4))
grid() ; abline(v=0,lty=1,lwd=3)
hist(bum$x,xlab="gene mean t-stat",main="buccal swab", breaks=30, xlim=c(-2,2))
grid() ; abline(v=0,lty=1,lwd=3)
pdf("hist_bl_ados.pdf")
par(mfrow=c(2,1))
hist(bl_lim$t,xlab="probe t-stat",main="blood at assessment", breaks=30, xlim=c(-4,4))
grid() ; abline(v=0,lty=1,lwd=3)
hist(blm$x,xlab="gene mean t-stat",main="blood at assessment", breaks=30, xlim=c(-2,2))
grid() ; abline(v=0,lty=1,lwd=3)
dev.off()
## png
## 2
pdf("hist_gu_ados.pdf")
hist(gu_lim$t,xlab="probe t-stat",main="neonatal Guthrie card", breaks=30, xlim=c(-4,4))
grid() ; abline(v=0,lty=1,lwd=3)
hist(gum$x,xlab="gene mean t-stat",main="neonatal Guthrie card", breaks=30, xlim=c(-2,2))
grid() ; abline(v=0,lty=1,lwd=3)
dev.off()
## png
## 2
par(mfrow=c(1,1))
Now compare gene methylation scores for blood and guthrie cards. The mean limma t-statistic is used for a scatterplot, then rank-rank plot.
m1 <- merge(blm,gum,by=0)
rownames(m1) <- m1$Row.names
m1$Row.names=NULL
colnames(m1) <- c("bl","gu")
plot(m1$bl,m1$gu,xlab="blood at assessment",ylab="neonatal Guthrie card",
col = rgb(red = 0.6, green = 0.6, blue = 0.6, alpha = 0.5) ,
pch=19,cex=0.9)
grid()
abline(v=0, h=0, lty=2, lwd=2, col="blue")
mtext("aggregated t-statistic for each gene (mean)")
rm1 <- apply(m1,2,rank)
mydiff <- apply(m1,2,function(x) { length(which(x<0)) } )
rm2 <- rm1
rm2[,1] <- rm2[,1] - mydiff[1]
rm2[,2] <- rm2[,2] - mydiff[2]
rnk <- rm2
palette <- colorRampPalette(c("white", "yellow", "orange", "red","darkred", "black"))
xmin = min(rnk[, 1])
xmax = max(rnk[, 1])
ymin = min(rnk[, 2])
ymax = max(rnk[, 2])
k <- MASS::kde2d(rnk[, 1], rnk[, 2])
X_AXIS = "blood at assessment"
Y_AXIS = "neonatal Guthrie card"
filled.contour(k, xlim = c(xmin, xmax), ylim = c(ymin, ymax),
color.palette = palette, plot.title = {
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
title(main="gene rank",xlab = X_AXIS, ylab = Y_AXIS)
})
pdf("genedens_ados.pdf")
par(mfrow=c(2,2))
plot(1)
plot(1)
plot(m1$bl,m1$gu,xlab="blood at assessment",ylab="neonatal Guthrie card",
col = rgb(red = 0.6, green = 0.6, blue = 0.6, alpha = 0.5) ,
pch=19,cex=0.9)
grid()
abline(v=0, h=0, lty=2, lwd=2, col="blue")
mtext("aggregated t-statistic for each gene (mean)")
filled.contour(k, xlim = c(xmin, xmax), ylim = c(ymin, ymax),
color.palette = palette, plot.title = {
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
title(main = "gene rank", xlab = X_AXIS, ylab = Y_AXIS)
})
dev.off()
## png
## 2
par(mar = c(5.1, 26.1, 4.1, 2.1))
msigdb <- gmt_import("msigdb.v2023.2.Hs.symbols.gmt")
gobp <- msigdb[grep("^GOBP",names(msigdb))]
gomf <- msigdb[grep("^GOMF",names(msigdb))]
gocc <- msigdb[grep("^GOCC",names(msigdb))]
go <- c(gobp,gomf,gocc)
names(go) <- gsub("_"," ",names(go))
reactome <- gmt_import("ReactomePathways_2024-09-18.gmt")
sfari <- readLines("sfari.txt")
lsfari <- list(sfari)
names(lsfari) <- "sfari"
cores = 8
## BLOOD
# go
bl_mres1 <- mitch_calc(blm,go,priority="effect",cores=cores,minsetsize=5)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
bl_mres1tbl <- subset(bl_mres1$enrichment_result,p.adjustANOVA<0.01)
top <- head(bl_mres1tbl,30)
head(top[order(-abs(top$s.dist)),],30) %>%
kbl(caption="BLOOD: Top effect size GOs found with mitch after 1% FDR filtering") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
7737 | GOMF BITTER TASTE RECEPTOR ACTIVITY | 24 | 0.00e+00 | -0.8235629 | 0.0000000 |
9098 | GOMF TASTE RECEPTOR ACTIVITY | 30 | 0.00e+00 | -0.6360009 | 0.0000004 |
9058 | GOMF STRUCTURAL CONSTITUENT OF CHROMATIN | 80 | 0.00e+00 | 0.5544292 | 0.0000000 |
9513 | GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT | 37 | 0.00e+00 | 0.5192766 | 0.0000088 |
10005 | GOCC PROTEASOME CORE COMPLEX | 20 | 9.28e-05 | 0.5047743 | 0.0084929 |
9510 | GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT | 54 | 0.00e+00 | 0.4579300 | 0.0000013 |
9887 | GOCC NUCLEOSOME | 116 | 0.00e+00 | 0.4562063 | 0.0000000 |
1452 | GOBP EXCRETION | 29 | 6.37e-05 | 0.4289211 | 0.0061609 |
8600 | GOMF ODORANT BINDING | 104 | 0.00e+00 | -0.4274379 | 0.0000000 |
8835 | GOMF PROTEIN CARRIER CHAPERONE | 33 | 2.43e-05 | 0.4245420 | 0.0027021 |
10111 | GOCC SMALL RIBOSOMAL SUBUNIT | 71 | 0.00e+00 | 0.4030221 | 0.0000010 |
9512 | GOCC CYTOSOLIC RIBOSOME | 108 | 0.00e+00 | 0.3914337 | 0.0000000 |
9067 | GOMF STRUCTURAL CONSTITUENT OF RIBOSOME | 156 | 0.00e+00 | 0.3866463 | 0.0000000 |
10052 | GOCC RIBOSOMAL SUBUNIT | 178 | 0.00e+00 | 0.3820720 | 0.0000000 |
6859 | GOBP SENSORY PERCEPTION OF BITTER TASTE | 44 | 1.41e-05 | -0.3782674 | 0.0016998 |
5067 | GOBP PROTON MOTIVE FORCE DRIVEN ATP SYNTHESIS | 65 | 2.00e-07 | 0.3764149 | 0.0000264 |
8521 | GOMF NAD P H DEHYDROGENASE QUINONE ACTIVITY | 37 | 7.42e-05 | 0.3763764 | 0.0070369 |
9021 | GOMF SNRNA BINDING | 48 | 7.70e-06 | 0.3731843 | 0.0009540 |
9730 | GOCC LARGE RIBOSOMAL SUBUNIT | 111 | 0.00e+00 | 0.3678348 | 0.0000000 |
1008 | GOBP CYTOPLASMIC TRANSLATION | 141 | 0.00e+00 | 0.3444921 | 0.0000000 |
8662 | GOMF OXIDOREDUCTION DRIVEN ACTIVE TRANSMEMBRANE TRANSPORTER ACTIVITY | 53 | 1.55e-05 | 0.3431073 | 0.0018432 |
6775 | GOBP RIBOSOMAL SMALL SUBUNIT BIOGENESIS | 101 | 0.00e+00 | 0.3351064 | 0.0000013 |
2347 | GOBP MATURATION OF SSU RRNA | 51 | 5.71e-05 | 0.3256768 | 0.0056317 |
10044 | GOCC RESPIRASOME | 85 | 4.00e-07 | 0.3176767 | 0.0000656 |
3629 | GOBP NUCLEOSOME ORGANIZATION | 119 | 0.00e+00 | 0.3125481 | 0.0000009 |
10004 | GOCC PROTEASOME COMPLEX | 59 | 4.77e-05 | 0.3060288 | 0.0049390 |
10053 | GOCC RIBOSOME | 225 | 0.00e+00 | 0.3052046 | 0.0000000 |
278 | GOBP ATP SYNTHESIS COUPLED ELECTRON TRANSPORT | 85 | 2.30e-06 | 0.2961706 | 0.0003245 |
8971 | GOMF RRNA BINDING | 62 | 5.99e-05 | 0.2946323 | 0.0058480 |
4916 | GOBP PROTEIN DNA COMPLEX ASSEMBLY | 203 | 0.00e+00 | 0.2921723 | 0.0000000 |
# Barplot
up <- head(subset(bl_mres1$enrichment_result,p.adjustANOVA<0.01 & s.dist>0),15)
vup <- up$s.dist
names(vup) <- up$set
dn <- head(subset(bl_mres1$enrichment_result,p.adjustANOVA<0.01 & s.dist<0),15)
vdn <- dn$s.dist
names(vdn) <- dn$set
barplot(sort(c(vup,vdn)),horiz=TRUE,las=1,cex.names=0.8,xlab="ES",main="Blood at assessment")
mtext("GO")
pdf("ados_barplot_bl_go.pdf")
par(mar = c(5.1, 29.1, 4.1, 2.1))
barplot(sort(c(vup,vdn)),horiz=TRUE,las=1,cex.names=0.9,xlab="ES",main="Blood at assessment")
mtext("GO")
dev.off()
## png
## 2
# reactome
bl_mres2 <- mitch_calc(blm,reactome,priority="effect",cores=cores,minsetsize=5)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
bl_mres2tbl <- subset(bl_mres2$enrichment_result,p.adjustANOVA<0.01)
top <- head(bl_mres2tbl,30)
head(top[order(-abs(top$s.dist)),],30) %>%
kbl(caption="BLOOD: Top effect size Reactome pathways found with mitch after 1% FDR filtering") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
501 | Eicosanoids | 12 | 0.0001260 | 0.6391146 | 0.0011508 |
1338 | RNA Polymerase I Promoter Opening | 26 | 0.0000000 | 0.6321954 | 0.0000008 |
1201 | Pexophagy | 10 | 0.0009548 | 0.6032323 | 0.0071598 |
1551 | SIRT1 negatively regulates rRNA expression | 30 | 0.0000000 | 0.5845503 | 0.0000010 |
1530 | SARS-CoV-1 modulates host translation machinery | 34 | 0.0000000 | 0.5511160 | 0.0000009 |
1185 | Packaging Of Telomere Ends | 29 | 0.0000003 | 0.5496077 | 0.0000067 |
787 | Inhibition of DNA recombination at telomere | 43 | 0.0000000 | 0.5350176 | 0.0000001 |
286 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 0.0000000 | -0.5064904 | 0.0000013 |
359 | DNA methylation | 28 | 0.0000038 | 0.5046647 | 0.0000504 |
527 | Eukaryotic Translation Termination | 87 | 0.0000000 | 0.4901141 | 0.0000000 |
1194 | Peptide chain elongation | 84 | 0.0000000 | 0.4886089 | 0.0000000 |
273 | Chromatin modifications during the maternal to zygotic transition (MZT) | 32 | 0.0000022 | 0.4830458 | 0.0000323 |
525 | Eukaryotic Translation Elongation | 88 | 0.0000000 | 0.4821736 | 0.0000000 |
1600 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | 0.0000001 | -0.4809650 | 0.0000027 |
138 | Assembly of the ORC complex at the origin of replication | 32 | 0.0000030 | 0.4768332 | 0.0000411 |
416 | Deposition of new CENPA-containing nucleosomes at the centromere | 46 | 0.0000000 | 0.4750810 | 0.0000008 |
1116 | Nucleosome assembly | 46 | 0.0000000 | 0.4750810 | 0.0000008 |
1495 | Replacement of protamines by nucleosomes in the male pronucleus | 22 | 0.0001237 | 0.4726779 | 0.0011350 |
1590 | Selenocysteine synthesis | 87 | 0.0000000 | 0.4706539 | 0.0000000 |
1961 | Viral mRNA Translation | 84 | 0.0000000 | 0.4696297 | 0.0000000 |
49 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 | 29 | 0.0000154 | 0.4636193 | 0.0001736 |
1468 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 32 | 0.0000078 | 0.4564651 | 0.0000973 |
1102 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 89 | 0.0000000 | 0.4558332 | 0.0000000 |
308 | Condensation of Prophase Chromosomes | 36 | 0.0000026 | 0.4525010 | 0.0000364 |
1509 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 95 | 0.0000000 | 0.4512108 | 0.0000000 |
292 | Cleavage of the damaged pyrimidine | 38 | 0.0000015 | 0.4506817 | 0.0000233 |
418 | Depyrimidination | 38 | 0.0000015 | 0.4506817 | 0.0000233 |
1397 | Recognition and association of DNA glycosylase with site containing an affected pyrimidine | 38 | 0.0000015 | 0.4506817 | 0.0000233 |
401 | Defective pyroptosis | 34 | 0.0000068 | 0.4457156 | 0.0000855 |
152 | B-WICH complex positively regulates rRNA expression | 54 | 0.0000000 | 0.4444203 | 0.0000006 |
# Barplot
up <- head(subset(bl_mres2$enrichment_result,p.adjustANOVA<0.01 & s.dist>0),15)
vup <- up$s.dist
names(vup) <- up$set
dn <- head(subset(bl_mres2$enrichment_result,p.adjustANOVA<0.01 & s.dist<0),15)
vdn <- dn$s.dist
names(vdn) <- dn$set
barplot(sort(c(vup,vdn)),horiz=TRUE,las=1,cex.names=0.9,xlab="ES",main="Blood at assessment")
mtext("Reactome")
pdf("ados_barplot_bl_reactome.pdf")
par(mar = c(5.1, 29.1, 4.1, 2.1))
barplot(sort(c(vup,vdn)),horiz=TRUE,las=1,cex.names=0.9,xlab="ES",main="Blood at assessment")
mtext("Reactome")
dev.off()
## png
## 2
## GUTHRIE
# GO
gu_mres1 <- mitch_calc(gum,go,priority="effect",cores=cores,minsetsize=5)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
gu_mres1tbl <- subset(gu_mres1$enrichment_result,p.adjustANOVA<0.01)
top <- head(gu_mres1tbl,30)
head(top[order(-abs(top$s.dist)),],30) %>%
kbl(caption="GUTHRIE: Top effect size GOs found with mitch after 1% FDR filtering") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
8455 | GOMF MITOCHONDRIAL RIBOSOME BINDING | 9 | 0.0003252 | 0.6918139 | 0.0085677 |
7737 | GOMF BITTER TASTE RECEPTOR ACTIVITY | 24 | 0.0000000 | -0.6653780 | 0.0000014 |
6809 | GOBP ROSTROCAUDAL NEURAL TUBE PATTERNING | 10 | 0.0003625 | 0.6511434 | 0.0093353 |
5079 | GOBP PTERIDINE CONTAINING COMPOUND BIOSYNTHETIC PROCESS | 12 | 0.0003691 | 0.5936484 | 0.0094339 |
557 | GOBP CELLULAR GLUCURONIDATION | 21 | 0.0000100 | -0.5565829 | 0.0004970 |
7253 | GOBP TRANSLATIONAL TERMINATION | 15 | 0.0002359 | 0.5482879 | 0.0066048 |
4537 | GOBP POSITIVE REGULATION OF PEPTIDYL SERINE PHOSPHORYLATION OF STAT PROTEIN | 16 | 0.0002912 | -0.5230699 | 0.0078760 |
6859 | GOBP SENSORY PERCEPTION OF BITTER TASTE | 44 | 0.0000000 | -0.5023111 | 0.0000007 |
9098 | GOMF TASTE RECEPTOR ACTIVITY | 30 | 0.0000026 | -0.4960025 | 0.0001396 |
8956 | GOMF RNA POLYMERASE II CORE PROMOTER SEQUENCE SPECIFIC DNA BINDING | 18 | 0.0003136 | 0.4905647 | 0.0083277 |
8600 | GOMF ODORANT BINDING | 103 | 0.0000000 | -0.4855928 | 0.0000000 |
4321 | GOBP POSITIVE REGULATION OF INTERFERON BETA PRODUCTION | 37 | 0.0000004 | 0.4836005 | 0.0000236 |
5025 | GOBP PROTEIN PEPTIDYL PROLYL ISOMERIZATION | 19 | 0.0003651 | 0.4722413 | 0.0093773 |
3942 | GOBP POLYPRENOL METABOLIC PROCESS | 23 | 0.0001179 | 0.4637238 | 0.0038489 |
9058 | GOMF STRUCTURAL CONSTITUENT OF CHROMATIN | 80 | 0.0000000 | 0.4620634 | 0.0000000 |
7852 | GOMF CIS TRANS ISOMERASE ACTIVITY | 39 | 0.0000009 | 0.4549454 | 0.0000522 |
1080 | GOBP DETECTION OF CHEMICAL STIMULUS INVOLVED IN SENSORY PERCEPTION OF TASTE | 46 | 0.0000002 | -0.4396757 | 0.0000170 |
176 | GOBP ANAPHASE PROMOTING COMPLEX DEPENDENT CATABOLIC PROCESS | 24 | 0.0002601 | 0.4305949 | 0.0071472 |
8602 | GOMF OLFACTORY RECEPTOR ACTIVITY | 354 | 0.0000000 | -0.4190990 | 0.0000000 |
7468 | GOBP VIRAL BUDDING | 25 | 0.0003568 | 0.4124402 | 0.0092109 |
7952 | GOMF DISULFIDE OXIDOREDUCTASE ACTIVITY | 34 | 0.0000387 | 0.4077382 | 0.0015848 |
8521 | GOMF NAD P H DEHYDROGENASE QUINONE ACTIVITY | 37 | 0.0000192 | 0.4059598 | 0.0008939 |
7387 | GOBP URONIC ACID METABOLIC PROCESS | 26 | 0.0003909 | -0.4017236 | 0.0097714 |
1961 | GOBP INTERFERON BETA PRODUCTION | 56 | 0.0000002 | 0.3990215 | 0.0000166 |
8662 | GOMF OXIDOREDUCTION DRIVEN ACTIVE TRANSMEMBRANE TRANSPORTER ACTIVITY | 53 | 0.0000006 | 0.3961958 | 0.0000373 |
6864 | GOBP SENSORY PERCEPTION OF SMELL | 380 | 0.0000000 | -0.3861774 | 0.0000000 |
6860 | GOBP SENSORY PERCEPTION OF CHEMICAL STIMULUS | 455 | 0.0000000 | -0.3796892 | 0.0000000 |
8835 | GOMF PROTEIN CARRIER CHAPERONE | 33 | 0.0001714 | 0.3779157 | 0.0050436 |
10044 | GOCC RESPIRASOME | 85 | 0.0000000 | 0.3707781 | 0.0000003 |
1093 | GOBP DETECTION OF STIMULUS INVOLVED IN SENSORY PERCEPTION | 469 | 0.0000000 | -0.3696058 | 0.0000000 |
# Barplot
up <- head(subset(gu_mres1$enrichment_result,p.adjustANOVA<0.01 & s.dist>0),15)
vup <- up$s.dist
names(vup) <- up$set
dn <- head(subset(gu_mres1$enrichment_result,p.adjustANOVA<0.01 & s.dist<0),15)
vdn <- dn$s.dist
names(vdn) <- dn$set
barplot(sort(c(vup,vdn)),horiz=TRUE,las=1,cex.names=0.8,xlab="ES",main="Neonatal Guthrie card")
mtext("GO")
pdf("ados_barplot_gu_go.pdf")
par(mar = c(5.1, 29.1, 4.1, 2.1))
barplot(sort(c(vup,vdn)),horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main="Neonatal Guthrie card")
mtext("GO")
dev.off()
## png
## 2
# reactome
gu_mres2 <- mitch_calc(gum,reactome,priority="effect",cores=cores,minsetsize=5)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
gu_mres2tbl <- subset(gu_mres2$enrichment_result,p.adjustANOVA<0.01)
top <- head(gu_mres2tbl,30)
head(top[order(-abs(top$s.dist)),],30) %>%
kbl(caption="GUTHRIE: Top effect size Reactome pathways found with mitch after 1% FDR filtering") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
305 | Complex III assembly | 24 | 0.0000134 | 0.5132689 | 0.0001885 |
138 | Assembly of the ORC complex at the origin of replication | 32 | 0.0000022 | 0.4836941 | 0.0000445 |
16 | APC/C:Cdc20 mediated degradation of Cyclin B | 24 | 0.0000423 | 0.4827752 | 0.0004654 |
286 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 0.0000002 | -0.4815622 | 0.0000056 |
1338 | RNA Polymerase I Promoter Opening | 26 | 0.0000213 | 0.4814739 | 0.0002687 |
401 | Defective pyroptosis | 34 | 0.0000012 | 0.4811347 | 0.0000275 |
1468 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 32 | 0.0000031 | 0.4760633 | 0.0000582 |
1185 | Packaging Of Telomere Ends | 29 | 0.0000125 | 0.4686554 | 0.0001793 |
1178 | PRC2 methylates histones and DNA | 35 | 0.0000021 | 0.4633226 | 0.0000440 |
134 | Assembly Of The HIV Virion | 16 | 0.0014511 | 0.4597526 | 0.0082389 |
49 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 | 29 | 0.0000208 | 0.4565694 | 0.0002631 |
1220 | Phosphorylation of the APC/C | 20 | 0.0005181 | 0.4482988 | 0.0034890 |
1886 | Transcriptional regulation of granulopoiesis | 53 | 0.0000000 | 0.4469233 | 0.0000007 |
416 | Deposition of new CENPA-containing nucleosomes at the centromere | 46 | 0.0000002 | 0.4466201 | 0.0000047 |
1116 | Nucleosome assembly | 46 | 0.0000002 | 0.4466201 | 0.0000047 |
158 | Base-Excision Repair, AP Site Formation | 40 | 0.0000011 | 0.4453349 | 0.0000259 |
292 | Cleavage of the damaged pyrimidine | 38 | 0.0000021 | 0.4443108 | 0.0000440 |
418 | Depyrimidination | 38 | 0.0000021 | 0.4443108 | 0.0000440 |
1397 | Recognition and association of DNA glycosylase with site containing an affected pyrimidine | 38 | 0.0000021 | 0.4443108 | 0.0000440 |
1551 | SIRT1 negatively regulates rRNA expression | 30 | 0.0000275 | 0.4422756 | 0.0003255 |
34 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 20 | 0.0006341 | 0.4412468 | 0.0041594 |
14 | APC-Cdc20 mediated degradation of Nek2A | 26 | 0.0001052 | 0.4393258 | 0.0009876 |
493 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 38 | 0.0000029 | 0.4384690 | 0.0000558 |
424 | Digestion | 18 | 0.0013510 | -0.4362850 | 0.0077797 |
359 | DNA methylation | 28 | 0.0000692 | 0.4343507 | 0.0007198 |
1164 | PINK1-PRKN Mediated Mitophagy | 31 | 0.0000287 | 0.4340405 | 0.0003365 |
321 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 20 | 0.0008135 | 0.4324104 | 0.0051209 |
291 | Cleavage of the damaged purine | 33 | 0.0000176 | 0.4317132 | 0.0002336 |
417 | Depurination | 33 | 0.0000176 | 0.4317132 | 0.0002336 |
1396 | Recognition and association of DNA glycosylase with site containing an affected purine | 33 | 0.0000176 | 0.4317132 | 0.0002336 |
# Barplot
up <- head(subset(gu_mres2$enrichment_result,p.adjustANOVA<0.01 & s.dist>0),15)
vup <- up$s.dist
names(vup) <- up$set
dn <- head(subset(gu_mres2$enrichment_result,p.adjustANOVA<0.01 & s.dist<0),15)
vdn <- dn$s.dist
names(vdn) <- dn$set
barplot(sort(c(vup,vdn)),horiz=TRUE,las=1,cex.names=0.9,xlab="ES",main="Neonatal Guthrie card")
mtext("Reactome")
pdf("ados_barplot_gu_reactome.pdf")
par(mar = c(5.1, 29.1, 4.1, 2.1))
barplot(sort(c(vup,vdn)),horiz=TRUE,las=1,cex.names=0.75,xlab="ES",main="Neonatal Guthrie card")
mtext("Reactome")
dev.off()
## png
## 2
par(mar = c(5.1, 4.1, 4.1, 2.1))
Mitch joint analysis of blood and guthrie card. As using the median value is apparently the most sensitive, we’ll go with that.
m <- merge(blm,gum,by=0)
rownames(m) <- m$Row.names
m$Row.names = NULL
colnames(m) <- c("bl","gu")
m[is.na(m)] <- 0
res1 <- mitch_calc(m, go, priority="effect",cores=cores)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
mitch_report(res1,"blgu_mitch_go.html",overwrite=TRUE)
## Dataset saved as " /tmp/RtmpGyw2UW/blgu_mitch_go.rds ".
##
##
## processing file: mitch.Rmd
## 1/34
## 2/34 [checklibraries]
## 3/34
## 4/34 [peek]
## 5/34
## 6/34 [metrics]
## 7/34
## 8/34 [scatterplot]
## 9/34
## 10/34 [contourplot]
## 11/34
## 12/34 [input_geneset_metrics1]
## 13/34
## 14/34 [input_geneset_metrics2]
## 15/34
## 16/34 [input_geneset_metrics3]
## 17/34
## 18/34 [echart1d]
## 19/34 [echart2d]
## 20/34
## 21/34 [heatmap]
## 22/34
## 23/34 [effectsize]
## 24/34
## 25/34 [results_table]
## 26/34
## 27/34 [results_table_complete]
## 28/34
## 29/34 [detailed_geneset_reports1d]
## 30/34
## 31/34 [detailed_geneset_reports2d]
## 32/34
## 33/34 [session_info]
## 34/34
## output file: /asd_meth/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /asd_meth/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpGyw2UW/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --embed-resources --standalone --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpGyw2UW/rmarkdown-str1ce332e6d2.html
##
## Output created: /tmp/RtmpGyw2UW/mitch_report.html
## [1] TRUE
mitch_plots(res=res1,outfile="blgu_mitch_go_ados.pdf")
## png
## 2
sig1 <- subset(res1$enrichment_result,p.adjustMANOVA<0.01)
head(sig1[order(-abs(sig1$s.dist)),],30) %>%
kbl(caption="Top GOs found with mitch (effect size after 1% FDR filtering)") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.bl | s.gu | p.bl | p.gu | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
5599 | GOMF BITTER TASTE RECEPTOR ACTIVITY | 24 | 0.0000000 | -0.8243351 | -0.6653780 | 0.0000000 | 0.0000000 | 1.0593659 | 0.1123996 | 0.0000000 |
6498 | GOMF TASTE RECEPTOR ACTIVITY | 30 | 0.0000000 | -0.6367073 | -0.4960025 | 0.0000000 | 0.0000026 | 0.8071026 | 0.0994933 | 0.0000000 |
6561 | GOMF TYPE I INTERFERON RECEPTOR BINDING | 13 | 0.0000911 | -0.5293093 | -0.5440676 | 0.0009505 | 0.0006814 | 0.7590638 | 0.0104357 | 0.0022587 |
1821 | GOBP MITOCHONDRIAL ELECTRON TRANSPORT UBIQUINOL TO CYTOCHROME C | 12 | 0.0003427 | 0.5657995 | 0.4608138 | 0.0006885 | 0.0057059 | 0.7297112 | 0.0742361 | 0.0065738 |
406 | GOBP CELLULAR GLUCURONIDATION | 21 | 0.0000012 | -0.4603731 | -0.5565829 | 0.0002595 | 0.0000100 | 0.7223074 | 0.0680306 | 0.0000456 |
6470 | GOMF STRUCTURAL CONSTITUENT OF CHROMATIN | 80 | 0.0000000 | 0.5542960 | 0.4620634 | 0.0000000 | 0.0000000 | 0.7216278 | 0.0652183 | 0.0000000 |
3604 | GOBP PROTEIN LOCALIZATION TO CENP A CONTAINING CHROMATIN | 16 | 0.0000837 | 0.5487856 | 0.4076304 | 0.0001440 | 0.0047543 | 0.6836140 | 0.0998117 | 0.0020883 |
3301 | GOBP POSITIVE REGULATION OF PEPTIDYL SERINE PHOSPHORYLATION OF STAT PROTEIN | 16 | 0.0001008 | -0.4329192 | -0.5230699 | 0.0027139 | 0.0002912 | 0.6789854 | 0.0637462 | 0.0024747 |
5294 | GOBP TRANSLATIONAL TERMINATION | 15 | 0.0003030 | 0.3525898 | 0.5482879 | 0.0180562 | 0.0002359 | 0.6518736 | 0.1383795 | 0.0060339 |
6709 | GOCC CHROMOSOME CENTROMERIC CORE DOMAIN | 17 | 0.0001418 | 0.5052183 | 0.4021952 | 0.0003098 | 0.0040884 | 0.6457604 | 0.0728484 | 0.0032705 |
6149 | GOMF ODORANT BINDING | 103 | 0.0000000 | -0.4225346 | -0.4855928 | 0.0000000 | 0.0000000 | 0.6436893 | 0.0445889 | 0.0000000 |
5008 | GOBP SENSORY PERCEPTION OF BITTER TASTE | 44 | 0.0000000 | -0.3788506 | -0.5023111 | 0.0000137 | 0.0000000 | 0.6291615 | 0.0872997 | 0.0000000 |
6385 | GOMF RIBOSOMAL SMALL SUBUNIT BINDING | 16 | 0.0003917 | 0.3763987 | 0.4992417 | 0.0091371 | 0.0005445 | 0.6252345 | 0.0868631 | 0.0073782 |
2268 | GOBP NEGATIVE REGULATION OF MEGAKARYOCYTE DIFFERENTIATION | 18 | 0.0002681 | 0.5142091 | 0.3031974 | 0.0001584 | 0.0259383 | 0.5969419 | 0.1492078 | 0.0055055 |
6781 | GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT | 37 | 0.0000001 | 0.5191056 | 0.2739659 | 0.0000000 | 0.0039251 | 0.5869651 | 0.1733399 | 0.0000033 |
6310 | GOMF PROTEIN CARRIER CHAPERONE | 33 | 0.0000018 | 0.4243106 | 0.3779157 | 0.0000245 | 0.0001714 | 0.5682075 | 0.0328061 | 0.0000668 |
7031 | GOCC NUCLEOSOME | 116 | 0.0000000 | 0.4560035 | 0.3167104 | 0.0000000 | 0.0000000 | 0.5551979 | 0.0984951 | 0.0000000 |
5386 | GOBP URONIC ACID METABOLIC PROCESS | 26 | 0.0000482 | -0.3827548 | -0.4017236 | 0.0007284 | 0.0003909 | 0.5548722 | 0.0134130 | 0.0013170 |
7119 | GOCC PROTEASOME CORE COMPLEX | 20 | 0.0002973 | 0.5045980 | 0.2293856 | 0.0000933 | 0.0757365 | 0.5542895 | 0.1946045 | 0.0059643 |
6095 | GOMF NAD P H DEHYDROGENASE QUINONE ACTIVITY | 37 | 0.0000008 | 0.3761099 | 0.4059598 | 0.0000750 | 0.0000192 | 0.5534094 | 0.0211070 | 0.0000319 |
6778 | GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT | 54 | 0.0000000 | 0.4577263 | 0.3009887 | 0.0000000 | 0.0001299 | 0.5478207 | 0.1108302 | 0.0000001 |
788 | GOBP DETECTION OF CHEMICAL STIMULUS INVOLVED IN SENSORY PERCEPTION OF TASTE | 46 | 0.0000001 | -0.3074664 | -0.4396757 | 0.0003080 | 0.0000002 | 0.5365168 | 0.0934861 | 0.0000029 |
3135 | GOBP POSITIVE REGULATION OF INTERFERON BETA PRODUCTION | 37 | 0.0000012 | 0.2097537 | 0.4836005 | 0.0272406 | 0.0000004 | 0.5271300 | 0.1936389 | 0.0000456 |
3678 | GOBP PROTON MOTIVE FORCE DRIVEN ATP SYNTHESIS | 65 | 0.0000000 | 0.3761484 | 0.3676510 | 0.0000002 | 0.0000003 | 0.5259800 | 0.0060086 | 0.0000000 |
6193 | GOMF OXIDOREDUCTION DRIVEN ACTIVE TRANSMEMBRANE TRANSPORTER ACTIVITY | 53 | 0.0000000 | 0.3428194 | 0.3961958 | 0.0000157 | 0.0000006 | 0.5239239 | 0.0377429 | 0.0000008 |
6150 | GOMF OLFACTORY RECEPTOR ACTIVITY | 354 | 0.0000000 | -0.2855009 | -0.4190990 | 0.0000000 | 0.0000000 | 0.5071042 | 0.0944681 | 0.0000000 |
1815 | GOBP MITOCHONDRIAL CYTOCHROME C OXIDASE ASSEMBLY | 25 | 0.0004709 | 0.3891458 | 0.3060133 | 0.0007559 | 0.0080796 | 0.4950542 | 0.0587836 | 0.0085812 |
6992 | GOCC NADH DEHYDROGENASE COMPLEX | 40 | 0.0000054 | 0.3296010 | 0.3679540 | 0.0003089 | 0.0000563 | 0.4939909 | 0.0271197 | 0.0001893 |
725 | GOBP CYTOCHROME COMPLEX ASSEMBLY | 38 | 0.0000123 | 0.3231239 | 0.3671758 | 0.0005661 | 0.0000895 | 0.4891085 | 0.0311493 | 0.0003929 |
7146 | GOCC RESPIRASOME | 85 | 0.0000000 | 0.3173745 | 0.3707781 | 0.0000004 | 0.0000000 | 0.4880604 | 0.0377621 | 0.0000000 |
res2 <- mitch_calc(m, reactome, priority="effect",cores=cores)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
mitch_report(res2,"blgu_mitch_reactome.html",overwrite=TRUE)
## Dataset saved as " /tmp/RtmpGyw2UW/blgu_mitch_reactome.rds ".
##
##
## processing file: mitch.Rmd
## 1/34
## 2/34 [checklibraries]
## 3/34
## 4/34 [peek]
## 5/34
## 6/34 [metrics]
## 7/34
## 8/34 [scatterplot]
## 9/34
## 10/34 [contourplot]
## 11/34
## 12/34 [input_geneset_metrics1]
## 13/34
## 14/34 [input_geneset_metrics2]
## 15/34
## 16/34 [input_geneset_metrics3]
## 17/34
## 18/34 [echart1d]
## 19/34 [echart2d]
## 20/34
## 21/34 [heatmap]
## 22/34
## 23/34 [effectsize]
## 24/34
## 25/34 [results_table]
## 26/34
## 27/34 [results_table_complete]
## 28/34
## 29/34 [detailed_geneset_reports1d]
## 30/34
## 31/34 [detailed_geneset_reports2d]
## 32/34
## 33/34 [session_info]
## 34/34
## output file: /asd_meth/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /asd_meth/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpGyw2UW/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --embed-resources --standalone --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpGyw2UW/rmarkdown-str1ce8a4fa71.html
##
## Output created: /tmp/RtmpGyw2UW/mitch_report.html
## [1] TRUE
mitch_plots(res=res2,outfile="blgu_mitch_reactome_ados.pdf")
## Warning in title(main = ll$set, xlab = X_AXIS, ylab = Y_AXIS): conversion
## failure on 'Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon
## TLR3 ligation' in 'mbcsToSbcs': for ε (U+03B5)
## Warning in title(...): conversion failure on 'Regulation of TBK1, IKKε-mediated
## activation of IRF3, IRF7 upon TLR3 ligation' in 'mbcsToSbcs': for ε (U+03B5)
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'Regulation of TBK1, IKKε-mediated activation of IRF3,
## IRF7 upon TLR3 ligation' in 'mbcsToSbcs': for ε (U+03B5)
## png
## 2
sig2 <- subset(res2$enrichment_result,p.adjustMANOVA<0.01)
head(sig2[order(-abs(sig2$s.dist)),],30) %>%
kbl(caption="Top Reactomes found with mitch (effect size after 1% FDR filtering)") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.bl | s.gu | p.bl | p.gu | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
1072 | RNA Polymerase I Promoter Opening | 26 | 0.0000000 | 0.6320969 | 0.4814739 | 0.0000000 | 0.0000213 | 0.7945839 | 0.1065066 | 0.0000000 |
954 | Pexophagy | 10 | 0.0010451 | 0.6031268 | 0.4249337 | 0.0009568 | 0.0199681 | 0.7377877 | 0.1260015 | 0.0048149 |
1247 | SIRT1 negatively regulates rRNA expression | 30 | 0.0000000 | 0.5844193 | 0.4422756 | 0.0000000 | 0.0000275 | 0.7329076 | 0.1005108 | 0.0000000 |
938 | Packaging Of Telomere Ends | 29 | 0.0000000 | 0.5494542 | 0.4686554 | 0.0000003 | 0.0000125 | 0.7221758 | 0.0571334 | 0.0000001 |
220 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 0.0000000 | -0.5071617 | -0.4815622 | 0.0000000 | 0.0000002 | 0.6993677 | 0.0181016 | 0.0000000 |
105 | Assembly of the ORC complex at the origin of replication | 32 | 0.0000000 | 0.4766310 | 0.4836941 | 0.0000030 | 0.0000022 | 0.6790708 | 0.0049944 | 0.0000001 |
281 | DNA methylation | 28 | 0.0000002 | 0.5044753 | 0.4343507 | 0.0000038 | 0.0000692 | 0.6656995 | 0.0495856 | 0.0000018 |
1176 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 32 | 0.0000000 | 0.4562483 | 0.4760633 | 0.0000079 | 0.0000031 | 0.6593927 | 0.0140113 | 0.0000004 |
307 | Defective pyroptosis | 34 | 0.0000000 | 0.4455019 | 0.4811347 | 0.0000069 | 0.0000012 | 0.6557153 | 0.0251962 | 0.0000002 |
320 | Deposition of new CENPA-containing nucleosomes at the centromere | 46 | 0.0000000 | 0.4748772 | 0.4466201 | 0.0000000 | 0.0000002 | 0.6519033 | 0.0199808 | 0.0000000 |
884 | Nucleosome assembly | 46 | 0.0000000 | 0.4748772 | 0.4466201 | 0.0000000 | 0.0000002 | 0.6519033 | 0.0199808 | 0.0000000 |
33 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 | 29 | 0.0000002 | 0.4634039 | 0.4565694 | 0.0000156 | 0.0000208 | 0.6505373 | 0.0048327 | 0.0000022 |
392 | Eicosanoids | 12 | 0.0001985 | 0.6390274 | -0.1175660 | 0.0001263 | 0.4807042 | 0.6497521 | 0.5349923 | 0.0010513 |
627 | Inhibition of DNA recombination at telomere | 43 | 0.0000000 | 0.5348544 | 0.3517042 | 0.0000000 | 0.0000657 | 0.6401290 | 0.1295068 | 0.0000000 |
1228 | SARS-CoV-1 modulates host translation machinery | 34 | 0.0000000 | 0.5509650 | 0.3111311 | 0.0000000 | 0.0016892 | 0.6327440 | 0.1695881 | 0.0000003 |
225 | Cleavage of the damaged pyrimidine | 38 | 0.0000000 | 0.4504663 | 0.4443108 | 0.0000015 | 0.0000021 | 0.6327179 | 0.0043526 | 0.0000001 |
322 | Depyrimidination | 38 | 0.0000000 | 0.4504663 | 0.4443108 | 0.0000015 | 0.0000021 | 0.6327179 | 0.0043526 | 0.0000001 |
1114 | Recognition and association of DNA glycosylase with site containing an affected pyrimidine | 38 | 0.0000000 | 0.4504663 | 0.4443108 | 0.0000015 | 0.0000021 | 0.6327179 | 0.0043526 | 0.0000001 |
1441 | TICAM1-dependent activation of IRF3/IRF7 | 13 | 0.0019033 | 0.4465589 | 0.4342615 | 0.0053029 | 0.0067032 | 0.6228948 | 0.0086956 | 0.0079803 |
209 | Chromatin modifications during the maternal to zygotic transition (MZT) | 32 | 0.0000002 | 0.4828453 | 0.3835682 | 0.0000023 | 0.0001727 | 0.6166556 | 0.0701995 | 0.0000022 |
224 | Cleavage of the damaged purine | 33 | 0.0000002 | 0.4374560 | 0.4317132 | 0.0000136 | 0.0000176 | 0.6146089 | 0.0040608 | 0.0000018 |
321 | Depurination | 33 | 0.0000002 | 0.4374560 | 0.4317132 | 0.0000136 | 0.0000176 | 0.6146089 | 0.0040608 | 0.0000018 |
1113 | Recognition and association of DNA glycosylase with site containing an affected purine | 33 | 0.0000002 | 0.4374560 | 0.4317132 | 0.0000136 | 0.0000176 | 0.6146089 | 0.0040608 | 0.0000018 |
1282 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | 0.0000000 | -0.4816470 | -0.3788695 | 0.0000001 | 0.0000269 | 0.6128017 | 0.0726746 | 0.0000001 |
238 | Condensation of Prophase Chromosomes | 36 | 0.0000001 | 0.4522844 | 0.4064616 | 0.0000026 | 0.0000243 | 0.6080890 | 0.0324016 | 0.0000007 |
121 | Base-Excision Repair, AP Site Formation | 40 | 0.0000000 | 0.4117459 | 0.4453349 | 0.0000066 | 0.0000011 | 0.6065129 | 0.0237510 | 0.0000002 |
235 | Complex III assembly | 24 | 0.0000154 | 0.3131678 | 0.5132689 | 0.0079086 | 0.0000134 | 0.6012645 | 0.1414929 | 0.0000998 |
384 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 38 | 0.0000001 | 0.3932595 | 0.4384690 | 0.0000272 | 0.0000029 | 0.5889891 | 0.0319680 | 0.0000008 |
935 | PRC2 methylates histones and DNA | 35 | 0.0000003 | 0.3630514 | 0.4633226 | 0.0002011 | 0.0000021 | 0.5886206 | 0.0709024 | 0.0000023 |
1280 | Senescence-Associated Secretory Phenotype (SASP) | 74 | 0.0000000 | 0.4004682 | 0.4268231 | 0.0000000 | 0.0000000 | 0.5852800 | 0.0186357 | 0.0000000 |
Top table of genes
rnk <- res1$ranked_profile
tbl <- data.frame(table(gt$gene))
toptab <- cbind(m,rnk)
toptab$Row.names = NULL
toptab$med <- apply(data.frame(toptab$bl,toptab$gu),1,median)
toptab2 <- merge(toptab,tbl,by.x=0,by.y="Var1")
## Warning in merge.data.frame(toptab, tbl, by.x = 0, by.y = "Var1"): column names
## 'bl', 'gu' are duplicated in the result
toptab2 <- toptab2[order(toptab2$med),]
toptab2 <- subset(toptab2,Freq>=5)
head(toptab2,100) %>%
kbl(caption="Top genes with reducing methylation") %>%
kable_paper("hover", full_width = F)
Row.names | bl | gu | bl.1 | gu.1 | med | Freq | |
---|---|---|---|---|---|---|---|
3995 | CXADRP3 | -2.2202814 | -1.1159814 | -18756 | -15299 | -1.668131 | 6 |
4102 | CYP4Z2P | -2.0461284 | -1.1477867 | -18732 | -15316 | -1.596958 | 6 |
10870 | MIR1251 | -1.7447979 | -1.4227722 | -18654 | -15436 | -1.583785 | 6 |
14974 | POM121L8P | -1.4626322 | -1.5979785 | -18426 | -15472 | -1.530305 | 5 |
1850 | BZW1P2 | -1.7535132 | -1.2517218 | -18657 | -15385 | -1.502617 | 5 |
14846 | PMCHL2 | -2.0334253 | -0.9552235 | -18730 | -15107 | -1.494324 | 8 |
12615 | NALF1-IT1 | -2.4591520 | -0.4664148 | -18774 | -12679 | -1.462783 | 7 |
14136 | PCAT1 | -2.2841133 | -0.5947558 | -18761 | -13830 | -1.439435 | 6 |
11530 | MIR521-1 | -2.1697975 | -0.7089284 | -18751 | -14443 | -1.439363 | 5 |
7041 | GUSBP2 | -1.6851804 | -1.1895332 | -18615 | -15344 | -1.437357 | 10 |
11533 | MIR523 | -1.1520646 | -1.6403193 | -17941 | -15480 | -1.396192 | 5 |
9520 | LINC01069 | -2.0860694 | -0.6893484 | -18738 | -14352 | -1.387709 | 5 |
13595 | OR2J2 | -1.6794291 | -1.0927888 | -18606 | -15278 | -1.386109 | 5 |
13488 | OR10A5 | -2.0015621 | -0.7063150 | -18721 | -14434 | -1.353938 | 6 |
13664 | OR4M1 | -2.1233483 | -0.5783751 | -18744 | -13709 | -1.350862 | 7 |
5494 | FABP2 | -1.8938632 | -0.7898329 | -18700 | -14740 | -1.341848 | 5 |
9421 | LINC00871 | -1.7116509 | -0.9581566 | -18636 | -15109 | -1.334904 | 9 |
3304 | CLCA3P | -2.2461886 | -0.4172496 | -18758 | -11985 | -1.331719 | 6 |
9345 | LINC00613 | -1.9736218 | -0.6840457 | -18716 | -14331 | -1.328834 | 6 |
9897 | LINC02903 | -1.7815191 | -0.8509152 | -18666 | -14897 | -1.316217 | 6 |
13761 | OR5M1 | -1.6720546 | -0.9440198 | -18604 | -15085 | -1.308037 | 6 |
8477 | KERA | -1.7025120 | -0.8885475 | -18630 | -14995 | -1.295530 | 5 |
533 | AJM1 | -1.3580746 | -1.2324007 | -18310 | -15367 | -1.295238 | 5 |
13707 | OR52E8 | -1.3805243 | -1.2052246 | -18330 | -15351 | -1.292874 | 8 |
16189 | RHAG | -1.7088007 | -0.8673835 | -18635 | -14948 | -1.288092 | 10 |
12587 | NAALADL2-AS2 | -1.5367760 | -1.0166810 | -18500 | -15197 | -1.276728 | 7 |
13756 | OR5K2 | -1.7772626 | -0.7748558 | -18665 | -14697 | -1.276059 | 5 |
19168 | TAAR9 | -1.4843207 | -1.0655353 | -18447 | -15256 | -1.274928 | 6 |
20844 | UGT2B4 | -1.6452967 | -0.8965763 | -18589 | -15004 | -1.270936 | 5 |
11184 | MIR340 | -1.4893008 | -1.0337634 | -18458 | -15218 | -1.261532 | 5 |
5705 | FAM99A | -0.7217411 | -1.7931826 | -16008 | -15501 | -1.257462 | 5 |
15560 | PTH | -1.7006418 | -0.8074612 | -18628 | -14791 | -1.254052 | 6 |
6747 | GPC5-AS2 | -1.6988305 | -0.8025703 | -18627 | -14773 | -1.250700 | 5 |
17059 | SELE | -1.4490469 | -1.0517365 | -18410 | -15235 | -1.250392 | 10 |
11471 | MIR490 | -1.5650594 | -0.9179919 | -18523 | -15037 | -1.241526 | 5 |
19166 | TAAR6 | -2.0587643 | -0.3887210 | -18736 | -11494 | -1.223743 | 9 |
18261 | SNORD116-6 | -1.2049191 | -1.2419042 | -18063 | -15370 | -1.223412 | 8 |
20029 | TMPRSS11F | -1.5533554 | -0.8862582 | -18511 | -14993 | -1.219807 | 13 |
479 | AGMO | -1.4975357 | -0.9394015 | -18469 | -15078 | -1.218469 | 24 |
9360 | LINC00644 | -1.4304641 | -0.9998308 | -18388 | -15175 | -1.215148 | 5 |
3090 | CFHR3 | -1.9095133 | -0.5031942 | -18706 | -13080 | -1.206354 | 6 |
2877 | CDRT15 | -1.2639027 | -1.1294407 | -18182 | -15308 | -1.196672 | 8 |
13748 | OR5F1 | -1.3528213 | -1.0326622 | -18301 | -15217 | -1.192742 | 6 |
18174 | SNORD114-24 | -1.9158299 | -0.4693366 | -18708 | -12723 | -1.192583 | 8 |
13623 | OR2W1 | -1.6068012 | -0.7675571 | -18562 | -14665 | -1.187179 | 7 |
8829 | KRTAP22-1 | -1.4951714 | -0.8714871 | -18465 | -14957 | -1.183329 | 7 |
9559 | LINC01128 | -0.8066052 | -1.5509223 | -16676 | -15463 | -1.178764 | 16 |
7656 | HTN3 | -1.9559818 | -0.3975766 | -18714 | -11645 | -1.176779 | 5 |
3829 | CRYGC | -1.3967692 | -0.9518646 | -18350 | -15097 | -1.174317 | 11 |
15339 | PRPS1L1 | -1.1868217 | -1.1435632 | -18026 | -15315 | -1.165192 | 12 |
7128 | H4C11 | -1.9141119 | -0.4156714 | -18707 | -11961 | -1.164892 | 11 |
19819 | TMEM14EP | -1.4951674 | -0.8270972 | -18464 | -14839 | -1.161132 | 5 |
1886 | C12orf50 | -1.5898104 | -0.7218940 | -18544 | -14502 | -1.155852 | 7 |
12305 | MSTN | -1.5756431 | -0.7262507 | -18532 | -14516 | -1.150947 | 7 |
5878 | FER1L6-AS1 | -1.4109479 | -0.8899857 | -18359 | -14999 | -1.150467 | 7 |
492 | AGR3 | -1.5219150 | -0.7772743 | -18491 | -14705 | -1.149595 | 5 |
17470 | SLC15A5 | -1.7078951 | -0.5891900 | -18634 | -13781 | -1.148543 | 10 |
11715 | MIR643 | -1.2281898 | -1.0582404 | -18115 | -15244 | -1.143215 | 6 |
18285 | SNORD18C | -1.4378113 | -0.8428891 | -18397 | -14880 | -1.140350 | 5 |
449 | AFM | -1.1436373 | -1.1289105 | -17918 | -15307 | -1.136274 | 6 |
18160 | SNORD114-10 | -1.4592133 | -0.8027844 | -18418 | -14776 | -1.130999 | 6 |
18991 | STX19 | -1.7012398 | -0.5602416 | -18629 | -13572 | -1.130741 | 10 |
9228 | LINC00375 | -1.2615999 | -0.9910004 | -18178 | -15160 | -1.126300 | 6 |
8671 | KLRC2 | -1.6223704 | -0.6127489 | -18573 | -13945 | -1.117560 | 5 |
6467 | GFRAL | -1.4819990 | -0.7488058 | -18445 | -14602 | -1.115402 | 10 |
15023 | PP2D1 | -1.3738722 | -0.8535397 | -18322 | -14904 | -1.113706 | 8 |
13778 | OR6C1 | -1.6603029 | -0.5655805 | -18597 | -13618 | -1.112942 | 5 |
13981 | PABPC1P2 | -0.8542082 | -1.3689877 | -16933 | -15422 | -1.111598 | 7 |
9322 | LINC00575 | -1.4873242 | -0.7347831 | -18450 | -14550 | -1.111054 | 6 |
8494 | KIAA0408 | -1.4994918 | -0.7191214 | -18472 | -14488 | -1.109307 | 8 |
19258 | TAS2R39 | -1.4712488 | -0.7472461 | -18435 | -14596 | -1.109247 | 5 |
13837 | OR8K3 | -1.4747777 | -0.7408440 | -18440 | -14570 | -1.107811 | 5 |
9260 | LINC00448 | -1.6053980 | -0.6089826 | -18561 | -13913 | -1.107190 | 6 |
18175 | SNORD114-25 | -1.6291811 | -0.5809166 | -18579 | -13732 | -1.105049 | 7 |
19254 | TAS2R3 | -1.5152879 | -0.6916815 | -18482 | -14363 | -1.103485 | 7 |
9361 | LINC00645 | -1.8557007 | -0.3482450 | -18689 | -10718 | -1.101973 | 6 |
20839 | UGT2B10 | -1.6194379 | -0.5814921 | -18572 | -13737 | -1.100465 | 5 |
9234 | LINC00381 | -1.6460939 | -0.5542307 | -18592 | -13521 | -1.100162 | 6 |
19406 | TDO2 | -1.6123622 | -0.5843650 | -18567 | -13749 | -1.098364 | 6 |
4507 | DLGAP1-AS3 | -1.2469504 | -0.9490306 | -18153 | -15090 | -1.097991 | 6 |
6642 | GNAT3 | -1.4264669 | -0.7674098 | -18381 | -14664 | -1.096938 | 13 |
8863 | KRTAP6-2 | -1.6839797 | -0.5072401 | -18610 | -13119 | -1.095610 | 7 |
11577 | MIR548H2 | -1.4099618 | -0.7788018 | -18357 | -14713 | -1.094382 | 30 |
21841 | ZNF404 | -1.2972700 | -0.8886111 | -18230 | -14996 | -1.092941 | 6 |
17936 | SMIM23 | -1.2314945 | -0.9505836 | -18122 | -15093 | -1.091039 | 5 |
2803 | CDH19 | -1.4879501 | -0.6922320 | -18452 | -14365 | -1.090091 | 18 |
18184 | SNORD114-5 | -1.5821343 | -0.5943741 | -18536 | -13822 | -1.088254 | 5 |
13799 | OR6T1 | -1.2934939 | -0.8756839 | -18226 | -14968 | -1.084589 | 8 |
17965 | SMR3B | -1.4944858 | -0.6742780 | -18463 | -14291 | -1.084382 | 8 |
22202 | ZNG1E | -1.5979788 | -0.5679598 | -18553 | -13642 | -1.082969 | 5 |
9886 | LINC02877 | -1.0617309 | -1.0972361 | -17693 | -15282 | -1.079484 | 6 |
13620 | OR2T8 | -1.4301558 | -0.7256101 | -18387 | -14513 | -1.077883 | 6 |
10880 | MIR125B2 | -1.6301545 | -0.5213534 | -18580 | -13254 | -1.075754 | 5 |
19266 | TAS2R50 | -1.5281616 | -0.6180385 | -18497 | -13978 | -1.073100 | 7 |
16288 | RMST | -1.3685723 | -0.7709529 | -18317 | -14677 | -1.069763 | 19 |
18849 | ST7-OT3 | -1.6173440 | -0.5168714 | -18570 | -13209 | -1.067108 | 6 |
19253 | TAS2R20 | -1.4654574 | -0.6665000 | -18429 | -14250 | -1.065979 | 6 |
19896 | TMEM225 | -0.9008958 | -1.2287856 | -17156 | -15363 | -1.064841 | 6 |
20157 | TONSL-AS1 | -1.0277125 | -1.1009145 | -17596 | -15287 | -1.064313 | 6 |
15588 | PTPN20 | -0.8769013 | -1.2506030 | -17052 | -15383 | -1.063752 | 18 |
Now look at the pathways with hypomethylation.
hypo <- subset(res1$enrichment_result,p.adjustMANOVA<0.01 & s.bl <0 & s.gu < 0 )
nrow(hypo)
## [1] 34
hypo <- hypo[nrow(hypo):1,]
hypo <- tail(hypo,15)
par(mar=c(9.1, 25.1, 5.1, 1.1))
barplot(t(abs(hypo[,c("s.bl","s.gu")])),
beside=TRUE,horiz=TRUE,las=1,names.arg=hypo$set,
col=gray.colors(2), cex.names=0.8,
xlab="enrichment score")
legend("bottomright", inset=0, title="tissue",
c("blood at assessment","neonatal Guthrie card"),
fill=gray.colors(2), horiz=FALSE, cex=1)
pdf("adosbarplot_hypo_go.pdf")
par(mar=c(4.1, 25.1, 5.1, 1.1))
barplot(t(abs(hypo[,c("s.bl","s.gu")])),
beside=TRUE,horiz=TRUE,las=1,names.arg=hypo$set,
col=gray.colors(2),
xlab="enrichment score")
legend("topright", inset=0, title="tissue",
c("blood at assessment","neonatal Guthrie card"),
fill=gray.colors(2), horiz=FALSE, cex=1)
dev.off()
## png
## 2
mar = c(5.1, 4.1, 4.1, 2.1)
Now look at bitter taste receptors.
genesets <- go
bitter <- genesets[grep("GOMF BITTER",names(genesets))]
bitter
## $`GOMF BITTER TASTE RECEPTOR ACTIVITY`
## [1] "TAS2R1" "TAS2R10" "TAS2R13" "TAS2R14" "TAS2R16" "TAS2R19" "TAS2R20"
## [8] "TAS2R3" "TAS2R30" "TAS2R31" "TAS2R38" "TAS2R39" "TAS2R4" "TAS2R40"
## [15] "TAS2R41" "TAS2R42" "TAS2R43" "TAS2R45" "TAS2R46" "TAS2R5" "TAS2R50"
## [22] "TAS2R60" "TAS2R7" "TAS2R8" "TAS2R9"
rnk2 <- rnk[which(rownames(rnk) %in% bitter[[1]]),]
plot(rnk2,main=names(bitter),xlim=c(-21569,4146),ylim=c(-17678,8037),
xlab="Rank in blood at assessment",
ylab="Rank in neonatal Guthrie card",
cex=1.5,pch=19,col="lightgray")
text(rnk2,labels=rownames(rnk2))
abline(v=0,h=0,lwd=2,lty=2)
pdf("bitter.pdf")
plot(rnk2,main=names(bitter),xlim=c(-21569,4146),ylim=c(-17678,8037),
xlab="Rank in blood at assessment",
ylab="Rank in neonatal Guthrie card",
cex=1.5,pch=19,col="lightgray")
text(rnk2,labels=rownames(rnk2))
abline(v=0,h=0,lwd=2,lty=2)
dev.off()
## png
## 2
Heatmap
colcolfunc <- colorRampPalette(c("yellow", "orange"))
colcols <- colcolfunc(20)[bl_design[,"ADOS"]]
bitter_probes <- gt[which(gt$gene %in% bitter[[1]]),"probe"]
bitter_mvals <- bl_mvals[rownames(bl_mvals) %in% bitter_probes,]
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(bitter_mvals,trace="none",col=colfunc(25), margins = c(5,8), scale="row",
main="Bitter taste receptors",
ColSideColors = colcols )
hypo <- subset(res2$enrichment_result,p.adjustMANOVA<0.01 & s.bl <0 & s.gu < 0 )
nrow(hypo)
## [1] 21
hypo <- hypo[nrow(hypo):1,]
hypo <- tail(hypo,15)
par(mar=c(4.1, 25.1, 5.1, 1.1))
barplot(t(abs(hypo[,c("s.bl","s.gu")])),
beside=TRUE,horiz=TRUE,las=1,names.arg=hypo$set,
col=gray.colors(2),
xlab="enrichment score")
legend("topright", inset=0, title="tissue",
c("blood at assessment","neonatal Guthrie card"),
fill=gray.colors(2), horiz=FALSE, cex=1)
pdf("adosbarplot_hypo_reactome.pdf")
par(mar=c(4.1, 25.1, 5.1, 1.1))
barplot(t(abs(hypo[,c("s.bl","s.gu")])),
beside=TRUE,horiz=TRUE,las=1,names.arg=hypo$set,
col=gray.colors(2),
xlab="enrichment score")
legend("topright", inset=0, title="tissue",
c("blood at assessment","neonatal Guthrie card"),
fill=gray.colors(2), horiz=FALSE, cex=1)
dev.off()
## png
## 2
mar = c(5.1, 4.1, 4.1, 2.1)
Now look at metatropic glutamate/pheromone receptors.
genesets <- reactome
phero <- genesets[grep("pheromone",names(genesets))]
phero
## $`Class C/3 (Metabotropic glutamate/pheromone receptors)`
## [1] "CASR" "GABBR1" "GABBR2" "GPRC6A" "GRM1" "GRM2" "GRM3"
## [8] "GRM4" "GRM5" "GRM6" "GRM7" "GRM8" "TAS1R1" "TAS1R2"
## [15] "TAS1R3" "TAS2R1" "TAS2R10" "TAS2R13" "TAS2R14" "TAS2R16" "TAS2R19"
## [22] "TAS2R20" "TAS2R3" "TAS2R30" "TAS2R31" "TAS2R38" "TAS2R39" "TAS2R4"
## [29] "TAS2R40" "TAS2R41" "TAS2R42" "TAS2R43" "TAS2R45" "TAS2R46" "TAS2R5"
## [36] "TAS2R50" "TAS2R60" "TAS2R7" "TAS2R8" "TAS2R9"
rnk2 <- rnk[which(rownames(rnk) %in% phero[[1]]),]
plot(rnk2,main=names(phero),xlim=c(-21569,4146),ylim=c(-17678,8037),
xlab="Rank in blood at assessment",
ylab="Rank in neonatal Guthrie card",
cex=1.5,pch=19,col="lightgray")
text(rnk2,labels=rownames(rnk2))
abline(v=0,h=0,lwd=2,lty=2)
pdf("phero.pdf")
plot(rnk2,main=names(phero),xlim=c(-21569,4146),ylim=c(-17678,8037),
xlab="Rank in blood at assessment",
ylab="Rank in neonatal Guthrie card",
cex=1.5,pch=19,col="lightgray")
text(rnk2,labels=rownames(rnk2))
abline(v=0,h=0,lwd=2,lty=2)
dev.off()
## png
## 2
Make a heatmap of top TAS2R gene probes.
colcolfunc <- colorRampPalette(c("yellow", "orange"))
colcols <- colcolfunc(20)[bl_design[,"ADOS"]]
phero_probes <- gt[which(gt$gene %in% phero[[1]]),"probe"]
phero_mvals <- bl_mvals[rownames(bl_mvals) %in% phero_probes,]
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(phero_mvals,trace="none",col=colfunc(25), margins = c(5,8), scale="row",
main="Class C/3 (Metabotropic glutamate/pheromone receptors) probes",
ColSideColors = colcols )
Now let’s take a look at the SFARI gene list.
str(lsfari)
## List of 1
## $ sfari: chr [1:1152] "ABAT" "ABCA10" "ABCA13" "ABCA7" ...
sfarires <- mitch_calc(m1, lsfari, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
t(sfarires$enrichment_result)
## 1
## set "sfari"
## setSize "1061"
## pMANOVA "1.008455e-05"
## s.bl "-0.08046307"
## s.gu "-0.04932763"
## p.bl "9.386797e-06"
## p.gu "0.006608851"
## s.dist "0.09437967"
## SD "0.02201608"
## p.adjustMANOVA "1.008455e-05"
lrand <-lapply(1:1034,function(i) { set.seed(i*1000) ; sample(rownames(m1),1000) })
names(lrand) <- paste("random",1:1034)
lsets <- c(lsfari,lrand)
sfarires2 <- mitch_calc(m1, lsets, priority="effect",cores=1,resrows=10)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(sfarires2$enrichment_result) %>%
kbl(caption = "Enrichment analysis of SFARI genes") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.bl | s.gu | p.bl | p.gu | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
1 | sfari | 1061 | 0.0000101 | -0.0804631 | -0.0493276 | 0.0000094 | 0.0066089 | 0.0943797 | 0.0220161 | 0.0104375 |
664 | random 663 | 1000 | 0.0006176 | -0.0618008 | -0.0485970 | 0.0009386 | 0.0092852 | 0.0786194 | 0.0093365 | 0.3196333 |
211 | random 210 | 1000 | 0.0024331 | -0.0513177 | -0.0493682 | 0.0060138 | 0.0082259 | 0.0712090 | 0.0013785 | 0.5460660 |
328 | random 327 | 1000 | 0.0038395 | -0.0618170 | -0.0204526 | 0.0009357 | 0.2736267 | 0.0651126 | 0.0292490 | 0.5460660 |
929 | random 928 | 1000 | 0.0082477 | 0.0417376 | 0.0478681 | 0.0254736 | 0.0103968 | 0.0635089 | 0.0043349 | 0.5460660 |
286 | random 285 | 1000 | 0.0092805 | 0.0400016 | 0.0482284 | 0.0322570 | 0.0098334 | 0.0626586 | 0.0058172 | 0.5460660 |
mitch_plots(res=sfarires2,outfile="sfari_mitch_ados.pdf")
## png
## 2
mitch_report(res=sfarires2,outfile="sfari_mitch_ados.html",overwrite=TRUE)
## Dataset saved as " /tmp/RtmpGyw2UW/sfari_mitch_ados.rds ".
##
##
## processing file: mitch.Rmd
## 1/34
## 2/34 [checklibraries]
## 3/34
## 4/34 [peek]
## 5/34
## 6/34 [metrics]
## 7/34
## 8/34 [scatterplot]
## 9/34
## 10/34 [contourplot]
## 11/34
## 12/34 [input_geneset_metrics1]
## 13/34
## 14/34 [input_geneset_metrics2]
## 15/34
## 16/34 [input_geneset_metrics3]
## 17/34
## 18/34 [echart1d]
## 19/34 [echart2d]
## 20/34
## 21/34 [heatmap]
## 22/34
## 23/34 [effectsize]
## 24/34
## 25/34 [results_table]
## 26/34
## 27/34 [results_table_complete]
## 28/34
## 29/34 [detailed_geneset_reports1d]
## 30/34
## 31/34 [detailed_geneset_reports2d]
## 32/34
## 33/34 [session_info]
## 34/34
## output file: /asd_meth/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /asd_meth/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpGyw2UW/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --embed-resources --standalone --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpGyw2UW/rmarkdown-str1ce511c332a.html
##
## Output created: /tmp/RtmpGyw2UW/mitch_report.html
## [1] TRUE
GO
bumg <- mitch_calc(bum, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
bumgres <- bumg$enrichment_result
head(subset(bumgres,s.dist<0 ),10) %>%
kbl(caption="Buccal: Top gene sets with reducing methylation") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
6561 | GOMF TYPE I INTERFERON RECEPTOR BINDING | 14 | 0.0000000 | -0.8664242 | 0.0000051 |
5599 | GOMF BITTER TASTE RECEPTOR ACTIVITY | 24 | 0.0000000 | -0.7573668 | 0.0000000 |
3301 | GOBP POSITIVE REGULATION OF PEPTIDYL SERINE PHOSPHORYLATION OF STAT PROTEIN | 17 | 0.0000003 | -0.7138465 | 0.0000698 |
5024 | GOBP SERINE PHOSPHORYLATION OF STAT PROTEIN | 21 | 0.0000014 | -0.6078321 | 0.0002238 |
1993 | GOBP NATURAL KILLER CELL CHEMOTAXIS | 10 | 0.0011721 | -0.5926558 | 0.0420861 |
6498 | GOMF TASTE RECEPTOR ACTIVITY | 30 | 0.0000000 | -0.5788372 | 0.0000098 |
5367 | GOBP T HELPER 2 CELL CYTOKINE PRODUCTION | 13 | 0.0009465 | -0.5294959 | 0.0360945 |
389 | GOBP CD4 POSITIVE ALPHA BETA T CELL CYTOKINE PRODUCTION | 19 | 0.0001190 | -0.5098671 | 0.0073503 |
4317 | GOBP REGULATION OF NATURAL KILLER CELL PROLIFERATION | 12 | 0.0030836 | -0.4933256 | 0.0851371 |
3153 | GOBP POSITIVE REGULATION OF ISOTYPE SWITCHING TO IGG ISOTYPES | 11 | 0.0071092 | -0.4686665 | 0.1452383 |
head(subset(bumgres,s.dist>0 ),10) %>%
kbl(caption="Buccal: Top gene sets with higher methylation") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
3240 | GOBP POSITIVE REGULATION OF MUSCLE ADAPTATION | 13 | 0.0007494 | 0.5398844 | 0.0300134 |
6485 | GOMF SULFURTRANSFERASE ACTIVITY | 11 | 0.0020579 | 0.5365697 | 0.0625492 |
5872 | GOMF HISTONE CHAPERONE ACTIVITY | 12 | 0.0019201 | 0.5171650 | 0.0600680 |
3604 | GOBP PROTEIN LOCALIZATION TO CENP A CONTAINING CHROMATIN | 16 | 0.0004605 | 0.5057140 | 0.0205943 |
6781 | GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT | 37 | 0.0000001 | 0.4992402 | 0.0000324 |
6709 | GOCC CHROMOSOME CENTROMERIC CORE DOMAIN | 17 | 0.0005815 | 0.4818542 | 0.0249346 |
6470 | GOMF STRUCTURAL CONSTITUENT OF CHROMATIN | 80 | 0.0000000 | 0.4683464 | 0.0000000 |
6385 | GOMF RIBOSOMAL SMALL SUBUNIT BINDING | 16 | 0.0012137 | 0.4671643 | 0.0433652 |
3413 | GOBP POSITIVE REGULATION OF STRIATED MUSCLE CONTRACTION | 13 | 0.0042987 | 0.4573423 | 0.1065751 |
2802 | GOBP PHOSPHATIDYLETHANOLAMINE BIOSYNTHETIC PROCESS | 10 | 0.0137988 | 0.4496768 | 0.2220303 |
mysets <- c("GOMF BITTER TASTE RECEPTOR ACTIVITY",
"GOMF TYPE I INTERFERON RECEPTOR BINDING",
"GOBP CELLULAR GLUCURONIDATION",
"GOBP POSITIVE REGULATION OF PEPTIDYL SERINE PHOSPHORYLATION OF STAT PROTEIN",
"GOMF ODORANT BINDING",
"GOMF OLFACTORY RECEPTOR ACTIVITY",
"GOBP URONIC ACID METABOLIC PROCESS")
bumgres[which(bumgres$set %in% mysets),] %>%
kbl(caption="Selected gene sets in buccal samples") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
6561 | GOMF TYPE I INTERFERON RECEPTOR BINDING | 14 | 0.0000000 | -0.8664242 | 0.0000051 |
5599 | GOMF BITTER TASTE RECEPTOR ACTIVITY | 24 | 0.0000000 | -0.7573668 | 0.0000000 |
3301 | GOBP POSITIVE REGULATION OF PEPTIDYL SERINE PHOSPHORYLATION OF STAT PROTEIN | 17 | 0.0000003 | -0.7138465 | 0.0000698 |
6149 | GOMF ODORANT BINDING | 104 | 0.0000000 | -0.4472935 | 0.0000000 |
6150 | GOMF OLFACTORY RECEPTOR ACTIVITY | 356 | 0.0000000 | -0.4388773 | 0.0000000 |
406 | GOBP CELLULAR GLUCURONIDATION | 21 | 0.0159259 | -0.3038487 | 0.2422823 |
5386 | GOBP URONIC ACID METABOLIC PROCESS | 26 | 0.0672663 | -0.2073191 | 0.4698194 |
MAX=max(bumg$ranked_profile)
MIN=min(bumg$ranked_profile)
par(mfrow=c(3,1))
par(mar=c(4.1, 4.1, 5.1, 1.1))
beeswarm(bumg$detailed_sets["GOMF BITTER TASTE RECEPTOR ACTIVITY"],
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
abline(v=c(MIN,MAX),lty=2)
mtext("GOMF BITTER TASTE RECEPTOR ACTIVITY (FDR=4.8e-8)",cex=0.7)
beeswarm(bumg$detailed_sets["GOMF TYPE I INTERFERON RECEPTOR BINDING"],
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
abline(v=c(MIN,MAX),lty=2)
mtext("GOMF TYPE I INTERFERON RECEPTOR BINDING (FDR=5.1e-6)",cex=0.7)
mygenes <- go[[which(names(go)=="GOBP CELLULAR GLUCURONIDATION")]]
myranks <- bumg$ranked_profile[which(rownames(bumg$ranked_profile) %in% mygenes),]
beeswarm(myranks,
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
mtext("GOBP CELLULAR GLUCURONIDATION (FDR=0.24)",cex=0.7)
abline(v=c(MIN,MAX),lty=2)
pdf("buccal_go.pdf")
par(mfrow=c(3,1))
par(mar=c(4.1, 4.1, 5.1, 1.1))
beeswarm(bumg$detailed_sets["GOMF BITTER TASTE RECEPTOR ACTIVITY"],
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
abline(v=c(MIN,MAX),lty=2)
mtext("GOMF BITTER TASTE RECEPTOR ACTIVITY (FDR=4.8e-8)",cex=0.7)
beeswarm(bumg$detailed_sets["GOMF TYPE I INTERFERON RECEPTOR BINDING"],
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
abline(v=c(MIN,MAX),lty=2)
mtext("GOMF TYPE I INTERFERON RECEPTOR BINDING (FDR=5.1e-6)",cex=0.7)
mygenes <- go[[which(names(go)=="GOBP CELLULAR GLUCURONIDATION")]]
myranks <- bumg$ranked_profile[which(rownames(bumg$ranked_profile) %in% mygenes),]
beeswarm(myranks,
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
mtext("GOBP CELLULAR GLUCURONIDATION (FDR=0.24)",cex=0.7)
abline(v=c(MIN,MAX),lty=2)
dev.off()
## png
## 2
REACTOME
bumr <- mitch_calc(bum, reactome, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
bumrres <- bumr$enrichment_result
head(subset(bumrres,s.dist<0 ),10) %>%
kbl(caption="Buccal: Top gene sets with reducing methylation") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
1460 | TRAF6 mediated IRF7 activation | 26 | 0.0000226 | -0.4800332 | 0.0008008 |
220 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 0.0000003 | -0.4747295 | 0.0000142 |
642 | Interaction With Cumulus Cells And The Zona Pellucida | 11 | 0.0107594 | -0.4440731 | 0.0913985 |
412 | Expression and translocation of olfactory receptors | 357 | 0.0000000 | -0.4376575 | 0.0000000 |
895 | Olfactory Signaling Pathway | 364 | 0.0000000 | -0.4280739 | 0.0000000 |
816 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 12 | 0.0136817 | -0.4110248 | 0.1057573 |
674 | Intrinsic Pathway of Fibrin Clot Formation | 21 | 0.0023778 | -0.3829735 | 0.0313148 |
179 | Caspase activation via Death Receptors in the presence of ligand | 16 | 0.0104302 | -0.3698080 | 0.0900090 |
1282 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | 0.0000461 | -0.3676606 | 0.0013685 |
656 | Interleukin-15 signaling | 13 | 0.0217792 | -0.3674715 | 0.1455698 |
head(subset(bumrres,s.dist>0 ),10) %>%
kbl(caption="Buccal: Top gene sets with higher methylation") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
681 | Josephin domain DUBs | 10 | 0.0009048 | 0.6059795 | 0.0162170 |
954 | Pexophagy | 10 | 0.0018332 | 0.5689980 | 0.0282078 |
214 | Chylomicron remodeling | 10 | 0.0020745 | 0.5623092 | 0.0296795 |
1461 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 11 | 0.0013317 | 0.5587307 | 0.0221631 |
1228 | SARS-CoV-1 modulates host translation machinery | 34 | 0.0000001 | 0.5275375 | 0.0000055 |
1265 | SUMOylation of immune response proteins | 11 | 0.0073661 | 0.4666014 | 0.0737059 |
957 | Phase 4 - resting membrane potential | 19 | 0.0009019 | 0.4398319 | 0.0162170 |
1072 | RNA Polymerase I Promoter Opening | 26 | 0.0001435 | 0.4307122 | 0.0035451 |
1130 | Regulation of CDH11 gene transcription | 10 | 0.0192168 | 0.4275543 | 0.1357350 |
817 | NF-kB is activated and signals survival | 12 | 0.0112359 | 0.4226527 | 0.0930244 |
mysets <- c("Class C/3 (Metabotropic glutamate/pheromone receptors)",
"Scavenging of heme from plasma",
"Sensory perception of sweet, bitter, and umami (glutamate) taste",
"Glucuronidation",
"Sensory perception of taste",
"Digestion",
"Aspirin ADME",
"Expression and translocation of olfactory receptors",
"Olfactory Signaling Pathway",
"Dectin-2 family")
bumrres[which(bumrres$set %in% mysets),] %>%
kbl(caption="Selected gene sets in buccal samples") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
220 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 0.0000003 | -0.4747295 | 0.0000142 |
412 | Expression and translocation of olfactory receptors | 357 | 0.0000000 | -0.4376575 | 0.0000000 |
895 | Olfactory Signaling Pathway | 364 | 0.0000000 | -0.4280739 | 0.0000000 |
1282 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | 0.0000461 | -0.3676606 | 0.0013685 |
1283 | Sensory perception of taste | 47 | 0.0014228 | -0.2689132 | 0.0229762 |
540 | Glucuronidation | 24 | 0.0360649 | -0.2471738 | 0.1966605 |
100 | Aspirin ADME | 43 | 0.0234052 | -0.1997691 | 0.1514837 |
288 | Dectin-2 family | 28 | 0.1643760 | -0.1518170 | 0.4865649 |
1271 | Scavenging of heme from plasma | 12 | 0.4337351 | -0.1305109 | 0.7357329 |
328 | Digestion | 18 | 0.8381293 | -0.0278127 | 0.9414524 |
MAX=max(bumr$ranked_profile)
MIN=min(bumr$ranked_profile)
par(mfrow=c(3,1))
par(mar=c(4.1, 4.1, 5.1, 1.1))
beeswarm(bumr$detailed_sets["Class C/3 (Metabotropic glutamate/pheromone receptors)"],
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
abline(v=c(MIN,MAX),lty=2)
mtext("Class C/3 (Metabotropic glutamate/pheromone receptors) (FDR=1.4e-5)",cex=0.7)
mygenes <- reactome[[which(names(reactome)=="Expression and translocation of olfactory receptors")]]
myranks <- bumr$ranked_profile[which(rownames(bumr$ranked_profile) %in% mygenes),]
beeswarm(myranks,
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
mtext("Expression and translocation of olfactory receptors (FDR=8.5e-43)",cex=0.7)
abline(v=c(MIN,MAX),lty=2)
mygenes <- reactome[[which(names(reactome)=="Olfactory Signaling Pathway")]]
myranks <- bumr$ranked_profile[which(rownames(bumr$ranked_profile) %in% mygenes),]
beeswarm(myranks,
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
mtext("Olfactory Signaling Pathway (FDR=5.4e-42)",cex=0.7)
abline(v=c(MIN,MAX),lty=2)
pdf("buccal_reactome.pdf")
par(mfrow=c(3,1))
par(mar=c(4.1, 4.1, 5.1, 1.1))
beeswarm(bumr$detailed_sets["Class C/3 (Metabotropic glutamate/pheromone receptors)"],
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
abline(v=c(MIN,MAX),lty=2)
mtext("Class C/3 (Metabotropic glutamate/pheromone receptors) (FDR=1.4e-5)",cex=0.7)
mygenes <- reactome[[which(names(reactome)=="Expression and translocation of olfactory receptors")]]
myranks <- bumr$ranked_profile[which(rownames(bumr$ranked_profile) %in% mygenes),]
beeswarm(myranks,
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
mtext("Expression and translocation of olfactory receptors (FDR=8.5e-43)",cex=0.7)
abline(v=c(MIN,MAX),lty=2)
mygenes <- reactome[[which(names(reactome)=="Olfactory Signaling Pathway")]]
myranks <- bumr$ranked_profile[which(rownames(bumr$ranked_profile) %in% mygenes),]
beeswarm(myranks,
horizontal=TRUE,labels="", xlim=c(MIN,MAX), bty="n",
xlab="ranked score in buccal swab")
mtext("Olfactory Signaling Pathway (FDR=5.4e-42)",cex=0.7)
abline(v=c(MIN,MAX),lty=2)
dev.off()
## png
## 2
For reproducibility
sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] pkgload_1.3.4
## [2] GGally_2.2.1
## [3] ggplot2_3.5.1
## [4] reshape2_1.4.4
## [5] beeswarm_0.4.0
## [6] gplots_3.1.3.1
## [7] gtools_3.9.5
## [8] tibble_3.2.1
## [9] dplyr_1.1.4
## [10] echarts4r_0.4.5
## [11] RhpcBLASctl_0.23-42
## [12] eulerr_7.0.2
## [13] kableExtra_1.4.0
## [14] data.table_1.15.4
## [15] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [16] minfi_1.50.0
## [17] bumphunter_1.46.0
## [18] locfit_1.5-9.10
## [19] iterators_1.0.14
## [20] foreach_1.5.2
## [21] Biostrings_2.72.1
## [22] XVector_0.44.0
## [23] SummarizedExperiment_1.34.0
## [24] Biobase_2.64.0
## [25] MatrixGenerics_1.16.0
## [26] matrixStats_1.3.0
## [27] GenomicRanges_1.56.1
## [28] GenomeInfoDb_1.40.1
## [29] IRanges_2.38.1
## [30] S4Vectors_0.42.1
## [31] BiocGenerics_0.50.0
## [32] HGNChelper_0.8.14
## [33] mitch_1.16.0
## [34] limma_3.60.4
##
## loaded via a namespace (and not attached):
## [1] splines_4.4.1 later_1.3.2
## [3] BiocIO_1.14.0 bitops_1.0-8
## [5] preprocessCore_1.61.0 XML_3.99-0.17
## [7] lifecycle_1.0.4 lattice_0.22-6
## [9] MASS_7.3-61 base64_2.0.1
## [11] scrime_1.3.5 magrittr_2.0.3
## [13] sass_0.4.9 rmarkdown_2.27
## [15] jquerylib_0.1.4 yaml_2.3.8
## [17] httpuv_1.6.15 doRNG_1.8.6
## [19] askpass_1.2.0 DBI_1.2.3
## [21] RColorBrewer_1.1-3 abind_1.4-5
## [23] zlibbioc_1.50.0 quadprog_1.5-8
## [25] purrr_1.0.2 RCurl_1.98-1.16
## [27] GenomeInfoDbData_1.2.12 genefilter_1.86.0
## [29] annotate_1.82.0 svglite_2.1.3
## [31] DelayedMatrixStats_1.26.0 codetools_0.2-20
## [33] DelayedArray_0.30.1 xml2_1.3.6
## [35] tidyselect_1.2.1 farver_2.1.2
## [37] UCSC.utils_1.0.0 beanplot_1.3.1
## [39] illuminaio_0.46.0 GenomicAlignments_1.40.0
## [41] jsonlite_1.8.8 multtest_2.60.0
## [43] survival_3.7-0 systemfonts_1.1.0
## [45] tools_4.4.1 Rcpp_1.0.12
## [47] glue_1.7.0 gridExtra_2.3
## [49] SparseArray_1.4.8 xfun_0.45
## [51] HDF5Array_1.32.1 withr_3.0.0
## [53] fastmap_1.2.0 rhdf5filters_1.16.0
## [55] fansi_1.0.6 openssl_2.2.0
## [57] caTools_1.18.2 digest_0.6.36
## [59] R6_2.5.1 mime_0.12
## [61] colorspace_2.1-1 RSQLite_2.3.7
## [63] utf8_1.2.4 tidyr_1.3.1
## [65] generics_0.1.3 rtracklayer_1.64.0
## [67] httr_1.4.7 htmlwidgets_1.6.4
## [69] S4Arrays_1.4.1 ggstats_0.6.0
## [71] pkgconfig_2.0.3 gtable_0.3.5
## [73] blob_1.2.4 siggenes_1.78.0
## [75] htmltools_0.5.8.1 scales_1.3.0
## [77] png_0.1-8 knitr_1.47
## [79] rstudioapi_0.16.0 tzdb_0.4.0
## [81] rjson_0.2.22 nlme_3.1-165
## [83] curl_5.2.1 cachem_1.1.0
## [85] rhdf5_2.48.0 stringr_1.5.1
## [87] KernSmooth_2.23-24 AnnotationDbi_1.66.0
## [89] restfulr_0.0.15 GEOquery_2.72.0
## [91] pillar_1.9.0 grid_4.4.1
## [93] reshape_0.8.9 vctrs_0.6.5
## [95] promises_1.3.0 xtable_1.8-4
## [97] evaluate_0.24.0 readr_2.1.5
## [99] GenomicFeatures_1.56.0 cli_3.6.3
## [101] compiler_4.4.1 Rsamtools_2.20.0
## [103] rlang_1.1.4 crayon_1.5.3
## [105] rngtools_1.5.2 labeling_0.4.3
## [107] nor1mix_1.3-3 mclust_6.1.1
## [109] plyr_1.8.9 stringi_1.8.4
## [111] viridisLite_0.4.2 BiocParallel_1.38.0
## [113] munsell_0.5.1 Matrix_1.7-0
## [115] hms_1.1.3 sparseMatrixStats_1.16.0
## [117] bit64_4.0.5 Rhdf5lib_1.26.0
## [119] KEGGREST_1.44.1 statmod_1.5.0
## [121] shiny_1.8.1.1 highr_0.11
## [123] memoise_2.0.1 bslib_0.7.0
## [125] bit_4.0.5 splitstackshape_1.4.8
save.image("downstream2_ados.Rdata")