Source: https://github.com/markziemann/asd_meth
Here I will be running a comparison of differential methylation data from guthrie and fresh blood samples.
Here are the files that I’m using:
limma_blood_ADOS.csv
limma_guthrie_ADOS.csv
limma_buccal_ADOS.csv
suppressPackageStartupMessages({
library("limma")
library("parallel")
library("mitch")
library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
source("meth_functions.R")
library("data.table")
library("kableExtra")
library("eulerr")
library("RIdeogram")
library("GenomicRanges")
library("tictoc")
library("globaltest")
library("ebGSEA")
data("dualmap850kEID")
})
source("meth_functions.R")
bl_mvals <- readRDS(file="bl_mvals.rds")
gu_mvals <- readRDS(file="gu_mvals.rds")
bu_mvals <- readRDS(file="buccal_mvals.rds")
bl_design <- readRDS(file="bl_design_ados.rds")
gu_design <- readRDS(file="gu_design_ados.rds")
bu_design <- readRDS(file="buccal_design_ados.rds")
bl_lim <- read.csv("limma_blood_ADOS.csv")
gu_lim <- read.csv("limma_guthrie_ADOS.csv")
bu_lim <- read.csv("limma_buccal_ADOS.csv")
For each gene, extract out the probes.
anno <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
myann <- data.frame(anno[,c("UCSC_RefGene_Name","Regulatory_Feature_Group","Islands_Name","Relation_to_Island")])
promoters <- grep("Prom",myann$Regulatory_Feature_Group)
promoters <- myann[promoters,]
gp <- myann[,"UCSC_RefGene_Name",drop=FALSE]
gp2 <- strsplit(gp$UCSC_RefGene_Name,";")
names(gp2) <- rownames(gp)
sets <- split(rep(names(gp2), lengths(gp2)), unlist(gp2))
summary(unlist(lapply(sets,length)))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 9.00 24.00 49.68 55.00 6778.00
For each gene, calculate the mean probe t-statistic.
bl <- pmea(mval=bl_mvals,design=bl_design,sets,cores=10)
str(bl)
## List of 2
## $ df :'data.frame': 27364 obs. of 6 variables:
## ..$ nprobes: num [1:27364] 776 504 394 212 416 282 403 226 148 296 ...
## ..$ mean : num [1:27364] -0.426 -0.462 -0.51 -0.596 -0.474 ...
## ..$ median : num [1:27364] -0.436 -0.575 -0.58 -0.673 -0.544 ...
## ..$ P.Value: num [1:27364] 5.89e-35 2.87e-28 3.36e-27 4.15e-25 9.03e-24 ...
## ..$ sig : num [1:27364] 34.2 27.5 26.5 24.4 23 ...
## ..$ FDR : num [1:27364] 1.61e-30 7.84e-24 9.18e-23 1.13e-20 2.47e-19 ...
## $ toptable:'data.frame': 802647 obs. of 6 variables:
## ..$ logFC : num [1:802647] -0.0855 0.1005 -0.0706 0.1229 -0.0612 ...
## ..$ AveExpr : num [1:802647] -4.336 4.685 -4.504 0.666 0.655 ...
## ..$ t : num [1:802647] -6.71 5.98 -5.8 5.77 -5.61 ...
## ..$ P.Value : num [1:802647] 2.28e-05 6.70e-05 8.77e-05 9.21e-05 1.19e-04 ...
## ..$ adj.P.Val: num [1:802647] 0.876 0.876 0.876 0.876 0.876 ...
## ..$ B : num [1:802647] 3.05 2.04 1.78 1.74 1.49 ...
blm <- bl$df[,"mean",drop=FALSE]
blm <- blm[!is.na(blm$mean),,drop=FALSE] # remove NA vals
head(blm)
## mean
## MAD1L1 -0.4256926
## HDAC4 -0.4618768
## ATP11A -0.5100916
## GNAS -0.5959431
## TRAPPC9 -0.4741987
## PDE4D -0.6894219
nrow(blm)
## [1] 25739
par(mfrow=c(2,1))
hist(bl$toptable$t,xlab="probe t-stat",main="blood at assessment", breaks=30) ; grid() ; abline(v=0,lty=1,lwd=3)
hist(bl$df$mean,xlab="gene mean t-stat",main="blood at assessment", breaks=30) ; grid() ; abline(v=0,lty=1,lwd=3)
pdf("hist_bl_ados.pdf")
par(mfrow=c(2,1))
hist(bl$toptable$t,xlab="probe t-stat",main="blood at assessment",breaks=30) ; grid() ; abline(v=0,lty=1,lwd=3)
plot(1)
hist(bl$df$mean,xlab="gene mean t-stat",main="blood at assessment", breaks=30) ; grid() ; abline(v=0,lty=1,lwd=3)
plot(1)
dev.off()
## png
## 2
par(mfrow=c(1,1))
gmea_boxplot(bl,sets)
gu <- pmea(mval=gu_mvals,design=gu_design,sets,cores=10)
str(gu)
## List of 2
## $ df :'data.frame': 27364 obs. of 6 variables:
## ..$ nprobes: num [1:27364] 1395 153 68 81 88 ...
## ..$ mean : num [1:27364] -0.252 -0.458 -0.627 -0.608 -0.574 ...
## ..$ median : num [1:27364] -0.235 -0.457 -0.51 -0.625 -0.624 ...
## ..$ P.Value: num [1:27364] 1.72e-22 1.24e-12 3.40e-12 4.72e-12 4.91e-12 ...
## ..$ sig : num [1:27364] 21.8 11.9 11.5 11.3 11.3 ...
## ..$ FDR : num [1:27364] 4.72e-18 3.39e-08 9.30e-08 1.29e-07 1.34e-07 ...
## $ toptable:'data.frame': 790658 obs. of 6 variables:
## ..$ logFC : num [1:790658] 0.0827 0.1035 0.1318 0.0916 -0.1333 ...
## ..$ AveExpr : num [1:790658] 3.05 1.8 1.6 -3.38 2.27 ...
## ..$ t : num [1:790658] 7.39 6.87 6.82 6.72 -6.34 ...
## ..$ P.Value : num [1:790658] 4.01e-06 8.92e-06 9.54e-06 1.12e-05 2.08e-05 ...
## ..$ adj.P.Val: num [1:790658] 1 1 1 1 1 ...
## ..$ B : num [1:790658] 4.58 3.85 3.79 3.64 3.07 ...
gum <- gu$df[,"mean",drop=FALSE]
gum <- gum[!is.na(gum$mean),,drop=FALSE] # remove NA vals
head(gum)
## mean
## PTPRN2 -0.2524635
## ANK3 -0.4580590
## MIR548F3 -0.6267218
## AKAP6 -0.6084892
## LRP1B -0.5737076
## RNU6-71P -0.5286560
nrow(gum)
## [1] 25716
par(mfrow=c(2,1))
hist(gu$toptable$t,xlab="probe t-stat",main="neonatal Guthrie card",breaks=30) ; grid() ; abline(v=0,lty=1,lwd=3)
hist(gu$df$mean,xlab="gene mean t-stat",main="neonatal Guthrie card",breaks=30) ; grid() ; abline(v=0,lty=1,lwd=3)
pdf("hist_gu_ados.pdf")
par(mfrow=c(2,1))
hist(gu$toptable$t,xlab="probe t-stat",main="neonatal Guthrie card", breaks=30) ; grid() ; abline(v=0,lty=1,lwd=3)
plot(1)
hist(gu$df$mean,xlab="gene mean t-stat",main="neonatal Guthrie card", breaks=30) ; grid() ; abline(v=0,lty=1,lwd=3)
plot(1)
dev.off()
## png
## 2
par(mfrow=c(1,1))
gmea_boxplot(gu,sets)
bu <- pmea(mval=bu_mvals,design=bu_design,sets,cores=10)
str(bu)
## List of 2
## $ df :'data.frame': 27364 obs. of 6 variables:
## ..$ nprobes: num [1:27364] 656 382 257 376 212 475 114 121 84 48 ...
## ..$ mean : num [1:27364] 0.65 0.7 0.643 0.559 0.654 ...
## ..$ median : num [1:27364] 0.715 0.724 0.646 0.598 0.83 ...
## ..$ P.Value: num [1:27364] 2.02e-53 2.70e-39 2.99e-25 2.66e-21 2.02e-19 ...
## ..$ sig : num [1:27364] 52.7 38.6 24.5 20.6 18.7 ...
## ..$ FDR : num [1:27364] 5.53e-49 7.39e-35 8.18e-21 7.28e-17 5.53e-15 ...
## $ toptable:'data.frame': 801260 obs. of 6 variables:
## ..$ logFC : num [1:801260] 0.276 -0.187 0.171 -0.178 -0.177 ...
## ..$ AveExpr : num [1:801260] -3.79 5.52 -3.96 1.34 1.6 ...
## ..$ t : num [1:801260] 12.16 -10.05 9.5 -9.41 -9.01 ...
## ..$ P.Value : num [1:801260] 8.38e-06 2.82e-05 4.01e-05 4.27e-05 5.60e-05 ...
## ..$ adj.P.Val: num [1:801260] 0.905 0.905 0.905 0.905 0.905 ...
## ..$ B : num [1:801260] 3.1 2.41 2.19 2.15 1.97 ...
bum <- bu$df[,"mean",drop=FALSE]
bum <- bum[!is.na(bum$mean),,drop=FALSE] # remove NA vals
head(bum)
## mean
## PRDM16 0.6501046
## CDH4 0.6997851
## SEPT9 0.6428529
## KCNQ1 0.5587846
## GNAS 0.6544056
## SHANK2 0.4526450
nrow(bum)
## [1] 25739
par(mfrow=c(2,1))
hist(bu$toptable$t,xlab="probe t-stat",main="buccal swab") ; grid() ; abline(v=0,lty=1,lwd=3)
hist(bu$df$mean,xlab="gene mean t-stat",main="buccal swab") ; grid() ; abline(v=0,lty=1,lwd=3)
pdf("hist_bu_ados.pdf")
par(mfrow=c(2,1))
hist(bu$toptable$t,xlab="probe t-stat",main="buccal swab") ; grid() ; abline(v=0,lty=1,lwd=3)
plot(1)
hist(bu$df$mean,xlab="gene mean t-stat",main="buccal swab") ; grid() ; abline(v=0,lty=1,lwd=3)
plot(1)
dev.off()
## png
## 2
par(mfrow=c(1,1))
gmea_boxplot(bu,sets)
Now compare gene methylation scores for blood and guthrie cards. The mean limma t-statistic is used for a scatterplot, then rank-rank plot.
m1 <- merge(blm,gum,by=0)
rownames(m1) <- m1$Row.names
m1$Row.names=NULL
colnames(m1) <- c("bl","gu")
plot(m1$bl,m1$gu,xlab="blood at assessment",ylab="neonatal Guthrie card",
col = rgb(red = 0.6, green = 0.6, blue = 0.6, alpha = 0.5) ,
pch=19,cex=0.9)
grid()
abline(v=0,lty=1,lwd=3,col="black") ; abline(h=0,lty=1,lwd=3,col="black")
mtext("aggregated t-statistic for each gene (mean)")
rm1 <- apply(m1,2,rank)
mydiff <- apply(m1,2,function(x) { length(which(x<0)) } )
rm2 <- rm1
rm2[,1] <- rm2[,1] - mydiff[1]
rm2[,2] <- rm2[,2] - mydiff[2]
rnk <- rm2
palette <- colorRampPalette(c("white", "yellow", "orange", "red","darkred", "black"))
xmin = min(rnk[, 1])
xmax = max(rnk[, 1])
ymin = min(rnk[, 2])
ymax = max(rnk[, 2])
k <- MASS::kde2d(rnk[, 1], rnk[, 2])
X_AXIS = "blood at assessment"
Y_AXIS = "neonatal Guthrie card"
filled.contour(k, xlim = c(xmin, xmax), ylim = c(ymin, ymax),
color.palette = palette, plot.title = {
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
title(main="gene rank",xlab = X_AXIS, ylab = Y_AXIS)
})
pdf("genedens_ados.pdf")
par(mfrow=c(2,2))
plot(1)
plot(1)
plot(m1$bl,m1$gu,xlab="blood at assessment",ylab="neonatal Guthrie card",
col = rgb(red = 0.6, green = 0.6, blue = 0.6, alpha = 0.5) ,
pch=19,cex=0.9)
grid()
abline(v=0, h=0, lty=2, lwd=2, col="blue")
mtext("aggregated t-statistic for each gene (mean)")
filled.contour(k, xlim = c(xmin, xmax), ylim = c(ymin, ymax),
color.palette = palette, plot.title = {
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
title(main = "gene rank", xlab = X_AXIS, ylab = Y_AXIS)
})
dev.off()
## png
## 2
Now we need a table of genes with top scores.
m3 <- m1
m3$med <- apply(rnk,1,median)
mg <- merge(gu$df,bl$df,by=0)
rownames(mg) <- mg$Row.names
mg <- mg[rownames(mg) %in% rownames(m3),]
dim(mg)
## [1] 25716 13
mg$med <- m3$med
mg <- mg[order(mg$med),]
mg <-subset(mg,nprobes.x>=5)
mg <-subset(mg,nprobes.x>=5)
dim(mg)
## [1] 21872 14
mg$Row.names = mg$sig.x = mg$sig.y = mg$FDR.x = mg$FDR.y = mg$median.x = mg$median.y = mg$nprobes.y = NULL
head(mg,20) %>%
kbl(caption="Genes with coordinated hypomethylation in neonatal Guthrie card and blood at assessment") %>%
kable_paper("hover", full_width = F)
nprobes.x | mean.x | P.Value.x | mean.y | P.Value.y | med | |
---|---|---|---|---|---|---|
MIR1251 | 6 | -1.4255875 | 0.0000323 | -1.749671 | 0.0003086 | -19468.5 |
BZW1L1 | 5 | -1.2532992 | 0.0060798 | -1.754408 | 0.0025244 | -19435.0 |
LINC00871 | 7 | -0.9595183 | 0.0061097 | -1.713879 | 0.0001170 | -19234.0 |
TAAR9 | 5 | -1.0688897 | 0.0374636 | -1.482612 | 0.0011922 | -19206.5 |
LOC101926944 | 5 | -0.9957280 | 0.0045594 | -1.576021 | 0.0159759 | -19203.0 |
NAALADL2-AS2 | 7 | -1.0180771 | 0.0103643 | -1.538871 | 0.0070632 | -19200.0 |
OR52E8 | 8 | -1.2018857 | 0.0004812 | -1.384415 | 0.0189218 | -19194.5 |
MIR340 | 5 | -1.0338178 | 0.0274113 | -1.491043 | 0.0038681 | -19184.5 |
KERA | 5 | -0.8913769 | 0.1288030 | -1.703936 | 0.0100214 | -19146.0 |
LOC400655 | 9 | -0.9597790 | 0.0000456 | -1.527574 | 0.0191155 | -19140.5 |
UGT2B4 | 5 | -0.8995623 | 0.0232803 | -1.651494 | 0.0002245 | -19131.0 |
MIR490 | 5 | -0.9209369 | 0.0340287 | -1.566863 | 0.0087053 | -19116.5 |
RHAG | 8 | -0.8685327 | 0.0006638 | -1.706321 | 0.0000769 | -19115.5 |
LINC00644 | 5 | -1.0006948 | 0.0277128 | -1.430676 | 0.0406665 | -19108.5 |
SELE | 9 | -1.1272002 | 0.0383219 | -1.289182 | 0.0007408 | -19084.0 |
TMPRSS11F | 11 | -0.8876613 | 0.0001080 | -1.551513 | 0.0007112 | -19064.5 |
HISPPD1 | 5 | -0.8494605 | 0.0259018 | -1.618099 | 0.0001746 | -19041.0 |
CRYGC | 9 | -0.9482129 | 0.0003966 | -1.392217 | 0.0000031 | -19020.5 |
FABP2 | 5 | -0.7913966 | 0.0215867 | -1.895935 | 0.0069802 | -19020.5 |
PTH | 5 | -0.8111156 | 0.0339078 | -1.703538 | 0.0184793 | -19012.0 |
genesets <- gmt_import("ReactomePathways.gmt")
sfari <- readLines("sfari.txt")
lsfari <- list(sfari)
names(lsfari) <- "sfari"
cores = 8
Here I’m using the mean t-statistic for downstream enrichment. These have already been saved to objects called blm
, gum
and bum
. Pathways are from REACTOME and analysis using mitch.
mitch_bl <- mitch_calc(blm,genesets,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
sig <- subset(mitch_bl$enrichment_result,`p.adjustANOVA`<0.01)
head(sig[order(-abs(sig$s.dist)),],30) %>%
kbl(caption="BLOOD: Top effect size pathways found with mitch after 1% FDR filtering") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
380 | Eicosanoids | 12 | 0.0001518 | 0.6314443 | 0.0015541 |
1163 | SARS-CoV-1 modulates host translation machinery | 34 | 0.0000001 | 0.5217548 | 0.0000050 |
212 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 0.0000001 | -0.4893724 | 0.0000046 |
224 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 16 | 0.0008579 | -0.4812570 | 0.0078946 |
903 | Peptide chain elongation | 84 | 0.0000000 | 0.4663117 | 0.0000000 |
1215 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | 0.0000003 | -0.4646788 | 0.0000077 |
397 | Eukaryotic Translation Termination | 87 | 0.0000000 | 0.4644754 | 0.0000000 |
395 | Eukaryotic Translation Elongation | 88 | 0.0000000 | 0.4582574 | 0.0000000 |
1208 | Selenocysteine synthesis | 87 | 0.0000000 | 0.4487558 | 0.0000000 |
1496 | Viral mRNA Translation | 84 | 0.0000000 | 0.4451212 | 0.0000000 |
107 | Autodegradation of the E3 ubiquitin ligase COP1 | 50 | 0.0000001 | 0.4331659 | 0.0000044 |
829 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 89 | 0.0000000 | 0.4277184 | 0.0000000 |
1145 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 95 | 0.0000000 | 0.4275271 | 0.0000000 |
1482 | Ubiquitin-dependent degradation of Cyclin D | 50 | 0.0000002 | 0.4252715 | 0.0000063 |
1481 | Ubiquitin Mediated Degradation of Phosphorylated Cdc25A | 50 | 0.0000002 | 0.4252061 | 0.0000063 |
1533 | p53-Independent DNA Damage Response | 50 | 0.0000002 | 0.4252061 | 0.0000063 |
1534 | p53-Independent G1/S DNA damage checkpoint | 50 | 0.0000002 | 0.4252061 | 0.0000063 |
242 | Cross-presentation of soluble exogenous antigens (endosomes) | 46 | 0.0000007 | 0.4233906 | 0.0000152 |
449 | Formation of a pool of free 40S subunits | 94 | 0.0000000 | 0.4230774 | 0.0000000 |
21 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 53 | 0.0000001 | 0.4225398 | 0.0000040 |
1187 | SRP-dependent cotranslational protein targeting to membrane | 105 | 0.0000000 | 0.4187931 | 0.0000000 |
1172 | SCF(Skp2)-mediated degradation of p27/p21 | 58 | 0.0000001 | 0.4125927 | 0.0000023 |
403 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 53 | 0.0000002 | 0.4119269 | 0.0000064 |
1111 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 48 | 0.0000008 | 0.4117493 | 0.0000165 |
492 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 50 | 0.0000005 | 0.4115645 | 0.0000120 |
1323 | Stabilization of p53 | 55 | 0.0000001 | 0.4098243 | 0.0000051 |
565 | Hh mutants are degraded by ERAD | 54 | 0.0000002 | 0.4081817 | 0.0000064 |
493 | GTP hydrolysis and joining of the 60S ribosomal subunit | 104 | 0.0000000 | 0.4065254 | 0.0000000 |
1502 | Vpu mediated degradation of CD4 | 50 | 0.0000007 | 0.4053813 | 0.0000157 |
663 | L13a-mediated translational silencing of Ceruloplasmin expression | 103 | 0.0000000 | 0.4052466 | 0.0000000 |
mitch_gu <- mitch_calc(gum,genesets,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
sig <- subset(mitch_gu$enrichment_result,`p.adjustANOVA`<0.01)
head(sig[order(-abs(sig$s.dist)),],30) %>%
kbl(caption="GUTHRIE: Top effect size pathways found with mitch after 1% FDR filtering") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
212 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 0.0000004 | -0.4676449 | 0.0000116 |
882 | PINK1-PRKN Mediated Mitophagy | 21 | 0.0003534 | 0.4502581 | 0.0028311 |
13 | APC/C:Cdc20 mediated degradation of Cyclin B | 24 | 0.0001441 | 0.4481226 | 0.0014011 |
753 | Mitophagy | 27 | 0.0001137 | 0.4290077 | 0.0011647 |
95 | Aspirin ADME | 44 | 0.0000009 | -0.4283638 | 0.0000217 |
923 | Phosphorylation of the APC/C | 20 | 0.0013935 | 0.4127413 | 0.0083826 |
399 | Expression and translocation of olfactory receptors | 356 | 0.0000000 | -0.4043606 | 0.0000000 |
11 | APC-Cdc20 mediated degradation of Nek2A | 26 | 0.0004031 | 0.4007755 | 0.0031162 |
853 | Olfactory Signaling Pathway | 363 | 0.0000000 | -0.4003579 | 0.0000000 |
1345 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 27 | 0.0003176 | 0.4002390 | 0.0026182 |
25 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 36 | 0.0000330 | 0.3997404 | 0.0004322 |
516 | Glucuronidation | 25 | 0.0005866 | -0.3971243 | 0.0041983 |
1162 | SARS-CoV-1 activates/modulates innate immune responses | 37 | 0.0000397 | 0.3902516 | 0.0004993 |
1440 | Transcriptional regulation of granulopoiesis | 31 | 0.0002269 | 0.3825190 | 0.0020164 |
334 | Diseases of mitotic cell cycle | 37 | 0.0000601 | 0.3810843 | 0.0006953 |
1216 | Sensory perception of taste | 47 | 0.0000078 | -0.3767662 | 0.0001326 |
1213 | Senescence-Associated Secretory Phenotype (SASP) | 53 | 0.0000031 | 0.3702452 | 0.0000613 |
106 | Autodegradation of Cdh1 by Cdh1:APC/C | 62 | 0.0000005 | 0.3700687 | 0.0000123 |
1215 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | 0.0000417 | -0.3697219 | 0.0005204 |
1172 | SCF(Skp2)-mediated degradation of p27/p21 | 58 | 0.0000023 | 0.3588126 | 0.0000479 |
492 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 50 | 0.0000143 | 0.3545438 | 0.0002195 |
773 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 34 | 0.0003527 | 0.3540062 | 0.0028311 |
1022 | RIPK1-mediated regulated necrosis | 27 | 0.0016249 | 0.3503229 | 0.0096992 |
1126 | Regulation of necroptotic cell death | 27 | 0.0016249 | 0.3503229 | 0.0096992 |
335 | Diseases of programmed cell death | 43 | 0.0000781 | 0.3480437 | 0.0008688 |
1142 | Respiratory electron transport | 90 | 0.0000000 | 0.3474232 | 0.0000006 |
101 | Assembly of the pre-replicative complex | 82 | 0.0000001 | 0.3450819 | 0.0000023 |
840 | Nuclear import of Rev protein | 32 | 0.0007631 | 0.3437184 | 0.0050850 |
683 | Lysosome Vesicle Biogenesis | 33 | 0.0006818 | 0.3415878 | 0.0047268 |
1079 | Regulation of APC/C activators between G1/S and early anaphase | 79 | 0.0000002 | 0.3396609 | 0.0000053 |
mitch_bu <- mitch_calc(bum,genesets,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
sig <- subset(mitch_bu$enrichment_result,`p.adjustANOVA`<0.01)
head(sig[order(-abs(sig$s.dist)),],30) %>%
kbl(caption="BUCCAL: Top effect size pathways found with mitch after 1% FDR filtering") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
1163 | SARS-CoV-1 modulates host translation machinery | 34 | 2.00e-07 | 0.5177226 | 0.0000095 |
1384 | TRAF6 mediated IRF7 activation | 26 | 3.55e-05 | -0.4684102 | 0.0012593 |
212 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 6.00e-07 | -0.4614606 | 0.0000324 |
399 | Expression and translocation of olfactory receptors | 358 | 0.00e+00 | -0.4178164 | 0.0000000 |
903 | Peptide chain elongation | 84 | 0.00e+00 | 0.4117980 | 0.0000000 |
853 | Olfactory Signaling Pathway | 365 | 0.00e+00 | -0.4085329 | 0.0000000 |
1496 | Viral mRNA Translation | 84 | 0.00e+00 | 0.4052533 | 0.0000000 |
397 | Eukaryotic Translation Termination | 87 | 0.00e+00 | 0.3980434 | 0.0000000 |
395 | Eukaryotic Translation Elongation | 88 | 0.00e+00 | 0.3949691 | 0.0000000 |
1208 | Selenocysteine synthesis | 87 | 0.00e+00 | 0.3784774 | 0.0000001 |
829 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 89 | 0.00e+00 | 0.3728020 | 0.0000001 |
1145 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 95 | 0.00e+00 | 0.3609384 | 0.0000001 |
449 | Formation of a pool of free 40S subunits | 94 | 0.00e+00 | 0.3592418 | 0.0000002 |
1215 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | 7.68e-05 | -0.3567897 | 0.0024224 |
455 | Formation of the ternary complex, and subsequently, the 43S complex | 46 | 4.47e-05 | 0.3477262 | 0.0015028 |
1169 | SARS-CoV-2 modulates host translation machinery | 46 | 6.31e-05 | 0.3408465 | 0.0020325 |
1207 | Selenoamino acid metabolism | 103 | 0.00e+00 | 0.3372552 | 0.0000003 |
663 | L13a-mediated translational silencing of Ceruloplasmin expression | 103 | 0.00e+00 | 0.3352722 | 0.0000003 |
493 | GTP hydrolysis and joining of the 60S ribosomal subunit | 104 | 0.00e+00 | 0.3338761 | 0.0000003 |
1156 | Ribosomal scanning and start codon recognition | 53 | 2.82e-05 | 0.3323725 | 0.0011193 |
54 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S | 54 | 2.39e-05 | 0.3322706 | 0.0009975 |
1446 | Translation initiation complex formation | 53 | 3.12e-05 | 0.3305846 | 0.0011755 |
165 | Cap-dependent Translation Initiation | 111 | 0.00e+00 | 0.3255501 | 0.0000003 |
396 | Eukaryotic Translation Initiation | 111 | 0.00e+00 | 0.3255501 | 0.0000003 |
828 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 108 | 0.00e+00 | 0.3241781 | 0.0000004 |
830 | Nonsense-Mediated Decay (NMD) | 108 | 0.00e+00 | 0.3241781 | 0.0000004 |
703 | Major pathway of rRNA processing in the nucleolus and cytosol | 171 | 0.00e+00 | 0.3154260 | 0.0000000 |
1187 | SRP-dependent cotranslational protein targeting to membrane | 105 | 1.00e-07 | 0.2992844 | 0.0000066 |
1540 | rRNA processing in the nucleus and cytosol | 180 | 0.00e+00 | 0.2985439 | 0.0000000 |
191 | Cellular response to starvation | 147 | 0.00e+00 | 0.2901196 | 0.0000001 |
mitch_plots(res=mitch_bu,outfile="buccal_mitch_ados.pdf")
## png
## 2
#mitch_report(res=mitch_bu,outfile="buccal_mitch_ados.html")
subset(mitch_bu$enrichment_result,p.adjustANOVA<0.01 & s.dist<0) %>%
kbl(caption="Reactome pathways with an inverse methylation association with ADOS in buccal swab samples.") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
1384 | TRAF6 mediated IRF7 activation | 26 | 0.0000355 | -0.4684102 | 0.0012593 |
212 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 0.0000006 | -0.4614606 | 0.0000324 |
399 | Expression and translocation of olfactory receptors | 358 | 0.0000000 | -0.4178164 | 0.0000000 |
853 | Olfactory Signaling Pathway | 365 | 0.0000000 | -0.4085329 | 0.0000000 |
1215 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | 0.0000768 | -0.3567897 | 0.0024224 |
197 | Chemokine receptors bind chemokines | 56 | 0.0001806 | -0.2892053 | 0.0053680 |
1214 | Sensory Perception | 569 | 0.0000000 | -0.2715433 | 0.0000000 |
659 | Keratinization | 213 | 0.0000266 | -0.1668486 | 0.0010826 |
460 | G alpha (i) signalling events | 305 | 0.0000624 | -0.1331282 | 0.0020325 |
584 | Immune System | 1870 | 0.0001565 | -0.0524093 | 0.0047443 |
Mitch joint analysis of blood and guthrie card. As using the median value is apparently the most sensitive, we’ll go with that.
m <- merge(blm,gum,by=0)
rownames(m) <- m$Row.names
m$Row.names = NULL
colnames(m) <- c("bl","gu")
m[is.na(m)] <- 0
res <- mitch_calc(m, genesets, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
mitch_report(res,"blgu_mitch.html",overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpJkCVLl/blgu_mitch.rds ".
##
##
## processing file: mitch.Rmd
## 1/34
## 2/34 [checklibraries]
## 3/34
## 4/34 [peek]
## 5/34
## 6/34 [metrics]
## 7/34
## 8/34 [scatterplot]
## 9/34
## 10/34 [contourplot]
## 11/34
## 12/34 [input_geneset_metrics1]
## 13/34
## 14/34 [input_geneset_metrics2]
## 15/34
## 16/34 [input_geneset_metrics3]
## 17/34
## 18/34 [echart1d]
## 19/34 [echart2d]
## 20/34
## 21/34 [heatmap]
## 22/34
## 23/34 [effectsize]
## 24/34
## 25/34 [results_table]
## 26/34
## 27/34 [results_table_complete]
## 28/34
## 29/34 [detailed_geneset_reports1d]
## 30/34
## 31/34 [detailed_geneset_reports2d]
## 32/34
## 33/34 [session_info]
## 34/34
## output file: /home/mdz/projects/asd_meth/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mdz/projects/asd_meth/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpJkCVLl/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpJkCVLl/rmarkdown-str59af858f7bed0.html
##
## Output created: /tmp/RtmpJkCVLl/mitch_report.html
## [1] TRUE
mitch_plots(res=res,outfile="blgu_mitch_ados.pdf")
## png
## 2
sig <- subset(res$enrichment_result,p.adjustMANOVA<0.01)
head(sig[order(-abs(sig$s.dist)),],30) %>%
kbl(caption="Top pathways found with mitch (effect size after 1% FDR filtering)") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.bl | s.gu | p.bl | p.gu | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
212 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 0.0000000 | -0.4901753 | -0.4676449 | 0.0000001 | 0.0000004 | 0.6774685 | 0.0159314 | 0.0000000 |
1365 | TICAM1-dependent activation of IRF3/IRF7 | 12 | 0.0012354 | 0.4502023 | 0.4919727 | 0.0069205 | 0.0031649 | 0.6668728 | 0.0295361 | 0.0075492 |
380 | Eicosanoids | 12 | 0.0002957 | 0.6313349 | -0.1018713 | 0.0001522 | 0.5411614 | 0.6395010 | 0.5184551 | 0.0021354 |
1163 | SARS-CoV-1 modulates host translation machinery | 34 | 0.0000001 | 0.5215509 | 0.3046011 | 0.0000001 | 0.0021091 | 0.6039844 | 0.1534067 | 0.0000014 |
1215 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | 0.0000000 | -0.4654969 | -0.3697219 | 0.0000002 | 0.0000417 | 0.5944592 | 0.0677232 | 0.0000002 |
224 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 16 | 0.0001272 | -0.4822519 | 0.2740224 | 0.0008369 | 0.0577137 | 0.5546667 | 0.5347667 | 0.0009980 |
516 | Glucuronidation | 25 | 0.0000806 | -0.3782663 | -0.3971243 | 0.0010586 | 0.0005866 | 0.5484461 | 0.0133346 | 0.0006701 |
1172 | SCF(Skp2)-mediated degradation of p27/p21 | 58 | 0.0000000 | 0.4123054 | 0.3588126 | 0.0000001 | 0.0000023 | 0.5465731 | 0.0378251 | 0.0000000 |
492 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 50 | 0.0000000 | 0.4112772 | 0.3545438 | 0.0000005 | 0.0000143 | 0.5430011 | 0.0401166 | 0.0000002 |
13 | APC/C:Cdc20 mediated degradation of Cyclin B | 24 | 0.0001346 | 0.3003821 | 0.4481226 | 0.0108444 | 0.0001441 | 0.5394843 | 0.1044683 | 0.0010509 |
903 | Peptide chain elongation | 84 | 0.0000000 | 0.4660659 | 0.2690810 | 0.0000000 | 0.0000200 | 0.5381654 | 0.1392894 | 0.0000000 |
882 | PINK1-PRKN Mediated Mitophagy | 21 | 0.0004631 | 0.2872506 | 0.4502581 | 0.0226638 | 0.0003534 | 0.5340836 | 0.1152637 | 0.0031822 |
397 | Eukaryotic Translation Termination | 87 | 0.0000000 | 0.4642281 | 0.2632838 | 0.0000000 | 0.0000217 | 0.5336910 | 0.1420890 | 0.0000000 |
1481 | Ubiquitin Mediated Degradation of Phosphorylated Cdc25A | 50 | 0.0000000 | 0.4249295 | 0.3125505 | 0.0000002 | 0.0001310 | 0.5274968 | 0.0794640 | 0.0000004 |
1533 | p53-Independent DNA Damage Response | 50 | 0.0000000 | 0.4249295 | 0.3125505 | 0.0000002 | 0.0001310 | 0.5274968 | 0.0794640 | 0.0000004 |
1534 | p53-Independent G1/S DNA damage checkpoint | 50 | 0.0000000 | 0.4249295 | 0.3125505 | 0.0000002 | 0.0001310 | 0.5274968 | 0.0794640 | 0.0000004 |
1216 | Sensory perception of taste | 47 | 0.0000001 | -0.3649348 | -0.3767662 | 0.0000149 | 0.0000078 | 0.5245285 | 0.0083661 | 0.0000013 |
106 | Autodegradation of Cdh1 by Cdh1:APC/C | 62 | 0.0000000 | 0.3716103 | 0.3700687 | 0.0000004 | 0.0000005 | 0.5244474 | 0.0010901 | 0.0000000 |
565 | Hh mutants are degraded by ERAD | 54 | 0.0000000 | 0.4078909 | 0.3275877 | 0.0000002 | 0.0000310 | 0.5231526 | 0.0567829 | 0.0000002 |
395 | Eukaryotic Translation Elongation | 88 | 0.0000000 | 0.4580045 | 0.2508669 | 0.0000000 | 0.0000471 | 0.5222090 | 0.1464684 | 0.0000000 |
107 | Autodegradation of the E3 ubiquitin ligase COP1 | 50 | 0.0000000 | 0.4328964 | 0.2891483 | 0.0000001 | 0.0004030 | 0.5205824 | 0.1016453 | 0.0000005 |
1404 | The role of GTSE1 in G2/M progression after G2 checkpoint | 58 | 0.0000000 | 0.3997866 | 0.3330399 | 0.0000001 | 0.0000114 | 0.5203315 | 0.0471970 | 0.0000001 |
1482 | Ubiquitin-dependent degradation of Cyclin D | 50 | 0.0000000 | 0.4249949 | 0.2999003 | 0.0000002 | 0.0002428 | 0.5201546 | 0.0884553 | 0.0000005 |
1496 | Viral mRNA Translation | 84 | 0.0000000 | 0.4448583 | 0.2671498 | 0.0000000 | 0.0000229 | 0.5189103 | 0.1256589 | 0.0000000 |
1208 | Selenocysteine synthesis | 87 | 0.0000000 | 0.4484943 | 0.2576795 | 0.0000000 | 0.0000323 | 0.5172484 | 0.1349264 | 0.0000000 |
1502 | Vpu mediated degradation of CD4 | 50 | 0.0000001 | 0.4050884 | 0.3180831 | 0.0000007 | 0.0000993 | 0.5150471 | 0.0615221 | 0.0000008 |
1323 | Stabilization of p53 | 55 | 0.0000000 | 0.4095348 | 0.3100843 | 0.0000001 | 0.0000691 | 0.5136838 | 0.0703221 | 0.0000002 |
21 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 53 | 0.0000000 | 0.4222620 | 0.2887859 | 0.0000001 | 0.0002748 | 0.5115687 | 0.0943818 | 0.0000004 |
807 | Negative regulation of NOTCH4 signaling | 52 | 0.0000000 | 0.3942742 | 0.3241131 | 0.0000009 | 0.0000524 | 0.5103934 | 0.0496114 | 0.0000006 |
1173 | SCF-beta-TrCP mediated degradation of Emi1 | 53 | 0.0000000 | 0.3917813 | 0.3249161 | 0.0000008 | 0.0000425 | 0.5089823 | 0.0472809 | 0.0000005 |
Now look at the pathways with hypomethylation.
hypo <- subset(res$enrichment_result,p.adjustMANOVA<0.01 & s.bl <0 & s.gu < 0 )
nrow(hypo)
## [1] 13
hypo <- hypo[nrow(hypo):1,]
par(mar=c(4.1, 25.1, 5.1, 1.1))
barplot(t(abs(hypo[,c("s.bl","s.gu")])),
beside=TRUE,horiz=TRUE,las=1,names.arg=hypo$set,
col=gray.colors(2),
xlab="enrichment score")
legend("topright", inset=0, title="tissue",
c("blood at assessment","neonatal Guthrie card"),
fill=gray.colors(2), horiz=FALSE, cex=1)
pdf("adosbarplot.pdf")
par(mar=c(4.1, 25.1, 5.1, 1.1))
barplot(t(abs(hypo[,c("s.bl","s.gu")])),
beside=TRUE,horiz=TRUE,las=1,names.arg=hypo$set,
col=gray.colors(2),
xlab="enrichment score")
legend("topright", inset=0, title="tissue",
c("blood at assessment","neonatal Guthrie card"),
fill=gray.colors(2), horiz=FALSE, cex=1)
dev.off()
## png
## 2
mar = c(5.1, 4.1, 4.1, 2.1)
Now look at metatropic glutamate/pheromone receptors.
phero <- genesets[grep("pheromone",names(genesets))]
phero
## $`Class C/3 (Metabotropic glutamate/pheromone receptors)`
## [1] "CASR" "GABBR1" "GABBR2" "GPRC6A" "GRM1" "GRM2" "GRM3"
## [8] "GRM4" "GRM5" "GRM6" "GRM7" "GRM8" "TAS1R1" "TAS1R2"
## [15] "TAS1R3" "TAS2R1" "TAS2R10" "TAS2R13" "TAS2R14" "TAS2R16" "TAS2R19"
## [22] "TAS2R20" "TAS2R3" "TAS2R30" "TAS2R31" "TAS2R38" "TAS2R39" "TAS2R4"
## [29] "TAS2R40" "TAS2R41" "TAS2R42" "TAS2R43" "TAS2R45" "TAS2R46" "TAS2R5"
## [36] "TAS2R50" "TAS2R60" "TAS2R7" "TAS2R8" "TAS2R9"
rnk2 <- rnk[which(rownames(rnk) %in% phero[[1]]),]
plot(rnk2,main=names(phero),xlim=c(-21569,4146),ylim=c(-17678,8037),
xlab="Rank in blood at assessment",
ylab="Rank in neonatal Guthrie card",
cex=1.5,pch=19,col="lightgray")
text(rnk2,labels=rownames(rnk2))
abline(v=0,h=0,lwd=2,lty=2)
pdf("phero.pdf")
plot(rnk2,main=names(phero),xlim=c(-21569,4146),ylim=c(-17678,8037),
xlab="Rank in blood at assessment",
ylab="Rank in neonatal Guthrie card",
cex=1.5,pch=19,col="lightgray")
text(rnk2,labels=rownames(rnk2))
abline(v=0,h=0,lwd=2,lty=2)
dev.off()
## png
## 2
Now let’s take a look at the SFARI gene list.
str(lsfari)
## List of 1
## $ sfari: chr [1:1152] "ABAT" "ABCA10" "ABCA13" "ABCA7" ...
sfarires <- mitch_calc(m1, lsfari, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
t(sfarires$enrichment_result)
## 1
## set "sfari"
## setSize "1034"
## pMANOVA "7.495978e-06"
## s.bl "-0.08355524"
## s.gu "-0.04650798"
## p.bl "5.119228e-06"
## p.gu "0.01115786"
## s.dist "0.09562673"
## SD "0.02619637"
## p.adjustMANOVA "7.495978e-06"
lrand <-lapply(1:1034,function(i) { set.seed(i*1000) ; sample(rownames(m1),1000) })
names(lrand) <- paste("random",1:1034)
lsets <- c(lsfari,lrand)
sfarires2 <- mitch_calc(m1, lsets, priority="effect",cores=16,resrows=10)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(sfarires2$enrichment_result) %>%
kbl(caption = "Enrichment analysis of SFARI genes") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.bl | s.gu | p.bl | p.gu | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
1 | sfari | 1034 | 0.0000075 | -0.0835552 | -0.0465080 | 0.0000051 | 0.0111579 | 0.0956267 | 0.0261964 | 0.0077583 |
380 | random 379 | 1000 | 0.0009309 | 0.0685287 | 0.0016664 | 0.0002332 | 0.9287050 | 0.0685490 | 0.0472788 | 0.3211440 |
620 | random 619 | 1000 | 0.0003263 | 0.0332501 | -0.0589756 | 0.0741981 | 0.0015405 | 0.0677030 | 0.0652134 | 0.1688350 |
68 | random 67 | 1000 | 0.0034017 | 0.0251146 | 0.0613512 | 0.1774881 | 0.0009858 | 0.0662926 | 0.0256232 | 0.6312853 |
886 | random 885 | 1000 | 0.0044702 | 0.0315138 | 0.0576910 | 0.0906163 | 0.0019486 | 0.0657371 | 0.0185100 | 0.6312853 |
77 | random 76 | 1000 | 0.0029505 | 0.0635025 | 0.0096897 | 0.0006494 | 0.6028683 | 0.0642375 | 0.0380514 | 0.6312853 |
mitch_plots(res=sfarires2,outfile="sfari_mitch_ados.pdf")
## png
## 2
For reproducibility
sessionInfo()
## R version 4.3.2 (2023-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] pkgload_1.3.2.1
## [2] GGally_2.1.2
## [3] ggplot2_3.4.3
## [4] reshape2_1.4.4
## [5] beeswarm_0.4.0
## [6] gplots_3.1.3
## [7] gtools_3.9.4
## [8] tibble_3.2.1
## [9] dplyr_1.1.3
## [10] echarts4r_0.4.5
## [11] ebGSEA_0.1.0
## [12] globaltest_5.54.0
## [13] survival_3.5-7
## [14] tictoc_1.2
## [15] RIdeogram_0.2.2
## [16] eulerr_7.0.0
## [17] kableExtra_1.3.4
## [18] data.table_1.14.8
## [19] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [20] minfi_1.46.0
## [21] bumphunter_1.42.0
## [22] locfit_1.5-9.8
## [23] iterators_1.0.14
## [24] foreach_1.5.2
## [25] Biostrings_2.68.1
## [26] XVector_0.40.0
## [27] SummarizedExperiment_1.30.2
## [28] Biobase_2.60.0
## [29] MatrixGenerics_1.12.3
## [30] matrixStats_1.0.0
## [31] GenomicRanges_1.52.0
## [32] GenomeInfoDb_1.36.3
## [33] IRanges_2.34.1
## [34] S4Vectors_0.38.1
## [35] BiocGenerics_0.46.0
## [36] mitch_1.12.0
## [37] limma_3.56.2
##
## loaded via a namespace (and not attached):
## [1] splines_4.3.2 later_1.3.1
## [3] BiocIO_1.10.0 bitops_1.0-7
## [5] filelock_1.0.2 preprocessCore_1.62.1
## [7] XML_3.99-0.14 lifecycle_1.0.3
## [9] lattice_0.22-5 MASS_7.3-60
## [11] base64_2.0.1 scrime_1.3.5
## [13] magrittr_2.0.3 sass_0.4.7
## [15] rmarkdown_2.24 jquerylib_0.1.4
## [17] yaml_2.3.7 httpuv_1.6.11
## [19] grImport2_0.2-0 doRNG_1.8.6
## [21] askpass_1.2.0 DBI_1.1.3
## [23] RColorBrewer_1.1-3 abind_1.4-5
## [25] zlibbioc_1.46.0 rvest_1.0.3
## [27] quadprog_1.5-8 purrr_1.0.2
## [29] RCurl_1.98-1.12 rappdirs_0.3.3
## [31] GenomeInfoDbData_1.2.10 genefilter_1.82.1
## [33] annotate_1.78.0 svglite_2.1.1
## [35] DelayedMatrixStats_1.22.6 codetools_0.2-19
## [37] DelayedArray_0.26.7 xml2_1.3.5
## [39] tidyselect_1.2.0 farver_2.1.1
## [41] beanplot_1.3.1 base64enc_0.1-3
## [43] BiocFileCache_2.8.0 illuminaio_0.42.0
## [45] webshot_0.5.5 GenomicAlignments_1.36.0
## [47] jsonlite_1.8.7 multtest_2.56.0
## [49] ellipsis_0.3.2 systemfonts_1.0.4
## [51] tools_4.3.2 progress_1.2.2
## [53] Rcpp_1.0.11 glue_1.6.2
## [55] gridExtra_2.3 xfun_0.40
## [57] HDF5Array_1.28.1 withr_2.5.0
## [59] fastmap_1.1.1 rhdf5filters_1.12.1
## [61] fansi_1.0.4 openssl_2.1.0
## [63] caTools_1.18.2 digest_0.6.33
## [65] R6_2.5.1 mime_0.12
## [67] colorspace_2.1-0 rsvg_2.4.0
## [69] jpeg_0.1-10 biomaRt_2.56.1
## [71] RSQLite_2.3.1 tidyr_1.3.0
## [73] utf8_1.2.3 generics_0.1.3
## [75] rtracklayer_1.60.1 prettyunits_1.1.1
## [77] httr_1.4.7 htmlwidgets_1.6.2
## [79] S4Arrays_1.0.6 pkgconfig_2.0.3
## [81] gtable_0.3.4 blob_1.2.4
## [83] siggenes_1.74.0 htmltools_0.5.6
## [85] scales_1.2.1 png_0.1-8
## [87] knitr_1.44 rstudioapi_0.15.0
## [89] tzdb_0.4.0 rjson_0.2.21
## [91] nlme_3.1-163 curl_5.0.2
## [93] org.Hs.eg.db_3.17.0 cachem_1.0.8
## [95] rhdf5_2.44.0 stringr_1.5.0
## [97] KernSmooth_2.23-22 AnnotationDbi_1.62.2
## [99] restfulr_0.0.15 GEOquery_2.68.0
## [101] pillar_1.9.0 grid_4.3.2
## [103] reshape_0.8.9 vctrs_0.6.3
## [105] promises_1.2.1 dbplyr_2.3.3
## [107] xtable_1.8-4 evaluate_0.21
## [109] readr_2.1.4 GenomicFeatures_1.52.2
## [111] cli_3.6.1 compiler_4.3.2
## [113] Rsamtools_2.16.0 rlang_1.1.1
## [115] crayon_1.5.2 rngtools_1.5.2
## [117] kpmt_0.1.0 labeling_0.4.3
## [119] nor1mix_1.3-0 mclust_6.0.0
## [121] plyr_1.8.8 stringi_1.7.12
## [123] viridisLite_0.4.2 BiocParallel_1.34.2
## [125] munsell_0.5.0 Matrix_1.6-1.1
## [127] hms_1.1.3 sparseMatrixStats_1.12.2
## [129] bit64_4.0.5 Rhdf5lib_1.22.1
## [131] KEGGREST_1.40.0 shiny_1.7.5
## [133] highr_0.10 memoise_2.0.1
## [135] bslib_0.5.1 bit_4.0.5