Source: https://github.com/markziemann/asd_meth
Here I will be running a comparison of differential methylation data from guthrie and fresh blood samples.
Here are the files that I’m using:
limma_guthrie_ADOS.csv
limma_blood_ADOS.csv
suppressPackageStartupMessages({
library("parallel")
library("mitch")
library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
source("https://raw.githubusercontent.com/markziemann/gmea/main/meth_functions.R")
library("data.table")
library("kableExtra")
library("eulerr")
library("RIdeogram")
library("GenomicRanges")
library("tictoc")
})
source("meth_functions.R")
bl_mvals <- readRDS(file="bl_mvals.rds")
gu_mvals <- readRDS(file="gu_mvals.rds")
For each gene, extract out the probes.
anno <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
myann <- data.frame(anno[,c("UCSC_RefGene_Name","Regulatory_Feature_Group","Islands_Name","Relation_to_Island")])
promoters <- grep("Prom",myann$Regulatory_Feature_Group)
promoters <- myann[promoters,]
gp <- myann[,"UCSC_RefGene_Name",drop=FALSE]
gp2 <- strsplit(gp$UCSC_RefGene_Name,";")
names(gp2) <- rownames(gp)
sets <- split(rep(names(gp2), lengths(gp2)), unlist(gp2))
summary(unlist(lapply(sets,length)))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 9.00 24.00 49.68 55.00 6778.00
First I will generate plots for limmma analysis.
limma_guthrie_ADOS.csv
limma_blood_ADOS.csv
# blood at assessment
top <- read.csv("limma_blood_ADOS.csv")
nrow(top)
## [1] 802647
top <- subset(top,P.Value<1e-2)
nrow(top)
## [1] 3573
-log10(min(top$P.Value))
## [1] 4.641884
top$chr <- as.integer(gsub("chr","",top$chr))
top$snp <- paste(top$Name,top$UCSC_RefGene_Name)
top$snp <- sapply(strsplit(top$snp,";"),"[[",1)
up <- subset(top,logFC>0)
dn <- subset(top,logFC<0)
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
ylim=c(2,6), annotatePval= 1e-04 ,main="Blood at assessment limma hypermethylated")
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
ylim=c(2,6), annotatePval= 1e-04 , main="Blood at assessment limma hypomethylated")
pdf("manhat_limma_bl.pdf")
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
ylim=c(2,6), annotatePval= 1e-04 ,main="Blood at assessment limma hypermethylated")
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
ylim=c(2,6), annotatePval= 1e-04 , main="Blood at assessment limma hypomethylated")
dev.off()
## png
## 2
# neonatal guthrie card
top <- read.csv("limma_guthrie_ADOS.csv")
nrow(top)
## [1] 790658
top <- subset(top,P.Value<1e-2)
nrow(top)
## [1] 3052
-log10(min(top$P.Value))
## [1] 5.396928
top$chr <- as.integer(gsub("chr","",top$chr))
top$snp <- paste(top$Name,top$UCSC_RefGene_Name)
top$snp <- sapply(strsplit(top$snp,";"),"[[",1)
up <- subset(top,logFC>0)
dn <- subset(top,logFC<0)
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
ylim=c(2,6), annotatePval= 1e-04 ,main="Neonatal Guthrie card limma hypermethylated",
annotateTop=FALSE)
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
ylim=c(2,6), annotatePval= 1e-04 , main="Neonatal Guthrie card limma hypomethylated",
annotateTop=FALSE)
pdf("manhat_limma_gu.pdf")
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
ylim=c(2,6), annotatePval= 1e-04 ,main="Neonatal Guthrie card limma hypermethylated",
annotateTop=FALSE)
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
ylim=c(2,6), annotatePval= 1e-04 , main="Neonatal Guthrie card limma hypomethylated",
annotateTop=FALSE)
dev.off()
## png
## 2
Looking for enrichments in different genomic compartments.
par(mfrow=c(2,1))
# guthrie
dma1 <- read.csv("limma_guthrie_ADOS.csv")
if (nrow(subset(dma1,P.Value <1e-4)) > 100 ) {
comp <- compartment_enrichment(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots(comp)
}
# blood
dma2 <- read.csv("limma_blood_ADOS.csv")
if (nrow(subset(dma2,P.Value <1e-4)) > 100 ) {
comp <- compartment_enrichment(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots(comp)
}
par(mfrow=c(2,1))
# guthrie
comp <- compartment_enrichment2(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
## all up OR fisherPval lowerCI upperCI
## Intergenic 43381 23 0.8389085 0.48706693 0.5258383 1.276341
## 3'UTR 22433 18 1.2948872 0.27561695 0.7597998 2.072428
## 5'UTR 102937 51 0.7643920 0.07889085 0.5592212 1.025627
## Body 333689 227 1.1814543 0.08494842 0.9751244 1.431904
## TSS1500 115845 81 1.1443742 0.27418805 0.8876763 1.460454
## TSS200 75104 38 0.7904865 0.18865183 0.5511121 1.104070
##
## $dn_comp
## all dn OR fisherPval lowerCI upperCI
## Intergenic 43381 15 0.5761750 0.0308946406 0.3193848 0.9621765
## 3'UTR 22433 16 1.2300273 0.3975719033 0.6960289 2.0232371
## 5'UTR 102937 50 0.8078831 0.1629589719 0.5884785 1.0884038
## Body 333689 234 1.4685899 0.0001316616 1.2021212 1.7968522
## ExonBnd 6713 4 1.0201702 0.8003323414 0.2765425 2.6334465
## TSS1500 115845 63 0.9182427 0.5942944466 0.6905059 1.2041218
## TSS200 75104 27 0.5880403 0.0050933600 0.3824177 0.8693314
make_forest_plots(comp)
# blood
comp <- compartment_enrichment2(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
## all up OR fisherPval lowerCI upperCI
## Intergenic 43528 26 1.4859557 0.06636519 0.953038174 2.226311
## 3'UTR 22758 5 0.5224343 0.18233626 0.168373824 1.233495
## 5'UTR 104442 51 1.2171947 0.21605071 0.881706511 1.652061
## Body 339559 125 0.8070945 0.07043460 0.635256389 1.023158
## ExonBnd 6862 1 0.3496924 0.53965923 0.008825083 1.964196
## TSS1500 117509 53 1.1091360 0.48032288 0.807675308 1.498631
## TSS200 75457 33 1.0634901 0.70520650 0.716808409 1.531364
##
## $dn_comp
## all dn OR fisherPval lowerCI upperCI
## Intergenic 43528 25 0.7417994 0.151754452 0.4755129 1.1077977
## 3'UTR 22758 23 1.3413967 0.176996771 0.8425370 2.0355856
## 5'UTR 104442 80 1.0063621 0.951579367 0.7834649 1.2785220
## Body 339559 289 1.2517246 0.009742042 1.0534633 1.4881382
## ExonBnd 6862 10 1.9314000 0.045232660 0.9203789 3.5825126
## TSS1500 117509 67 0.7126767 0.009075108 0.5433220 0.9220956
## TSS200 75457 47 0.8001268 0.162291260 0.5800384 1.0806029
make_forest_plots(comp)
par(mfrow=c(2,1))
if (nrow(subset(dma1,P.Value <1e-4)) > 100 ) {
# guthrie
comp <- cgi_enrichment(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots(comp)
}
if (nrow(subset(dma2,P.Value <1e-4)) > 100 ) {
# blood
comp <- cgi_enrichment(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots(comp)
}
par(mfrow=c(2,1))
# guthrie
comp <- cgi_enrichment2(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
## all up OR fisherPval lowerCI upperCI
## Island 150182 80 0.7914758 0.05507706 0.6154100 1.006919
## OpenSea 442427 291 1.0411421 0.65617216 0.8708430 1.246143
## Shelf 55491 30 0.8262023 0.34108662 0.5512779 1.195275
## Shore 142558 110 1.2472827 0.04379063 1.0006516 1.543986
##
## $dn_comp
## all dn OR fisherPval lowerCI upperCI
## Island 150182 83 0.8717702 0.27330781 0.6799065 1.106451
## OpenSea 442427 255 0.8576492 0.09192572 0.7153376 1.028657
## Shelf 55491 48 1.4423707 0.02080876 1.0475126 1.946126
## Shore 142558 103 1.2132335 0.08770710 0.9665051 1.511589
make_forest_plots(comp)
# blood
comp <- cgi_enrichment2(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
## all up OR fisherPval lowerCI upperCI
## Island 150186 57 0.9523840 0.773732545 0.7020288 1.272907
## OpenSea 452360 167 0.8620659 0.192891313 0.6872938 1.082060
## Shelf 56174 16 0.7062707 0.187293830 0.3985352 1.166031
## Shore 143927 77 1.4686262 0.004221713 1.1209174 1.905982
##
## $dn_comp
## all dn OR fisherPval lowerCI upperCI
## Island 150186 60 0.4181603 6.780836e-13 0.3153031 0.5456317
## OpenSea 452360 478 1.8064067 2.870589e-13 1.5304745 2.1381921
## Shelf 56174 41 0.8485316 3.299684e-01 0.6030135 1.1643462
## Shore 143927 104 0.8219508 6.497237e-02 0.6605231 1.0143919
make_forest_plots(comp)
For reproducibility
sessionInfo()
## R version 4.2.2 Patched (2022-11-10 r83330)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] tictoc_1.1
## [2] RIdeogram_0.2.2
## [3] data.table_1.14.8
## [4] ENmix_1.34.0
## [5] doParallel_1.0.17
## [6] qqman_0.1.8
## [7] RCircos_1.2.2
## [8] beeswarm_0.4.0
## [9] forestplot_3.1.1
## [10] abind_1.4-5
## [11] checkmate_2.1.0
## [12] eulerr_7.0.0
## [13] GEOquery_2.66.0
## [14] topconfects_1.14.0
## [15] R.utils_2.12.2
## [16] R.oo_1.25.0
## [17] R.methodsS3_1.8.2
## [18] plyr_1.8.8
## [19] DMRcatedata_2.16.0
## [20] IlluminaHumanMethylation450kmanifest_0.4.0
## [21] IlluminaHumanMethylationEPICmanifest_0.3.0
## [22] kableExtra_1.3.4
## [23] mitch_1.10.0
## [24] FlowSorted.Blood.EPIC_2.2.0
## [25] ExperimentHub_2.6.0
## [26] AnnotationHub_3.6.0
## [27] BiocFileCache_2.6.0
## [28] dbplyr_2.3.1
## [29] DMRcate_2.12.0
## [30] ggplot2_3.4.1
## [31] reshape2_1.4.4
## [32] FlowSorted.Blood.450k_1.36.0
## [33] WGCNA_1.72-1
## [34] fastcluster_1.2.3
## [35] dynamicTreeCut_1.63-1
## [36] gplots_3.1.3
## [37] RColorBrewer_1.1-3
## [38] ruv_0.9.7.1
## [39] IlluminaHumanMethylationEPICanno.ilm10b2.hg19_0.6.0
## [40] limma_3.54.0
## [41] missMethyl_1.32.0
## [42] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [43] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1
## [44] minfi_1.44.0
## [45] bumphunter_1.40.0
## [46] locfit_1.5-9.7
## [47] iterators_1.0.14
## [48] foreach_1.5.2
## [49] Biostrings_2.66.0
## [50] XVector_0.38.0
## [51] SummarizedExperiment_1.28.0
## [52] Biobase_2.58.0
## [53] MatrixGenerics_1.10.0
## [54] matrixStats_0.63.0
## [55] GenomicRanges_1.50.2
## [56] GenomeInfoDb_1.34.6
## [57] IRanges_2.32.0
## [58] S4Vectors_0.36.1
## [59] BiocGenerics_0.44.0
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.3 rtracklayer_1.58.0
## [3] GGally_2.1.2 tidyr_1.3.0
## [5] bit64_4.0.5 knitr_1.42
## [7] DelayedArray_0.24.0 rpart_4.1.19
## [9] KEGGREST_1.38.0 RCurl_1.98-1.10
## [11] AnnotationFilter_1.22.0 generics_0.1.3
## [13] GenomicFeatures_1.50.3 preprocessCore_1.60.2
## [15] RSQLite_2.3.0 bit_4.0.5
## [17] tzdb_0.3.0 webshot_0.5.4
## [19] xml2_1.3.3 httpuv_1.6.9
## [21] assertthat_0.2.1 xfun_0.37
## [23] hms_1.1.2 jquerylib_0.1.4
## [25] evaluate_0.20 promises_1.2.0.1
## [27] fansi_1.0.4 restfulr_0.0.15
## [29] scrime_1.3.5 progress_1.2.2
## [31] readxl_1.4.2 caTools_1.18.2
## [33] geneplotter_1.76.0 DBI_1.1.3
## [35] htmlwidgets_1.6.2 reshape_0.8.9
## [37] purrr_1.0.1 ellipsis_0.3.2
## [39] dplyr_1.1.0 backports_1.4.1
## [41] calibrate_1.7.7 permute_0.9-7
## [43] grImport2_0.2-0 annotate_1.76.0
## [45] biomaRt_2.54.0 deldir_1.0-6
## [47] sparseMatrixStats_1.10.0 vctrs_0.6.0
## [49] ensembldb_2.22.0 cachem_1.0.7
## [51] withr_2.5.0 Gviz_1.42.0
## [53] BSgenome_1.66.2 GenomicAlignments_1.34.0
## [55] prettyunits_1.1.1 mclust_6.0.0
## [57] svglite_2.1.1 cluster_2.1.4
## [59] RPMM_1.25 lazyeval_0.2.2
## [61] crayon_1.5.2 genefilter_1.80.3
## [63] labeling_0.4.2 edgeR_3.40.2
## [65] pkgconfig_2.0.3 nlme_3.1-162
## [67] ProtGenerics_1.30.0 nnet_7.3-18
## [69] rlang_1.1.0 lifecycle_1.0.3
## [71] filelock_1.0.2 dichromat_2.0-0.1
## [73] rsvg_2.4.0 cellranger_1.1.0
## [75] rngtools_1.5.2 base64_2.0.1
## [77] Matrix_1.5-3 Rhdf5lib_1.20.0
## [79] base64enc_0.1-3 viridisLite_0.4.1
## [81] png_0.1-8 rjson_0.2.21
## [83] bitops_1.0-7 KernSmooth_2.23-20
## [85] rhdf5filters_1.10.0 blob_1.2.4
## [87] DelayedMatrixStats_1.20.0 doRNG_1.8.6
## [89] stringr_1.5.0 nor1mix_1.3-0
## [91] readr_2.1.4 jpeg_0.1-10
## [93] scales_1.2.1 memoise_2.0.1
## [95] magrittr_2.0.3 zlibbioc_1.44.0
## [97] compiler_4.2.2 BiocIO_1.8.0
## [99] illuminaio_0.40.0 Rsamtools_2.14.0
## [101] cli_3.6.0 DSS_2.46.0
## [103] htmlTable_2.4.1 Formula_1.2-5
## [105] MASS_7.3-58.3 tidyselect_1.2.0
## [107] stringi_1.7.12 highr_0.10
## [109] yaml_2.3.7 askpass_1.1
## [111] latticeExtra_0.6-30 sass_0.4.5
## [113] VariantAnnotation_1.44.0 tools_4.2.2
## [115] rstudioapi_0.14 foreign_0.8-84
## [117] bsseq_1.34.0 gridExtra_2.3
## [119] farver_2.1.1 digest_0.6.31
## [121] BiocManager_1.30.20 shiny_1.7.4
## [123] quadprog_1.5-8 Rcpp_1.0.10
## [125] siggenes_1.72.0 BiocVersion_3.16.0
## [127] later_1.3.0 org.Hs.eg.db_3.16.0
## [129] httr_1.4.5 AnnotationDbi_1.60.0
## [131] biovizBase_1.46.0 colorspace_2.1-0
## [133] rvest_1.0.3 XML_3.99-0.13
## [135] splines_4.2.2 statmod_1.5.0
## [137] multtest_2.54.0 systemfonts_1.0.4
## [139] xtable_1.8-4 jsonlite_1.8.4
## [141] R6_2.5.1 echarts4r_0.4.4
## [143] Hmisc_5.0-1 pillar_1.8.1
## [145] htmltools_0.5.4 mime_0.12
## [147] glue_1.6.2 fastmap_1.1.1
## [149] BiocParallel_1.32.5 interactiveDisplayBase_1.36.0
## [151] beanplot_1.3.1 codetools_0.2-19
## [153] utf8_1.2.3 lattice_0.20-45
## [155] bslib_0.4.2 tibble_3.2.0
## [157] curl_5.0.0 gtools_3.9.4
## [159] GO.db_3.16.0 openssl_2.0.6
## [161] interp_1.1-3 survival_3.5-5
## [163] rmarkdown_2.20 munsell_0.5.0
## [165] rhdf5_2.42.0 GenomeInfoDbData_1.2.9
## [167] HDF5Array_1.26.0 impute_1.72.3
## [169] gtable_0.3.2