Source: https://github.com/markziemann/asd_meth

Introduction

Here I will be running a comparison of differential methylation data from guthrie and fresh blood samples.

Here are the files that I’m using:

  • limma_guthrie_ADOS.csv

  • limma_blood_ADOS.csv

suppressPackageStartupMessages({
  library("parallel")
  library("mitch")
  library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
  source("https://raw.githubusercontent.com/markziemann/gmea/main/meth_functions.R")
  library("data.table")
  library("kableExtra")
  library("eulerr")
  library("RIdeogram")
  library("GenomicRanges")
  library("tictoc")
})

source("meth_functions.R")

Load Limma and RUV data for manhattan plot

First I will generate plots for limmma analysis.

  • limma_guthrie_ADOS.csv

  • limma_blood_ADOS.csv

# blood at assessment
top <- read.csv("limma_blood_ADOS.csv")
nrow(top)
## [1] 802647
top <- subset(top,P.Value<1e-2)
nrow(top)
## [1] 3573
-log10(min(top$P.Value))
## [1] 4.641884
top$chr <- as.integer(gsub("chr","",top$chr))
top$snp <- paste(top$Name,top$UCSC_RefGene_Name)
top$snp <- sapply(strsplit(top$snp,";"),"[[",1)
up <- subset(top,logFC>0)
dn <- subset(top,logFC<0)

par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Blood at assessment limma hypermethylated")
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Blood at assessment limma hypomethylated")

pdf("manhat_limma_bl.pdf")
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Blood at assessment limma hypermethylated")
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Blood at assessment limma hypomethylated")
dev.off()
## png 
##   2
# neonatal guthrie card
top <- read.csv("limma_guthrie_ADOS.csv")
nrow(top)
## [1] 790658
top <- subset(top,P.Value<1e-2)
nrow(top)
## [1] 3052
-log10(min(top$P.Value))
## [1] 5.396928
top$chr <- as.integer(gsub("chr","",top$chr))
top$snp <- paste(top$Name,top$UCSC_RefGene_Name)
top$snp <- sapply(strsplit(top$snp,";"),"[[",1)
up <- subset(top,logFC>0)
dn <- subset(top,logFC<0)

par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Neonatal Guthrie card limma hypermethylated",
  annotateTop=FALSE)
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Neonatal Guthrie card limma hypomethylated",
  annotateTop=FALSE)

pdf("manhat_limma_gu.pdf")
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Neonatal Guthrie card limma hypermethylated",
  annotateTop=FALSE)
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Neonatal Guthrie card limma hypomethylated",
  annotateTop=FALSE)
dev.off()
## png 
##   2

Compartment enrichment

Looking for enrichments in different genomic compartments.

Guthrie cards.

par(mfrow=c(2,1))

# guthrie
dma1 <- read.csv("limma_guthrie_ADOS.csv")
if (nrow(subset(dma1,P.Value <1e-4)) > 100 ) {
comp <- compartment_enrichment(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Blood at assessment.

# blood
dma2 <- read.csv("limma_blood_ADOS.csv")
if (nrow(subset(dma2,P.Value <1e-4)) > 100 ) {
comp <- compartment_enrichment(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Compartments top 1000

Guthrie cards.

par(mfrow=c(2,1))
# guthrie
comp <- compartment_enrichment2(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##               all  up        OR fisherPval    lowerCI   upperCI
## Intergenic  43381  51 0.9301106 0.67479681 0.68667348 1.2349086
## 3'UTR       22433  34 1.2129434 0.25108786 0.83420682 1.7089364
## 5'UTR      102937 114 0.8621083 0.15307788 0.70173200 1.0508847
## Body       333689 425 1.0234530 0.73585600 0.89455836 1.1707154
## ExonBnd      6713   2 0.2347955 0.02208455 0.02838447 0.8510027
## TSS1500    115845 168 1.1886017 0.04591205 0.99853936 1.4083218
## TSS200      75104  87 0.9117204 0.44569459 0.72200706 1.1389184
## 
## $dn_comp
##               all  dn        OR   fisherPval   lowerCI   upperCI
## Intergenic  43381  32 0.5948092 2.631735e-03 0.4040653 0.8466315
## 3'UTR       22433  31 1.1492426 4.336872e-01 0.7754905 1.6447055
## 5'UTR      102937 105 0.8218606 6.471350e-02 0.6633950 1.0095343
## Body       333689 476 1.4132284 5.625484e-07 1.2310194 1.6234086
## ExonBnd      6713   9 1.1107978 7.216921e-01 0.5059310 2.1199885
## TSS1500    115845 134 0.9491165 6.106978e-01 0.7831326 1.1431354
## TSS200      75104  59 0.6235731 2.353519e-04 0.4701899 0.8131389
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Blood at assessment.

# blood
comp <- compartment_enrichment2(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##               all  up        OR  fisherPval    lowerCI   upperCI
## Intergenic  43528  71 1.4275748 0.005873763 1.10296399 1.8227643
## 3'UTR       22758  18 0.6667923 0.093588036 0.39309639 1.0608189
## 5'UTR      104442 132 1.0921342 0.352381927 0.89972425 1.3172212
## Body       339559 366 0.8551137 0.026309339 0.74365053 0.9826902
## ExonBnd      6862   3 0.3701634 0.075077642 0.07615547 1.0859788
## TSS1500    117509 149 1.0987143 0.304641328 0.91392779 1.3136635
## TSS200      75457  94 1.0699632 0.535910255 0.85376183 1.3277874
## 
## $dn_comp
##               all  dn        OR   fisherPval   lowerCI   upperCI
## Intergenic  43528  33 0.6594701 1.787720e-02 0.4506115 0.9343429
## 3'UTR       22758  30 1.1784990 3.648760e-01 0.7894626 1.6968371
## 5'UTR      104442 117 0.9948600 1.000000e+00 0.8104788 1.2121831
## Body       339559 439 1.3311840 6.077279e-05 1.1552821 1.5346520
## ExonBnd      6862  12 1.5636266 1.419278e-01 0.8040955 2.7487368
## TSS1500    117509 101 0.7294968 2.652237e-03 0.5860767 0.8999640
## TSS200      75457  67 0.7696615 3.862801e-02 0.5900269 0.9894609
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Looking for enrichments in proximity to CGI contexts

Guthrie cards.

par(mfrow=c(2,1))

if (nrow(subset(dma1,P.Value <1e-4)) > 100 ) {
# guthrie
comp <- cgi_enrichment(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Blood at assessment.

if (nrow(subset(dma2,P.Value <1e-4)) > 100 ) {
# blood
comp <- cgi_enrichment(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

CGI enrichments in top 1000 probes

Guthrie cards.

par(mfrow=c(2,1))
# guthrie
comp <- cgi_enrichment2(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##            all  up        OR  fisherPval   lowerCI   upperCI
## Island  150182 159 0.8060765 0.012332080 0.6760051 0.9561060
## OpenSea 442427 570 1.0434181 0.523897750 0.9189347 1.1854343
## Shelf    55491  53 0.7412019 0.034887781 0.5510427 0.9779716
## Shore   142558 218 1.2677690 0.002311228 1.0859120 1.4751269
## 
## $dn_comp
##            all  dn        OR   fisherPval  lowerCI   upperCI
## Island  150182 162 0.8242457 0.0238509853 0.692205 0.9764387
## OpenSea 442427 518 0.8457016 0.0089327487 0.745533 0.9594641
## Shelf    55491  95 1.3913745 0.0035060520 1.113978 1.7207079
## Shore   142558 225 1.3203745 0.0003369766 1.133018 1.5337616
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Blood at assessment.

# blood
comp <- cgi_enrichment2(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##            all  up        OR fisherPval   lowerCI  upperCI
## Island  150186 177 0.9342229 0.44077756 0.7895856 1.100408
## OpenSea 452360 580 1.0694516 0.30733742 0.9415295 1.215564
## Shelf    56174  55 0.7731764 0.06278458 0.5779977 1.015328
## Shore   143927 188 1.0597333 0.48313995 0.8993294 1.243516
## 
## $dn_comp
##            all  dn        OR   fisherPval   lowerCI   upperCI
## Island  150186  92 0.4398291 7.197931e-17 0.3509793 0.5455411
## OpenSea 452360 698 1.7909408 3.305622e-18 1.5623637 2.0568003
## Shelf    56174  63 0.8933467 4.201049e-01 0.6807654 1.1538172
## Shore   143927 147 0.7885126 7.296286e-03 0.6572722 0.9404946
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Session information

For reproducibility

sessionInfo()
## R version 4.2.2 Patched (2022-11-10 r83330)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      stats4    parallel  stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] tictoc_1.1                                         
##  [2] RIdeogram_0.2.2                                    
##  [3] kableExtra_1.3.4                                   
##  [4] data.table_1.14.8                                  
##  [5] ENmix_1.34.0                                       
##  [6] doParallel_1.0.17                                  
##  [7] qqman_0.1.8                                        
##  [8] RCircos_1.2.2                                      
##  [9] beeswarm_0.4.0                                     
## [10] forestplot_3.1.1                                   
## [11] abind_1.4-5                                        
## [12] checkmate_2.1.0                                    
## [13] reshape2_1.4.4                                     
## [14] gplots_3.1.3                                       
## [15] eulerr_7.0.0                                       
## [16] GEOquery_2.66.0                                    
## [17] RColorBrewer_1.1-3                                 
## [18] IlluminaHumanMethylation450kmanifest_0.4.0         
## [19] topconfects_1.14.0                                 
## [20] DMRcatedata_2.16.0                                 
## [21] ExperimentHub_2.6.0                                
## [22] AnnotationHub_3.6.0                                
## [23] BiocFileCache_2.6.0                                
## [24] dbplyr_2.3.1                                       
## [25] DMRcate_2.12.0                                     
## [26] limma_3.54.0                                       
## [27] missMethyl_1.32.0                                  
## [28] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1 
## [29] R.utils_2.12.2                                     
## [30] R.oo_1.25.0                                        
## [31] R.methodsS3_1.8.2                                  
## [32] plyr_1.8.8                                         
## [33] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [34] minfi_1.44.0                                       
## [35] bumphunter_1.40.0                                  
## [36] locfit_1.5-9.7                                     
## [37] iterators_1.0.14                                   
## [38] foreach_1.5.2                                      
## [39] Biostrings_2.66.0                                  
## [40] XVector_0.38.0                                     
## [41] SummarizedExperiment_1.28.0                        
## [42] Biobase_2.58.0                                     
## [43] MatrixGenerics_1.10.0                              
## [44] matrixStats_0.63.0                                 
## [45] GenomicRanges_1.50.2                               
## [46] GenomeInfoDb_1.34.6                                
## [47] IRanges_2.32.0                                     
## [48] S4Vectors_0.36.1                                   
## [49] BiocGenerics_0.44.0                                
## [50] mitch_1.10.0                                       
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3                rtracklayer_1.58.0           
##   [3] GGally_2.1.2                  tidyr_1.3.0                  
##   [5] ggplot2_3.4.1                 bit64_4.0.5                  
##   [7] knitr_1.42                    DelayedArray_0.24.0          
##   [9] rpart_4.1.19                  KEGGREST_1.38.0              
##  [11] RCurl_1.98-1.10               AnnotationFilter_1.22.0      
##  [13] generics_0.1.3                GenomicFeatures_1.50.3       
##  [15] preprocessCore_1.60.2         RSQLite_2.3.0                
##  [17] bit_4.0.5                     tzdb_0.3.0                   
##  [19] webshot_0.5.4                 xml2_1.3.3                   
##  [21] httpuv_1.6.9                  assertthat_0.2.1             
##  [23] xfun_0.37                     hms_1.1.2                    
##  [25] jquerylib_0.1.4               evaluate_0.20                
##  [27] promises_1.2.0.1              fansi_1.0.4                  
##  [29] restfulr_0.0.15               scrime_1.3.5                 
##  [31] progress_1.2.2                caTools_1.18.2               
##  [33] readxl_1.4.2                  DBI_1.1.3                    
##  [35] geneplotter_1.76.0            htmlwidgets_1.6.2            
##  [37] reshape_0.8.9                 purrr_1.0.1                  
##  [39] ellipsis_0.3.2                dplyr_1.1.0                  
##  [41] backports_1.4.1               permute_0.9-7                
##  [43] calibrate_1.7.7               grImport2_0.2-0              
##  [45] annotate_1.76.0               biomaRt_2.54.0               
##  [47] deldir_1.0-6                  sparseMatrixStats_1.10.0     
##  [49] vctrs_0.6.0                   ensembldb_2.22.0             
##  [51] withr_2.5.0                   cachem_1.0.7                 
##  [53] Gviz_1.42.0                   BSgenome_1.66.2              
##  [55] GenomicAlignments_1.34.0      prettyunits_1.1.1            
##  [57] mclust_6.0.0                  svglite_2.1.1                
##  [59] cluster_2.1.4                 RPMM_1.25                    
##  [61] lazyeval_0.2.2                crayon_1.5.2                 
##  [63] genefilter_1.80.3             edgeR_3.40.2                 
##  [65] pkgconfig_2.0.3               nlme_3.1-162                 
##  [67] ProtGenerics_1.30.0           nnet_7.3-18                  
##  [69] rlang_1.1.0                   lifecycle_1.0.3              
##  [71] filelock_1.0.2                dichromat_2.0-0.1            
##  [73] rsvg_2.4.0                    cellranger_1.1.0             
##  [75] rngtools_1.5.2                base64_2.0.1                 
##  [77] Matrix_1.5-3                  Rhdf5lib_1.20.0              
##  [79] base64enc_0.1-3               viridisLite_0.4.1            
##  [81] png_0.1-8                     rjson_0.2.21                 
##  [83] bitops_1.0-7                  KernSmooth_2.23-20           
##  [85] rhdf5filters_1.10.0           blob_1.2.4                   
##  [87] DelayedMatrixStats_1.20.0     doRNG_1.8.6                  
##  [89] stringr_1.5.0                 nor1mix_1.3-0                
##  [91] readr_2.1.4                   jpeg_0.1-10                  
##  [93] scales_1.2.1                  memoise_2.0.1                
##  [95] magrittr_2.0.3                zlibbioc_1.44.0              
##  [97] compiler_4.2.2                BiocIO_1.8.0                 
##  [99] illuminaio_0.40.0             Rsamtools_2.14.0             
## [101] cli_3.6.0                     DSS_2.46.0                   
## [103] htmlTable_2.4.1               Formula_1.2-5                
## [105] MASS_7.3-58.3                 tidyselect_1.2.0             
## [107] stringi_1.7.12                highr_0.10                   
## [109] yaml_2.3.7                    askpass_1.1                  
## [111] latticeExtra_0.6-30           sass_0.4.5                   
## [113] VariantAnnotation_1.44.0      tools_4.2.2                  
## [115] rstudioapi_0.14               foreign_0.8-84               
## [117] bsseq_1.34.0                  gridExtra_2.3                
## [119] digest_0.6.31                 BiocManager_1.30.20          
## [121] shiny_1.7.4                   quadprog_1.5-8               
## [123] Rcpp_1.0.10                   siggenes_1.72.0              
## [125] BiocVersion_3.16.0            later_1.3.0                  
## [127] org.Hs.eg.db_3.16.0           httr_1.4.5                   
## [129] AnnotationDbi_1.60.0          biovizBase_1.46.0            
## [131] colorspace_2.1-0              rvest_1.0.3                  
## [133] XML_3.99-0.13                 splines_4.2.2                
## [135] statmod_1.5.0                 multtest_2.54.0              
## [137] systemfonts_1.0.4             xtable_1.8-4                 
## [139] jsonlite_1.8.4                dynamicTreeCut_1.63-1        
## [141] R6_2.5.1                      echarts4r_0.4.4              
## [143] Hmisc_5.0-1                   pillar_1.8.1                 
## [145] htmltools_0.5.4               mime_0.12                    
## [147] glue_1.6.2                    fastmap_1.1.1                
## [149] BiocParallel_1.32.5           interactiveDisplayBase_1.36.0
## [151] beanplot_1.3.1                codetools_0.2-19             
## [153] utf8_1.2.3                    lattice_0.20-45              
## [155] bslib_0.4.2                   tibble_3.2.0                 
## [157] curl_5.0.0                    gtools_3.9.4                 
## [159] openssl_2.0.6                 interp_1.1-3                 
## [161] survival_3.5-5                rmarkdown_2.20               
## [163] munsell_0.5.0                 rhdf5_2.42.0                 
## [165] GenomeInfoDbData_1.2.9        HDF5Array_1.26.0             
## [167] impute_1.72.3                 gtable_0.3.2