Source: https://github.com/markziemann/asd_meth

Introduction

Here I will be running a comparison of differential methylation data from guthrie and fresh blood samples.

Here are the files that I’m using:

  • limma_guthrie_ilanguage.csv

  • limma_blood_ilanguage.csv

suppressPackageStartupMessages({
  library("parallel")
  library("mitch")
  library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
  source("https://raw.githubusercontent.com/markziemann/gmea/main/meth_functions.R")
  library("data.table")
  library("kableExtra")
  library("eulerr")
  library("RIdeogram")
  library("GenomicRanges")
  library("tictoc")
})

source("meth_functions.R")

Load Limma and RUV data for manhattan plot

First I will generate plots for limmma analysis.

# blood at assessment
top <- read.csv("limma_blood_ilanguage.csv")
nrow(top)
## [1] 802647
top <- subset(top,P.Value<1e-2)
nrow(top)
## [1] 164412
-log10(min(top$P.Value))
## [1] 7.249305
top$chr <- as.integer(gsub("chr","",top$chr))
top$snp <- paste(top$Name,top$UCSC_RefGene_Name)
top$snp <- sapply(strsplit(top$snp,";"),"[[",1)
up <- subset(top,logFC>0)
dn <- subset(top,logFC<0)

par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Blood at assessment limma hypermethylated")
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Blood at assessment limma hypomethylated")

pdf("manhat_limma_bl.pdf")
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Blood at assessment limma hypermethylated")
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Blood at assessment limma hypomethylated")
dev.off()
## png 
##   2
# neonatal guthrie card
top <- read.csv("limma_guthrie_ilanguage.csv")
nrow(top)
## [1] 790658
top <- subset(top,P.Value<1e-2)
nrow(top)
## [1] 5255
-log10(min(top$P.Value))
## [1] 7.038618
top$chr <- as.integer(gsub("chr","",top$chr))
top$snp <- paste(top$Name,top$UCSC_RefGene_Name)
top$snp <- sapply(strsplit(top$snp,";"),"[[",1)
up <- subset(top,logFC>0)
dn <- subset(top,logFC<0)

par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Neonatal Guthrie card limma hypermethylated",
  annotateTop=FALSE)
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Neonatal Guthrie card limma hypomethylated",
  annotateTop=FALSE)

pdf("manhat_limma_gu.pdf")
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Neonatal Guthrie card limma hypermethylated",
  annotateTop=FALSE)
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Neonatal Guthrie card limma hypomethylated",
  annotateTop=FALSE)
dev.off()
## png 
##   2

Compartment enrichment

Looking for enrichments in different genomic compartments.

Guthrie cards.

par(mfrow=c(2,1))

# guthrie
dma1 <- read.csv("limma_guthrie_ilanguage.csv")
if (nrow(subset(dma1,P.Value <1e-4)) > 100 ) {
comp <- compartment_enrichment(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Blood at assessment.

# blood
dma2 <- read.csv("limma_blood_ilanguage.csv")
if (nrow(subset(dma2,P.Value <1e-4)) > 100 ) {
comp <- compartment_enrichment(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Compartments top 1000

Guthrie cards.

par(mfrow=c(2,1))
# guthrie
comp <- compartment_enrichment2(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##               all  up        OR   fisherPval   lowerCI   upperCI
## Intergenic  43381  94 1.5329042 2.023156e-04 1.2261550 1.8972837
## 3'UTR       22433  19 0.5713113 1.247369e-02 0.3424494 0.8971594
## 5'UTR      102937 175 1.1975147 3.382504e-02 1.0116677 1.4109891
## Body       333689 398 0.6988926 1.905590e-08 0.6147317 0.7938427
## ExonBnd      6713   6 0.6090342 2.620135e-01 0.2228945 1.3309217
## TSS1500    115845 193 1.1730093 4.781774e-02 0.9975967 1.3737349
## TSS200      75104 138 1.2981778 5.379668e-03 1.0768669 1.5551207
## 
## $dn_comp
##               all  dn        OR  fisherPval   lowerCI   upperCI
## Intergenic  43381  55 1.0129311 0.888593474 0.7563252 1.3319095
## 3'UTR       22433  34 1.2187059 0.249109481 0.8381156 1.7171137
## 5'UTR      102937 125 0.9642591 0.738526390 0.7913917 1.1667716
## Body       333689 444 1.1261296 0.084448527 0.9841760 1.2886336
## ExonBnd      6713  11 1.3125128 0.380863357 0.6524324 2.3617552
## TSS1500    115845 145 0.9990403 1.000000000 0.8300653 1.1955092
## TSS200      75104  63 0.6437697 0.000459275 0.4899999 0.8325786
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Blood at assessment.

# blood
comp <- compartment_enrichment2(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##               all  up        OR   fisherPval   lowerCI   upperCI
## Intergenic  43528  12 0.2892024 2.698376e-07 0.1486264 0.5087691
## 3'UTR       22758  10 0.4739116 1.343508e-02 0.2261303 0.8774397
## 5'UTR      104442  90 0.9369575 6.171752e-01 0.7413338 1.1726210
## Body       339559 395 1.7113584 1.687712e-11 1.4574293 2.0125828
## ExonBnd      6862   7 1.1210534 6.855946e-01 0.4487353 2.3244830
## TSS1500    117509 103 0.9547975 7.110641e-01 0.7657451 1.1807531
## TSS200      75457  30 0.4087208 6.475086e-08 0.2733558 0.5895656
## 
## $dn_comp
##               all  dn        OR   fisherPval   lowerCI   upperCI
## Intergenic  43528  25 0.4417693 6.772985e-06 0.2842532 0.6567026
## 3'UTR       22758  39 1.3831626 5.598552e-02 0.9763397 1.9072498
## 5'UTR      104442 126 0.9550911 6.701916e-01 0.7846131 1.1546695
## Body       339559 518 1.5162874 7.252598e-10 1.3246448 1.7369773
## ExonBnd      6862  10 1.1635181 6.042388e-01 0.5557401 2.1512650
## TSS1500    117509 136 0.9083421 3.210465e-01 0.7510066 1.0917089
## TSS200      75457  37 0.3640932 2.998699e-12 0.2545800 0.5059732
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Looking for enrichments in proximity to CGI contexts

Guthrie cards.

par(mfrow=c(2,1))

if (nrow(subset(dma1,P.Value <1e-4)) > 100 ) {
# guthrie
comp <- cgi_enrichment(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Blood at assessment.

if (nrow(subset(dma2,P.Value <1e-4)) > 100 ) {
# blood
comp <- cgi_enrichment(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

CGI enrichments in top 1000 probes

Guthrie cards.

par(mfrow=c(2,1))
# guthrie
comp <- cgi_enrichment2(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##            all  up        OR   fisherPval   lowerCI   upperCI
## Island  150182 326 2.0650990 1.697933e-24 1.8034688 2.3606663
## OpenSea 442427 378 0.4778792 1.224277e-30 0.4193866 0.5439918
## Shelf    55491  68 0.9665802 8.525393e-01 0.7441240 1.2374634
## Shore   142558 228 1.3432132 1.485704e-04 1.1534664 1.5592217
## 
## $dn_comp
##            all  dn        OR   fisherPval   lowerCI   upperCI
## Island  150182 178 0.9234262 0.3535806069 0.7807329 1.0871899
## OpenSea 442427 518 0.8457016 0.0089327487 0.7455330 0.9594641
## Shelf    55491  80 1.1522533 0.2156910627 0.9050202 1.4493926
## Shore   142558 224 1.3128010 0.0004602369 1.1262334 1.5253509
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Blood at assessment.

# blood
comp <- cgi_enrichment2(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##            all  up         OR   fisherPval    lowerCI   upperCI
## Island  150186  14 0.06159713 2.175707e-68 0.03357243 0.1038500
## OpenSea 452360 853 4.49991341 5.942087e-86 3.77308568 5.3976214
## Shelf    56174  50 0.69911498 1.290409e-02 0.51512263 0.9295346
## Shore   143927  83 0.41391359 4.883433e-18 0.32652705 0.5186457
## 
## $dn_comp
##            all  dn        OR   fisherPval   lowerCI   upperCI
## Island  150186  39 0.1760916 6.262393e-45 0.1244179 0.2425214
## OpenSea 452360 752 2.3502472 3.513057e-35 2.0332729 2.7242559
## Shelf    56174  68 0.9695163 8.525011e-01 0.7463704 1.2412212
## Shore   143927 141 0.7510079 1.283048e-03 0.6238892 0.8984489
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Session information

For reproducibility

sessionInfo()
## R version 4.2.2 Patched (2022-11-10 r83330)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      stats4    parallel  stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] tictoc_1.1                                         
##  [2] RIdeogram_0.2.2                                    
##  [3] kableExtra_1.3.4                                   
##  [4] data.table_1.14.8                                  
##  [5] ENmix_1.34.0                                       
##  [6] doParallel_1.0.17                                  
##  [7] qqman_0.1.8                                        
##  [8] RCircos_1.2.2                                      
##  [9] beeswarm_0.4.0                                     
## [10] forestplot_3.1.1                                   
## [11] abind_1.4-5                                        
## [12] checkmate_2.1.0                                    
## [13] reshape2_1.4.4                                     
## [14] gplots_3.1.3                                       
## [15] eulerr_7.0.0                                       
## [16] GEOquery_2.66.0                                    
## [17] RColorBrewer_1.1-3                                 
## [18] IlluminaHumanMethylation450kmanifest_0.4.0         
## [19] topconfects_1.14.0                                 
## [20] DMRcatedata_2.16.0                                 
## [21] ExperimentHub_2.6.0                                
## [22] AnnotationHub_3.6.0                                
## [23] BiocFileCache_2.6.0                                
## [24] dbplyr_2.3.1                                       
## [25] DMRcate_2.12.0                                     
## [26] limma_3.54.0                                       
## [27] missMethyl_1.32.0                                  
## [28] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1 
## [29] R.utils_2.12.2                                     
## [30] R.oo_1.25.0                                        
## [31] R.methodsS3_1.8.2                                  
## [32] plyr_1.8.8                                         
## [33] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [34] minfi_1.44.0                                       
## [35] bumphunter_1.40.0                                  
## [36] locfit_1.5-9.7                                     
## [37] iterators_1.0.14                                   
## [38] foreach_1.5.2                                      
## [39] Biostrings_2.66.0                                  
## [40] XVector_0.38.0                                     
## [41] SummarizedExperiment_1.28.0                        
## [42] Biobase_2.58.0                                     
## [43] MatrixGenerics_1.10.0                              
## [44] matrixStats_0.63.0                                 
## [45] GenomicRanges_1.50.2                               
## [46] GenomeInfoDb_1.34.6                                
## [47] IRanges_2.32.0                                     
## [48] S4Vectors_0.36.1                                   
## [49] BiocGenerics_0.44.0                                
## [50] mitch_1.10.0                                       
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3                rtracklayer_1.58.0           
##   [3] GGally_2.1.2                  tidyr_1.3.0                  
##   [5] ggplot2_3.4.1                 bit64_4.0.5                  
##   [7] knitr_1.42                    DelayedArray_0.24.0          
##   [9] rpart_4.1.19                  KEGGREST_1.38.0              
##  [11] RCurl_1.98-1.10               AnnotationFilter_1.22.0      
##  [13] generics_0.1.3                GenomicFeatures_1.50.3       
##  [15] preprocessCore_1.60.2         RSQLite_2.3.0                
##  [17] bit_4.0.5                     tzdb_0.3.0                   
##  [19] webshot_0.5.4                 xml2_1.3.3                   
##  [21] httpuv_1.6.9                  assertthat_0.2.1             
##  [23] xfun_0.37                     hms_1.1.2                    
##  [25] jquerylib_0.1.4               evaluate_0.20                
##  [27] promises_1.2.0.1              fansi_1.0.4                  
##  [29] restfulr_0.0.15               scrime_1.3.5                 
##  [31] progress_1.2.2                caTools_1.18.2               
##  [33] readxl_1.4.2                  DBI_1.1.3                    
##  [35] geneplotter_1.76.0            htmlwidgets_1.6.2            
##  [37] reshape_0.8.9                 purrr_1.0.1                  
##  [39] ellipsis_0.3.2                dplyr_1.1.0                  
##  [41] backports_1.4.1               permute_0.9-7                
##  [43] calibrate_1.7.7               grImport2_0.2-0              
##  [45] annotate_1.76.0               biomaRt_2.54.0               
##  [47] deldir_1.0-6                  sparseMatrixStats_1.10.0     
##  [49] vctrs_0.6.0                   ensembldb_2.22.0             
##  [51] withr_2.5.0                   cachem_1.0.7                 
##  [53] Gviz_1.42.0                   BSgenome_1.66.2              
##  [55] GenomicAlignments_1.34.0      prettyunits_1.1.1            
##  [57] mclust_6.0.0                  svglite_2.1.1                
##  [59] cluster_2.1.4                 RPMM_1.25                    
##  [61] lazyeval_0.2.2                crayon_1.5.2                 
##  [63] genefilter_1.80.3             edgeR_3.40.2                 
##  [65] pkgconfig_2.0.3               nlme_3.1-162                 
##  [67] ProtGenerics_1.30.0           nnet_7.3-18                  
##  [69] rlang_1.1.0                   lifecycle_1.0.3              
##  [71] filelock_1.0.2                dichromat_2.0-0.1            
##  [73] rsvg_2.4.0                    cellranger_1.1.0             
##  [75] rngtools_1.5.2                base64_2.0.1                 
##  [77] Matrix_1.5-3                  Rhdf5lib_1.20.0              
##  [79] base64enc_0.1-3               viridisLite_0.4.1            
##  [81] png_0.1-8                     rjson_0.2.21                 
##  [83] bitops_1.0-7                  KernSmooth_2.23-20           
##  [85] rhdf5filters_1.10.0           blob_1.2.4                   
##  [87] DelayedMatrixStats_1.20.0     doRNG_1.8.6                  
##  [89] stringr_1.5.0                 nor1mix_1.3-0                
##  [91] readr_2.1.4                   jpeg_0.1-10                  
##  [93] scales_1.2.1                  memoise_2.0.1                
##  [95] magrittr_2.0.3                zlibbioc_1.44.0              
##  [97] compiler_4.2.2                BiocIO_1.8.0                 
##  [99] illuminaio_0.40.0             Rsamtools_2.14.0             
## [101] cli_3.6.0                     DSS_2.46.0                   
## [103] htmlTable_2.4.1               Formula_1.2-5                
## [105] MASS_7.3-58.3                 tidyselect_1.2.0             
## [107] stringi_1.7.12                highr_0.10                   
## [109] yaml_2.3.7                    askpass_1.1                  
## [111] latticeExtra_0.6-30           sass_0.4.5                   
## [113] VariantAnnotation_1.44.0      tools_4.2.2                  
## [115] rstudioapi_0.14               foreign_0.8-84               
## [117] bsseq_1.34.0                  gridExtra_2.3                
## [119] digest_0.6.31                 BiocManager_1.30.20          
## [121] shiny_1.7.4                   quadprog_1.5-8               
## [123] Rcpp_1.0.10                   siggenes_1.72.0              
## [125] BiocVersion_3.16.0            later_1.3.0                  
## [127] org.Hs.eg.db_3.16.0           httr_1.4.5                   
## [129] AnnotationDbi_1.60.0          biovizBase_1.46.0            
## [131] colorspace_2.1-0              rvest_1.0.3                  
## [133] XML_3.99-0.13                 splines_4.2.2                
## [135] statmod_1.5.0                 multtest_2.54.0              
## [137] systemfonts_1.0.4             xtable_1.8-4                 
## [139] jsonlite_1.8.4                dynamicTreeCut_1.63-1        
## [141] R6_2.5.1                      echarts4r_0.4.4              
## [143] Hmisc_5.0-1                   pillar_1.8.1                 
## [145] htmltools_0.5.4               mime_0.12                    
## [147] glue_1.6.2                    fastmap_1.1.1                
## [149] BiocParallel_1.32.5           interactiveDisplayBase_1.36.0
## [151] beanplot_1.3.1                codetools_0.2-19             
## [153] utf8_1.2.3                    lattice_0.20-45              
## [155] bslib_0.4.2                   tibble_3.2.0                 
## [157] curl_5.0.0                    gtools_3.9.4                 
## [159] openssl_2.0.6                 interp_1.1-3                 
## [161] survival_3.5-5                rmarkdown_2.20               
## [163] munsell_0.5.0                 rhdf5_2.42.0                 
## [165] GenomeInfoDbData_1.2.9        HDF5Array_1.26.0             
## [167] impute_1.72.3                 gtable_0.3.2