Source: https://github.com/markziemann/asd_meth

Introduction

Here I will be running a comparison of differential methylation data from guthrie and fresh blood samples.

Here are the files that I’m using:

  • limma_guthrie_motor.csv

  • limma_blood_motor.csv

suppressPackageStartupMessages({
  library("parallel")
  library("mitch")
  library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
  source("https://raw.githubusercontent.com/markziemann/gmea/main/meth_functions.R")
  library("data.table")
  library("kableExtra")
  library("eulerr")
  library("RIdeogram")
  library("GenomicRanges")
  library("tictoc")
})

source("meth_functions.R")

Load Limma and RUV data for manhattan plot

First I will generate plots for limmma analysis.

# blood at assessment
top <- read.csv("limma_blood_motor.csv")
nrow(top)
## [1] 802647
top <- subset(top,P.Value<1e-2)
nrow(top)
## [1] 2091
-log10(min(top$P.Value))
## [1] 7.704369
top$chr <- as.integer(gsub("chr","",top$chr))
top$snp <- paste(top$Name,top$UCSC_RefGene_Name)
top$snp <- sapply(strsplit(top$snp,";"),"[[",1)
up <- subset(top,logFC>0)
dn <- subset(top,logFC<0)

par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Blood at assessment limma hypermethylated")
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Blood at assessment limma hypomethylated")

pdf("manhat_limma_bl.pdf")
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Blood at assessment limma hypermethylated")
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Blood at assessment limma hypomethylated")
dev.off()
## png 
##   2
# neonatal guthrie card
top <- read.csv("limma_guthrie_motor.csv")
nrow(top)
## [1] 790658
top <- subset(top,P.Value<1e-2)
nrow(top)
## [1] 14453
-log10(min(top$P.Value))
## [1] 11.97755
top$chr <- as.integer(gsub("chr","",top$chr))
top$snp <- paste(top$Name,top$UCSC_RefGene_Name)
top$snp <- sapply(strsplit(top$snp,";"),"[[",1)
up <- subset(top,logFC>0)
dn <- subset(top,logFC<0)

par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Neonatal Guthrie card limma hypermethylated",
  annotateTop=FALSE)
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Neonatal Guthrie card limma hypomethylated",
  annotateTop=FALSE)

pdf("manhat_limma_gu.pdf")
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Neonatal Guthrie card limma hypermethylated",
  annotateTop=FALSE)
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Neonatal Guthrie card limma hypomethylated",
  annotateTop=FALSE)
dev.off()
## png 
##   2

Compartment enrichment

Looking for enrichments in different genomic compartments.

Guthrie cards.

par(mfrow=c(2,1))

# guthrie
dma1 <- read.csv("limma_guthrie_motor.csv")
if (nrow(subset(dma1,P.Value <1e-4)) > 100 ) {
comp <- compartment_enrichment(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Blood at assessment.

# blood
dma2 <- read.csv("limma_blood_motor.csv")
if (nrow(subset(dma2,P.Value <1e-4)) > 100 ) {
comp <- compartment_enrichment(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Compartments top 1000

Guthrie cards.

par(mfrow=c(2,1))
# guthrie
comp <- compartment_enrichment2(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##               all  up        OR   fisherPval   lowerCI   upperCI
## Intergenic  43381 103 1.5957321 2.120921e-05 1.2893325 1.9570210
## 3'UTR       22433  17 0.4822638 1.293587e-03 0.2798225 0.7760397
## 5'UTR      102937 197 1.2933759 1.451807e-03 1.1024578 1.5112516
## Body       333689 309 0.4390117 1.571680e-37 0.3834759 0.5016200
## ExonBnd      6713   5 0.4796021 1.150706e-01 0.1553502 1.1232363
## TSS1500    115845 253 1.5422298 6.732474e-09 1.3341648 1.7778105
## TSS200      75104 197 1.8567116 2.042205e-13 1.5826275 2.1696801
## 
## $dn_comp
##               all  dn        OR fisherPval   lowerCI  upperCI
## Intergenic  43381  56 0.9857409  1.0000000 0.7382521 1.292635
## 3'UTR       22433  34 1.1647510  0.3968734 0.8012319 1.640541
## 5'UTR      102937 141 1.0555442  0.5440650 0.8756871 1.264729
## Body       333689 422 0.9379267  0.3373171 0.8216464 1.070346
## ExonBnd      6713   8 0.9099411  1.0000000 0.3914649 1.801623
## TSS1500    115845 154 1.0193045  0.8239811 0.8515206 1.213665
## TSS200      75104 101 1.0313345  0.7486602 0.8301086 1.269685
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Blood at assessment.

# blood
comp <- compartment_enrichment2(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##               all  up        OR   fisherPval   lowerCI  upperCI
## Intergenic  43528  86 1.5468348 0.0002860573 1.2241616 1.933079
## 3'UTR       22758  30 0.9978895 1.0000000000 0.6691672 1.434989
## 5'UTR      104442 125 0.8915252 0.2487650646 0.7323911 1.077546
## Body       339559 394 0.7901380 0.0003607962 0.6922163 0.901284
## ExonBnd      6862   9 0.9928499 1.0000000000 0.4523706 1.893995
## TSS1500    117509 166 1.0845303 0.3337649609 0.9114052 1.284255
## TSS200      75457 128 1.3296778 0.0035106686 1.0946007 1.604303
## 
## $dn_comp
##               all  dn        OR   fisherPval   lowerCI   upperCI
## Intergenic  43528  98 1.5612944 6.657496e-05 1.2548326 1.9240364
## 3'UTR       22758  18 0.5213581 3.784874e-03 0.3077155 0.8282926
## 5'UTR      104442 183 1.2104355 2.135360e-02 1.0263826 1.4212327
## Body       339559 341 0.5170816 5.193298e-25 0.4531627 0.5890575
## ExonBnd      6862   6 0.5830425 2.097217e-01 0.2134018 1.2739405
## TSS1500    117509 250 1.5576844 3.756482e-09 1.3460575 1.7974580
## TSS200      75457 164 1.5406513 1.198793e-06 1.2961001 1.8220157
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Looking for enrichments in proximity to CGI contexts

Guthrie cards.

par(mfrow=c(2,1))

if (nrow(subset(dma1,P.Value <1e-4)) > 100 ) {
# guthrie
comp <- cgi_enrichment(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Blood at assessment.

if (nrow(subset(dma2,P.Value <1e-4)) > 100 ) {
# blood
comp <- cgi_enrichment(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

CGI enrichments in top 1000 probes

Guthrie cards.

par(mfrow=c(2,1))
# guthrie
comp <- cgi_enrichment2(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##            all  up        OR   fisherPval   lowerCI   upperCI
## Island  150182 403 2.8838374 1.148371e-54 2.5348743 3.2783159
## OpenSea 442427 269 0.2892100 3.182785e-77 0.2505052 0.3330712
## Shelf    55491  34 0.4659729 1.178780e-06 0.3207744 0.6557693
## Shore   142558 294 1.8949609 1.832295e-18 1.6481236 2.1745230
## 
## $dn_comp
##            all  dn        OR   fisherPval   lowerCI   upperCI
## Island  150182 210 1.1338648 1.067003e-01 0.9690004 1.3219735
## OpenSea 442427 492 0.7620439 1.900175e-05 0.6717585 0.8643962
## Shelf    55491  64 0.9057623 4.953879e-01 0.6916972 1.1677042
## Shore   142558 234 1.3894300 1.807221e-05 1.1949451 1.6107647
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Blood at assessment.

# blood
comp <- cgi_enrichment2(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##            all  up        OR   fisherPval   lowerCI   upperCI
## Island  150186 258 1.5114456 3.857833e-08 1.3065613 1.7440644
## OpenSea 452360 489 0.7407438 2.256894e-06 0.6529709 0.8402307
## Shelf    56174  64 0.9085146 4.951940e-01 0.6938016 1.1712657
## Shore   143927 189 1.0666949 4.331747e-01 0.9055723 1.2512812
## 
## $dn_comp
##            all  dn        OR   fisherPval   lowerCI   upperCI
## Island  150186 308 1.9354251 4.232993e-20 1.6866799 2.2170949
## OpenSea 452360 333 0.3861440 1.196604e-48 0.3375138 0.4411174
## Shelf    56174  42 0.5822544 3.045146e-04 0.4168787 0.7932184
## Shore   143927 317 2.1267202 8.552327e-26 1.8553176 2.4336693
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Session information

For reproducibility

sessionInfo()
## R version 4.2.2 Patched (2022-11-10 r83330)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      stats4    parallel  stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] tictoc_1.1                                         
##  [2] RIdeogram_0.2.2                                    
##  [3] kableExtra_1.3.4                                   
##  [4] data.table_1.14.8                                  
##  [5] ENmix_1.34.0                                       
##  [6] doParallel_1.0.17                                  
##  [7] qqman_0.1.8                                        
##  [8] RCircos_1.2.2                                      
##  [9] beeswarm_0.4.0                                     
## [10] forestplot_3.1.1                                   
## [11] abind_1.4-5                                        
## [12] checkmate_2.1.0                                    
## [13] reshape2_1.4.4                                     
## [14] gplots_3.1.3                                       
## [15] eulerr_7.0.0                                       
## [16] GEOquery_2.66.0                                    
## [17] RColorBrewer_1.1-3                                 
## [18] IlluminaHumanMethylation450kmanifest_0.4.0         
## [19] topconfects_1.14.0                                 
## [20] DMRcatedata_2.16.0                                 
## [21] ExperimentHub_2.6.0                                
## [22] AnnotationHub_3.6.0                                
## [23] BiocFileCache_2.6.0                                
## [24] dbplyr_2.3.1                                       
## [25] DMRcate_2.12.0                                     
## [26] limma_3.54.0                                       
## [27] missMethyl_1.32.0                                  
## [28] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1 
## [29] R.utils_2.12.2                                     
## [30] R.oo_1.25.0                                        
## [31] R.methodsS3_1.8.2                                  
## [32] plyr_1.8.8                                         
## [33] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [34] minfi_1.44.0                                       
## [35] bumphunter_1.40.0                                  
## [36] locfit_1.5-9.7                                     
## [37] iterators_1.0.14                                   
## [38] foreach_1.5.2                                      
## [39] Biostrings_2.66.0                                  
## [40] XVector_0.38.0                                     
## [41] SummarizedExperiment_1.28.0                        
## [42] Biobase_2.58.0                                     
## [43] MatrixGenerics_1.10.0                              
## [44] matrixStats_0.63.0                                 
## [45] GenomicRanges_1.50.2                               
## [46] GenomeInfoDb_1.34.6                                
## [47] IRanges_2.32.0                                     
## [48] S4Vectors_0.36.1                                   
## [49] BiocGenerics_0.44.0                                
## [50] mitch_1.10.0                                       
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3                rtracklayer_1.58.0           
##   [3] GGally_2.1.2                  tidyr_1.3.0                  
##   [5] ggplot2_3.4.1                 bit64_4.0.5                  
##   [7] knitr_1.42                    DelayedArray_0.24.0          
##   [9] rpart_4.1.19                  KEGGREST_1.38.0              
##  [11] RCurl_1.98-1.10               AnnotationFilter_1.22.0      
##  [13] generics_0.1.3                GenomicFeatures_1.50.3       
##  [15] preprocessCore_1.60.2         RSQLite_2.3.0                
##  [17] bit_4.0.5                     tzdb_0.3.0                   
##  [19] webshot_0.5.4                 xml2_1.3.3                   
##  [21] httpuv_1.6.9                  assertthat_0.2.1             
##  [23] xfun_0.37                     hms_1.1.2                    
##  [25] jquerylib_0.1.4               evaluate_0.20                
##  [27] promises_1.2.0.1              fansi_1.0.4                  
##  [29] restfulr_0.0.15               scrime_1.3.5                 
##  [31] progress_1.2.2                caTools_1.18.2               
##  [33] readxl_1.4.2                  DBI_1.1.3                    
##  [35] geneplotter_1.76.0            htmlwidgets_1.6.2            
##  [37] reshape_0.8.9                 purrr_1.0.1                  
##  [39] ellipsis_0.3.2                dplyr_1.1.0                  
##  [41] backports_1.4.1               permute_0.9-7                
##  [43] calibrate_1.7.7               grImport2_0.2-0              
##  [45] annotate_1.76.0               biomaRt_2.54.0               
##  [47] deldir_1.0-6                  sparseMatrixStats_1.10.0     
##  [49] vctrs_0.6.0                   ensembldb_2.22.0             
##  [51] withr_2.5.0                   cachem_1.0.7                 
##  [53] Gviz_1.42.0                   BSgenome_1.66.2              
##  [55] GenomicAlignments_1.34.0      prettyunits_1.1.1            
##  [57] mclust_6.0.0                  svglite_2.1.1                
##  [59] cluster_2.1.4                 RPMM_1.25                    
##  [61] lazyeval_0.2.2                crayon_1.5.2                 
##  [63] genefilter_1.80.3             edgeR_3.40.2                 
##  [65] pkgconfig_2.0.3               nlme_3.1-162                 
##  [67] ProtGenerics_1.30.0           nnet_7.3-18                  
##  [69] rlang_1.1.0                   lifecycle_1.0.3              
##  [71] filelock_1.0.2                dichromat_2.0-0.1            
##  [73] rsvg_2.4.0                    cellranger_1.1.0             
##  [75] rngtools_1.5.2                base64_2.0.1                 
##  [77] Matrix_1.5-3                  Rhdf5lib_1.20.0              
##  [79] base64enc_0.1-3               viridisLite_0.4.1            
##  [81] png_0.1-8                     rjson_0.2.21                 
##  [83] bitops_1.0-7                  KernSmooth_2.23-20           
##  [85] rhdf5filters_1.10.0           blob_1.2.4                   
##  [87] DelayedMatrixStats_1.20.0     doRNG_1.8.6                  
##  [89] stringr_1.5.0                 nor1mix_1.3-0                
##  [91] readr_2.1.4                   jpeg_0.1-10                  
##  [93] scales_1.2.1                  memoise_2.0.1                
##  [95] magrittr_2.0.3                zlibbioc_1.44.0              
##  [97] compiler_4.2.2                BiocIO_1.8.0                 
##  [99] illuminaio_0.40.0             Rsamtools_2.14.0             
## [101] cli_3.6.0                     DSS_2.46.0                   
## [103] htmlTable_2.4.1               Formula_1.2-5                
## [105] MASS_7.3-58.3                 tidyselect_1.2.0             
## [107] stringi_1.7.12                highr_0.10                   
## [109] yaml_2.3.7                    askpass_1.1                  
## [111] latticeExtra_0.6-30           sass_0.4.5                   
## [113] VariantAnnotation_1.44.0      tools_4.2.2                  
## [115] rstudioapi_0.14               foreign_0.8-84               
## [117] bsseq_1.34.0                  gridExtra_2.3                
## [119] digest_0.6.31                 BiocManager_1.30.20          
## [121] shiny_1.7.4                   quadprog_1.5-8               
## [123] Rcpp_1.0.10                   siggenes_1.72.0              
## [125] BiocVersion_3.16.0            later_1.3.0                  
## [127] org.Hs.eg.db_3.16.0           httr_1.4.5                   
## [129] AnnotationDbi_1.60.0          biovizBase_1.46.0            
## [131] colorspace_2.1-0              rvest_1.0.3                  
## [133] XML_3.99-0.13                 splines_4.2.2                
## [135] statmod_1.5.0                 multtest_2.54.0              
## [137] systemfonts_1.0.4             xtable_1.8-4                 
## [139] jsonlite_1.8.4                dynamicTreeCut_1.63-1        
## [141] R6_2.5.1                      echarts4r_0.4.4              
## [143] Hmisc_5.0-1                   pillar_1.8.1                 
## [145] htmltools_0.5.4               mime_0.12                    
## [147] glue_1.6.2                    fastmap_1.1.1                
## [149] BiocParallel_1.32.5           interactiveDisplayBase_1.36.0
## [151] beanplot_1.3.1                codetools_0.2-19             
## [153] utf8_1.2.3                    lattice_0.20-45              
## [155] bslib_0.4.2                   tibble_3.2.0                 
## [157] curl_5.0.0                    gtools_3.9.4                 
## [159] openssl_2.0.6                 interp_1.1-3                 
## [161] survival_3.5-5                rmarkdown_2.20               
## [163] munsell_0.5.0                 rhdf5_2.42.0                 
## [165] GenomeInfoDbData_1.2.9        HDF5Array_1.26.0             
## [167] impute_1.72.3                 gtable_0.3.2