Source: https://github.com/markziemann/asd_meth

Introduction

Here I will be running a comparison of differential methylation data from guthrie and fresh blood samples.

Here are the files that I’m using:

  • limma_guthrie_SRS.csv

  • limma_blood_SRS.csv

suppressPackageStartupMessages({
  library("parallel")
  library("mitch")
  library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
  source("https://raw.githubusercontent.com/markziemann/gmea/main/meth_functions.R")
  library("data.table")
  library("kableExtra")
  library("eulerr")
  library("RIdeogram")
  library("GenomicRanges")
  library("tictoc")
})

source("meth_functions.R")

Load Limma and RUV data for manhattan plot

First I will generate plots for limmma analysis.

# blood at assessment
top <- read.csv("limma_blood_SRS.csv")
nrow(top)
## [1] 802647
top <- subset(top,P.Value<1e-2)
nrow(top)
## [1] 16061
-log10(min(top$P.Value))
## [1] 4.951992
top$chr <- as.integer(gsub("chr","",top$chr))
top$snp <- paste(top$Name,top$UCSC_RefGene_Name)
top$snp <- sapply(strsplit(top$snp,";"),"[[",1)
up <- subset(top,logFC>0)
dn <- subset(top,logFC<0)

par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Blood at assessment limma hypermethylated")
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Blood at assessment limma hypomethylated")

pdf("manhat_limma_bl.pdf")
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Blood at assessment limma hypermethylated")
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Blood at assessment limma hypomethylated")
dev.off()
## png 
##   2
# neonatal guthrie card
top <- read.csv("limma_guthrie_SRS.csv")
nrow(top)
## [1] 790658
top <- subset(top,P.Value<1e-2)
nrow(top)
## [1] 16213
-log10(min(top$P.Value))
## [1] 6.722346
top$chr <- as.integer(gsub("chr","",top$chr))
top$snp <- paste(top$Name,top$UCSC_RefGene_Name)
top$snp <- sapply(strsplit(top$snp,";"),"[[",1)
up <- subset(top,logFC>0)
dn <- subset(top,logFC<0)

par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Neonatal Guthrie card limma hypermethylated",
  annotateTop=FALSE)
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Neonatal Guthrie card limma hypomethylated",
  annotateTop=FALSE)

pdf("manhat_limma_gu.pdf")
par(mfrow=c(2,1))
par(mar=c(4,4,3,5))
manhattan(x=up,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 ,main="Neonatal Guthrie card limma hypermethylated",
  annotateTop=FALSE)
manhattan(x=dn,chr="chr",bp="pos",p="P.Value",snp="snp",suggestiveline = -log10(1e-04),
  ylim=c(2,6), annotatePval= 1e-04 , main="Neonatal Guthrie card limma hypomethylated",
  annotateTop=FALSE)
dev.off()
## png 
##   2

Compartment enrichment

Looking for enrichments in different genomic compartments.

Guthrie cards.

par(mfrow=c(2,1))

# guthrie
dma1 <- read.csv("limma_guthrie_SRS.csv")
if (nrow(subset(dma1,P.Value <1e-4)) > 100 ) {
comp <- compartment_enrichment(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Blood at assessment.

# blood
dma2 <- read.csv("limma_blood_SRS.csv")
if (nrow(subset(dma2,P.Value <1e-4)) > 100 ) {
comp <- compartment_enrichment(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Compartments top 1000

Guthrie cards.

par(mfrow=c(2,1))
# guthrie
comp <- compartment_enrichment2(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##               all  up        OR   fisherPval    lowerCI   upperCI
## Intergenic  43381  31 0.5671378 0.0010657531 0.38280881 0.8114539
## 3'UTR       22433  31 1.1325470 0.4960329262 0.76431448 1.6205539
## 5'UTR      102937 101 0.7737919 0.0138881509 0.62228820 0.9535276
## Body       333689 419 1.0481221 0.4942104845 0.91450527 1.2010558
## ExonBnd      6713   3 0.3621479 0.0761393521 0.07451007 1.0623545
## TSS1500    115845 184 1.3774403 0.0001906385 1.16366414 1.6238965
## TSS200      75104  89 0.9630721 0.7826098843 0.76433957 1.2008452
## 
## $dn_comp
##               all  dn        OR   fisherPval   lowerCI   upperCI
## Intergenic  43381  18 0.3468530 2.233321e-07 0.2044805 0.5519022
## 3'UTR       22433  33 1.2950847 1.588364e-01 0.8848244 1.8349930
## 5'UTR      102937  79 0.6327308 5.158049e-05 0.4950402 0.7990717
## Body       333689 487 1.6932696 1.872635e-13 1.4666560 1.9572250
## ExonBnd      6713  10 1.3029764 3.628905e-01 0.6221054 2.4104227
## TSS1500    115845 126 0.9385780 5.370277e-01 0.7697141 1.1368633
## TSS200      75104  50 0.5522768 1.334093e-05 0.4061620 0.7358132
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Blood at assessment.

# blood
comp <- compartment_enrichment2(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##               all  up        OR  fisherPval   lowerCI   upperCI
## Intergenic  43528  48 1.0083379 0.940303709 0.7365525 1.3513855
## 3'UTR       22758  10 0.3935132 0.001024268 0.1879270 0.7277823
## 5'UTR      104442 133 1.1978825 0.060719999 0.9862269 1.4460449
## Body       339559 354 0.9132083 0.208800419 0.7906265 1.0542424
## ExonBnd      6862   6 0.7973727 0.714713410 0.2916122 1.7444223
## TSS1500    117509 142 1.1279334 0.192396532 0.9334721 1.3551640
## TSS200      75457  84 1.0195219 0.861250886 0.8028923 1.2802657
## 
## $dn_comp
##               all  dn        OR   fisherPval   lowerCI   upperCI
## Intergenic  43528  16 0.3277635 2.081660e-07 0.1863489 0.5358856
## 3'UTR       22758  26 1.0655451 7.570034e-01 0.6912438 1.5745210
## 5'UTR      104442 103 0.9048976 3.844773e-01 0.7278569 1.1153769
## Body       339559 451 1.5782217 4.801291e-10 1.3629929 1.8292205
## ExonBnd      6862  16 2.1980633 4.337613e-03 1.2490341 3.5957196
## TSS1500    117509 121 0.9504236 6.608496e-01 0.7759993 1.1559894
## TSS200      75457  30 0.3439764 1.914738e-11 0.2303867 0.4953738
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Looking for enrichments in proximity to CGI contexts

Guthrie cards.

par(mfrow=c(2,1))

if (nrow(subset(dma1,P.Value <1e-4)) > 100 ) {
# guthrie
comp <- cgi_enrichment(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

Blood at assessment.

if (nrow(subset(dma2,P.Value <1e-4)) > 100 ) {
# blood
comp <- cgi_enrichment(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
make_forest_plots_up(comp)
make_forest_plots_dn(comp)
}

CGI enrichments in top 1000 probes

Guthrie cards.

par(mfrow=c(2,1))
# guthrie
comp <- cgi_enrichment2(dma1)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##            all  up        OR   fisherPval   lowerCI   upperCI
## Island  150182 100 0.4735082 8.433654e-15 0.3811542 0.5827555
## OpenSea 442427 516 0.8389468 6.100778e-03 0.7395859 0.9517752
## Shelf    55491  68 0.9665802 8.525393e-01 0.7441240 1.2374634
## Shore   142558 316 2.1027827 4.270199e-25 1.8342393 2.4063196
## 
## $dn_comp
##            all  dn        OR   fisherPval   lowerCI  upperCI
## Island  150182  85 0.3958253 2.295170e-20 0.3131099 0.494776
## OpenSea 442427 589 1.1281162 6.448397e-02 0.9928530 1.282854
## Shelf    55491  93 1.3590280 6.329233e-03 1.0855805 1.684144
## Shore   142558 233 1.3816767 2.604740e-05 1.1879937 1.602106
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Blood at assessment.

# blood
comp <- cgi_enrichment2(dma2)
comp <- lapply(comp,function(x) {subset(x,OR!=0)} )
comp
## $up_comp
##            all  up        OR   fisherPval   lowerCI   upperCI
## Island  150186 138 0.6952229 4.070681e-05 0.5765398 0.8330507
## OpenSea 452360 652 1.4514500 1.262234e-08 1.2722975 1.6579918
## Shelf    56174  47 0.6550579 3.475518e-03 0.4779025 0.8782806
## Shore   143927 163 0.8911732 1.869097e-01 0.7487670 1.0552941
## 
## $dn_comp
##            all  dn        OR   fisherPval   lowerCI   upperCI
## Island  150186  51 0.2332079 1.475346e-36 0.1723591 0.3092457
## OpenSea 452360 763 2.4954394 1.926431e-39 2.1542060 2.8995949
## Shelf    56174  54 0.7583004 4.704808e-02 0.5653311 0.9980987
## Shore   143927 132 0.6957293 6.126394e-05 0.5748072 0.8365132
make_forest_plots_up(comp)

make_forest_plots_dn(comp)

Session information

For reproducibility

sessionInfo()
## R version 4.2.2 Patched (2022-11-10 r83330)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      stats4    parallel  stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] tictoc_1.1                                         
##  [2] RIdeogram_0.2.2                                    
##  [3] kableExtra_1.3.4                                   
##  [4] data.table_1.14.8                                  
##  [5] ENmix_1.34.0                                       
##  [6] doParallel_1.0.17                                  
##  [7] qqman_0.1.8                                        
##  [8] RCircos_1.2.2                                      
##  [9] beeswarm_0.4.0                                     
## [10] forestplot_3.1.1                                   
## [11] abind_1.4-5                                        
## [12] checkmate_2.1.0                                    
## [13] reshape2_1.4.4                                     
## [14] gplots_3.1.3                                       
## [15] eulerr_7.0.0                                       
## [16] GEOquery_2.66.0                                    
## [17] RColorBrewer_1.1-3                                 
## [18] IlluminaHumanMethylation450kmanifest_0.4.0         
## [19] topconfects_1.14.0                                 
## [20] DMRcatedata_2.16.0                                 
## [21] ExperimentHub_2.6.0                                
## [22] AnnotationHub_3.6.0                                
## [23] BiocFileCache_2.6.0                                
## [24] dbplyr_2.3.1                                       
## [25] DMRcate_2.12.0                                     
## [26] limma_3.54.0                                       
## [27] missMethyl_1.32.0                                  
## [28] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1 
## [29] R.utils_2.12.2                                     
## [30] R.oo_1.25.0                                        
## [31] R.methodsS3_1.8.2                                  
## [32] plyr_1.8.8                                         
## [33] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [34] minfi_1.44.0                                       
## [35] bumphunter_1.40.0                                  
## [36] locfit_1.5-9.7                                     
## [37] iterators_1.0.14                                   
## [38] foreach_1.5.2                                      
## [39] Biostrings_2.66.0                                  
## [40] XVector_0.38.0                                     
## [41] SummarizedExperiment_1.28.0                        
## [42] Biobase_2.58.0                                     
## [43] MatrixGenerics_1.10.0                              
## [44] matrixStats_0.63.0                                 
## [45] GenomicRanges_1.50.2                               
## [46] GenomeInfoDb_1.34.6                                
## [47] IRanges_2.32.0                                     
## [48] S4Vectors_0.36.1                                   
## [49] BiocGenerics_0.44.0                                
## [50] mitch_1.10.0                                       
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3                rtracklayer_1.58.0           
##   [3] GGally_2.1.2                  tidyr_1.3.0                  
##   [5] ggplot2_3.4.1                 bit64_4.0.5                  
##   [7] knitr_1.42                    DelayedArray_0.24.0          
##   [9] rpart_4.1.19                  KEGGREST_1.38.0              
##  [11] RCurl_1.98-1.10               AnnotationFilter_1.22.0      
##  [13] generics_0.1.3                GenomicFeatures_1.50.3       
##  [15] preprocessCore_1.60.2         RSQLite_2.3.0                
##  [17] bit_4.0.5                     tzdb_0.3.0                   
##  [19] webshot_0.5.4                 xml2_1.3.3                   
##  [21] httpuv_1.6.9                  assertthat_0.2.1             
##  [23] xfun_0.37                     hms_1.1.2                    
##  [25] jquerylib_0.1.4               evaluate_0.20                
##  [27] promises_1.2.0.1              fansi_1.0.4                  
##  [29] restfulr_0.0.15               scrime_1.3.5                 
##  [31] progress_1.2.2                caTools_1.18.2               
##  [33] readxl_1.4.2                  DBI_1.1.3                    
##  [35] geneplotter_1.76.0            htmlwidgets_1.6.2            
##  [37] reshape_0.8.9                 purrr_1.0.1                  
##  [39] ellipsis_0.3.2                dplyr_1.1.0                  
##  [41] backports_1.4.1               permute_0.9-7                
##  [43] calibrate_1.7.7               grImport2_0.2-0              
##  [45] annotate_1.76.0               biomaRt_2.54.0               
##  [47] deldir_1.0-6                  sparseMatrixStats_1.10.0     
##  [49] vctrs_0.6.0                   ensembldb_2.22.0             
##  [51] withr_2.5.0                   cachem_1.0.7                 
##  [53] Gviz_1.42.0                   BSgenome_1.66.2              
##  [55] GenomicAlignments_1.34.0      prettyunits_1.1.1            
##  [57] mclust_6.0.0                  svglite_2.1.1                
##  [59] cluster_2.1.4                 RPMM_1.25                    
##  [61] lazyeval_0.2.2                crayon_1.5.2                 
##  [63] genefilter_1.80.3             edgeR_3.40.2                 
##  [65] pkgconfig_2.0.3               nlme_3.1-162                 
##  [67] ProtGenerics_1.30.0           nnet_7.3-18                  
##  [69] rlang_1.1.0                   lifecycle_1.0.3              
##  [71] filelock_1.0.2                dichromat_2.0-0.1            
##  [73] rsvg_2.4.0                    cellranger_1.1.0             
##  [75] rngtools_1.5.2                base64_2.0.1                 
##  [77] Matrix_1.5-3                  Rhdf5lib_1.20.0              
##  [79] base64enc_0.1-3               viridisLite_0.4.1            
##  [81] png_0.1-8                     rjson_0.2.21                 
##  [83] bitops_1.0-7                  KernSmooth_2.23-20           
##  [85] rhdf5filters_1.10.0           blob_1.2.4                   
##  [87] DelayedMatrixStats_1.20.0     doRNG_1.8.6                  
##  [89] stringr_1.5.0                 nor1mix_1.3-0                
##  [91] readr_2.1.4                   jpeg_0.1-10                  
##  [93] scales_1.2.1                  memoise_2.0.1                
##  [95] magrittr_2.0.3                zlibbioc_1.44.0              
##  [97] compiler_4.2.2                BiocIO_1.8.0                 
##  [99] illuminaio_0.40.0             Rsamtools_2.14.0             
## [101] cli_3.6.0                     DSS_2.46.0                   
## [103] htmlTable_2.4.1               Formula_1.2-5                
## [105] MASS_7.3-58.3                 tidyselect_1.2.0             
## [107] stringi_1.7.12                highr_0.10                   
## [109] yaml_2.3.7                    askpass_1.1                  
## [111] latticeExtra_0.6-30           sass_0.4.5                   
## [113] VariantAnnotation_1.44.0      tools_4.2.2                  
## [115] rstudioapi_0.14               foreign_0.8-84               
## [117] bsseq_1.34.0                  gridExtra_2.3                
## [119] digest_0.6.31                 BiocManager_1.30.20          
## [121] shiny_1.7.4                   quadprog_1.5-8               
## [123] Rcpp_1.0.10                   siggenes_1.72.0              
## [125] BiocVersion_3.16.0            later_1.3.0                  
## [127] org.Hs.eg.db_3.16.0           httr_1.4.5                   
## [129] AnnotationDbi_1.60.0          biovizBase_1.46.0            
## [131] colorspace_2.1-0              rvest_1.0.3                  
## [133] XML_3.99-0.13                 splines_4.2.2                
## [135] statmod_1.5.0                 multtest_2.54.0              
## [137] systemfonts_1.0.4             xtable_1.8-4                 
## [139] jsonlite_1.8.4                dynamicTreeCut_1.63-1        
## [141] R6_2.5.1                      echarts4r_0.4.4              
## [143] Hmisc_5.0-1                   pillar_1.8.1                 
## [145] htmltools_0.5.4               mime_0.12                    
## [147] glue_1.6.2                    fastmap_1.1.1                
## [149] BiocParallel_1.32.5           interactiveDisplayBase_1.36.0
## [151] beanplot_1.3.1                codetools_0.2-19             
## [153] utf8_1.2.3                    lattice_0.20-45              
## [155] bslib_0.4.2                   tibble_3.2.0                 
## [157] curl_5.0.0                    gtools_3.9.4                 
## [159] openssl_2.0.6                 interp_1.1-3                 
## [161] survival_3.5-5                rmarkdown_2.20               
## [163] munsell_0.5.0                 rhdf5_2.42.0                 
## [165] GenomeInfoDbData_1.2.9        HDF5Array_1.26.0             
## [167] impute_1.72.3                 gtable_0.3.2