Source: https://github.com/markziemann/asd_meth
Here I will be running a comparison of differential methylation data from guthrie and fresh blood samples.
Here are the files that I’m using:
limma_blood_ilanguage.csv
limma_guthrie_ilanguage.csv
suppressPackageStartupMessages({
library("parallel")
library("mitch")
library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
source("https://raw.githubusercontent.com/markziemann/gmea/main/meth_functions.R")
library("data.table")
library("kableExtra")
library("eulerr")
library("RIdeogram")
library("GenomicRanges")
library("tictoc")
library("globaltest")
library("ebGSEA")
data("dualmap850kEID")
})
source("meth_functions.R")
bl_mvals <- readRDS(file="bl_mvals.rds")
gu_mvals <- readRDS(file="gu_mvals.rds")
bl_design <- readRDS(file="bl_design_ilanguage.rds")
gu_design <- readRDS(file="gu_design_ilanguage.rds")
bl_lim <- read.csv("limma_blood_ilanguage.csv")
gu_lim <- read.csv("limma_guthrie_ilanguage.csv")
For each gene, extract out the probes.
anno <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
myann <- data.frame(anno[,c("UCSC_RefGene_Name","Regulatory_Feature_Group","Islands_Name","Relation_to_Island")])
promoters <- grep("Prom",myann$Regulatory_Feature_Group)
promoters <- myann[promoters,]
gp <- myann[,"UCSC_RefGene_Name",drop=FALSE]
gp2 <- strsplit(gp$UCSC_RefGene_Name,";")
names(gp2) <- rownames(gp)
sets <- split(rep(names(gp2), lengths(gp2)), unlist(gp2))
summary(unlist(lapply(sets,length)))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 9.00 24.00 49.68 55.00 6778.00
Effect size is estimated with the median t-statistic for each gene. Significance is estimated using the fry test. Results are merged for the user.
PMEA step 196.063 sec elapsed on 8 cores
Fry step 293.569 sec elapsed on 8 cores
Fry single core 1205.519 sec
tic()
res_bl <- main(mval=bl_mvals,design=bl_design,sets,cores=detectCores()/2)
res_bl[[1]] <- subset(res_bl[[1]],nprobes!=0) # remove genes with no probes obvs
res_bl_df <- res_bl[[1]] # enrichment results
res_bl_top <- res_bl[[2]] # limma results
toc() ## 502-522 sec elapsed on 8 cores (8.3-8.7 mins)
## 503.424 sec elapsed
head(res_bl_df,30) %>%
kbl(caption="Top DM genes in blood identified with GMEA") %>%
kable_paper("hover", full_width = F)
nprobes | median | PValue | FDR | |
---|---|---|---|---|
SNORD6 | 7 | -1.9882610 | 2.10e-06 | 0.0106485 |
MIXL1 | 16 | -1.6090148 | 2.10e-06 | 0.0106485 |
AP3S2 | 33 | -0.9182507 | 2.60e-06 | 0.0106485 |
UCK1 | 13 | -1.3850986 | 2.70e-06 | 0.0106485 |
ATL1 | 48 | -0.2831590 | 3.40e-06 | 0.0106485 |
SYCN | 12 | -2.0614308 | 5.60e-06 | 0.0106485 |
PITX3 | 31 | -1.2894677 | 6.30e-06 | 0.0106485 |
U2SURP | 8 | -2.1584287 | 6.90e-06 | 0.0106485 |
TMEFF1 | 14 | -1.3394303 | 6.90e-06 | 0.0106485 |
ABO | 18 | -2.3115247 | 7.10e-06 | 0.0106485 |
FAM162B | 16 | -1.2203038 | 7.10e-06 | 0.0106485 |
DCLK2 | 62 | -1.1264628 | 7.80e-06 | 0.0106485 |
ACBD3 | 27 | -1.1025352 | 7.80e-06 | 0.0106485 |
SQLE | 24 | -1.5889093 | 8.20e-06 | 0.0106485 |
EMCN | 16 | -2.7046781 | 8.50e-06 | 0.0106485 |
MRPL21 | 26 | -0.6758746 | 9.30e-06 | 0.0106485 |
SMIM8 | 7 | -2.6510976 | 9.90e-06 | 0.0106485 |
KPNA1 | 28 | -1.2206313 | 1.06e-05 | 0.0106485 |
SELO | 34 | -0.9730533 | 1.09e-05 | 0.0106485 |
MARCH8 | 43 | -1.3617938 | 1.14e-05 | 0.0106485 |
MAP2K1 | 38 | -1.0096544 | 1.15e-05 | 0.0106485 |
MRPL55 | 26 | -0.3675478 | 1.16e-05 | 0.0106485 |
SPECC1L | 39 | -1.4993315 | 1.16e-05 | 0.0106485 |
COL1A2 | 27 | -2.1262718 | 1.21e-05 | 0.0106485 |
VTA1 | 26 | -0.1880468 | 1.24e-05 | 0.0106485 |
CARD17 | 5 | -0.9824821 | 1.24e-05 | 0.0106485 |
COX19 | 36 | -1.4354743 | 1.31e-05 | 0.0106485 |
EYA4 | 90 | -1.0553683 | 1.33e-05 | 0.0106485 |
AK6 | 15 | -1.4297739 | 1.34e-05 | 0.0106485 |
LOC103352541 | 2 | -2.2128620 | 1.36e-05 | 0.0106485 |
par(mfrow=c(2,1))
hist(res_bl_top$t,xlab="probe t-stat",main="blood at assessment") ; grid() ; abline(v=0,lty=1,lwd=3)
hist(res_bl_df$median,xlab="gene median t-stat",main="blood at assessment") ; grid() ; abline(v=0,lty=1,lwd=3)
pdf("hist_bl_ilanguage.pdf")
par(mfrow=c(2,1))
hist(res_bl_top$t,xlab="probe t-stat",main="blood at assessment") ; grid() ; abline(v=0,lty=1,lwd=3)
plot(1)
hist(res_bl_df$median,xlab="gene median t-stat",main="blood at assessment") ; grid() ; abline(v=0,lty=1,lwd=3)
plot(1)
dev.off()
## png
## 2
par(mfrow=c(1,1))
Now some visualisations.
volcano_plot(res_bl_df)
probe_bias(res_bl_df)
gmea_boxplot(res_bl,sets)
tic()
res_gu <- main(mval=gu_mvals,design=gu_design,sets,cores=detectCores()/2)
res_gu[[1]] <- subset(res_gu[[1]],nprobes!=0) # remove genes with no probes obvs
res_gu_df <- res_gu[[1]] # enrichment results
res_gu_top <- res_gu[[2]] # limma results
toc() ## 502-522 sec elapsed on 8 cores (8.3-8.7 mins)
## 465.308 sec elapsed
head(res_gu_df,30) %>%
kbl(caption="Top DM genes in Guthrie card identified with GMEA") %>%
kable_paper("hover", full_width = F)
nprobes | median | PValue | FDR | |
---|---|---|---|---|
C19orf12 | 22 | -0.4985087 | 0.0000021 | 0.0568644 |
IRAIN | 1 | -6.3640135 | 0.0000240 | 0.3282428 |
TREML3 | 2 | -2.5712583 | 0.0000551 | 0.5026194 |
LOC401324 | 3 | -2.6940139 | 0.0001016 | 0.6953240 |
FOXD2-AS1 | 1 | -4.3553728 | 0.0003364 | 0.9484434 |
LINC01128 | 3 | -2.3829515 | 0.0005174 | 0.9484434 |
IGFL1 | 9 | -1.4207310 | 0.0005684 | 0.9484434 |
TAS1R1 | 30 | -0.5131941 | 0.0005828 | 0.9484434 |
CDC45L | 20 | 0.8369956 | 0.0006354 | 0.9484434 |
CST2 | 2 | -2.2099663 | 0.0006831 | 0.9484434 |
LOC440600 | 8 | -0.9689782 | 0.0006925 | 0.9484434 |
ASPG | 41 | -0.6379497 | 0.0007419 | 0.9484434 |
ARHGDIG | 15 | -0.7880962 | 0.0009776 | 0.9484434 |
C1orf25 | 19 | 0.3381455 | 0.0009878 | 0.9484434 |
LGALS3BP | 19 | -0.6718457 | 0.0010060 | 0.9484434 |
WDR38 | 11 | -0.8231076 | 0.0010258 | 0.9484434 |
MYO15A | 66 | -0.6493167 | 0.0010537 | 0.9484434 |
LSM14B | 17 | -0.7444866 | 0.0010955 | 0.9484434 |
RTP2 | 15 | -1.1318082 | 0.0011933 | 0.9484434 |
MIR936 | 5 | -1.2529337 | 0.0012362 | 0.9484434 |
HAR1A | 14 | -0.9846030 | 0.0012574 | 0.9484434 |
SIGLEC11 | 10 | -0.7773793 | 0.0012784 | 0.9484434 |
MIR6716 | 2 | -2.1719422 | 0.0013003 | 0.9484434 |
GPR144 | 14 | -0.7707788 | 0.0015848 | 0.9484434 |
SLC22A8 | 20 | -1.2120095 | 0.0016961 | 0.9484434 |
USE1 | 19 | -0.4198341 | 0.0017451 | 0.9484434 |
LOC101928766 | 8 | -1.6265892 | 0.0018903 | 0.9484434 |
RXRG | 29 | -0.7129962 | 0.0021397 | 0.9484434 |
LINC01276 | 11 | -1.2166790 | 0.0021467 | 0.9484434 |
C14orf132 | 50 | -0.6914275 | 0.0022193 | 0.9484434 |
par(mfrow=c(2,1))
hist(res_gu_top$t,xlab="probe t-stat",main="neonatal Guthrie card") ; grid() ; abline(v=0,lty=1,lwd=3)
hist(res_gu_df$median,xlab="gene median t-stat",main="neonatal Guthrie card") ; grid() ; abline(v=0,lty=1,lwd=3)
pdf("hist_gu_ilanguage.pdf")
par(mfrow=c(2,1))
hist(res_gu_top$t,xlab="probe t-stat",main="neonatal Guthrie card") ; grid() ; abline(v=0,lty=1,lwd=3)
plot(1)
hist(res_gu_df$median,xlab="gene median t-stat",main="neonatal Guthrie card") ; grid() ; abline(v=0,lty=1,lwd=3)
plot(1)
dev.off()
## png
## 2
par(mfrow=c(1,1))
Now some visualisations.
volcano_plot(res_gu_df)
probe_bias(res_gu_df)
gmea_boxplot(res_gu,sets)
Now compare blood and guthrie card
res_bl_df$bl <- res_bl_df$median
res_gu_df$gu <- res_gu_df$median
m1 <- merge(res_bl_df,res_gu_df,by=0)
m2 <- m1[,c("Row.names","bl","gu")]
rownames(m2) <- m2$Row.names
m2$Row.names=NULL
plot(m2$bl,m2$gu,xlab="bl",ylab="gu",
col = rgb(red = 0.6, green = 0.6, blue = 0.6, alpha = 0.5) ,
pch=19,cex=0.9)
grid()
abline(v=0,lty=1,lwd=3,col="black") ; abline(h=0,lty=1,lwd=3,col="black")
mtext("aggregated t-statistic for each gene (median)")
#plot(rank(m1$bl),rank(m1$gu),xlab="bl rank",ylab="gu rank",cex=0.6,pch=19) ; grid()
rm2 <- apply(m2,2,rank)
mydiff <- apply(m2,2,function(x) { length(which(x<0)) } )
rm3 <- rm2
rm3[,1] <- rm3[,1] - mydiff[1]
rm3[,2] <- rm3[,2] - mydiff[2]
rnk <- rm3
palette <- colorRampPalette(c("white", "yellow", "orange", "red",
"darkred", "black"))
xmin = min(rnk[, 1])
xmax = max(rnk[, 1])
ymin = min(rnk[, 2])
ymax = max(rnk[, 2])
k <- MASS::kde2d(rnk[, 1], rnk[, 2])
X_AXIS = paste("Rank in contrast", colnames(rnk)[1])
Y_AXIS = paste("Rank in contrast", colnames(rnk)[2])
filled.contour(k, xlim = c(xmin, xmax), ylim = c(ymin, ymax),
color.palette = palette, plot.title = {
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
title(main = "Rank-rank plot of all genes", xlab = X_AXIS,
ylab = Y_AXIS)
})
pdf("genedens_ilanguage.pdf")
par(mfrow=c(2,2))
plot(1)
plot(1)
plot(m2$bl,m2$gu,xlab="bl",ylab="gu",
col = rgb(red = 0.6, green = 0.6, blue = 0.6, alpha = 0.5) ,
pch=19,cex=0.9)
grid()
abline(v=0, h=0, lty=2, lwd=2, col="blue")
mtext("aggregated t-statistic for each gene (median)")
filled.contour(k, xlim = c(xmin, xmax), ylim = c(ymin, ymax),
color.palette = palette, plot.title = {
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
title(main = "Rank-rank plot of all genes", xlab = X_AXIS,
ylab = Y_AXIS)
})
dev.off()
## png
## 2
Now we need a table of genes with top scores.
m3 <- m2
m3$med <- apply(rnk,1,median)
mg <- merge(res_gu_df,res_bl_df,by=0)
mg$gu = mg$bl = NULL
mg$med <- m3$med
mg2 <- data.frame(mg,rnk)
mg2$med <- apply(rnk,1,median)
mg2 <- mg2[order(mg2$med),]
mg2 <-subset(mg2,nprobes.x>=5)
head(mg2,20) %>%
kbl(caption="Genes with coordinated hypomethylation in neonatal Guthrie card and blood at assessment") %>%
kable_paper("hover", full_width = F)
Row.names | nprobes.x | median.x | PValue.x | FDR.x | nprobes.y | median.y | PValue.y | FDR.y | med | bl | gu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
KERA | KERA | 5 | -1.442164 | 0.2406691 | 0.9484434 | 5 | -4.198001 | 0.0115255 | 0.0359133 | -20171.5 | -20388 | -19955 |
MIR1251 | MIR1251 | 6 | -1.566666 | 0.1250110 | 0.9484434 | 6 | -3.965967 | 0.0026541 | 0.0180924 | -20153.0 | -20263 | -20043 |
HISPPD1 | HISPPD1 | 5 | -1.393458 | 0.3159473 | 0.9484434 | 5 | -4.233575 | 0.0032922 | 0.0195897 | -20151.0 | -20397 | -19905 |
LINC00383 | LINC00383 | 6 | -1.272004 | 0.2857798 | 0.9484434 | 6 | -4.470898 | 0.0024793 | 0.0176489 | -20118.0 | -20478 | -19758 |
LOC102467212 | LOC102467212 | 5 | -1.315068 | 0.2336061 | 0.9484434 | 5 | -4.256651 | 0.0076799 | 0.0286468 | -20111.5 | -20411 | -19812 |
YSK4 | YSK4 | 5 | -1.452411 | 0.0741538 | 0.9484434 | 5 | -3.915358 | 0.0011743 | 0.0144625 | -20100.5 | -20240 | -19961 |
MIR490 | MIR490 | 5 | -1.676489 | 0.2033219 | 0.9484434 | 5 | -3.739026 | 0.0015671 | 0.0153564 | -20095.0 | -20094 | -20096 |
BZW1L1 | BZW1L1 | 5 | -1.575017 | 0.2071137 | 0.9484434 | 5 | -3.713624 | 0.0031207 | 0.0192492 | -20059.0 | -20070 | -20048 |
OR52J3 | OR52J3 | 5 | -1.617323 | 0.1109103 | 0.9484434 | 5 | -3.690170 | 0.0001926 | 0.0116137 | -20057.5 | -20043 | -20072 |
HOXA10-AS | HOXA10-AS | 11 | -1.371958 | 0.0418893 | 0.9484434 | 11 | -3.835491 | 0.0009276 | 0.0136843 | -20031.0 | -20182 | -19880 |
KLHL41 | KLHL41 | 6 | -1.401598 | 0.1821345 | 0.9484434 | 6 | -3.749549 | 0.0004109 | 0.0119116 | -20011.0 | -20110 | -19912 |
LOC101927020 | LOC101927020 | 5 | -1.262644 | 0.3879680 | 0.9484434 | 5 | -3.999246 | 0.0121889 | 0.0371423 | -20010.0 | -20286 | -19734 |
LOC101926944 | LOC101926944 | 5 | -1.391290 | 0.2190700 | 0.9484434 | 5 | -3.761719 | 0.0012037 | 0.0144625 | -20008.0 | -20116 | -19900 |
SMIM23 | SMIM23 | 5 | -1.190943 | 0.3617565 | 0.9484434 | 5 | -4.261368 | 0.0074248 | 0.0281989 | -19994.0 | -20413 | -19575 |
IFI44 | IFI44 | 6 | -1.263797 | 0.2734447 | 0.9484434 | 6 | -3.860024 | 0.0022181 | 0.0171120 | -19967.5 | -20197 | -19738 |
CLEC1B | CLEC1B | 5 | -1.153377 | 0.4763260 | 0.9484434 | 5 | -4.284786 | 0.0005164 | 0.0122195 | -19950.5 | -20427 | -19474 |
TCHHL1 | TCHHL1 | 5 | -1.170389 | 0.2641570 | 0.9484434 | 6 | -4.156266 | 0.0017691 | 0.0158957 | -19946.5 | -20368 | -19525 |
MUC7 | MUC7 | 11 | -1.382363 | 0.1264465 | 0.9484434 | 11 | -3.638143 | 0.0017684 | 0.0158957 | -19934.0 | -19978 | -19890 |
TAS2R8 | TAS2R8 | 5 | -1.192002 | 0.4351908 | 0.9484434 | 6 | -3.947778 | 0.0079505 | 0.0291009 | -19915.5 | -20253 | -19578 |
ADH4 | ADH4 | 5 | -1.116192 | 0.2308001 | 0.9484434 | 6 | -4.284673 | 0.0025514 | 0.0177930 | -19894.5 | -20426 | -19363 |
mg2 <- mg2[order(-mg2$med),]
head(mg2,20) %>%
kbl(caption="Genes with coordinated hypermethylation in neonatal Guthrie card and blood at assessment") %>%
kable_paper("hover", full_width = F)
Row.names | nprobes.x | median.x | PValue.x | FDR.x | nprobes.y | median.y | PValue.y | FDR.y | med | bl | gu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LOC401397 | LOC401397 | 5 | 0.9605015 | 0.2802885 | 0.9484434 | 5 | 2.771171 | 0.0044878 | 0.0222873 | 5192.0 | 5063.0 | 5321.0 |
BPNT1 | BPNT1 | 15 | 0.9351762 | 0.1482424 | 0.9484434 | 15 | 2.630442 | 0.0007931 | 0.0132026 | 5179.0 | 5045.0 | 5313.0 |
POLR2K | POLR2K | 12 | 0.7551125 | 0.2707521 | 0.9484434 | 12 | 3.513846 | 0.0010772 | 0.0140939 | 5154.0 | 5108.0 | 5200.0 |
LOC100506860 | LOC100506860 | 6 | 0.9864499 | 0.3962992 | 0.9484434 | 7 | 2.171558 | 0.0440996 | 0.0875212 | 5152.0 | 4970.0 | 5334.0 |
RGS1 | RGS1 | 5 | 0.8663298 | 0.4016069 | 0.9484434 | 6 | 2.043556 | 0.0486597 | 0.0938187 | 5111.5 | 4943.0 | 5280.0 |
LOC101928489 | LOC101928489 | 7 | 0.9339362 | 0.0428327 | 0.9484434 | 9 | 1.853009 | 0.0355676 | 0.0749805 | 5105.0 | 4898.0 | 5312.0 |
FLJ35776 | FLJ35776 | 9 | 0.7464442 | 0.1083689 | 0.9484434 | 9 | 2.114034 | 0.0033159 | 0.0196169 | 5073.0 | 4957.0 | 5189.0 |
GZMA | GZMA | 7 | 0.8124345 | 0.0053753 | 0.9484434 | 9 | 1.552742 | 0.0108655 | 0.0346636 | 5009.5 | 4776.0 | 5243.0 |
CLEC2B | CLEC2B | 15 | 0.5951499 | 0.3019104 | 0.9484434 | 20 | 2.325400 | 0.0375173 | 0.0779569 | 5008.5 | 5009.0 | 5008.0 |
HINT2 | HINT2 | 14 | 0.5952225 | 0.1812992 | 0.9484434 | 14 | 2.236879 | 0.0019749 | 0.0164264 | 4998.0 | 4987.0 | 5009.0 |
C6orf150 | C6orf150 | 9 | 0.7032948 | 0.0975029 | 0.9484434 | 10 | 1.604680 | 0.0489260 | 0.0941830 | 4974.5 | 4801.0 | 5148.0 |
OR4X1 | OR4X1 | 5 | 0.5201176 | 0.3356452 | 0.9484434 | 5 | 3.078235 | 0.0000400 | 0.0106485 | 4967.0 | 5087.0 | 4847.0 |
HIST1H2AD | HIST1H2AD | 8 | 0.9449629 | 0.1488417 | 0.9484434 | 8 | 1.282174 | 0.0844084 | 0.1427182 | 4963.0 | 4609.5 | 5316.5 |
HIST1H2BF | HIST1H2BF | 8 | 0.9449629 | 0.1488417 | 0.9484434 | 8 | 1.282174 | 0.0844084 | 0.1427182 | 4963.0 | 4609.5 | 5316.5 |
EVI2A | EVI2A | 10 | 0.6023904 | 0.0058496 | 0.9484434 | 10 | 1.710295 | 0.0308407 | 0.0677994 | 4933.0 | 4844.0 | 5022.0 |
ARL5A | ARL5A | 15 | 0.7472006 | 0.0536447 | 0.9484434 | 15 | 1.340718 | 0.1643645 | 0.2424228 | 4926.0 | 4660.0 | 5192.0 |
LRRIQ1 | LRRIQ1 | 18 | 0.5026435 | 0.4079856 | 0.9484434 | 19 | 2.666761 | 0.0021149 | 0.0167612 | 4924.5 | 5050.0 | 4799.0 |
TMEM194A | TMEM194A | 13 | 0.5931801 | 0.2026753 | 0.9484434 | 14 | 1.633018 | 0.0097268 | 0.0325834 | 4909.0 | 4813.0 | 5005.0 |
CSTF2T | CSTF2T | 16 | 0.8742612 | 0.1752447 | 0.9484434 | 16 | 1.197256 | 0.0645877 | 0.1163832 | 4906.0 | 4526.0 | 5286.0 |
DLGAP1-AS2 | DLGAP1-AS2 | 8 | 0.8743515 | 0.0941520 | 0.9484434 | 8 | 1.189417 | 0.0416177 | 0.0840774 | 4903.5 | 4520.0 | 5287.0 |
genesets <- gmt_import("ReactomePathways.gmt")
cores = 8
Here I’m using the median t-statistic for downstream enrichment. Pathways are from REACTOME and analysis using mitch.
res_bl_df$bl <- res_bl_df$median
res_gu_df$gu <- res_gu_df$median
bl <- res_bl_df[,"bl",drop=FALSE]
mitch_bl <- mitch_calc(bl,genesets,priority="effect")
head( mitch_bl$enrichment_result,30) %>%
kbl(caption="BLOOD: Top effect size pathways found with mitch") %>%
kable_paper("hover", full_width = F)
sig <- subset(mitch_bl$enrichment_result,`p.adjustANOVA`<0.05)
head(sig[order(-abs(sig$s.dist)),],30) %>%
kbl(caption="BLOOD: Top effect size pathways found with mitch after 1% FDR filtering") %>%
kable_paper("hover", full_width = F)
gu <- res_gu_df[,"gu",drop=FALSE]
mitch_gu <- mitch_calc(gu,genesets,priority="effect")
head( mitch_gu$enrichment_result,30) %>%
kbl(caption="GUTHRIE: Top effect size pathways found with mitch") %>%
kable_paper("hover", full_width = F)
sig <- subset(mitch_gu$enrichment_result,`p.adjustANOVA`<0.05)
head(sig[order(-abs(sig$s.dist)),],30) %>%
kbl(caption="GUTHRIE: Top effect size pathways found with mitch after 1% FDR filtering") %>%
kable_paper("hover", full_width = F)
Mitch joint analysis of blood and guthrie card. As using the median value is apparently the most sensitive, we’ll go with that.
m <- merge(res_bl_df,res_gu_df,by=0)
rownames(m) <- m$Row.names
m2 <- m[,c("bl","gu")]
m2[is.na(m2)] <- 0
res <- mitch_calc(m2, genesets, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
mitch_report(res,"blgu_mitch.html",overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpVDIxly/blgu_mitch.rds ".
##
##
## processing file: mitch.Rmd
##
|
| | 0%
|
|. | 3%
|
|.. | 6% (checklibraries)
|
|.... | 9%
|
|..... | 12% (peek)
|
|...... | 15%
|
|....... | 18% (metrics)
|
|........ | 21%
|
|.......... | 24% (scatterplot)
|
|........... | 26%
|
|............ | 29% (contourplot)
|
|............. | 32%
|
|.............. | 35% (input_geneset_metrics1)
|
|................ | 38%
|
|................. | 41% (input_geneset_metrics2)
|
|.................. | 44%
|
|................... | 47% (input_geneset_metrics3)
|
|.................... | 50%
|
|...................... | 53% (echart1d)
|
|....................... | 56% (echart2d)
|
|........................ | 59%
|
|......................... | 62% (heatmap)
|
|........................... | 65%
|
|............................ | 68% (effectsize)
|
|............................. | 71%
|
|.............................. | 74% (results_table)
|
|............................... | 76%
|
|................................. | 79% (results_table_complete)
|
|.................................. | 82%
|
|................................... | 85% (detailed_geneset_reports1d)
|
|.................................... | 88%
|
|..................................... | 91% (detailed_geneset_reports2d)
|
|....................................... | 94%
|
|........................................ | 97% (session_info)
|
|.........................................| 100%
## output file: /home/mdz/projects/asd_meth/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mdz/projects/asd_meth/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpVDIxly/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpVDIxly/rmarkdown-str3a6a6e6ffec546.html
##
## Output created: /tmp/RtmpVDIxly/mitch_report.html
## [1] TRUE
mitch_plots(res=res,outfile="blgu_mitch_ilanguage.pdf")
## png
## 2
sig <- subset(res$enrichment_result,p.adjustMANOVA<0.01)
head(sig[order(-abs(sig$s.dist)),],30) %>%
kbl(caption="Top pathways found with mitch (effect size after 1% FDR filtering)") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.bl | s.gu | p.bl | p.gu | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
1365 | TICAM1-dependent activation of IRF3/IRF7 | 12 | 0.0003971 | 0.5293469 | 0.5523005 | 0.0014958 | 0.0009223 | 0.7650125 | 0.0162307 | 0.0022323 |
1163 | SARS-CoV-1 modulates host translation machinery | 34 | 0.0000000 | 0.6209671 | 0.4416586 | 0.0000000 | 0.0000083 | 0.7620121 | 0.1267902 | 0.0000000 |
910 | Pexophagy | 11 | 0.0010629 | 0.5277749 | 0.5290481 | 0.0024349 | 0.0023766 | 0.7472873 | 0.0009003 | 0.0054414 |
212 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | 0.0000000 | -0.5027237 | -0.5115133 | 0.0000001 | 0.0000000 | 0.7172008 | 0.0062152 | 0.0000000 |
903 | Peptide chain elongation | 84 | 0.0000000 | 0.5807640 | 0.4018308 | 0.0000000 | 0.0000000 | 0.7062257 | 0.1265249 | 0.0000000 |
441 | Folding of actin by CCT/TriC | 10 | 0.0009512 | 0.6782541 | 0.1754221 | 0.0002036 | 0.3367526 | 0.7005723 | 0.3555559 | 0.0049513 |
397 | Eukaryotic Translation Termination | 87 | 0.0000000 | 0.5775933 | 0.3875647 | 0.0000000 | 0.0000000 | 0.6955720 | 0.1343705 | 0.0000000 |
395 | Eukaryotic Translation Elongation | 88 | 0.0000000 | 0.5624193 | 0.4009282 | 0.0000000 | 0.0000000 | 0.6906945 | 0.1141914 | 0.0000000 |
882 | PINK1-PRKN Mediated Mitophagy | 21 | 0.0000165 | 0.4998656 | 0.4692390 | 0.0000730 | 0.0001967 | 0.6856026 | 0.0216563 | 0.0001210 |
1496 | Viral mRNA Translation | 84 | 0.0000000 | 0.5609079 | 0.3860822 | 0.0000000 | 0.0000000 | 0.6809384 | 0.1236204 | 0.0000000 |
1145 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 95 | 0.0000000 | 0.5396613 | 0.3982391 | 0.0000000 | 0.0000000 | 0.6706927 | 0.1000006 | 0.0000000 |
1208 | Selenocysteine synthesis | 87 | 0.0000000 | 0.5553780 | 0.3738088 | 0.0000000 | 0.0000000 | 0.6694607 | 0.1283888 | 0.0000000 |
829 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 89 | 0.0000000 | 0.5471612 | 0.3740007 | 0.0000000 | 0.0000000 | 0.6627684 | 0.1224430 | 0.0000000 |
516 | Glucuronidation | 25 | 0.0000080 | -0.3986159 | -0.5062894 | 0.0005592 | 0.0000117 | 0.6443784 | 0.0761367 | 0.0000610 |
1169 | SARS-CoV-2 modulates host translation machinery | 46 | 0.0000000 | 0.5085026 | 0.3949018 | 0.0000000 | 0.0000036 | 0.6438341 | 0.0803278 | 0.0000000 |
1187 | SRP-dependent cotranslational protein targeting to membrane | 105 | 0.0000000 | 0.5176559 | 0.3721199 | 0.0000000 | 0.0000000 | 0.6375271 | 0.1029095 | 0.0000000 |
449 | Formation of a pool of free 40S subunits | 94 | 0.0000000 | 0.5166662 | 0.3543593 | 0.0000000 | 0.0000000 | 0.6265097 | 0.1147683 | 0.0000000 |
532 | Golgi Cisternae Pericentriolar Stack Reorganization | 14 | 0.0020052 | 0.3514790 | 0.5110581 | 0.0227726 | 0.0009286 | 0.6202563 | 0.1128394 | 0.0093373 |
1172 | SCF(Skp2)-mediated degradation of p27/p21 | 58 | 0.0000000 | 0.4597786 | 0.4143119 | 0.0000000 | 0.0000000 | 0.6189109 | 0.0321499 | 0.0000000 |
493 | GTP hydrolysis and joining of the 60S ribosomal subunit | 104 | 0.0000000 | 0.5110067 | 0.3306852 | 0.0000000 | 0.0000000 | 0.6086711 | 0.1275066 | 0.0000000 |
565 | Hh mutants are degraded by ERAD | 54 | 0.0000000 | 0.4411985 | 0.4143596 | 0.0000000 | 0.0000001 | 0.6052686 | 0.0189780 | 0.0000000 |
1363 | TICAM1, RIP1-mediated IKK complex recruitment | 18 | 0.0006614 | 0.4617783 | 0.3856331 | 0.0006929 | 0.0046127 | 0.6016245 | 0.0538427 | 0.0035626 |
492 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 50 | 0.0000000 | 0.4424686 | 0.4070849 | 0.0000001 | 0.0000006 | 0.6012459 | 0.0250201 | 0.0000000 |
828 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 108 | 0.0000000 | 0.4851059 | 0.3421526 | 0.0000000 | 0.0000000 | 0.5936296 | 0.1010833 | 0.0000000 |
830 | Nonsense-Mediated Decay (NMD) | 108 | 0.0000000 | 0.4851059 | 0.3421526 | 0.0000000 | 0.0000000 | 0.5936296 | 0.1010833 | 0.0000000 |
13 | APC/C:Cdc20 mediated degradation of Cyclin B | 24 | 0.0000600 | 0.3361974 | 0.4881691 | 0.0043516 | 0.0000346 | 0.5927375 | 0.1074603 | 0.0004016 |
1404 | The role of GTSE1 in G2/M progression after G2 checkpoint | 58 | 0.0000000 | 0.4333958 | 0.4034549 | 0.0000000 | 0.0000001 | 0.5921214 | 0.0211714 | 0.0000000 |
663 | L13a-mediated translational silencing of Ceruloplasmin expression | 103 | 0.0000000 | 0.4943754 | 0.3237760 | 0.0000000 | 0.0000000 | 0.5909635 | 0.1206320 | 0.0000000 |
165 | Cap-dependent Translation Initiation | 111 | 0.0000000 | 0.5010715 | 0.3121452 | 0.0000000 | 0.0000000 | 0.5903451 | 0.1335911 | 0.0000000 |
396 | Eukaryotic Translation Initiation | 111 | 0.0000000 | 0.5010715 | 0.3121452 | 0.0000000 | 0.0000000 | 0.5903451 | 0.1335911 | 0.0000000 |
Camera is designed to control for correlation bias. Using the median value gives better results than the directional significance or the combined metric. Blood dataset. Need to filter by FDR then sort by effect size.
stat <- res_bl_df$median
names(stat) <- rownames(res_bl_df)
stat[is.na(stat)] <- 0
tic()
cres <- cameraPR(statistic=stat, index=genesets, use.ranks = FALSE, inter.gene.cor=0.01, sort = TRUE)
cres <- subset(cres,NGenes>4)
cres$FDR <- p.adjust(cres$PValue,method="fdr")
mymedians <- sapply(1:nrow(cres),function(i) {
myset <- genesets[[which(names(genesets) == rownames(cres)[i])]]
mystats <- stat[names(stat) %in% myset]
median(mystats)
})
cres$median <- mymedians
toc() # 1.0 sec
## 3.596 sec elapsed
sig <- subset(cres,FDR<0.05)
head(sig[order(-abs(sig$median)),],20) %>%
kbl(caption = "BLOOD: Top effect size pathways found with CAMERA after 5% FDR filtering") %>%
kable_paper("hover", full_width = F)
NGenes | Direction | PValue | FDR | median | |
---|---|---|---|---|---|
Post-transcriptional silencing by small RNAs | 7 | Down | 0.0038263 | 0.0486340 | -2.5747291 |
Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | Down | 0.0000000 | 0.0000042 | -1.7242924 |
Expression and translocation of olfactory receptors | 359 | Down | 0.0000012 | 0.0000912 | -1.6808688 |
Olfactory Signaling Pathway | 366 | Down | 0.0000019 | 0.0001341 | -1.6117618 |
Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | Down | 0.0000233 | 0.0012524 | -1.4092232 |
Sensory perception of taste | 47 | Down | 0.0003067 | 0.0075968 | -1.2863848 |
Sensory Perception | 570 | Down | 0.0000571 | 0.0025066 | -1.2359325 |
Aspirin ADME | 44 | Down | 0.0008114 | 0.0158350 | -1.1545689 |
Glucuronidation | 25 | Down | 0.0001057 | 0.0039143 | -1.1497817 |
Regulation of TP53 Activity through Phosphorylation | 88 | Up | 0.0021269 | 0.0318544 | -0.4823377 |
Cell Cycle Checkpoints | 248 | Up | 0.0024968 | 0.0359985 | -0.4111076 |
SARS-CoV-1 Infection | 134 | Up | 0.0023168 | 0.0339097 | -0.4089573 |
G2/M Checkpoints | 129 | Up | 0.0026179 | 0.0371897 | -0.3977334 |
Mitotic Anaphase | 221 | Up | 0.0011797 | 0.0198185 | -0.3968072 |
Mitotic Metaphase and Anaphase | 222 | Up | 0.0010299 | 0.0179257 | -0.3948076 |
Antigen processing-Cross presentation | 100 | Up | 0.0031954 | 0.0428711 | -0.3908201 |
SARS-CoV-1 modulates host translation machinery | 34 | Up | 0.0000013 | 0.0000987 | 0.3873579 |
TNFR2 non-canonical NF-kB pathway | 94 | Up | 0.0022917 | 0.0337978 | -0.3859942 |
UCH proteinases | 81 | Up | 0.0010896 | 0.0186286 | -0.3839069 |
Separation of Sister Chromatids | 161 | Up | 0.0010889 | 0.0186286 | -0.3812494 |
nrow(subset(cres,FDR<0.05 & Direction=="Up"))
## [1] 145
nrow(subset(cres,FDR<0.05 & Direction=="Down"))
## [1] 9
cres_bl <- cres
Now drilling down to the top set.
myset <- rownames(head(sig[order(-abs(sig$median)),],1))
myset_members <- genesets[[which(names(genesets) == myset)]]
mystats <- stat[which(names(stat) %in% myset_members)]
myl <- list("allgenes"=stat,myset=mystats)
boxplot(myl,cex=0)
library(vioplot)
## Loading required package: sm
## Package 'sm', version 2.2-5.7: type help(sm) for summary information
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
vioplot(myl,main=myset)
mygenes <- head(mystats[order(mystats)],5)
mygenes
## AGO1 AGO4 AGO3 TNRC6A TNRC6C
## -3.285122 -2.984469 -2.577816 -2.574729 -1.810748
myprobes <- unique(unlist(sets[which(names(sets) %in% names(mygenes))]))
myprobedat <- res_bl_top[which(rownames(res_bl_top) %in% myprobes),]
myprobedat %>%
kbl(caption = "Probe data for top 5 genes") %>%
kable_paper("hover", full_width = F)
logFC | AveExpr | t | P.Value | adj.P.Val | B | |
---|---|---|---|---|---|---|
cg04525998 | -0.6695065 | 2.2051331 | -6.2619018 | 0.0000290 | 0.0161108 | 2.7574772 |
cg02324079 | -0.5424994 | 2.9446621 | -4.8607052 | 0.0003098 | 0.0162658 | 0.5539728 |
cg15863419 | -0.4489136 | 2.2747176 | -4.7957116 | 0.0003480 | 0.0162658 | 0.4444189 |
cg23873145 | -0.9637875 | 2.4859603 | -4.6491424 | 0.0004534 | 0.0164874 | 0.1952065 |
cg11739924 | -0.3919682 | 4.3163159 | -4.4720815 | 0.0006263 | 0.0169870 | -0.1096477 |
cg07093496 | -0.6183371 | 3.2706702 | -4.4717062 | 0.0006268 | 0.0169870 | -0.1102981 |
cg24008619 | -0.8388309 | 3.0434555 | -4.3467804 | 0.0007890 | 0.0175717 | -0.3277312 |
cg05416591 | -0.8681966 | 3.0121867 | -4.2825918 | 0.0008886 | 0.0179032 | -0.4401537 |
cg13143099 | -0.4843671 | 3.8957234 | -4.2317610 | 0.0009767 | 0.0181631 | -0.5295020 |
cg27078729 | -0.2996983 | 3.4065867 | -4.2106833 | 0.0010158 | 0.0182968 | -0.5666318 |
cg19699973 | -0.3565108 | 3.6719598 | -4.1759472 | 0.0010838 | 0.0185338 | -0.6279221 |
cg02183851 | -0.2759769 | 3.9710753 | -4.1156463 | 0.0012132 | 0.0189932 | -0.7346068 |
cg26340657 | -0.6167166 | 3.1259482 | -4.1133370 | 0.0012185 | 0.0190039 | -0.7386993 |
cg02393980 | -0.4691323 | 3.3251791 | -4.0822594 | 0.0012916 | 0.0192731 | -0.7938250 |
cg15744368 | -0.9274538 | 2.7917669 | -4.0733450 | 0.0013134 | 0.0193587 | -0.8096541 |
cg06476845 | -0.4287926 | 4.3039100 | -4.0724997 | 0.0013155 | 0.0193650 | -0.8111555 |
cg09024808 | -0.4040012 | 4.0126904 | -4.0665396 | 0.0013303 | 0.0194201 | -0.8217430 |
cg21512216 | -0.5290094 | 3.0663717 | -4.0142147 | 0.0014679 | 0.0199110 | -0.9148300 |
cg00496251 | -0.3922419 | 4.0874038 | -3.9981303 | 0.0015131 | 0.0200893 | -0.9434920 |
cg05404890 | -0.3830171 | 4.2705700 | -3.9767853 | 0.0015752 | 0.0203343 | -0.9815616 |
cg27186436 | -0.4491451 | 3.3707054 | -3.9709918 | 0.0015925 | 0.0204015 | -0.9919009 |
cg11158641 | -0.6055694 | 3.3392500 | -3.8248604 | 0.0021001 | 0.0222368 | -1.2535351 |
cg18752890 | -0.5793243 | 3.4698101 | -3.8193919 | 0.0021220 | 0.0223074 | -1.2633549 |
cg22463563 | -0.4456983 | 4.1707013 | -3.7959537 | 0.0022187 | 0.0226423 | -1.3054637 |
cg16785092 | -0.7078907 | 3.2401719 | -3.7863951 | 0.0022594 | 0.0227857 | -1.3226462 |
cg05353134 | -0.7673800 | 3.5450705 | -3.7816542 | 0.0022799 | 0.0228544 | -1.3311706 |
cg06282219 | -0.3860057 | 4.3852101 | -3.7602166 | 0.0023748 | 0.0232053 | -1.3697323 |
cg16124834 | -0.7577977 | 3.3265298 | -3.7596420 | 0.0023774 | 0.0232144 | -1.3707663 |
cg03156546 | -0.6219926 | 0.7655621 | -3.7194939 | 0.0025664 | 0.0239217 | -1.4430540 |
cg07787614 | -0.3017845 | -0.0859365 | -3.7138235 | 0.0025943 | 0.0240227 | -1.4532705 |
cg03664025 | -0.5650885 | 3.6750238 | -3.6484367 | 0.0029393 | 0.0253324 | -1.5711891 |
cg01303655 | -0.6364708 | 3.2961779 | -3.5728679 | 0.0033965 | 0.0270207 | -1.7076851 |
cg18748888 | -0.4477384 | 4.6275557 | -3.5658700 | 0.0034424 | 0.0271833 | -1.7203346 |
cg25644447 | 0.4545088 | -3.8647746 | 3.5296147 | 0.0036901 | 0.0280771 | -1.7858920 |
cg00018443 | -0.4273985 | 4.1250086 | -3.5268472 | 0.0037097 | 0.0281479 | -1.7908976 |
cg09816107 | -0.4363462 | 3.8036341 | -3.5167630 | 0.0037822 | 0.0284102 | -1.8091382 |
cg04215186 | -0.3572516 | 4.3731017 | -3.5142105 | 0.0038007 | 0.0284795 | -1.8137556 |
cg00152838 | 0.4055649 | -3.2941953 | 3.4099238 | 0.0046435 | 0.0315083 | -2.0024928 |
cg04256065 | -0.6784260 | 4.9860043 | -3.3844855 | 0.0048763 | 0.0323123 | -2.0485437 |
cg25362361 | -0.3329820 | 4.3100507 | -3.3811627 | 0.0049076 | 0.0324129 | -2.0545590 |
cg09889256 | -0.4377801 | 4.1830191 | -3.3334738 | 0.0053792 | 0.0340459 | -2.1408852 |
cg01329260 | -0.2454907 | -1.7412320 | -3.2851222 | 0.0059039 | 0.0358583 | -2.2283871 |
cg14781700 | -0.6158522 | 3.5650395 | -3.2793078 | 0.0059704 | 0.0360832 | -2.2389069 |
cg12489727 | -0.5166535 | 3.7335510 | -3.2619872 | 0.0061729 | 0.0367487 | -2.2702399 |
cg20035319 | -0.3875523 | 3.5427599 | -3.2256520 | 0.0066204 | 0.0382595 | -2.3359462 |
cg02391633 | -0.3269045 | 4.1732022 | -3.1884739 | 0.0071119 | 0.0398784 | -2.4031344 |
cg07530460 | -0.1872637 | 4.2125512 | -3.1593226 | 0.0075228 | 0.0412098 | -2.4557799 |
cg21498511 | -0.8152181 | 1.3841073 | -3.0362037 | 0.0095359 | 0.0474423 | -2.6776452 |
cg17525025 | 0.2920549 | -4.5574238 | 3.0027304 | 0.0101705 | 0.0493206 | -2.7377956 |
cg07157902 | -0.2515190 | 3.0134901 | -2.9430522 | 0.0114076 | 0.0528780 | -2.8448091 |
cg18045878 | -0.4974457 | 1.5292289 | -2.9395362 | 0.0114849 | 0.0531025 | -2.8511040 |
cg02785870 | -0.3151234 | 4.4977700 | -2.9103544 | 0.0121474 | 0.0549721 | -2.9033040 |
cg26200971 | -0.2366234 | 4.2669840 | -2.8293820 | 0.0141897 | 0.0606864 | -3.0476736 |
cg14619832 | -0.3001402 | 4.2596628 | -2.7925788 | 0.0152263 | 0.0634480 | -3.1130348 |
cg07768777 | -0.2482032 | 4.1245728 | -2.7565339 | 0.0163136 | 0.0662926 | -3.1768758 |
cg15473007 | -0.3304667 | 0.8130780 | -2.7538733 | 0.0163968 | 0.0665004 | -3.1815809 |
cg05873271 | -0.1945508 | -1.2457826 | -2.7488219 | 0.0165559 | 0.0669027 | -3.1905114 |
cg09589586 | -0.2520902 | 4.2032768 | -2.7124034 | 0.0177487 | 0.0699907 | -3.2547849 |
cg04268643 | -0.2089903 | -0.1359135 | -2.7044724 | 0.0180194 | 0.0706668 | -3.2687554 |
cg18833170 | -0.1660208 | 4.2577083 | -2.6988210 | 0.0182148 | 0.0711449 | -3.2787043 |
cg11696355 | -0.2483818 | 4.0212366 | -2.6896295 | 0.0185369 | 0.0719489 | -3.2948744 |
cg01560476 | 0.2351854 | 1.0426569 | 2.6703051 | 0.0192325 | 0.0736429 | -3.3288265 |
cg14908168 | -0.2549218 | 3.5559920 | -2.5747291 | 0.0230635 | 0.0828902 | -3.4957936 |
cg07710734 | 0.1922728 | 3.4265711 | 2.5415460 | 0.0245594 | 0.0863448 | -3.5533599 |
cg00423030 | -0.1890065 | 0.0994404 | -2.4420327 | 0.0296283 | 0.0977030 | -3.7245943 |
cg09029192 | -0.2064013 | 1.5186864 | -2.3939405 | 0.0324248 | 0.1036938 | -3.8065252 |
cg02958960 | -0.1746421 | 3.7728018 | -2.3538315 | 0.0349485 | 0.1089666 | -3.8744090 |
cg12700283 | -0.1624570 | 0.1119807 | -2.3106033 | 0.0378776 | 0.1149705 | -3.9470906 |
cg27407707 | 0.2213543 | -4.1243624 | 2.1937469 | 0.0470045 | 0.1328068 | -4.1408463 |
cg16791170 | -0.1374864 | 4.0862128 | -2.1194274 | 0.0538454 | 0.1453663 | -4.2618059 |
cg09146982 | -0.1554287 | 0.5138050 | -2.0813172 | 0.0577035 | 0.1522741 | -4.3230879 |
cg00672192 | 0.1414764 | 0.9711645 | 2.0638595 | 0.0595552 | 0.1555467 | -4.3509837 |
cg08844988 | 0.2835730 | -3.8678881 | 2.0229884 | 0.0641077 | 0.1634583 | -4.4158429 |
cg03660034 | -0.1416407 | 3.0410668 | -1.9405154 | 0.0742847 | 0.1803717 | -4.5447116 |
cg08898446 | -0.1300190 | 4.0241655 | -1.9384527 | 0.0745572 | 0.1808302 | -4.5478988 |
cg24207009 | -0.2024391 | -0.5670785 | -1.9300394 | 0.0756782 | 0.1826237 | -4.5608800 |
cg10134076 | -0.1776110 | 4.3350578 | -1.8585948 | 0.0858334 | 0.1987661 | -4.6698721 |
cg01880908 | -0.1873937 | 5.5418080 | -1.8234163 | 0.0912731 | 0.2071395 | -4.7226924 |
cg06420129 | -0.1271357 | 3.3301889 | -1.8204965 | 0.0917382 | 0.2078366 | -4.7270506 |
cg12069304 | -0.1350360 | 3.7279495 | -1.8120408 | 0.0930972 | 0.2099609 | -4.7396489 |
cg05478790 | -0.1262252 | 2.3018531 | -1.8107477 | 0.0933067 | 0.2102819 | -4.7415726 |
cg04762133 | 0.1483586 | 3.0203085 | 1.7103734 | 0.1109036 | 0.2361423 | -4.8883912 |
cg03760856 | -0.1524466 | 4.3306718 | -1.6679057 | 0.1191923 | 0.2478494 | -4.9489617 |
cg21571594 | 0.1047939 | 3.7478583 | 1.6176545 | 0.1296966 | 0.2624011 | -5.0193810 |
cg00150128 | -0.1020941 | 1.5623377 | -1.5974342 | 0.1341450 | 0.2684354 | -5.0473218 |
cg27579805 | 0.1021259 | 1.9909200 | 1.5918128 | 0.1354049 | 0.2700968 | -5.0550487 |
cg12963342 | -0.1287899 | 4.1860140 | -1.5458737 | 0.1460887 | 0.2842685 | -5.1175120 |
cg05890693 | -0.0942396 | -1.1002304 | -1.5016208 | 0.1570541 | 0.2984775 | -5.1765073 |
cg16792948 | 0.1025535 | -5.1924596 | 1.4770478 | 0.1634390 | 0.3065416 | -5.2087545 |
cg14744741 | -0.1383403 | 4.2764331 | -1.4763657 | 0.1636193 | 0.3067736 | -5.2096444 |
cg04498014 | -0.1168476 | 0.1044817 | -1.3789110 | 0.1911516 | 0.3405091 | -5.3337477 |
cg26740249 | -0.0860303 | 0.6715219 | -1.3292028 | 0.2066037 | 0.3586301 | -5.3946540 |
cg08446633 | -0.0955655 | 4.1630504 | -1.3173185 | 0.2104447 | 0.3630025 | -5.4089675 |
cg25012186 | -0.1487844 | 3.3153320 | -1.3165556 | 0.2106932 | 0.3632768 | -5.4098830 |
cg01053405 | -0.1281078 | 3.4620805 | -1.3021381 | 0.2154347 | 0.3687872 | -5.4271095 |
cg00472027 | -0.1156890 | 4.0733751 | -1.2872626 | 0.2204165 | 0.3744855 | -5.4447317 |
cg08500967 | -0.1227000 | -4.4052158 | -1.2141356 | 0.2462599 | 0.4035178 | -5.5290800 |
cg05689121 | 0.1147050 | -4.6870701 | 1.1494938 | 0.2710307 | 0.4302352 | -5.6003878 |
cg15831500 | -0.0873823 | 4.0140877 | -1.0843509 | 0.2978809 | 0.4583332 | -5.6690409 |
cg13800273 | -0.0973113 | 3.9304125 | -1.0528284 | 0.3115676 | 0.4722478 | -5.7010726 |
cg18878381 | 0.0648999 | 3.8046251 | 1.0100753 | 0.3308633 | 0.4914766 | -5.7432471 |
cg08076643 | -0.0738249 | 0.1244664 | -0.9334574 | 0.3675729 | 0.5269123 | -5.8150834 |
cg06037603 | 0.1248534 | 3.2685268 | 0.8800858 | 0.3947676 | 0.5526268 | -5.8622076 |
cg08083403 | 0.0687916 | -4.8491599 | 0.8594170 | 0.4056566 | 0.5627234 | -5.8797993 |
cg23972793 | -0.0692379 | 3.7567842 | -0.8369091 | 0.4177408 | 0.5738424 | -5.8985334 |
cg12958612 | 0.0515338 | -5.0038565 | 0.8104116 | 0.4322677 | 0.5868372 | -5.9200173 |
cg01155522 | 0.0538019 | -4.6516656 | 0.7979305 | 0.4392225 | 0.5930934 | -5.9299213 |
cg12027254 | -0.0814866 | 1.8287541 | -0.7495008 | 0.4668827 | 0.6173693 | -5.9670300 |
cg27503577 | -0.0549950 | 4.0942280 | -0.6327310 | 0.5378640 | 0.6777133 | -6.0476783 |
ch.16.759907F | 0.0520217 | -4.1980441 | 0.6038856 | 0.5562959 | 0.6926339 | -6.0656377 |
cg04508233 | 0.0356501 | -6.3243602 | 0.5942408 | 0.5625350 | 0.6975714 | -6.0714664 |
cg04047827 | -0.0366427 | -4.9183537 | -0.4938947 | 0.6296079 | 0.7505222 | -6.1268010 |
cg12072376 | 0.0503900 | 3.6848109 | 0.4580591 | 0.6544613 | 0.7692745 | -6.1441859 |
cg12229081 | -0.0405821 | -3.5553608 | -0.4331645 | 0.6719850 | 0.7824518 | -6.1555175 |
cg13280512 | -0.0508799 | 1.9516830 | -0.4103848 | 0.6881969 | 0.7945286 | -6.1653477 |
cg17172331 | -0.0218578 | 0.3146128 | -0.3865893 | 0.7053045 | 0.8069989 | -6.1750638 |
cg00175441 | -0.0327317 | 3.9293636 | -0.3692814 | 0.7178543 | 0.8159564 | -6.1817750 |
cg09657673 | -0.0297928 | 3.2897807 | -0.3552005 | 0.7281274 | 0.8233196 | -6.1870129 |
cg15661240 | -0.0287192 | 3.3347891 | -0.3524342 | 0.7301522 | 0.8247530 | -6.1880185 |
cg08073142 | -0.0246797 | -6.5432840 | -0.3482911 | 0.7331887 | 0.8269337 | -6.1895102 |
cg17969276 | -0.0404229 | -4.5513599 | -0.3211742 | 0.7531758 | 0.8410786 | -6.1988454 |
cg22094953 | -0.0190553 | 4.0095283 | -0.2871631 | 0.7785068 | 0.8587384 | -6.2095012 |
cg15489593 | -0.0362374 | -3.1739684 | -0.2798278 | 0.7840060 | 0.8625615 | -6.2116453 |
cg20857275 | -0.0219502 | 0.1503920 | -0.2416258 | 0.8128340 | 0.8821357 | -6.2219245 |
cg14230917 | -0.0118790 | -4.8081088 | -0.1918441 | 0.8508240 | 0.9074510 | -6.2330779 |
cg00382632 | -0.0147249 | 5.3193775 | -0.1788270 | 0.8608263 | 0.9139885 | -6.2355744 |
cg06223856 | -0.0304672 | 0.8331048 | -0.1716157 | 0.8663783 | 0.9175856 | -6.2368824 |
cg09646181 | 0.0076717 | 3.5037929 | 0.1162083 | 0.9092608 | 0.9448257 | -6.2451422 |
cg01436550 | 0.0130110 | 3.5053408 | 0.1144580 | 0.9106211 | 0.9456974 | -6.2453514 |
cg10943443 | 0.0044324 | 3.6927332 | 0.0577953 | 0.9547893 | 0.9729798 | -6.2504120 |
cg05736847 | -0.0020957 | 3.6288991 | -0.0270197 | 0.9788538 | 0.9874880 | -6.2517660 |
Guthrie dataset.
stat <- res_gu_df$median
names(stat) <- rownames(res_gu_df)
stat[is.na(stat)] <- 0
tic()
cres <- cameraPR(statistic=stat, index=genesets, use.ranks = FALSE, inter.gene.cor=0.01, sort = TRUE)
cres <- subset(cres,NGenes>4)
cres$FDR <- p.adjust(cres$PValue,method="fdr")
mymedians <- sapply(1:nrow(cres),function(i) {
myset <- genesets[[which(names(genesets) == rownames(cres)[i])]]
mystats <- stat[names(stat) %in% myset]
median(mystats)
})
cres$median <- mymedians
toc() # 1.0 sec
## 2.863 sec elapsed
sig <- subset(cres,FDR<0.05)
head(sig[order(-abs(sig$median)),],20) %>%
kbl(caption = "GUTHRIE: Top effect size pathways found with CAMERA after 5% FDR filtering") %>%
kable_paper("hover", full_width = F)
NGenes | Direction | PValue | FDR | median | |
---|---|---|---|---|---|
Expression and translocation of olfactory receptors | 356 | Down | 0.0000000 | 0.0000000 | -0.7322374 |
Olfactory Signaling Pathway | 363 | Down | 0.0000000 | 0.0000000 | -0.7313853 |
Aspirin ADME | 44 | Down | 0.0000156 | 0.0041099 | -0.6863595 |
Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | Down | 0.0000021 | 0.0010364 | -0.6851519 |
Glucuronidation | 25 | Down | 0.0002288 | 0.0094041 | -0.6840526 |
Keratinization | 213 | Down | 0.0000102 | 0.0039535 | -0.6022933 |
Sensory Perception | 567 | Down | 0.0000000 | 0.0000020 | -0.5774976 |
Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | Down | 0.0001855 | 0.0088423 | -0.5262750 |
Sensory perception of taste | 47 | Down | 0.0001922 | 0.0088423 | -0.5262750 |
Activation of Matrix Metalloproteinases | 31 | Down | 0.0021035 | 0.0315035 | -0.4875238 |
Gene expression (Transcription) | 1420 | Up | 0.0036337 | 0.0452926 | -0.1807918 |
G2/M Transition | 175 | Up | 0.0026165 | 0.0368989 | -0.1755054 |
Mitotic G2-G2/M phases | 177 | Up | 0.0026393 | 0.0369501 | -0.1755054 |
Cell Cycle | 601 | Up | 0.0018695 | 0.0296036 | -0.1677739 |
Transcriptional Regulation by TP53 | 346 | Up | 0.0028613 | 0.0389300 | -0.1674637 |
Late Phase of HIV Life Cycle | 126 | Up | 0.0020618 | 0.0313315 | -0.1641372 |
Cell Cycle, Mitotic | 476 | Up | 0.0014178 | 0.0242407 | -0.1632072 |
M Phase | 335 | Up | 0.0022860 | 0.0339727 | -0.1623486 |
Signaling by ROBO receptors | 203 | Up | 0.0012825 | 0.0225257 | -0.1515047 |
Cellular responses to stimuli | 696 | Up | 0.0009957 | 0.0204917 | -0.1496043 |
cres_gu <- cres
Compare median set score for both contrasts. In the graph below, the larger points represent larger gene sets. Red fill means significant in blood contrast. Blue ring means significant in guthrie contrast.
m4 <- merge(cres_bl,cres_gu,by=0)
sigx <- subset(m4,FDR.x<0.05)
sigy <- subset(m4,FDR.y<0.05)
plot(m4$median.x,m4$median.y,col="gray",pch=19,cex=log10(m4$NGenes.x),
xlab="blood",ylab="Guthrie",main="median t-stat")
grid()
points(sigx$median.x,sigx$median.y,col="red",pch=19,cex=log10(sigx$NGenes.x))
points(sigy$median.x,sigy$median.y,col="blue",pch=1,cex=log10(sigy$NGenes.x))
abline(v=0,h=0,lty=2,lwd=3)
par(mfrow=c(1,1))
pdf("camera_pw_ilanguage.pdf")
plot(m4$median.x,m4$median.y,col="gray",pch=19,cex=log10(m4$NGenes.x),
xlab="blood",ylab="Guthrie",main="median t-stat")
grid()
points(sigx$median.x,sigx$median.y,col="red",pch=19,cex=log10(sigx$NGenes.x))
points(sigy$median.x,sigy$median.y,col="blue",pch=1,cex=log10(sigy$NGenes.x))
abline(v=0,h=0,lty=2,lwd=3)
dev.off()
## png
## 2
subset(m4,FDR.x<0.05 & FDR.y<0.05 ) %>%
kbl(caption = "Pathways significant in blood (x) and guthrie cards (y) at 5%FDR") %>%
kable_paper("hover", full_width = F)
Row.names | NGenes.x | Direction.x | PValue.x | FDR.x | median.x | NGenes.y | Direction.y | PValue.y | FDR.y | median.y | |
---|---|---|---|---|---|---|---|---|---|---|---|
30 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 75 | Up | 0.0000881 | 0.0034723 | -0.1020616 | 75 | Up | 0.0001223 | 0.0074514 | -0.0782185 |
44 | Activation of NF-kappaB in B cells | 64 | Up | 0.0004799 | 0.0106577 | -0.1080817 | 64 | Up | 0.0017341 | 0.0279196 | -0.0977134 |
101 | Antigen processing-Cross presentation | 100 | Up | 0.0031954 | 0.0428711 | -0.3908201 | 100 | Up | 0.0034851 | 0.0442973 | -0.1142653 |
107 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of the cell cycle checkpoint | 72 | Up | 0.0001479 | 0.0044227 | -0.0823142 | 72 | Up | 0.0001475 | 0.0074986 | -0.0708212 |
108 | APC/C-mediated degradation of cell cycle proteins | 86 | Up | 0.0001331 | 0.0043159 | -0.1616983 | 86 | Up | 0.0001404 | 0.0074514 | -0.0808179 |
110 | APC/C:Cdc20 mediated degradation of mitotic proteins | 74 | Up | 0.0000951 | 0.0036735 | -0.0823142 | 74 | Up | 0.0001039 | 0.0074514 | -0.0708212 |
111 | APC/C:Cdc20 mediated degradation of Securin | 66 | Up | 0.0001520 | 0.0044227 | -0.0614369 | 66 | Up | 0.0001267 | 0.0074514 | -0.0595988 |
112 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1 | 72 | Up | 0.0001534 | 0.0044227 | -0.0823142 | 72 | Up | 0.0001427 | 0.0074514 | -0.0755749 |
128 | Aspirin ADME | 44 | Down | 0.0008114 | 0.0158350 | -1.1545689 | 44 | Down | 0.0000156 | 0.0041099 | -0.6863595 |
134 | Assembly of the pre-replicative complex | 82 | Up | 0.0021045 | 0.0317653 | -0.1585581 | 82 | Up | 0.0002203 | 0.0092515 | -0.0708212 |
136 | Asymmetric localization of PCP proteins | 62 | Up | 0.0009039 | 0.0166326 | -0.1194611 | 62 | Up | 0.0011428 | 0.0216971 | -0.0916172 |
144 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 53 | Up | 0.0000843 | 0.0033926 | 0.0178378 | 53 | Up | 0.0009970 | 0.0204917 | -0.0782185 |
146 | Autodegradation of Cdh1 by Cdh1:APC/C | 62 | Up | 0.0002957 | 0.0075176 | -0.0479101 | 62 | Up | 0.0000710 | 0.0071176 | -0.0489751 |
147 | Autodegradation of the E3 ubiquitin ligase COP1 | 50 | Up | 0.0001255 | 0.0042858 | -0.0479101 | 50 | Up | 0.0011953 | 0.0219794 | -0.0804587 |
198 | Cap-dependent Translation Initiation | 111 | Up | 0.0000000 | 0.0000057 | 0.0919582 | 111 | Up | 0.0005492 | 0.0141466 | -0.1381658 |
217 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 71 | Up | 0.0001364 | 0.0043159 | -0.0625668 | 71 | Up | 0.0001025 | 0.0074514 | -0.0634240 |
220 | CDK-mediated phosphorylation and removal of Cdc6 | 71 | Up | 0.0003032 | 0.0075968 | -0.0982138 | 71 | Up | 0.0001230 | 0.0074514 | -0.0557737 |
222 | Cell Cycle Checkpoints | 248 | Up | 0.0024968 | 0.0359985 | -0.4111076 | 248 | Up | 0.0023082 | 0.0340409 | -0.1446161 |
234 | Cellular response to hypoxia | 71 | Up | 0.0009140 | 0.0166593 | -0.3179755 | 71 | Up | 0.0016747 | 0.0274196 | -0.1024464 |
235 | Cellular response to starvation | 147 | Up | 0.0000225 | 0.0012524 | -0.1263260 | 147 | Up | 0.0000637 | 0.0071176 | -0.0722396 |
262 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 39 | Down | 0.0000000 | 0.0000042 | -1.7242924 | 39 | Down | 0.0000021 | 0.0010364 | -0.6851519 |
324 | Cyclin A:Cdk2-associated events at S phase entry | 83 | Up | 0.0009961 | 0.0174955 | -0.1757481 | 83 | Up | 0.0006873 | 0.0166322 | -0.0869686 |
327 | Cyclin E associated events during G1/S transition | 81 | Up | 0.0007965 | 0.0157017 | -0.1517451 | 81 | Up | 0.0011028 | 0.0215220 | -0.0872553 |
347 | Dectin-1 mediated noncanonical NF-kB signaling | 60 | Up | 0.0006392 | 0.0130729 | -0.2213814 | 60 | Up | 0.0009905 | 0.0204917 | -0.0827369 |
356 | Defective CFTR causes cystic fibrosis | 59 | Up | 0.0000360 | 0.0016941 | -0.0355133 | 59 | Up | 0.0006899 | 0.0166322 | -0.0634240 |
387 | Degradation of AXIN | 53 | Up | 0.0009834 | 0.0174301 | -0.1757481 | 53 | Up | 0.0024930 | 0.0356778 | -0.0872553 |
390 | Degradation of DVL | 55 | Up | 0.0003387 | 0.0079805 | -0.1278626 | 55 | Up | 0.0012447 | 0.0220623 | -0.0782185 |
391 | Degradation of GLI1 by the proteasome | 58 | Up | 0.0013652 | 0.0223518 | -0.0826639 | 58 | Up | 0.0036074 | 0.0452610 | -0.0916172 |
392 | Degradation of GLI2 by the proteasome | 58 | Up | 0.0009325 | 0.0168375 | -0.1392545 | 58 | Up | 0.0034710 | 0.0442973 | -0.0916172 |
445 | DNA Replication | 125 | Up | 0.0007450 | 0.0149935 | -0.2608607 | 125 | Up | 0.0003276 | 0.0115052 | -0.0848001 |
447 | DNA Replication Pre-Initiation | 97 | Up | 0.0011251 | 0.0190678 | -0.1757481 | 97 | Up | 0.0003255 | 0.0115052 | -0.0848001 |
457 | Downstream signaling events of B Cell Receptor (BCR) | 78 | Up | 0.0013183 | 0.0217685 | -0.3369284 | 78 | Up | 0.0034416 | 0.0442973 | -0.1346760 |
499 | ER-Phagosome pathway | 87 | Up | 0.0029766 | 0.0407860 | -0.3070056 | 87 | Up | 0.0014617 | 0.0247724 | -0.0994477 |
518 | Eukaryotic Translation Elongation | 88 | Up | 0.0000000 | 0.0000041 | 0.2406206 | 88 | Up | 0.0000436 | 0.0064415 | -0.0173977 |
519 | Eukaryotic Translation Initiation | 111 | Up | 0.0000000 | 0.0000057 | 0.0919582 | 111 | Up | 0.0005492 | 0.0141466 | -0.1381658 |
520 | Eukaryotic Translation Termination | 87 | Up | 0.0000000 | 0.0000037 | 0.2431649 | 87 | Up | 0.0000776 | 0.0071423 | -0.0508882 |
522 | Expression and translocation of olfactory receptors | 359 | Down | 0.0000012 | 0.0000912 | -1.6808688 | 356 | Down | 0.0000000 | 0.0000000 | -0.7322374 |
533 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 53 | Up | 0.0001758 | 0.0048528 | -0.0355133 | 53 | Up | 0.0008785 | 0.0196655 | -0.0782185 |
538 | FCERI mediated NF-kB activation | 74 | Up | 0.0015663 | 0.0254289 | -0.3217050 | 74 | Up | 0.0023921 | 0.0344889 | -0.1111544 |
566 | Formation of a pool of free 40S subunits | 94 | Up | 0.0000001 | 0.0000070 | 0.1483608 | 94 | Up | 0.0001921 | 0.0088423 | -0.0714718 |
613 | G1/S DNA Damage Checkpoints | 66 | Up | 0.0001722 | 0.0048204 | -0.1815829 | 66 | Up | 0.0003251 | 0.0115052 | -0.0619587 |
614 | G1/S Transition | 126 | Up | 0.0013134 | 0.0217685 | -0.2423762 | 126 | Up | 0.0008100 | 0.0186302 | -0.1045016 |
617 | G2/M Checkpoints | 129 | Up | 0.0026179 | 0.0371897 | -0.3977334 | 129 | Up | 0.0018715 | 0.0296036 | -0.1106350 |
644 | GLI3 is processed to GLI3R by the proteasome | 58 | Up | 0.0008913 | 0.0165580 | -0.1392545 | 58 | Up | 0.0029269 | 0.0395443 | -0.0916172 |
652 | Glucuronidation | 25 | Down | 0.0001057 | 0.0039143 | -1.1497817 | 25 | Down | 0.0002288 | 0.0094041 | -0.6840526 |
682 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 50 | Up | 0.0001496 | 0.0044227 | 0.0191124 | 50 | Up | 0.0004063 | 0.0120775 | -0.0595988 |
683 | GTP hydrolysis and joining of the 60S ribosomal subunit | 104 | Up | 0.0000000 | 0.0000057 | 0.1140907 | 104 | Up | 0.0003390 | 0.0115052 | -0.1131203 |
699 | Hedgehog ligand biogenesis | 63 | Up | 0.0005840 | 0.0125370 | -0.2670147 | 63 | Up | 0.0008856 | 0.0196655 | -0.0657709 |
705 | Hh mutants abrogate ligand secretion | 57 | Up | 0.0001264 | 0.0042858 | -0.0625668 | 57 | Up | 0.0003508 | 0.0115052 | -0.0580928 |
706 | Hh mutants are degraded by ERAD | 54 | Up | 0.0000731 | 0.0030689 | -0.0479101 | 54 | Up | 0.0002967 | 0.0114663 | -0.0569332 |
712 | HIV Infection | 216 | Up | 0.0005068 | 0.0111276 | -0.3633244 | 216 | Up | 0.0003425 | 0.0115052 | -0.1213172 |
713 | HIV Life Cycle | 139 | Up | 0.0019147 | 0.0295942 | -0.3748624 | 139 | Up | 0.0011455 | 0.0216971 | -0.1274081 |
719 | Host Interactions of HIV factors | 122 | Up | 0.0020441 | 0.0313436 | -0.3441441 | 122 | Up | 0.0004930 | 0.0136077 | -0.0969390 |
747 | Influenza Infection | 148 | Up | 0.0000003 | 0.0000274 | -0.0020937 | 148 | Up | 0.0001405 | 0.0074514 | -0.1024548 |
748 | Influenza Viral RNA Transcription and Replication | 129 | Up | 0.0000004 | 0.0000331 | 0.0306721 | 129 | Up | 0.0000956 | 0.0074514 | -0.0741485 |
838 | L13a-mediated translational silencing of Ceruloplasmin expression | 103 | Up | 0.0000001 | 0.0000114 | 0.0919582 | 103 | Up | 0.0004346 | 0.0125316 | -0.1047502 |
843 | Late Phase of HIV Life Cycle | 126 | Up | 0.0036443 | 0.0469385 | -0.3633244 | 126 | Up | 0.0020618 | 0.0313315 | -0.1641372 |
874 | Major pathway of rRNA processing in the nucleolus and cytosol | 171 | Up | 0.0000000 | 0.0000042 | 0.0306721 | 171 | Up | 0.0000443 | 0.0064415 | -0.1027438 |
922 | Metabolism of polyamines | 55 | Up | 0.0006319 | 0.0130729 | -0.1757481 | 55 | Up | 0.0036078 | 0.0452610 | -0.0872553 |
925 | Metabolism of RNA | 639 | Up | 0.0000019 | 0.0001341 | -0.2900232 | 639 | Up | 0.0000378 | 0.0064415 | -0.1324440 |
952 | Mitochondrial translation | 93 | Up | 0.0000161 | 0.0010028 | -0.1164349 | 93 | Up | 0.0009846 | 0.0204917 | -0.1081294 |
953 | Mitochondrial translation elongation | 87 | Up | 0.0000299 | 0.0015181 | -0.1677323 | 87 | Up | 0.0020679 | 0.0313315 | -0.1273132 |
954 | Mitochondrial translation initiation | 87 | Up | 0.0000210 | 0.0012308 | -0.1677323 | 87 | Up | 0.0009283 | 0.0202055 | -0.1081294 |
955 | Mitochondrial translation termination | 87 | Up | 0.0000168 | 0.0010141 | -0.1309188 | 87 | Up | 0.0009608 | 0.0204917 | -0.0981363 |
959 | Mitotic Anaphase | 221 | Up | 0.0011797 | 0.0198185 | -0.3968072 | 221 | Up | 0.0016972 | 0.0275551 | -0.1289578 |
960 | Mitotic G1 phase and G1/S transition | 144 | Up | 0.0016354 | 0.0256875 | -0.3062859 | 144 | Up | 0.0007754 | 0.0180499 | -0.1297066 |
962 | Mitotic Metaphase and Anaphase | 222 | Up | 0.0010299 | 0.0179257 | -0.3948076 | 222 | Up | 0.0016255 | 0.0268412 | -0.1281830 |
976 | mRNA Splicing | 184 | Up | 0.0000124 | 0.0007957 | -0.2965636 | 184 | Up | 0.0000145 | 0.0041099 | -0.0971896 |
977 | mRNA Splicing - Major Pathway | 174 | Up | 0.0000309 | 0.0015310 | -0.3214684 | 174 | Up | 0.0000557 | 0.0069965 | -0.1003278 |
978 | mRNA Splicing - Minor Pathway | 51 | Up | 0.0000606 | 0.0026023 | -0.2915931 | 51 | Up | 0.0001529 | 0.0075725 | -0.0854447 |
1017 | Negative regulation of NOTCH4 signaling | 52 | Up | 0.0003219 | 0.0077737 | -0.0088378 | 52 | Up | 0.0004141 | 0.0121215 | -0.0595988 |
1042 | NIK–>noncanonical NF-kB signaling | 57 | Up | 0.0003659 | 0.0085171 | -0.1248621 | 57 | Up | 0.0010206 | 0.0205390 | -0.0872553 |
1048 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 108 | Up | 0.0000001 | 0.0000141 | 0.0623098 | 108 | Up | 0.0002162 | 0.0092515 | -0.0731940 |
1049 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 89 | Up | 0.0000000 | 0.0000046 | 0.2056701 | 89 | Up | 0.0001150 | 0.0074514 | -0.0688872 |
1050 | Nonsense-Mediated Decay (NMD) | 108 | Up | 0.0000001 | 0.0000141 | 0.0623098 | 108 | Up | 0.0002162 | 0.0092515 | -0.0731940 |
1051 | NoRC negatively regulates rRNA expression | 43 | Up | 0.0038680 | 0.0486491 | -0.3517863 | 43 | Up | 0.0028043 | 0.0386987 | -0.1102945 |
1096 | Olfactory Signaling Pathway | 366 | Down | 0.0000019 | 0.0001341 | -1.6117618 | 363 | Down | 0.0000000 | 0.0000000 | -0.7313853 |
1101 | Orc1 removal from chromatin | 69 | Up | 0.0029715 | 0.0407860 | -0.1757481 | 69 | Up | 0.0012216 | 0.0220579 | -0.0959791 |
1112 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 62 | Up | 0.0007923 | 0.0157017 | -0.2869486 | 62 | Up | 0.0019000 | 0.0296036 | -0.0977134 |
1116 | p53-Dependent G1 DNA Damage Response | 64 | Up | 0.0001385 | 0.0043159 | -0.1191575 | 64 | Up | 0.0003514 | 0.0115052 | -0.0619587 |
1117 | p53-Dependent G1/S DNA damage checkpoint | 64 | Up | 0.0001385 | 0.0043159 | -0.1191575 | 64 | Up | 0.0003514 | 0.0115052 | -0.0619587 |
1118 | p53-Independent DNA Damage Response | 50 | Up | 0.0002215 | 0.0058628 | -0.0614369 | 50 | Up | 0.0003912 | 0.0119448 | -0.0595988 |
1119 | p53-Independent G1/S DNA damage checkpoint | 50 | Up | 0.0002215 | 0.0058628 | -0.0614369 | 50 | Up | 0.0003912 | 0.0119448 | -0.0595988 |
1137 | Peptide chain elongation | 84 | Up | 0.0000000 | 0.0000037 | 0.2446386 | 84 | Up | 0.0000467 | 0.0064415 | -0.0173977 |
1178 | PINK1-PRKN Mediated Mitophagy | 21 | Up | 0.0016209 | 0.0256690 | -0.0886773 | 21 | Up | 0.0029589 | 0.0396982 | 0.1153080 |
1230 | Processing of Capped Intron-Containing Pre-mRNA | 232 | Up | 0.0000271 | 0.0014141 | -0.2976054 | 232 | Up | 0.0000170 | 0.0041099 | -0.0982329 |
1296 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 48 | Up | 0.0002736 | 0.0070483 | -0.0479101 | 48 | Up | 0.0010484 | 0.0206856 | -0.0708212 |
1297 | Regulation of APC/C activators between G1/S and early anaphase | 79 | Up | 0.0002527 | 0.0065967 | -0.1476485 | 79 | Up | 0.0001157 | 0.0074514 | -0.0782185 |
1298 | Regulation of Apoptosis | 51 | Up | 0.0009552 | 0.0170874 | -0.0625668 | 51 | Up | 0.0026132 | 0.0368989 | -0.0855276 |
1305 | Regulation of expression of SLITs and ROBOs | 159 | Up | 0.0000002 | 0.0000209 | -0.0331799 | 159 | Up | 0.0000813 | 0.0071435 | -0.0782185 |
1326 | Regulation of mitotic cell cycle | 86 | Up | 0.0001331 | 0.0043159 | -0.1616983 | 86 | Up | 0.0001404 | 0.0074514 | -0.0808179 |
1327 | Regulation of mRNA stability by proteins that bind AU-rich elements | 87 | Up | 0.0005483 | 0.0119021 | -0.3498033 | 87 | Up | 0.0030772 | 0.0407199 | -0.1258677 |
1333 | Regulation of ornithine decarboxylase (ODC) | 49 | Up | 0.0006154 | 0.0129229 | -0.0625668 | 49 | Up | 0.0020758 | 0.0313315 | -0.0797944 |
1343 | Regulation of RUNX3 expression and activity | 53 | Up | 0.0004381 | 0.0099566 | -0.0603069 | 53 | Up | 0.0009308 | 0.0202055 | -0.0634240 |
1370 | Respiratory electron transport | 90 | Up | 0.0006428 | 0.0130729 | -0.1796005 | 90 | Up | 0.0003957 | 0.0119448 | -0.0879771 |
1371 | Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins. | 95 | Up | 0.0008812 | 0.0165291 | -0.2761915 | 95 | Up | 0.0004838 | 0.0136077 | -0.1032458 |
1373 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 95 | Up | 0.0000000 | 0.0000043 | 0.1695889 | 95 | Up | 0.0000277 | 0.0053602 | -0.0416488 |
1455 | rRNA processing | 186 | Up | 0.0000001 | 0.0000070 | -0.0269377 | 186 | Up | 0.0000579 | 0.0069965 | -0.1037470 |
1457 | rRNA processing in the nucleus and cytosol | 180 | Up | 0.0000000 | 0.0000048 | 0.0167065 | 180 | Up | 0.0000260 | 0.0053602 | -0.0864008 |
1481 | S Phase | 157 | Up | 0.0032244 | 0.0429618 | -0.3028758 | 157 | Up | 0.0007521 | 0.0177209 | -0.1224841 |
1484 | SARS-CoV-1 Infection | 134 | Up | 0.0023168 | 0.0339097 | -0.4089573 | 134 | Up | 0.0005379 | 0.0141466 | -0.1150736 |
1485 | SARS-CoV-1 modulates host translation machinery | 34 | Up | 0.0000013 | 0.0000987 | 0.3873579 | 34 | Up | 0.0010493 | 0.0206856 | -0.0033424 |
1487 | SARS-CoV-1-host interactions | 90 | Up | 0.0000798 | 0.0032797 | -0.3008345 | 90 | Up | 0.0003943 | 0.0119448 | -0.1003646 |
1491 | SARS-CoV-2 modulates host translation machinery | 46 | Up | 0.0000107 | 0.0007139 | 0.1064032 | 46 | Up | 0.0011256 | 0.0216971 | -0.0448705 |
1498 | SCF-beta-TrCP mediated degradation of Emi1 | 53 | Up | 0.0003208 | 0.0077737 | -0.0603069 | 53 | Up | 0.0006602 | 0.0163518 | -0.0634240 |
1499 | SCF(Skp2)-mediated degradation of p27/p21 | 58 | Up | 0.0000335 | 0.0016160 | 0.0191124 | 58 | Up | 0.0002163 | 0.0092515 | -0.0523222 |
1502 | Selenoamino acid metabolism | 103 | Up | 0.0000002 | 0.0000182 | 0.0679048 | 103 | Up | 0.0003186 | 0.0115052 | -0.0802736 |
1503 | Selenocysteine synthesis | 87 | Up | 0.0000000 | 0.0000042 | 0.2056701 | 87 | Up | 0.0001209 | 0.0074514 | -0.0707040 |
1510 | Senescence-Associated Secretory Phenotype (SASP) | 53 | Up | 0.0035504 | 0.0463470 | -0.2311687 | 53 | Up | 0.0005953 | 0.0149371 | -0.0524834 |
1512 | Sensory Perception | 570 | Down | 0.0000571 | 0.0025066 | -1.2359325 | 567 | Down | 0.0000000 | 0.0000020 | -0.5774976 |
1514 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 41 | Down | 0.0000233 | 0.0012524 | -1.4092232 | 41 | Down | 0.0001855 | 0.0088423 | -0.5262750 |
1515 | Sensory perception of taste | 47 | Down | 0.0003067 | 0.0075968 | -1.2863848 | 47 | Down | 0.0001922 | 0.0088423 | -0.5262750 |
1519 | Separation of Sister Chromatids | 161 | Up | 0.0010889 | 0.0186286 | -0.3812494 | 161 | Up | 0.0036781 | 0.0454093 | -0.1409840 |
1603 | Signaling by NOTCH4 | 79 | Up | 0.0008262 | 0.0159619 | -0.3068824 | 79 | Up | 0.0012396 | 0.0220623 | -0.1272730 |
1623 | Signaling by ROBO receptors | 203 | Up | 0.0000233 | 0.0012524 | -0.2307918 | 203 | Up | 0.0012825 | 0.0225257 | -0.1515047 |
1659 | SRP-dependent cotranslational protein targeting to membrane | 105 | Up | 0.0000000 | 0.0000057 | 0.0681744 | 105 | Up | 0.0000737 | 0.0071176 | -0.0707040 |
1660 | Stabilization of p53 | 55 | Up | 0.0001201 | 0.0042199 | -0.0603069 | 55 | Up | 0.0005578 | 0.0141788 | -0.0634240 |
1688 | Switching of origins to a post-replicative state | 90 | Up | 0.0022643 | 0.0336507 | -0.1726080 | 90 | Up | 0.0001347 | 0.0074514 | -0.0755749 |
1702 | Synthesis of DNA | 118 | Up | 0.0020686 | 0.0314691 | -0.2814605 | 118 | Up | 0.0002522 | 0.0101496 | -0.0819130 |
1758 | The role of GTSE1 in G2/M progression after G2 checkpoint | 58 | Up | 0.0001135 | 0.0040608 | -0.1191575 | 58 | Up | 0.0002791 | 0.0110029 | -0.0595988 |
1774 | TNFR2 non-canonical NF-kB pathway | 94 | Up | 0.0022917 | 0.0337978 | -0.3859942 | 94 | Up | 0.0016043 | 0.0267202 | -0.0898906 |
1831 | Translation | 262 | Up | 0.0000001 | 0.0000088 | -0.1376113 | 262 | Up | 0.0000681 | 0.0071176 | -0.1208969 |
1875 | tRNA processing in the nucleus | 55 | Up | 0.0033577 | 0.0444315 | -0.1619091 | 55 | Up | 0.0011989 | 0.0219794 | -0.0981367 |
1884 | Ubiquitin Mediated Degradation of Phosphorylated Cdc25A | 50 | Up | 0.0002215 | 0.0058628 | -0.0614369 | 50 | Up | 0.0003912 | 0.0119448 | -0.0595988 |
1885 | Ubiquitin-dependent degradation of Cyclin D | 50 | Up | 0.0001615 | 0.0045883 | -0.0479101 | 50 | Up | 0.0015553 | 0.0261296 | -0.0827369 |
1903 | Vif-mediated degradation of APOBEC3G | 50 | Up | 0.0004036 | 0.0092836 | -0.0479101 | 50 | Up | 0.0012059 | 0.0219794 | -0.0708212 |
1905 | Viral mRNA Translation | 84 | Up | 0.0000000 | 0.0000042 | 0.2406206 | 84 | Up | 0.0000850 | 0.0071436 | -0.0552680 |
1918 | Vpu mediated degradation of CD4 | 50 | Up | 0.0003367 | 0.0079805 | -0.0479101 | 50 | Up | 0.0006973 | 0.0166322 | -0.0595988 |
make scatterplots of the top sets
XMAX=max(res$ranked_profile[,1])
XMIN=min(res$ranked_profile[,1])
YMAX=max(res$ranked_profile[,2])
YMIN=min(res$ranked_profile[,2])
plot(res$detailed_sets[[1]], pch=19,cex=2,col="lightgray",
xlim=c(XMIN,XMAX),ylim=c(YMIN,YMAX),
xlab="blood",ylab="Guthrie")
text(res$detailed_sets[[1]],labels=rownames(res$detailed_sets[[1]]))
mtext(names(res$detailed_sets)[[1]])
grid() ; abline(v=0,h=0,lty=2,lwd=3)
pdf("c3_metabotropic_ilanguage.pdf")
plot(res$detailed_sets[[1]], pch=19,cex=2,col="lightgray",
xlim=c(XMIN,XMAX),ylim=c(YMIN,YMAX),
xlab="blood",ylab="Guthrie")
text(res$detailed_sets[[1]],labels=rownames(res$detailed_sets[[1]]))
mtext(names(res$detailed_sets)[[1]])
grid() ; abline(v=0,h=0,lty=2,lwd=3)
dev.off()
## png
## 2
Here I will use MDS plot to cluster samples.
First I will use all probes, then I will focus on a subset of candidate probes.
plot(cmdscale(dist(t(bl_mvals))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "n",main="Blood")
mtext("Numbers indicate ilanguage score")
text(cmdscale(dist(t(bl_mvals))), labels=bl_design[,ncol(bl_design)], )
plot(cmdscale(dist(t(gu_mvals))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "n",main="Guthrie card")
mtext("Numbers indicate ilanguage score")
text(cmdscale(dist(t(gu_mvals))), labels=gu_design[,ncol(gu_design)], )
There is no apparent clustering by ilanguage score, indicating a subtle effect.
Now I will examine the probes associated with the pathway of interest.
myprobes
## [1] "cg01329260" "cg06476845" "cg05873271" "cg12958612"
## [5] "cg14230917" "cg16791170" "cg16785092" "cg15863419"
## [9] "cg17969276" "cg21498511" "cg08076643" "cg06282219"
## [13] "cg25644447" "cg05416591" "cg00018443" "cg04762133"
## [17] "cg18752890" "cg06223856" "cg04525998" "cg14781700"
## [21] "cg13143099" "cg18878381" "cg11696355" "cg12963342"
## [25] "cg21512216" "cg08844988" "cg16792948" "cg00382632"
## [29] "cg04508233" "cg08073142" "cg01155522" "cg09024808"
## [33] "cg27078729" "cg04215186" "cg09889256" "cg06037603"
## [37] "cg14908168" "cg02785870" "cg23873145" "cg07689148"
## [41] "cg06420129" "cg12069304" "cg15473007" "cg16124834"
## [45] "cg12229081" "cg01436550" "cg04047827" "cg02183851"
## [49] "cg25012186" "cg01053405" "cg00152838" "cg05689121"
## [53] "cg02324079" "cg03156546" "cg01560476" "cg02393980"
## [57] "cg27407707" "cg22463563" "cg08083403" "cg05404890"
## [61] "cg09657673" "cg09589586" "cg27186436" "cg07768777"
## [65] "cg10134076" "cg07157902" "cg03664025" "cg24527964"
## [69] "cg09816107" "cg11739924" "cg14744741" "cg18045878"
## [73] "cg02391633" "cg07710734" "cg14619832" "cg18833170"
## [77] "cg17525025" "cg05353134" "cg08500967" "ch.16.759907F"
## [81] "cg01880908" "cg04256065" "cg01303655" "cg12700283"
## [85] "cg20035319" "cg00150128" "cg18748888" "cg12489727"
## [89] "cg15661240" "cg12027254" "cg11158641" "cg03660034"
## [93] "cg05736847" "cg17172331" "cg05478790" "cg26340657"
## [97] "cg19699973" "cg09646181" "cg13800273" "cg08898446"
## [101] "cg12072376" "cg08446633" "cg24207009" "cg07787614"
## [105] "cg02958960" "cg20857275" "cg23972793" "cg27503577"
## [109] "cg25362361" "cg09029192" "cg03760856" "cg15744368"
## [113] "cg07093496" "cg09146982" "cg24008619" "cg13280512"
## [117] "cg00423030" "cg15489593" "cg00175441" "cg00496251"
## [121] "cg00672192" "cg00472027" "cg26200971" "cg27579805"
## [125] "cg10943443" "cg21571594" "cg22094953" "cg15831500"
## [129] "cg05890693" "cg04268643" "cg04498014" "cg07530460"
## [133] "cg26740249"
myprobedat <- bl_mvals[which(rownames(bl_mvals) %in% myprobes),]
plot(cmdscale(dist(t(myprobedat))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "n",main="Blood")
text(cmdscale(dist(t(myprobedat))), labels=bl_design[,ncol(bl_design)], )
myprobedat <- gu_mvals[which(rownames(gu_mvals) %in% myprobes),]
plot(cmdscale(dist(t(myprobedat))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "n",main="Guthrie card")
text(cmdscale(dist(t(myprobedat))), labels=gu_design[,ncol(gu_design)], )
Again, there is no apparent clustering by ilanguage score. This indicates that the top probes cannot be used diagnostically.
myprobes2 <- head(bl_lim$Name,50)
myprobedat2 <- bl_mvals[which(rownames(bl_mvals) %in% myprobes2),]
plot(cmdscale(dist(t(myprobedat2))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "n",main="Blood")
text(cmdscale(dist(t(myprobedat2))), labels=bl_design[,ncol(bl_design)], )
myprobes2 <- head(gu_lim$Name,50)
myprobedat2 <- gu_mvals[which(rownames(gu_mvals) %in% myprobes2),]
plot(cmdscale(dist(t(myprobedat2))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "n", main="Guthrie")
text(cmdscale(dist(t(myprobedat2))), labels=gu_design[,ncol(gu_design)], )
MDS analysis of top probes identified without correction for covariates.
bl_design2 <- bl_design[,c(1,10)]
fit <- lmFit(bl_mvals, bl_design2)
fit <- eBayes(fit)
summary(decideTests(fit))
## (Intercept) ilanguage
## Down 256222 0
## NotSig 16895 802647
## Up 529530 0
top <- topTable(fit,coef="ilanguage",num=Inf, sort.by = "P")
head(top)
## logFC AveExpr t P.Value adj.P.Val B
## cg17692763 -0.6457889 0.8069554 -5.915963 9.206791e-06 0.7379969 0.226393453
## cg04367545 0.4769302 0.8087474 5.737223 1.363368e-05 0.7379969 0.072659929
## cg03553358 -0.5139536 -2.3186818 -5.708938 1.451255e-05 0.7379969 0.047878940
## cg25692524 -0.3920523 -3.6852899 -5.648790 1.657936e-05 0.7379969 -0.005229242
## cg03146706 -0.4352132 1.7198109 -5.596459 1.862176e-05 0.7379969 -0.051892199
## cg12959820 -0.4433110 -0.3527632 -5.523459 2.190894e-05 0.7379969 -0.117697054
myprobes3 <- rownames(top)[1:20]
myprobedat3 <- bl_mvals[which(rownames(bl_mvals) %in% myprobes3),]
plot(cmdscale(dist(t(myprobedat3))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "n",main="Blood")
text(cmdscale(dist(t(myprobedat3))), labels=bl_design[,ncol(bl_design)], )
gu_design2 <- gu_design[,c(1,12)]
fit <- lmFit(gu_mvals, gu_design2)
fit <- eBayes(fit)
summary(decideTests(fit))
## (Intercept) ilanguage
## Down 262383 0
## NotSig 22814 790658
## Up 505461 0
top <- topTable(fit,coef="ilanguage",num=Inf, sort.by = "P")
head(top)
## logFC AveExpr t P.Value adj.P.Val B
## cg02239677 0.4371694 -1.0143109 6.599736 8.543598e-07 0.6755064 1.0165260
## cg08971667 -0.4722478 -2.4549604 -6.308589 1.712085e-06 0.6768370 0.7667963
## cg20771596 -0.4323488 0.1339515 -5.773075 6.300529e-06 0.9999836 0.2747645
## cg04986899 0.3344568 2.0528811 5.090863 3.439218e-05 0.9999836 -0.4129538
## cg11100281 -0.4588872 1.1950259 -5.009866 4.215605e-05 0.9999836 -0.4989519
## cg09098195 0.5807053 1.9778800 4.991100 4.419382e-05 0.9999836 -0.5190026
myprobes3 <- rownames(top)[1:20]
myprobedat3 <- gu_mvals[which(rownames(gu_mvals) %in% myprobes3),]
plot(cmdscale(dist(t(myprobedat3))), xlab="Coordinate 1", ylab="Coordinate 2",
type = "n",main="Guthrie")
text(cmdscale(dist(t(myprobedat3))), labels=gu_design[,ncol(gu_design)], )
Again it was unsuccessful.
ebGSEA uses globaltest to identify DMGs from infinium data. Some points to note:
only 1 sided test - does not distinguish between up and down methylated genes.
cannot use complex experiment designs.
Therefore I modify how the ebGSEA code uses globaltest.
item mapEIDto850k.lv : A list mapping Entrez Gene ID to 850k probes
#bl_gt <- doGT(bl_design,bl_mvals,array="850k",ncores=16)
data.m <- bl_mvals
subsets <- mclapply(mapEIDto850k.lv,intersect,rownames(data.m),mc.cores = 16)
nrep.v <- unlist(lapply(subsets,length))
selG.idx <- which(nrep.v>0)
gt.o <- gt(response=bl_design[,ncol(bl_design)], alternative=t(data.m), model="linear",
directional = TRUE, standardize = FALSE, permutations = 0,
subsets=subsets[selG.idx],trace=F)
gt_res <- result(gt.o)
gt_res <- gt_res[order(gt_res$`p-value`),]
genesets <- gmt_import("ReactomePathways.gmt")
cores = 8
Aggregate mval to genes and examine pathway enrichment in blood and guthries.
tic()
bl_gsmea <- gsmea(mval=bl_mvals,design=bl_design,probesets=sets,genesets=genesets,cores=8)
toc()
## 198.092 sec elapsed
bl_gsmea$res <- subset(bl_gsmea$res,nprobes>=5)
bl_gsmea$res$FDR <- p.adjust(bl_gsmea$res$PValue,method="fdr")
head(bl_gsmea$res,20) %>% kbl(caption="Top DM pathways in blood identified with GSMEA") %>%
kable_paper("hover", full_width = F)
nprobes | median | PValue | FDR | |
---|---|---|---|---|
VLDL assembly | 5 | -1.8955934 | 0.0000008 | 0.0016351 |
Vitamin D (calciferol) metabolism | 12 | -2.4124560 | 0.0000050 | 0.0047951 |
Methionine salvage pathway | 6 | -3.1134366 | 0.0000096 | 0.0052252 |
RHOH GTPase cycle | 36 | -1.1361085 | 0.0000129 | 0.0052252 |
Regulation of TLR by endogenous ligand | 17 | -1.6911724 | 0.0000135 | 0.0052252 |
Assembly of the ORC complex at the origin of replication | 10 | -3.9842186 | 0.0000189 | 0.0060902 |
Defective HLCS causes multiple carboxylase deficiency | 7 | -2.7445180 | 0.0000411 | 0.0063163 |
Dual Incision in GG-NER | 39 | -0.7927163 | 0.0000427 | 0.0063163 |
Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 11 | -1.7628462 | 0.0000586 | 0.0063163 |
Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 16 | -3.0762735 | 0.0000736 | 0.0063163 |
Release of Hh-Np from the secreting cell | 8 | -1.8096843 | 0.0000774 | 0.0063163 |
HDL clearance | 5 | -2.0842172 | 0.0000846 | 0.0063163 |
Formation of Incision Complex in GG-NER | 40 | -1.4406897 | 0.0000853 | 0.0063163 |
Linoleic acid (LA) metabolism | 7 | -1.1580701 | 0.0000853 | 0.0063163 |
Synthesis of very long-chain fatty acyl-CoAs | 23 | -2.4423450 | 0.0000865 | 0.0063163 |
Role of LAT2/NTAL/LAB on calcium mobilization | 13 | -2.0112126 | 0.0000873 | 0.0063163 |
Defects in biotin (Btn) metabolism | 8 | -2.5911369 | 0.0000937 | 0.0063163 |
RHOD GTPase cycle | 48 | -1.9086189 | 0.0000949 | 0.0063163 |
Muscarinic acetylcholine receptors | 5 | -2.0532666 | 0.0001001 | 0.0063163 |
Fatty acyl-CoA biosynthesis | 36 | -2.3192477 | 0.0001027 | 0.0063163 |
tic()
gu_gsmea <- gsmea(mval=gu_mvals,design=gu_design,probesets=sets,genesets=genesets,cores=8)
toc()
## 194.893 sec elapsed
gu_gsmea$res <- subset(gu_gsmea$res,nprobes>=5)
gu_gsmea$res$FDR <- p.adjust(gu_gsmea$res$PValue,method="fdr")
head(gu_gsmea$res,20) %>% kbl(caption="Top DM pathways in Guthrie card identified with GSMEA") %>%
kable_paper("hover", full_width = F)
nprobes | median | PValue | FDR | |
---|---|---|---|---|
Recycling of eIF2:GDP | 7 | 1.0530744 | 0.0025353 | 0.8838114 |
Sensory perception of salty taste | 6 | -1.9930074 | 0.0027402 | 0.8838114 |
Diseases associated with surfactant metabolism | 9 | -1.2577513 | 0.0058503 | 0.8838114 |
KSRP (KHSRP) binds and destabilizes mRNA | 17 | -0.6957056 | 0.0131495 | 0.8838114 |
Chylomicron remodeling | 10 | -0.8226941 | 0.0139064 | 0.8838114 |
Creatine metabolism | 9 | -0.8008186 | 0.0140569 | 0.8838114 |
Defective CSF2RA causes SMDP4 | 7 | -1.2577513 | 0.0210804 | 0.8838114 |
Defective CSF2RB causes SMDP5 | 7 | -1.2577513 | 0.0210804 | 0.8838114 |
Tandem pore domain potassium channels | 12 | -1.1411864 | 0.0218081 | 0.8838114 |
Inactivation of APC/C via direct inhibition of the APC/C complex | 21 | 0.4044948 | 0.0235526 | 0.8838114 |
Inhibition of the proteolytic activity of APC/C required for the onset of anaphase by mitotic spindle checkpoint components | 21 | 0.4044948 | 0.0235526 | 0.8838114 |
Cation-coupled Chloride cotransporters | 7 | -1.1202600 | 0.0341080 | 0.8838114 |
Na+/Cl- dependent neurotransmitter transporters | 18 | -0.9272093 | 0.0352764 | 0.8838114 |
Activated NTRK3 signals through PI3K | 6 | -1.0512534 | 0.0392557 | 0.8838114 |
APC-Cdc20 mediated degradation of Nek2A | 26 | 0.3854902 | 0.0399509 | 0.8838114 |
Assembly of active LPL and LIPC lipase complexes | 17 | -0.9537194 | 0.0418350 | 0.8838114 |
Phase 4 - resting membrane potential | 19 | -0.9553124 | 0.0431821 | 0.8838114 |
Signaling by NTRK3 (TRKC) | 17 | -0.6776604 | 0.0546364 | 0.8838114 |
Chylomicron assembly | 10 | -0.5346036 | 0.0579233 | 0.8838114 |
AKT phosphorylates targets in the nucleus | 9 | -1.1352247 | 0.0604976 | 0.8838114 |
For reproducibility
sessionInfo()
## R version 4.2.2 Patched (2022-11-10 r83330)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid stats4 parallel stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] vioplot_0.4.0
## [2] zoo_1.8-11
## [3] sm_2.2-5.7.1
## [4] pkgload_1.3.2
## [5] GGally_2.1.2
## [6] ggplot2_3.4.1
## [7] gtools_3.9.4
## [8] tibble_3.2.0
## [9] dplyr_1.1.0
## [10] echarts4r_0.4.4
## [11] ebGSEA_0.1.0
## [12] globaltest_5.52.0
## [13] survival_3.5-5
## [14] tictoc_1.1
## [15] RIdeogram_0.2.2
## [16] kableExtra_1.3.4
## [17] data.table_1.14.8
## [18] ENmix_1.34.0
## [19] doParallel_1.0.17
## [20] qqman_0.1.8
## [21] RCircos_1.2.2
## [22] beeswarm_0.4.0
## [23] forestplot_3.1.1
## [24] abind_1.4-5
## [25] checkmate_2.1.0
## [26] reshape2_1.4.4
## [27] gplots_3.1.3
## [28] eulerr_7.0.0
## [29] GEOquery_2.66.0
## [30] RColorBrewer_1.1-3
## [31] IlluminaHumanMethylation450kmanifest_0.4.0
## [32] topconfects_1.14.0
## [33] DMRcatedata_2.16.0
## [34] ExperimentHub_2.6.0
## [35] AnnotationHub_3.6.0
## [36] BiocFileCache_2.6.0
## [37] dbplyr_2.3.1
## [38] DMRcate_2.12.0
## [39] limma_3.54.0
## [40] missMethyl_1.32.0
## [41] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1
## [42] R.utils_2.12.2
## [43] R.oo_1.25.0
## [44] R.methodsS3_1.8.2
## [45] plyr_1.8.8
## [46] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [47] minfi_1.44.0
## [48] bumphunter_1.40.0
## [49] locfit_1.5-9.7
## [50] iterators_1.0.14
## [51] foreach_1.5.2
## [52] Biostrings_2.66.0
## [53] XVector_0.38.0
## [54] SummarizedExperiment_1.28.0
## [55] Biobase_2.58.0
## [56] MatrixGenerics_1.10.0
## [57] matrixStats_0.63.0
## [58] GenomicRanges_1.50.2
## [59] GenomeInfoDb_1.34.6
## [60] IRanges_2.32.0
## [61] S4Vectors_0.36.1
## [62] BiocGenerics_0.44.0
## [63] mitch_1.10.0
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.3 rtracklayer_1.58.0
## [3] tidyr_1.3.0 bit64_4.0.5
## [5] knitr_1.42 DelayedArray_0.24.0
## [7] rpart_4.1.19 KEGGREST_1.38.0
## [9] RCurl_1.98-1.10 AnnotationFilter_1.22.0
## [11] generics_0.1.3 GenomicFeatures_1.50.3
## [13] preprocessCore_1.60.2 RSQLite_2.3.0
## [15] bit_4.0.5 tzdb_0.3.0
## [17] webshot_0.5.4 xml2_1.3.3
## [19] httpuv_1.6.9 assertthat_0.2.1
## [21] xfun_0.37 hms_1.1.2
## [23] jquerylib_0.1.4 evaluate_0.20
## [25] promises_1.2.0.1 fansi_1.0.4
## [27] restfulr_0.0.15 scrime_1.3.5
## [29] progress_1.2.2 caTools_1.18.2
## [31] readxl_1.4.2 DBI_1.1.3
## [33] geneplotter_1.76.0 htmlwidgets_1.6.2
## [35] reshape_0.8.9 purrr_1.0.1
## [37] ellipsis_0.3.2 backports_1.4.1
## [39] permute_0.9-7 calibrate_1.7.7
## [41] grImport2_0.2-0 annotate_1.76.0
## [43] biomaRt_2.54.0 deldir_1.0-6
## [45] sparseMatrixStats_1.10.0 vctrs_0.6.0
## [47] ensembldb_2.22.0 withr_2.5.0
## [49] cachem_1.0.7 Gviz_1.42.0
## [51] BSgenome_1.66.2 GenomicAlignments_1.34.0
## [53] prettyunits_1.1.1 mclust_6.0.0
## [55] svglite_2.1.1 cluster_2.1.4
## [57] RPMM_1.25 lazyeval_0.2.2
## [59] crayon_1.5.2 genefilter_1.80.3
## [61] labeling_0.4.2 edgeR_3.40.2
## [63] pkgconfig_2.0.3 nlme_3.1-162
## [65] ProtGenerics_1.30.0 nnet_7.3-18
## [67] rlang_1.1.0 lifecycle_1.0.3
## [69] filelock_1.0.2 dichromat_2.0-0.1
## [71] rsvg_2.4.0 cellranger_1.1.0
## [73] rngtools_1.5.2 base64_2.0.1
## [75] Matrix_1.5-3 Rhdf5lib_1.20.0
## [77] base64enc_0.1-3 viridisLite_0.4.1
## [79] png_0.1-8 rjson_0.2.21
## [81] bitops_1.0-7 KernSmooth_2.23-20
## [83] rhdf5filters_1.10.0 blob_1.2.4
## [85] DelayedMatrixStats_1.20.0 doRNG_1.8.6
## [87] stringr_1.5.0 nor1mix_1.3-0
## [89] readr_2.1.4 jpeg_0.1-10
## [91] scales_1.2.1 memoise_2.0.1
## [93] magrittr_2.0.3 zlibbioc_1.44.0
## [95] compiler_4.2.2 BiocIO_1.8.0
## [97] illuminaio_0.40.0 Rsamtools_2.14.0
## [99] cli_3.6.0 DSS_2.46.0
## [101] htmlTable_2.4.1 Formula_1.2-5
## [103] MASS_7.3-58.3 tidyselect_1.2.0
## [105] stringi_1.7.12 highr_0.10
## [107] yaml_2.3.7 askpass_1.1
## [109] latticeExtra_0.6-30 sass_0.4.5
## [111] VariantAnnotation_1.44.0 tools_4.2.2
## [113] rstudioapi_0.14 foreign_0.8-84
## [115] bsseq_1.34.0 gridExtra_2.3
## [117] farver_2.1.1 digest_0.6.31
## [119] BiocManager_1.30.20 shiny_1.7.4
## [121] quadprog_1.5-8 Rcpp_1.0.10
## [123] siggenes_1.72.0 BiocVersion_3.16.0
## [125] later_1.3.0 org.Hs.eg.db_3.16.0
## [127] httr_1.4.5 AnnotationDbi_1.60.0
## [129] biovizBase_1.46.0 colorspace_2.1-0
## [131] rvest_1.0.3 XML_3.99-0.13
## [133] splines_4.2.2 statmod_1.5.0
## [135] kpmt_0.1.0 multtest_2.54.0
## [137] systemfonts_1.0.4 xtable_1.8-4
## [139] jsonlite_1.8.4 dynamicTreeCut_1.63-1
## [141] R6_2.5.1 Hmisc_5.0-1
## [143] pillar_1.8.1 htmltools_0.5.4
## [145] mime_0.12 glue_1.6.2
## [147] fastmap_1.1.1 BiocParallel_1.32.5
## [149] interactiveDisplayBase_1.36.0 beanplot_1.3.1
## [151] codetools_0.2-19 utf8_1.2.3
## [153] lattice_0.20-45 bslib_0.4.2
## [155] curl_5.0.0 openssl_2.0.6
## [157] interp_1.1-3 rmarkdown_2.20
## [159] munsell_0.5.0 rhdf5_2.42.0
## [161] GenomeInfoDbData_1.2.9 HDF5Array_1.26.0
## [163] impute_1.72.3 gtable_0.3.2