Source: https://github.com/markziemann/asd_meth
Here we are analysing buccal swab methylation in 6 twin pairs.
baseDir=getwd()
dataDir=paste(baseDir,"/cp_asd_data",sep="")
suppressPackageStartupMessages({
library("missMethyl")
library("limma")
library("minfi")
library("IlluminaHumanMethylation450kanno.ilmn12.hg19")
library("IlluminaHumanMethylationEPICanno.ilm10b2.hg19")
library("ruv")
library("RColorBrewer")
library("matrixStats")
library("gplots")
library("WGCNA")
library("FlowSorted.Blood.450k")
library("reshape2")
library("ggplot2")
library("missMethyl")
library("DMRcate")
library("FlowSorted.Blood.EPIC")
library("mitch")
library("kableExtra")
library("vioplot")
})
source("meth_functions.R")
Load the annotation data and the Epic methylation data.
This analysis is to be conducted on Ubuntu with R4.
ann = getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b2.hg19)
ann_sub = ann[,c("chr","pos","strand","Name","Islands_Name",
"Relation_to_Island","UCSC_RefGene_Name","UCSC_RefGene_Group")]
targets_gen = read.metharray.sheet(dataDir, pattern = "ILMLEPIC-16276_SampleSheet.csv")
## [read.metharray.sheet] Found the following CSV files:
## [1] "/home/mdz/projects/asd_meth/cp_asd_data/ILMLEPIC-16276_SampleSheet.csv"
targets_gen <- targets_gen[grep("ASD",targets_gen$Sample_Name),]
# Remove 204375410103_R07C01 because it is corrupted
targets_gen <- targets_gen[grep("204375410103_R07C01",targets_gen$Basename, invert=TRUE),]
# Remove 204375410103_R08C01 beacuse its twin is missing
targets_gen <- targets_gen[grep("204375410103_R08C01",targets_gen$Basename, invert=TRUE),]
#targets$ID = paste(targets$Sample_Group,targets_gen$Sample_Name,sep=".")
rgSet = read.metharray.exp(targets = targets_gen)
sampleNames(rgSet) = targets_gen$SampleID
# patient data
ss <- read.table("ASD_EPIC_DATA/ASD_guthrie_blood_combined_summarysheet.csv",sep=",",header=TRUE)
ss <- ss[grep("G",ss$Sample_Name),]
ss$Sample_Name <- gsub("\\.","_",ss$Sample_Name)
ss$Sample_Name <- gsub("_G","",ss$Sample_Name)
ss <- ss[ss$Sample_Name %in% targets_gen$Sample_Name,]
ss$Sample_Name
## [1] "ASD002_1" "ASD002_2" "ASD005_1" "ASD005_2" "ASD008_1" "ASD008_2"
## [7] "ASD009_1" "ASD009_2" "ASD013_1" "ASD013_2"
targets_gen$Sample_Name
## [1] "ASD002_1" "ASD002_2" "ASD005_1" "ASD005_2" "ASD008_1" "ASD008_2"
## [7] "ASD009_1" "ASD009_2" "ASD013_1" "ASD013_2"
targets_gen <- ss
colnames(rgSet) <- targets_gen$Sample_Name
snpBetas = getSnpBeta(rgSet)
d = dist(t(snpBetas))
hr = hclust(d, method = "complete", members=NULL)
plot(hr)
detP = detectionP(rgSet)
qcReport(rgSet, sampNames = targets_gen$Sample_Name,
pdf="qc-report_ASD_buccal_nov27.pdf")
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
## the caller; using TRUE
## png
## 2
cols=brewer.pal(4,"Set1")
barplot(apply(detP,2,mean),
col=as.numeric(factor(targets_gen$Sample_Name)),
las=2,cex.names= 0.8, cex.axis=0.75,
main="Mean detection p-values of probe signals",
ylab="Mean detection p-value")
barplot(apply(detP,2,mean),
col=as.numeric(factor(targets_gen$Sample_Name)),
las=2,cex.names= 0.8, cex.axis=0.75,ylim=c(0,0.010),
main="Mean detection p-values of probe signals",
ylab="Mean detection p-value")
mset = preprocessRaw(rgSet)
Using Multi-dimensional scaling (MDS) plots before filtering.
mdsPlot(mset, sampGroups = targets_gen$Sample_Name,
sampNames=targets_gen$Social_interaction_on_ADOS,legendPos="bottom")
mdsPlot(mset, sampGroups = targets_gen$Sex,
sampNames=targets_gen$SampleID,legendPos="bottom")
Buccal swabs contain epithelial and leucocytes. Get the abundance of neutrophils as a proxy marker.
#cellCounts_new <- estimateCellCounts(rgSet, compositeCellType = "Blood",
# processMethod = "auto", probeSelect = "auto",
# cellTypes = c("CD8T","CD4T", "NK","Bcell","Mono","Gran"),
# referencePlatform = c("IlluminaHumanMethylation450k"),
# returnAll = FALSE, meanPlot = TRUE)
cells <- estimateCellCounts2(rgSet,
referencePlatform= "IlluminaHumanMethylationEPIC",
returnAll = TRUE)
## snapshotDate(): 2023-04-24
## snapshotDate(): 2023-04-24
## see ?FlowSorted.Blood.EPIC and browseVignettes('FlowSorted.Blood.EPIC') for documentation
## loading from cache
## [estimateCellCounts2] Combining user data with reference (flow sorted) data.
## Warning in asMethod(object): NAs introduced by coercion
## [estimateCellCounts2] Processing user and reference data together.
## [estimateCellCounts2] Using IDOL L-DMR probes for composition estimation.
## [estimateCellCounts2] Estimating proportion composition (prop), if you provide cellcounts those will be provided as counts in the composition estimation.
cells$prop
## CD8T CD4T NK Bcell Mono Neu
## ASD002_1 0.0000 0.4942 0.0000 0.0970 0.1416 0.2656
## ASD002_2 0.0000 0.4554 0.0000 0.0926 0.1213 0.3328
## ASD005_1 0.0000 0.5309 0.0000 0.0936 0.1592 0.1992
## ASD005_2 0.0000 0.4832 0.0000 0.0943 0.1365 0.2879
## ASD008_1 0.0000 0.4181 0.0230 0.0926 0.1233 0.1846
## ASD008_2 0.0844 0.2596 0.1168 0.1576 0.0022 0.1451
## ASD009_1 0.0000 0.4870 0.0000 0.1026 0.1357 0.2792
## ASD009_2 0.0000 0.3078 0.0000 0.0840 0.0757 0.5568
## ASD013_1 0.0000 0.5408 0.0000 0.0977 0.1555 0.1886
## ASD013_2 0.0000 0.4860 0.0000 0.1022 0.1257 0.2889
Remove samples with more than 5% of probes with detection p-values greater than 0.01.
None of the p-values are less than 0.05.
Now filter for high detection p-value and overlap with SNP.
Need to get a copy of the Xreact probes from Namitha. In the mean time I have downloaded from github - link below.
detP <- detectionP(rgSet)
keep_samples <- apply(detP,2, function(x) { length(which(x>0.01))/length(x) } ) < 0.05
detP <- detP[,keep_samples]
mset <- mset[,keep_samples]
targets_gen <- targets_gen[keep_samples,]
mset <- mset[rowMeans(detP) < 0.01,]
gmset <- mapToGenome(mset)
#remove SNPs
gmset_flt = dropLociWithSnps(gmset, snps = c("CpG", "SBE"))
#Removing cross-reactive probes
XURL="https://raw.githubusercontent.com/sirselim/illumina450k_filtering/master/EPIC/13059_2016_1066_MOESM1_ESM.csv"
Xreact <- read.csv(XURL)
#Xreact = read.csv(file="/group/canc2/puumba/Data/InfiniumData/NamithaData/Rprojects/Autism/Analysis_Sept11/EPIC_850k_crossreactiveProbes.csv", stringsAsFactors=FALSE)
#Xreact = read.csv(file="~/48639-non-specific-probes-Illumina450k.csv", stringsAsFactors=FALSE)
noXreact <- !(featureNames(gmset) %in% Xreact$X)
gmset <- gmset[noXreact,]
#Removing probes on X and Y chromosomes
autosomes <- !(featureNames(gmset) %in% ann$Name[ann$chr %in% c("chrX","chrY")])
gmset_flt <- gmset[autosomes,]
#getBeta
beta = getM(gmset_flt)
saveRDS(beta,"buccal_beta.rds")
df <- data.frame(t(t(colMeans(beta))))
colnames(df) = "gwam_bu"
write.table(df,file="buccal_gwam.tsv")
#Relative log expression (RLE plot)
mvals = getM(gmset_flt)
medSq = apply(mvals, 1, median)
YSq = mvals - medSq
boxplot(YSq,outline=FALSE,ylim=c(-1.5,1.5),
ylab="Relative Log Methylation Value",
cols=as.character(factor(targets_gen$Social_interaction_on_ADOS,)) )
pal = brewer.pal(8, "Dark2")
mds1Sq = plotMDS(mvals, top=1000, gene.selection="common",dim.plot=c(1,2))
mds2Sq = plotMDS(mvals, top=1000, gene.selection="common",dim.plot=c(1,3))
mds3Sq = plotMDS(mvals, top=1000, gene.selection="common",dim.plot=c(2,3))
mds4Sq = plotMDS(mvals, top=1000, gene.selection="common",dim.plot=c(3,4))
plotMDS(mds1Sq, xlab="Dimension 1", ylab="Dimension 2",
col=pal[as.factor(targets_gen$Diagnosis)],
dim=c(1,2), labels=targets_gen$Sample_Name)
legend("bottomright",bg="white",col=pal,cex=.7,pch=1,legend=0:1)
plotMDS(mds2Sq, xlab="Dimension 1", ylab="Dimension 3",
col=pal[as.factor(targets_gen$Diagnosis)],dim=c(1,3),
labels=targets_gen$Sample_Name)
legend("bottomright",bg="white",col=pal,cex=.7,pch=1,legend=0:1)
plotMDS(mds3Sq, xlab="Dimension 2", ylab="Dimension 3",
col=pal[as.factor(targets_gen$Diagnosis)],dim=c(2,3),
labels=targets_gen$Sample_Name)
legend("bottomright",bg="white",col=pal,cex=.7,pch=1,legend=0:1)
plotMDS(mds4Sq, xlab="Dimension 3", ylab="Dimension 4",
col=pal[as.factor(targets_gen$Diagnosis)],dim=c(3,4),
labels=targets_gen$Sample_Name)
legend("bottomright",bg="white",col=pal,cex=.7,pch=1,legend=0:1)
mvals <- mvals[apply(mvals,1,sd)!=0,]
mvals <- mvals[which(!is.na(rowSums(mvals))),]
fit <- prcomp(t(mvals),center = TRUE, scale = TRUE,retx=TRUE)
loadings = fit$x
plot(fit,type="lines")
nGenes = nrow(mvals)
nSamples = ncol(mvals)
datTraits = targets_gen[,7:15]
moduleTraitCor = cor(loadings[,1:6], datTraits, use = "p")
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples)
par(cex=0.75, mar = c(6, 8.5, 3, 3))
textMatrix = paste(signif(moduleTraitCor, 2), "\n(",
signif(moduleTraitPvalue, 1), ")", sep = "");
dim(textMatrix) = dim(moduleTraitCor)
labeledHeatmap(Matrix = t(moduleTraitCor),
xLabels = colnames(loadings)[1:ncol(t(moduleTraitCor))],
yLabels = names(datTraits), colorLabels = FALSE, colors = blueWhiteRed(6),
textMatrix = t(textMatrix), setStdMargins = FALSE, cex.text = 0.5,
cex.lab.y = 0.6, zlim = c(-1,1),
main = paste("PCA-trait relationships: Top principal components"))
pdf("pca_buccal.pdf")
par(mar=c(3,8,2,2))
labeledHeatmap(Matrix = t(moduleTraitCor),
xLabels = colnames(loadings)[1:ncol(t(moduleTraitCor))],
yLabels = names(datTraits), colorLabels = FALSE, colors = blueWhiteRed(6),
textMatrix = t(textMatrix), setStdMargins = FALSE, cex.text = 0.5,
cex.lab.y = 0.6, zlim = c(-1,1),
main = paste("PCA-trait relationships: Top principal components"))
dev.off()
## png
## 2
ADOS is the outcome variable (continuous)
Twin_Group <- factor(targets_gen$Family_ID)
ADOS <- targets_gen$Social_interaction_on_ADOS
names(ADOS) <- targets_gen$SampleID
motor <- targets_gen$Motor_skills
diagnosis <- targets_gen$Diagnosis
SRS<- targets_gen$SRS_social_scores
iiq <- 1/targets_gen$IQ
# fix infinite
iiq[iiq==Inf] <- 0.025
iiq <- as.vector(scale(iiq))
ilanguage <- as.vector(scale(1/targets_gen$language))
#ADOS
design_tw <- model.matrix(~ Twin_Group + ADOS )
fit_tw <- lmFit(mvals, design_tw)
fit2_tw <- eBayes(fit_tw)
summary(decideTests(fit2_tw))
## (Intercept) Twin_Group5 Twin_Group9 Twin_Group13 ADOS
## Down 332718 982 1025 892 0
## NotSig 169973 799215 799261 799480 801260
## Up 298569 1063 974 888 0
top <- topTable(fit2_tw,coef="ADOS",num=Inf, sort.by = "P")
nsig <- sum(top$adj.P.Val < 0.05)
sum(top$P.Value< 0.05)
## [1] 37749
output <-merge(ann_sub,top,by.x="Name",by.y="row.names")
output <- output[order(output$P.Value),]
write.csv(output, file="limma_buccal_ADOS.csv",row.names=FALSE)
output <- subset(output,P.Value<1e-4)
head(output,30) %>% kbl() %>% kable_paper("hover", full_width = F)
Name | chr | pos | strand | Islands_Name | Relation_to_Island | UCSC_RefGene_Name | UCSC_RefGene_Group | logFC | AveExpr | t | P.Value | adj.P.Val | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cg05143078 | chr15 | 74988056 |
|
chr15:74988166-74988669 | N_Shore | EDC3;EDC3;EDC3 | 5’UTR;5’UTR;5’UTR | 0.2755362 | -3.788836 | 12.160630 | 8.40e-06 | 0.9047411 | 3.096494 |
cg15365028 | chr2 | 236442817 |
|
chr2:236443815-236444025 | N_Shore | AGAP1;AGAP1 | Body;Body | -0.1870254 | 5.516570 | -10.051787 | 2.82e-05 | 0.9047411 | 2.411940 |
cg10535017 | chr17 | 61699755 |
|
chr17:61699007-61700728 | Island | MAP3K3;MAP3K3 | TSS200;TSS200 | 0.1709695 | -3.960242 | 9.504179 | 4.01e-05 | 0.9047411 | 2.190087 |
cg25208142 | chr10 | 134611553 |
|
chr10:134611552-134613137 | Island | -0.1775579 | 1.344564 | -9.409393 | 4.27e-05 | 0.9047411 | 2.149478 | ||
cg05616303 | chr18 | 65321470 |
|
OpenSea | LOC643542 | Body | -0.1770356 | 1.602827 | -9.011285 | 5.60e-05 | 0.9047411 | 1.971274 | |
cg06818937 | chr19 | 50887645 |
|
chr19:50887181-50887933 | Island | POLD1;POLD1;POLD1;POLD1;POLD1 | 1stExon;1stExon;5’UTR;5’UTR;Body | 0.1834566 | -3.789042 | 8.749652 | 6.73e-05 | 0.9047411 | 1.847084 |
cg05075067 | chr2 | 28113413 |
|
chr2:28113060-28113764 | Island | BRE;BRE;BRE;RBKS;BRE;LOC100302650;BRE | TSS200;TSS200;TSS200;TSS200;TSS200;Body;TSS200 | 0.1785022 | -5.457695 | 8.635742 | 7.30e-05 | 0.9047411 | 1.791165 |
cg01157070 | chr16 | 56228511 |
|
chr16:56224731-56224980 | S_Shelf | DKFZP434H168;GNAO1;GNAO1 | TSS200;Body;Body | 0.1532936 | -4.143216 | 8.601444 | 7.48e-05 | 0.9047411 | 1.774102 |
cg11534677 | chr7 | 32932328 |
|
chr7:32930730-32931956 | S_Shore | KBTBD2 | TSS1500 | 0.1794302 | -5.468210 | 8.502515 | 8.03e-05 | 0.9047411 | 1.724290 |
cg23781719 | chr6 | 43398988 |
|
chr6:43395188-43395894 | S_Shelf | ABCC10 | TSS1500 | -0.1495713 | 1.121903 | -8.449884 | 8.35e-05 | 0.9047411 | 1.697425 |
cg14466709 | chr9 | 95087590 |
|
chr9:95087949-95088606 | N_Shore | NOL8;NOL8;CENPP;NOL8 | Body;5’UTR;TSS200;1stExon | 0.2193702 | -4.378564 | 8.428112 | 8.48e-05 | 0.9047411 | 1.686236 |
cg20554049 | chr5 | 96064099 |
|
OpenSea | CAST;CAST;CAST;CAST;CAST | Body;Body;Body;Body;Body | -0.1457575 | 1.808843 | -8.314543 | 9.22e-05 | 0.9047411 | 1.627153 | |
cg02514062 | chr4 | 106629846 |
|
chr4:106629575-106630214 | Island | INTS12;INTS12;GSTCD;INTS12;INTS12 | 5’UTR;1stExon;TSS200;5’UTR;1stExon | 0.3480929 | -4.319272 | 8.226062 | 9.85e-05 | 0.9047411 | 1.580270 |
saveRDS(design_tw, "buccal_design_ados.rds")
saveRDS(mvals, "buccal_mvals.rds")
Other models:
motor skills impairment
diagnosis
SRS
inverse IQ
inverse langguage
#motor:820,1.053055e-12
design_tw <- model.matrix(~ Twin_Group + motor )
fit_tw <- lmFit(mvals, design_tw)
fit2_tw <- eBayes(fit_tw)
summary(decideTests(fit2_tw))
## (Intercept) Twin_Group5 Twin_Group9 Twin_Group13 motor
## Down 325839 386 389 401 0
## NotSig 170771 800420 800531 800494 801260
## Up 304650 454 340 365 0
top <- topTable(fit2_tw,coef="motor",num=Inf, sort.by = "P")
nsig <- sum(top$adj.P.Val < 0.05)
sum(top$P.Value< 0.05)
## [1] 7186
output <-merge(ann_sub,top,by.x="Name",by.y="row.names")
output <- output[order(output$P.Value),]
write.csv(output,file="limma_buccal_motor.csv",row.names=FALSE)
head(output,30) %>% kbl(caption="motor") %>% kable_paper("hover", full_width = F)
Name | chr | pos | strand | Islands_Name | Relation_to_Island | UCSC_RefGene_Name | UCSC_RefGene_Group | logFC | AveExpr | t | P.Value | adj.P.Val | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cg22703975 | chr11 | 108765859 |
|
OpenSea | DDX10 | Body | 2.490644 | 2.1414771 | 12.214028 | 0.0000050 | 1 | -3.958841 | |
cg14858551 | chr20 | 18269244 |
|
chr20:18268544-18269405 | Island | ZNF133;ZNF133;ZNF133;ZNF133 | 1stExon;5’UTR;5’UTR;1stExon | -2.163516 | -4.3573914 | -11.655568 | 0.0000068 | 1 | -3.962402 |
cg01015483 | chr4 | 186311121 |
|
OpenSea | -1.996494 | 1.7240814 | -11.360672 | 0.0000081 | 1 | -3.964482 | |||
cg00870694 | chr7 | 106775657 |
|
OpenSea | PRKAR2B | Body | 1.869406 | 1.5565260 | 9.671466 | 0.0000240 | 1 | -3.979909 | |
cg01852341 | chr18 | 46065250 |
|
chr18:46065061-46065263 | Island | CTIF;CTIF | TSS200;TSS200 | 2.040689 | -6.1585631 | 9.640040 | 0.0000245 | 1 | -3.980267 |
cg24207248 | chr17 | 78965708 |
|
chr17:78965416-78966484 | Island | CHMP6;CHMP6 | 1stExon;5’UTR | 2.120551 | -5.6823886 | 9.287217 | 0.0000314 | 1 | -3.984512 |
cg10462093 | chr12 | 125348448 |
|
chr12:125347784-125348688 | Island | SCARB1;SCARB1;SCARB1;SCARB1 | 1stExon;5’UTR;1stExon;5’UTR | 1.542419 | -3.9940376 | 9.123933 | 0.0000353 | 1 | -3.986626 |
cg05293994 | chr7 | 122526843 |
|
chr7:122525748-122526959 | Island | CADPS2;CADPS2;CADPS2 | TSS200;TSS200;TSS200 | 1.840815 | -5.6423722 | 9.062853 | 0.0000369 | 1 | -3.987443 |
cg08984202 | chr6 | 30421649 |
|
chr6:30418844-30419630 | S_Shelf | 2.901236 | -4.6391852 | 8.957668 | 0.0000399 | 1 | -3.988884 | ||
cg13846098 | chr9 | 139720972 |
|
OpenSea | RABL6;RABL6;RABL6 | Body;Body;Body | -1.634802 | 6.5903509 | -8.858770 | 0.0000429 | 1 | -3.990281 | |
cg16860786 | chr8 | 141542833 |
|
chr8:141545521-141545749 | N_Shelf | AGO2;AGO2 | Body;Body | -1.679968 | 1.5440340 | -8.787735 | 0.0000452 | 1 | -3.991310 |
cg13898527 | chr11 | 82905656 |
|
chr11:82904478-82905660 | Island | ANKRD42;ANKRD42;ANKRD42;ANKRD42;ANKRD42;ANKRD42;ANKRD42;ANKRD42;ANKRD42;ANKRD42;ANKRD42;ANKRD42;ANKRD42 | 5’UTR;5’UTR;5’UTR;5’UTR;5’UTR;5’UTR;1stExon;1stExon;1stExon;1stExon;1stExon;1stExon;Body | -1.640271 | -5.1816482 | -8.758695 | 0.0000462 | 1 | -3.991737 |
cg01933251 | chr12 | 16035274 |
|
chr12:16034931-16035836 | Island | STRAP | TSS200 | 1.895662 | -5.1276725 | 8.631727 | 0.0000509 | 1 | -3.993648 |
cg23690488 | chr2 | 114299609 |
|
chr2:114299035-114300177 | Island | -1.630336 | -4.8256301 | -8.618148 | 0.0000514 | 1 | -3.993856 | ||
cg18347921 | chr6 | 29975366 |
|
chr6:29974220-29975369 | Island | HLA-J;NCRNA00171 | Body;Body | -2.469043 | -4.1263403 | -8.588885 | 0.0000525 | 1 | -3.994309 |
cg22118604 | chr17 | 37353833 |
|
chr17:37353205-37353877 | Island | CACNB1;CACNB1;CACNB1;CACNB1;CACNB1;CACNB1 | 1stExon;5’UTR;5’UTR;1stExon;1stExon;5’UTR | 1.966332 | -3.8842252 | 8.577241 | 0.0000530 | 1 | -3.994490 |
cg10938586 | chr10 | 97849795 |
|
chr10:97849568-97850095 | Island | -1.617124 | -4.2229001 | -8.430095 | 0.0000594 | 1 | -3.996838 | ||
cg15352224 | chr3 | 10157326 |
|
chr3:10157129-10157612 | Island | C3orf10 | TSS200 | 1.515095 | -4.9683485 | 8.366541 | 0.0000624 | 1 | -3.997886 |
cg18686665 | chr2 | 629121 |
|
chr2:628909-629190 | Island | -1.619918 | 2.8460845 | -8.338448 | 0.0000638 | 1 | -3.998355 | ||
cg20552688 | chr14 | 105956371 |
|
chr14:105956175-105958197 | Island | C14orf80;C14orf80;C14orf80 | TSS1500;TSS1500;TSS200 | -1.970191 | -5.1523055 | -8.299465 | 0.0000657 | 1 | -3.999014 |
cg14949948 | chr9 | 96215894 |
|
chr9:96213340-96214953 | S_Shore | FAM120AOS;FAM120A;FAM120A;FAM120A;FAM120A | TSS200;Body;Body;Body;Body | 1.925057 | -4.4737027 | 8.294947 | 0.0000660 | 1 | -3.999091 |
cg00685135 | chr9 | 36136348 |
|
chr9:36136188-36137229 | Island | GLIPR2;GLIPR2;GLIPR2;GLIPR2;GLIPR2;GLIPR2;GLIPR2;GLIPR2;GLIPR2;GLIPR2;GLIPR2 | TSS1500;TSS1500;TSS200;TSS200;TSS200;TSS200;TSS200;TSS200;TSS200;TSS200;TSS200 | 1.593536 | -2.3932661 | 8.195157 | 0.0000714 | 1 | -4.000816 |
cg13950210 | chr1 | 45452319 |
|
chr1:45452037-45452444 | Island | EIF2B3;EIF2B3;EIF2B3;EIF2B3 | 1stExon;5’UTR;1stExon;5’UTR | -1.392866 | -5.8662807 | -8.176482 | 0.0000725 | 1 | -4.001144 |
cg17584296 | chr10 | 75007026 |
|
chr10:75006629-75007184 | Island | DNAJC9 | TSS200 | 2.186909 | -5.9114782 | 8.092926 | 0.0000775 | 1 | -4.002640 |
cg09293560 | chr7 | 150068240 |
|
chr7:150068756-150070051 | N_Shore | REPIN1;REPIN1;REPIN1;REPIN1 | TSS200;5’UTR;Body;5’UTR | -1.680800 | -0.4769369 | -7.842289 | 0.0000950 | 1 | -4.007373 |
cg01305596 | chr16 | 16228299 |
|
OpenSea | ABCC1;ABCC1;ABCC1;ABCC1;ABCC1 | Body;Body;Body;Body;Body | -2.240010 | 6.5922180 | -7.809762 | 0.0000975 | 1 | -4.008016 | |
cg04440717 | chr10 | 133938266 |
|
chr10:133937695-133938295 | Island | JAKMIP3 | Body | -1.845305 | 5.9518297 | -7.740463 | 0.0001033 | 1 | -4.009408 |
cg02267838 | chr4 | 26862852 |
|
chr4:26862031-26863238 | Island | STIM2;STIM2;STIM2 | 1stExon;1stExon;1stExon | 1.819857 | -5.9190003 | 7.709248 | 0.0001060 | 1 | -4.010046 |
cg23719290 | chr17 | 56912132 |
|
OpenSea | PPM1E;PPM1E | Body;Body | -2.323096 | 1.3137953 | -7.697173 | 0.0001071 | 1 | -4.010294 | |
cg22851378 | chr10 | 133747932 |
|
chr10:133751399-133751634 | N_Shelf | PPP2R2D;PPP2R2D;PPP2R2D | TSS200;TSS200;TSS200 | -2.172887 | 4.2620734 | -7.580277 | 0.0001182 | 1 | -4.012751 |
saveRDS(design_tw, "buccal_design_motor.rds")
#diagnosis:0,3.080605e-05
design_tw <- model.matrix(~ Twin_Group + diagnosis )
fit_tw <- lmFit(mvals, design_tw)
fit2_tw <- eBayes(fit_tw)
summary(decideTests(fit2_tw))
## (Intercept) Twin_Group5 Twin_Group9 Twin_Group13 diagnosis
## Down 344954 968 947 1017 0
## NotSig 132868 799225 799404 799249 801260
## Up 323438 1067 909 994 0
top <- topTable(fit2_tw,coef="diagnosis",num=Inf, sort.by = "P")
nsig <- sum(top$adj.P.Val < 0.05)
sum(top$P.Value< 0.05)
## [1] 43305
output <-merge(ann_sub,top,by.x="Name",by.y="row.names")
output <- output[order(output$P.Value),]
write.csv(output,file="limma_buccal_diagnosis.csv",row.names=FALSE)
head(output,30) %>% kbl(caption="diagnosis") %>% kable_paper("hover", full_width = F)
Name | chr | pos | strand | Islands_Name | Relation_to_Island | UCSC_RefGene_Name | UCSC_RefGene_Group | logFC | AveExpr | t | P.Value | adj.P.Val | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cg03068039 | chr8 | 146219928 |
|
OpenSea | ZNF252;TMED10P | Body;TSS1500 | -0.9402151 | 1.5348067 | -9.426553 | 0.0000378 | 0.7958854 | -3.028003 | |
cg05069807 | chr4 | 6945702 |
|
OpenSea | TBC1D14;TBC1D14 | Body;Body | -0.8338688 | 4.3534744 | -8.939754 | 0.0000530 | 0.7958854 | -3.046314 | |
cg00958781 | chr5 | 140018929 |
|
chr5:140019034-140019502 | N_Shore | TMCO6 | TSS200 | 0.8662803 | -5.6843175 | 8.587218 | 0.0000683 | 0.7958854 | -3.061280 |
cg05536227 | chr10 | 68771427 |
|
OpenSea | LRRTM3;LOC101928961;LRRTM3;CTNNA3;CTNNA3 | TSS1500;Body;Body;Body;Body | -0.7915378 | 1.0721115 | -8.086689 | 0.0000994 | 0.7958854 | -3.085441 | |
cg14303187 | chr9 | 91722423 |
|
OpenSea | SHC3 | Body | -0.7877157 | 1.7725928 | -8.028744 | 0.0001040 | 0.7958854 | -3.088485 | |
cg05391486 | chr1 | 201123919 |
|
chr1:201123245-201123746 | S_Shore | TMEM9 | TSS1500 | 0.9579550 | -4.5443969 | 8.024512 | 0.0001043 | 0.7958854 | -3.088710 |
cg14466709 | chr9 | 95087590 |
|
chr9:95087949-95088606 | N_Shore | NOL8;NOL8;CENPP;NOL8 | Body;5’UTR;TSS200;1stExon | 1.1634882 | -4.3785636 | 7.897945 | 0.0001152 | 0.7958854 | -3.095565 |
cg15365028 | chr2 | 236442817 |
|
chr2:236443815-236444025 | N_Shore | AGAP1;AGAP1 | Body;Body | -0.9775296 | 5.5165699 | -7.756175 | 0.0001289 | 0.7958854 | -3.103576 |
cg20169823 | chr12 | 116354837 |
|
chr12:116354787-116355187 | Island | 0.7301161 | -4.5226081 | 7.547239 | 0.0001525 | 0.7958854 | -3.116065 | ||
cg15265204 | chr5 | 76326036 |
|
chr5:76326120-76326871 | N_Shore | AGGF1 | TSS200 | 0.7669029 | -4.3824796 | 7.462371 | 0.0001635 | 0.7958854 | -3.121384 |
cg25208142 | chr10 | 134611553 |
|
chr10:134611552-134613137 | Island | -0.9282856 | 1.3445644 | -7.457083 | 0.0001642 | 0.7958854 | -3.121721 | ||
cg24149295 | chr17 | 34058557 |
|
chr17:34058549-34058778 | Island | RASL10B | TSS200 | 0.6971515 | -4.8031902 | 7.446120 | 0.0001657 | 0.7958854 | -3.122420 |
cg23781719 | chr6 | 43398988 |
|
chr6:43395188-43395894 | S_Shelf | ABCC10 | TSS1500 | -0.7885140 | 1.1219031 | -7.445303 | 0.0001658 | 0.7958854 | -3.122472 |
cg20554049 | chr5 | 96064099 |
|
OpenSea | CAST;CAST;CAST;CAST;CAST | Body;Body;Body;Body;Body | -0.7691136 | 1.8088429 | -7.410573 | 0.0001706 | 0.7958854 | -3.124704 | |
cg05616303 | chr18 | 65321470 |
|
OpenSea | LOC643542 | Body | -0.9271867 | 1.6028268 | -7.363175 | 0.0001775 | 0.7958854 | -3.127792 | |
cg24514137 | chr16 | 72042695 |
|
chr16:72042347-72042888 | Island | DHODH | Body | 0.7540640 | -4.4345296 | 7.359750 | 0.0001780 | 0.7958854 | -3.128017 |
cg21233275 | chr2 | 136634095 |
|
chr2:136633363-136634229 | Island | MCM6 | TSS200 | 0.7593088 | -5.2925296 | 7.303621 | 0.0001865 | 0.7958854 | -3.131741 |
cg01216369 | chr3 | 172859022 |
|
OpenSea | SPATA16;SPATA16 | 1stExon;5’UTR | -0.7423681 | 4.2262335 | -7.302414 | 0.0001867 | 0.7958854 | -3.131822 | |
cg25185057 | chr22 | 20073996 |
|
chr22:20073363-20073931 | S_Shore | DGCR8 | Body | -0.9151545 | 3.7513658 | -7.279766 | 0.0001903 | 0.7958854 | -3.133345 |
cg16641915 | chr11 | 76778247 |
|
chr11:76777569-76778453 | Island | CAPN5 | 5’UTR | 0.7327447 | -4.9600350 | 7.253054 | 0.0001946 | 0.7958854 | -3.135156 |
cg15520174 | chr3 | 57234383 |
|
OpenSea | HESX1 | TSS200 | -0.7008273 | 1.4913223 | -7.221470 | 0.0001999 | 0.7958854 | -3.137319 | |
cg05143078 | chr15 | 74988056 |
|
chr15:74988166-74988669 | N_Shore | EDC3;EDC3;EDC3 | 5’UTR;5’UTR;5’UTR | 1.4138775 | -3.7888359 | 7.186865 | 0.0002058 | 0.7958854 | -3.139714 |
cg22037518 | chr7 | 142491168 |
|
chr7:142494563-142495248 | N_Shelf | 0.7855042 | -3.2927716 | 7.176212 | 0.0002077 | 0.7958854 | -3.140457 | ||
cg22339221 | chr12 | 49063107 |
|
OpenSea | KANSL2 | Body | -0.7328616 | 1.4331794 | -7.166741 | 0.0002094 | 0.7958854 | -3.141120 | |
cg13618906 | chr4 | 109684291 |
|
chr4:109683729-109684362 | Island | AGXT2L1;AGXT2L1;AGXT2L1;AGXT2L1;AGXT2L1 | TSS200;TSS200;TSS200;TSS200;TSS200 | -0.6505212 | -4.5837045 | -7.133985 | 0.0002153 | 0.7958854 | -3.143428 |
cg07939214 | chr12 | 111872727 |
|
OpenSea | SH2B3;SH2B3 | 1stExon;Body | 0.7826665 | -3.4072007 | 7.075174 | 0.0002264 | 0.7958854 | -3.147638 | |
cg19825037 | chr11 | 30263038 |
|
OpenSea | -0.7426653 | 1.1861244 | -7.072070 | 0.0002270 | 0.7958854 | -3.147862 | |||
cg02264416 | chr11 | 104215127 |
|
OpenSea | -0.6726719 | 0.7011332 | -7.030571 | 0.0002353 | 0.7958854 | -3.150886 | |||
cg22563390 | chr19 | 55973338 |
|
chr19:55972697-55973442 | Island | ISOC2;ISOC2;ISOC2 | TSS1500;TSS1500;TSS1500 | 0.9757795 | -4.0096962 | 6.975951 | 0.0002467 | 0.7958854 | -3.154932 |
cg07323885 | chr3 | 137779756 |
|
OpenSea | -0.6785586 | 1.0912169 | -6.961496 | 0.0002498 | 0.7958854 | -3.156016 |
saveRDS(design_tw, "buccal_design_diagnosis.rds")
#SRS:0,1.895198e-07
design_tw <- model.matrix(~ Twin_Group + SRS )
fit_tw <- lmFit(mvals, design_tw)
fit2_tw <- eBayes(fit_tw)
summary(decideTests(fit2_tw))
## (Intercept) Twin_Group5 Twin_Group9 Twin_Group13 SRS
## Down 300937 693 69 95 0
## NotSig 299748 799875 801143 801080 801260
## Up 200575 692 48 85 0
top <- topTable(fit2_tw,coef="SRS",num=Inf, sort.by = "P")
head(top)
## logFC AveExpr t P.Value adj.P.Val B
## cg00893875 0.06855150 -2.4625349 10.790009 1.394412e-05 0.9400125 3.8550478
## cg09454438 0.04874571 -4.5061172 8.455495 6.783051e-05 0.9400125 2.1839588
## cg11613015 0.04392531 -4.4956212 7.075659 2.078179e-04 0.9400125 0.9794038
## cg14083017 0.04632029 -4.9332621 7.033319 2.156620e-04 0.9400125 0.9393432
## cg18302315 -0.03831760 0.8019458 -6.797351 2.659883e-04 0.9400125 0.7123816
## cg03041989 0.04241424 -5.8316602 6.726795 2.835133e-04 0.9400125 0.6432793
nsig <- sum(top$adj.P.Val < 0.05)
sum(top$P.Value< 0.05)
## [1] 20203
output <-merge(ann_sub,top,by.x="Name",by.y="row.names")
output <- output[order(output$P.Value),]
write.csv(output,file="limma_buccal_SRS.csv",row.names=FALSE)
head(output,30) %>% kbl(caption="SRS score") %>% kable_paper("hover", full_width = F)
Name | chr | pos | strand | Islands_Name | Relation_to_Island | UCSC_RefGene_Name | UCSC_RefGene_Group | logFC | AveExpr | t | P.Value | adj.P.Val | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cg00893875 | chr10 | 91597593 |
|
chr10:91596974-91597792 | Island | 0.0685515 | -2.4625349 | 10.790009 | 0.0000139 | 0.9400125 | 3.8550478 | ||
cg09454438 | chr10 | 38383228 |
|
chr10:38383200-38383962 | Island | ZNF37A;ZNF37A | TSS200;TSS200 | 0.0487457 | -4.5061172 | 8.455495 | 0.0000678 | 0.9400125 | 2.1839588 |
cg11613015 | chr5 | 112073406 |
|
OpenSea | APC;APC;APC | TSS200;TSS200;5’UTR | 0.0439253 | -4.4956212 | 7.075659 | 0.0002078 | 0.9400125 | 0.9794038 | |
cg14083017 | chr16 | 66914211 |
|
chr16:66914167-66914782 | Island | PDP2 | TSS200 | 0.0463203 | -4.9332621 | 7.033319 | 0.0002157 | 0.9400125 | 0.9393432 |
cg18302315 | chr1 | 75046010 |
|
OpenSea | ERICH3-AS1;ERICH3 | Body;Body | -0.0383176 | 0.8019458 | -6.797351 | 0.0002660 | 0.9400125 | 0.7123816 | |
cg03041989 | chr16 | 30022548 |
|
chr16:30022651-30023007 | N_Shore | DOC2A | TSS200 | 0.0424142 | -5.8316602 | 6.726795 | 0.0002835 | 0.9400125 | 0.6432793 |
cg11860760 | chr5 | 179448895 |
|
OpenSea | RNF130 | Body | -0.0396291 | 3.7857502 | -6.668426 | 0.0002990 | 0.9400125 | 0.5856734 | |
cg07126263 | chr18 | 57364862 |
|
chr18:57363714-57365001 | Island | CCBE1 | TSS1500 | 0.0391097 | -5.4896650 | 6.558316 | 0.0003309 | 0.9400125 | 0.4759057 |
cg12848864 | chr11 | 108093218 |
|
chr11:108093211-108093969 | Island | ATM;NPAT | TSS1500;Body | 0.0401666 | -4.4454585 | 6.537421 | 0.0003373 | 0.9400125 | 0.4549116 |
cg16039034 | chr5 | 102148039 |
|
OpenSea | -0.0394080 | 1.3829630 | -6.495197 | 0.0003509 | 0.9400125 | 0.4123273 | |||
cg08529295 | chr1 | 245132782 |
|
chr1:245133028-245134711 | N_Shore | EFCAB2;EFCAB2;EFCAB2;EFCAB2;EFCAB2 | TSS1500;TSS1500;TSS1500;TSS1500;TSS1500 | 0.0360587 | -2.0990154 | 6.442066 | 0.0003687 | 0.9400125 | 0.3584359 |
cg06360347 | chr1 | 168023375 |
|
chr1:168025508-168025722 | N_Shelf | DCAF6;DCAF6 | Body;Body | -0.0371685 | 1.4357195 | -6.344286 | 0.0004044 | 0.9400125 | 0.2583523 |
cg18122786 | chr8 | 117778686 |
|
chr8:117778487-117779146 | Island | UTP23 | TSS200 | 0.0374002 | -6.1212670 | 6.278368 | 0.0004306 | 0.9400125 | 0.1902124 |
cg23018873 | chr11 | 94501467 |
|
chr11:94501366-94502696 | Island | AMOTL1 | TSS200 | 0.0413040 | -5.4088566 | 6.257302 | 0.0004393 | 0.9400125 | 0.1683218 |
cg07861448 | chr8 | 72757787 |
|
chr8:72755783-72756667 | S_Shore | MSC | TSS1500 | 0.0368915 | -3.4099017 | 6.199354 | 0.0004645 | 0.9400125 | 0.1078177 |
cg23302962 | chr3 | 60112912 |
|
OpenSea | FHIT;FHIT | Body;Body | -0.0369701 | 1.0869682 | -6.192707 | 0.0004675 | 0.9400125 | 0.1008501 | |
cg12474080 | chr11 | 60929017 |
|
chr11:60928560-60929262 | Island | VPS37C | TSS200 | 0.0353511 | -3.4844951 | 6.183529 | 0.0004717 | 0.9400125 | 0.0912204 |
cg26234786 | chr3 | 99575786 |
|
OpenSea | FILIP1L;FILIP1L;FILIP1L;MIR548G;CMSS1;FILIP1L;FILIP1L | 5’UTR;5’UTR;5’UTR;Body;Body;Body;Body | -0.0381561 | 1.7421040 | -6.142250 | 0.0004910 | 0.9400125 | 0.0477778 | |
cg00691529 | chr17 | 61904925 |
|
chr17:61904726-61905184 | Island | FTSJ3;FTSJ3;PSMC5;PSMC5 | 5’UTR;1stExon;TSS200;Body | 0.0367419 | -5.1801180 | 6.131896 | 0.0004959 | 0.9400125 | 0.0368475 |
cg06113789 | chr6 | 43253097 |
|
chr6:43252734-43253476 | Island | TTBK1 | Body | 0.0361879 | -5.1934779 | 6.119667 | 0.0005019 | 0.9400125 | 0.0239191 |
cg06538774 | chr22 | 24584247 |
|
chr22:24584178-24584384 | Island | SUSD2 | Body | 0.0393077 | 6.4169419 | 6.081224 | 0.0005211 | 0.9400125 | -0.0168465 |
cg01659632 | chr6 | 144262297 |
|
OpenSea | PLAGL1;PLAGL1;PLAGL1;PLAGL1;PLAGL1;PLAGL1;PLAGL1;PLAGL1 | 3’UTR;3’UTR;3’UTR;3’UTR;3’UTR;3’UTR;3’UTR;3’UTR | -0.0418459 | 1.9423631 | -6.067526 | 0.0005281 | 0.9400125 | -0.0314179 | |
cg05065230 | chr3 | 49395807 |
|
chr3:49394855-49395942 | Island | GPX1;GPX1 | TSS200;TSS200 | -0.0417374 | -4.5441581 | -6.066474 | 0.0005286 | 0.9400125 | -0.0325372 |
cg20738928 | chr2 | 99871988 |
|
OpenSea | LYG2 | TSS1500 | -0.0380426 | 1.5453416 | -6.032863 | 0.0005464 | 0.9400125 | -0.0683994 | |
cg10390736 | chr1 | 40420692 |
|
chr1:40420487-40421366 | Island | MFSD2A;MFSD2A | TSS200;TSS200 | 0.0384756 | -4.6046350 | 6.032020 | 0.0005468 | 0.9400125 | -0.0693006 |
cg08628777 | chr7 | 158050156 |
|
OpenSea | PTPRN2;PTPRN2;PTPRN2 | Body;Body;Body | -0.0410000 | 5.0853243 | -5.932697 | 0.0006034 | 0.9400125 | -0.1761469 | |
cg26474110 | chr5 | 96143884 |
|
chr5:96143102-96143885 | Island | ERAP1;ERAP1;ERAP1;ERAP1;ERAP1 | 1stExon;1stExon;5’UTR;5’UTR;5’UTR | 0.0476642 | -4.2126886 | 5.919062 | 0.0006116 | 0.9400125 | -0.1909159 |
cg22900057 | chr10 | 134481296 |
|
chr10:134477298-134477515 | S_Shelf | INPP5A | Body | -0.0327685 | 1.6150439 | -5.909406 | 0.0006176 | 0.9400125 | -0.2013890 |
cg13455700 | chr11 | 122753504 |
|
chr11:122753386-122753951 | Island | C11orf63;C11orf63;C11orf63;C11orf63 | 1stExon;5’UTR;5’UTR;1stExon | 0.0340082 | -5.3274470 | 5.900140 | 0.0006233 | 0.9400125 | -0.2114518 |
cg00183355 | chr21 | 34100294 |
|
chr21:34099716-34100796 | Island | SYNJ1;SYNJ1;SYNJ1;SYNJ1 | TSS200;1stExon;TSS200;1stExon | 0.0360371 | -5.1366017 | 5.897747 | 0.0006248 | 0.9400125 | -0.2140522 |
saveRDS(design_tw, "buccal_design_srs.rds")
#iiq:0,1.326967e-05
design_tw <- model.matrix(~ Twin_Group + iiq )
fit_tw <- lmFit(mvals, design_tw)
fit2_tw <- eBayes(fit_tw)
summary(decideTests(fit2_tw))
## (Intercept) Twin_Group5 Twin_Group9 Twin_Group13 iiq
## Down 350438 759 1207 1054 0
## NotSig 103618 799700 798902 799203 801260
## Up 347204 801 1151 1003 0
top <- topTable(fit2_tw,coef="iiq",num=Inf, sort.by = "P")
head(top)
## logFC AveExpr t P.Value adj.P.Val B
## cg24734172 1.438352 -5.373293 14.70365 3.908877e-06 0.3949487 1.947570
## cg01692340 1.567375 -5.942862 12.99056 8.380591e-06 0.3949487 1.743991
## cg26579311 1.511178 -6.097256 12.69117 9.668200e-06 0.3949487 1.701574
## cg15640339 -1.796122 6.003061 -12.63942 9.913214e-06 0.3949487 1.694001
## cg15039313 1.055687 -5.246787 11.56420 1.705723e-05 0.3949487 1.518779
## cg01762070 1.023393 -3.591630 11.45904 1.803170e-05 0.3949487 1.499621
nsig <- sum(top$adj.P.Val < 0.05)
sum(top$P.Value< 0.05)
## [1] 84921
output <-merge(ann_sub,top,by.x="Name",by.y="row.names")
output <- output[order(output$P.Value),]
write.csv(output,file="limma_buccal_iIQ.csv",row.names=FALSE)
head(output,30) %>% kbl(caption="inverse IQ") %>% kable_paper("hover", full_width = F)
Name | chr | pos | strand | Islands_Name | Relation_to_Island | UCSC_RefGene_Name | UCSC_RefGene_Group | logFC | AveExpr | t | P.Value | adj.P.Val | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cg24734172 | chr22 | 37172326 |
|
chr22:37171766-37172669 | Island | IFT27;IFT27;IFT27 | TSS200;TSS200;TSS200 | 1.4383516 | -5.3732928 | 14.703649 | 3.90e-06 | 0.3949487 | 1.947570 |
cg01692340 | chr7 | 100318319 |
|
chr7:100318106-100318684 | Island | EPO | TSS200 | 1.5673746 | -5.9428619 | 12.990558 | 8.40e-06 | 0.3949487 | 1.743991 |
cg26579311 | chr8 | 119124103 |
|
chr8:119123974-119124432 | Island | EXT1 | TSS200 | 1.5111779 | -6.0972559 | 12.691175 | 9.70e-06 | 0.3949487 | 1.701574 |
cg15640339 | chr8 | 2017508 |
|
OpenSea | MYOM2 | Body | -1.7961220 | 6.0030614 | -12.639419 | 9.90e-06 | 0.3949487 | 1.694001 | |
cg15039313 | chr9 | 132565418 |
|
chr9:132565316-132566033 | Island | TOR1B | TSS200 | 1.0556873 | -5.2467874 | 11.564204 | 1.71e-05 | 0.3949487 | 1.518779 |
cg01762070 | chr14 | 21101007 |
|
chr14:21100838-21101043 | Island | 1.0233934 | -3.5916299 | 11.459044 | 1.80e-05 | 0.3949487 | 1.499621 | ||
cg11025641 | chr12 | 104324133 |
|
chr12:104323017-104324811 | Island | TTC41P;MIR3652;HSP90B1;HSP90B1 | TSS200;TSS200;5’UTR;1stExon | 1.0557674 | -4.3220337 | 11.246323 | 2.02e-05 | 0.3949487 | 1.459640 |
cg27446054 | chr8 | 146203972 |
|
OpenSea | ZNF252P | Body | -1.0161387 | 1.3552784 | -10.732521 | 2.68e-05 | 0.3949487 | 1.355817 | |
cg26235537 | chr10 | 129924700 |
|
chr10:129923813-129924962 | Island | MKI67;MKI67 | TSS1500;TSS1500 | 0.9474233 | -3.4469476 | 10.719992 | 2.70e-05 | 0.3949487 | 1.353150 |
cg16652621 | chr1 | 27614186 |
|
OpenSea | WDTC1;WDTC1 | Body;Body | -1.1110180 | 4.4124362 | -10.536645 | 3.00e-05 | 0.3949487 | 1.313325 | |
cg24679395 | chr11 | 45687275 |
|
chr11:45686160-45687495 | Island | CHST1 | TSS200 | 1.1244319 | -6.2870159 | 10.356229 | 3.33e-05 | 0.3949487 | 1.272656 |
cg12352347 | chr13 | 46785668 |
|
OpenSea | 1.0764194 | -3.3964482 | 10.136828 | 3.78e-05 | 0.3949487 | 1.221122 | |||
cg03157605 | chr6 | 30685409 |
|
chr6:30684836-30685503 | Island | MDC1;MDC1 | 1stExon;5’UTR | 1.0852189 | -4.0161674 | 10.077081 | 3.92e-05 | 0.3949487 | 1.206678 |
cg05701691 | chr19 | 18682687 |
|
chr19:18682374-18683034 | Island | UBA52;UBA52;UBA52;UBA52 | 1stExon;1stExon;5’UTR;5’UTR | 1.0050193 | -5.6639318 | 10.060190 | 3.96e-05 | 0.3949487 | 1.202562 |
cg14898116 | chr10 | 17272764 |
|
chr10:17270430-17272617 | S_Shore | VIM | Body | 1.0318489 | -3.0539520 | 10.039893 | 4.01e-05 | 0.3949487 | 1.197597 |
cg02301929 | chr22 | 51066512 |
|
chr22:51066107-51067051 | Island | ARSA;ARSA;ARSA;ARSA;ARSA;ARSA;ARSA;ARSA;ARSA;ARSA | 1stExon;5’UTR;5’UTR;1stExon;5’UTR;1stExon;5’UTR;1stExon;1stExon;5’UTR | 0.9454864 | -5.1998520 | 9.967915 | 4.19e-05 | 0.3949487 | 1.179818 |
cg18144544 | chr7 | 6197890 |
|
chr7:6198495-6198731 | N_Shore | USP42 | Body | -0.9331595 | 4.1019710 | -9.871836 | 4.44e-05 | 0.3949487 | 1.155666 |
cg00505936 | chr16 | 69139418 |
|
chr16:69139628-69141900 | N_Shore | HAS3 | TSS1500 | 0.9580267 | -3.4977151 | 9.840330 | 4.52e-05 | 0.3949487 | 1.147639 |
cg12128740 | chr1 | 62207888 |
|
chr1:62207827-62208818 | Island | INADL | TSS1500 | 0.8817804 | -3.6754241 | 9.784752 | 4.68e-05 | 0.3949487 | 1.133350 |
cg26651784 | chr16 | 67062934 |
|
chr16:67062613-67064012 | Island | CBFB;CBFB | TSS200;TSS200 | 0.9311122 | -5.5471283 | 9.741141 | 4.81e-05 | 0.3949487 | 1.122019 |
cg01842890 | chr6 | 30292264 |
|
chr6:30294169-30295071 | N_Shore | HCG18;HCG18 | Body;Body | -1.0729160 | 2.6099062 | -9.727309 | 4.85e-05 | 0.3949487 | 1.118404 |
cg17234198 | chr20 | 47894957 |
|
chr20:47894197-47895199 | Island | C20orf199;SNORD12C;C20orf199;ZNFX1;C20orf199 | Body;TSS1500;TSS1500;TSS1500;TSS200 | 1.1085744 | -5.1530924 | 9.631370 | 5.14e-05 | 0.3949487 | 1.093034 |
cg10176510 | chr6 | 97337802 |
|
OpenSea | NDUFAF4 | 3’UTR | -0.9143135 | 1.4237125 | -9.527062 | 5.49e-05 | 0.3949487 | 1.064858 | |
cg02498477 | chr18 | 44471411 |
|
OpenSea | PIAS2;PIAS2 | Body;Body | -0.8727067 | 0.7771203 | -9.511021 | 5.54e-05 | 0.3949487 | 1.060470 | |
cg15148879 | chr11 | 47788577 |
|
chr11:47788200-47789022 | Island | FNBP4 | Body | -0.9603499 | -5.3239285 | -9.506272 | 5.56e-05 | 0.3949487 | 1.059168 |
cg13760252 | chr19 | 5455500 |
|
chr19:5455481-5456262 | Island | ZNRF4;ZNRF4 | 5’UTR;1stExon | -0.8639407 | 4.3884380 | -9.403198 | 5.93e-05 | 0.3949487 | 1.030577 |
cg02605007 | chr19 | 10541304 |
|
chr19:10542662-10543120 | N_Shore | PDE4A;PDE4A | Body;TSS1500 | 1.6812926 | -3.6873959 | 9.386516 | 6.00e-05 | 0.3949487 | 1.025890 |
cg07058528 | chr17 | 6918698 |
|
chr17:6917569-6918539 | S_Shore | C17orf49;C17orf49;C17orf49 | Body;Body;Body | 0.8741340 | -4.7528918 | 9.346481 | 6.15e-05 | 0.3949487 | 1.014574 |
cg05375741 | chr17 | 40897145 |
|
chr17:40896658-40897234 | Island | EZH1 | TSS200 | 1.0259873 | -5.2611217 | 9.343781 | 6.16e-05 | 0.3949487 | 1.013807 |
cg21422208 | chr3 | 53164667 |
|
chr3:53164206-53164698 | Island | RFT1 | TSS200 | 0.8693483 | -4.6939422 | 9.335322 | 6.20e-05 | 0.3949487 | 1.011402 |
saveRDS(design_tw, "buccal_design_iiq.rds")
#ilanguage:0,9.149182e-08
design_tw <- model.matrix(~ Twin_Group + ilanguage )
fit_tw <- lmFit(mvals, design_tw)
fit2_tw <- eBayes(fit_tw)
summary(decideTests(fit2_tw))
## (Intercept) Twin_Group5 Twin_Group9 Twin_Group13 ilanguage
## Down 341316 522 966 627 0
## NotSig 124052 800218 799396 800085 801260
## Up 335892 520 898 548 0
top <- topTable(fit2_tw,coef="ilanguage",num=Inf, sort.by = "P")
head(top)
## logFC AveExpr t P.Value adj.P.Val B
## cg14982506 -1.534375 2.453888 -12.46237 5.144798e-06 0.9920423 -3.292601
## cg26062048 1.511903 -5.160393 11.91519 6.946143e-06 0.9920423 -3.299917
## cg12654743 1.351536 -4.562291 11.20733 1.044224e-05 0.9920423 -3.310881
## cg13944275 -1.283127 -5.041450 -10.66305 1.452019e-05 0.9920423 -3.320698
## cg05351078 1.243993 -5.553076 10.61673 1.494370e-05 0.9920423 -3.321597
## cg03068874 -1.260082 1.653308 -10.16936 1.984429e-05 0.9920423 -3.330859
nsig <- sum(top$adj.P.Val < 0.05)
sum(top$P.Value< 0.05)
## [1] 18026
output <-merge(ann_sub,top,by.x="Name",by.y="row.names")
output <- output[order(output$P.Value),]
write.csv(output,file="limma_buccal_ilanguage.csv",row.names=FALSE)
head(output,30) %>% kbl(caption="inverse language") %>% kable_paper("hover", full_width = F)
Name | chr | pos | strand | Islands_Name | Relation_to_Island | UCSC_RefGene_Name | UCSC_RefGene_Group | logFC | AveExpr | t | P.Value | adj.P.Val | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cg14982506 | chr10 | 24832948 |
|
OpenSea | KIAA1217;KIAA1217;KIAA1217 | Body;Body;Body | -1.5343752 | 2.453888 | -12.462372 | 0.0000051 | 0.9920423 | -3.292601 | |
cg26062048 | chr5 | 153418412 |
|
chr5:153418183-153418669 | Island | MFAP3;MFAP3;FAM114A2;MFAP3 | TSS200;TSS200;5’UTR;TSS200 | 1.5119026 | -5.160393 | 11.915188 | 0.0000069 | 0.9920423 | -3.299917 |
cg12654743 | chr17 | 8023707 |
|
chr17:8023960-8024239 | N_Shore | ALOXE3 | TSS1500 | 1.3515362 | -4.562291 | 11.207331 | 0.0000104 | 0.9920423 | -3.310881 |
cg13944275 | chr9 | 140024112 |
|
chr9:140023747-140025010 | Island | -1.2831266 | -5.041450 | -10.663051 | 0.0000145 | 0.9920423 | -3.320698 | ||
cg05351078 | chr10 | 45455109 |
|
chr10:45455239-45455474 | N_Shore | RASSF4 | TSS200 | 1.2439930 | -5.553076 | 10.616735 | 0.0000149 | 0.9920423 | -3.321597 |
cg03068874 | chr7 | 158152212 |
|
OpenSea | PTPRN2;PTPRN2;PTPRN2 | Body;Body;Body | -1.2600819 | 1.653308 | -10.169364 | 0.0000198 | 0.9920423 | -3.330859 | |
cg20007021 | chr14 | 24780404 |
|
chr14:24779874-24780932 | Island | LTB4R2;LTB4R2;LTB4R2;LTB4R;CIDEB;CIDEB | Body;1stExon;Body;TSS1500;1stExon;5’UTR | -1.4387543 | -2.815103 | -10.071784 | 0.0000211 | 0.9920423 | -3.333028 |
cg06149604 | chr1 | 113933334 |
|
chr1:113932580-113934070 | Island | MAGI3;MAGI3 | TSS200;TSS200 | 1.3941705 | -5.706267 | 9.991134 | 0.0000223 | 0.9920423 | -3.334863 |
cg05845592 | chr16 | 28634766 |
|
chr16:28634440-28635031 | Island | SULT1A1;SULT1A1 | 5’UTR;1stExon | -1.2684225 | -4.900838 | -9.731058 | 0.0000265 | 0.9920423 | -3.341062 |
cg24583179 | chr5 | 180229965 |
|
chr5:180229375-180230147 | Island | MGAT1;MGAT1;MGAT1;MGAT1;MGAT1;MGAT1 | 1stExon;5’UTR;5’UTR;5’UTR;5’UTR;5’UTR | 1.1928096 | -4.782711 | 9.209242 | 0.0000379 | 0.9920423 | -3.354924 |
cg07198656 | chr10 | 48952399 |
|
chr10:48952215-48952880 | Island | GLUD1P7;BMS1P5 | TSS200;Body | -1.8564093 | -6.386467 | -9.131953 | 0.0000401 | 0.9920423 | -3.357157 |
cg06240216 | chr6 | 129963901 |
|
OpenSea | ARHGAP18 | Body | -1.6454080 | 1.801600 | -9.034550 | 0.0000430 | 0.9920423 | -3.360042 | |
cg17752088 | chr5 | 78810367 |
|
chr5:78809347-78810468 | Island | HOMER1 | TSS1500 | 1.4223703 | -6.066901 | 8.912833 | 0.0000469 | 0.9920423 | -3.363763 |
cg10573158 | chr6 | 30689496 |
|
chr6:30688624-30689530 | Island | TUBB | Body | 1.0718563 | -5.179513 | 8.805741 | 0.0000507 | 0.9920423 | -3.367149 |
cg10136354 | chr2 | 73151457 |
|
chr2:73151200-73152060 | Island | EMX1 | Body | 1.0334153 | -4.314413 | 8.452436 | 0.0000660 | 0.9920423 | -3.379115 |
cg02687055 | chr2 | 24232865 |
|
chr2:24232680-24233260 | Island | MFSD2B | TSS200 | 1.1593473 | -6.197381 | 8.435392 | 0.0000668 | 0.9920423 | -3.379726 |
cg17147121 | chr19 | 52674949 |
|
chr19:52674327-52674855 | S_Shore | ZNF836 | TSS200 | 0.9938850 | -3.180525 | 8.272116 | 0.0000757 | 0.9920423 | -3.385734 |
cg02991063 | chr10 | 120938274 |
|
chr10:120938028-120938418 | Island | PRDX3;PRDX3 | 1stExon;1stExon | 1.1109398 | -5.612401 | 8.271481 | 0.0000758 | 0.9920423 | -3.385758 |
cg19145477 | chr17 | 73348462 |
|
OpenSea | GRB2;GRB2 | Body;Body | 0.9682111 | -4.329982 | 8.232074 | 0.0000781 | 0.9920423 | -3.387254 | |
cg01983185 | chr19 | 8428990 |
|
chr19:8428965-8429492 | Island | ANGPTL4;ANGPTL4;ANGPTL4 | TSS200;TSS200;TSS200 | 1.0404459 | -4.243620 | 8.092829 | 0.0000871 | 0.9920423 | -3.392690 |
cg17732216 | chr6 | 167178280 |
|
OpenSea | RPS6KA2 | Body | -1.0868877 | 3.323186 | -8.062800 | 0.0000892 | 0.9920423 | -3.393893 | |
cg09499699 | chr13 | 80146405 |
|
OpenSea | -1.3181366 | 2.253812 | -8.040193 | 0.0000908 | 0.9920423 | -3.394807 | |||
cg24204556 | chr22 | 22222030 |
|
chr22:22221055-22222367 | Island | MAPK1;MAPK1 | TSS200;TSS200 | 1.2279562 | -5.233175 | 8.040000 | 0.0000908 | 0.9920423 | -3.394815 |
cg00158122 | chr10 | 101290029 |
|
chr10:101290025-101290338 | Island | 0.9875524 | -1.614181 | 8.020809 | 0.0000922 | 0.9920423 | -3.395595 | ||
cg03342084 | chr11 | 43902343 |
|
chr11:43902254-43902528 | Island | ALKBH3 | TSS200 | 1.3664376 | -5.255032 | 7.959508 | 0.0000968 | 0.9920423 | -3.398121 |
cg06924657 | chr7 | 150381630 |
|
OpenSea | GIMAP2 | TSS1500 | -1.1076854 | 1.570041 | -7.950493 | 0.0000975 | 0.9920423 | -3.398497 | |
cg21846876 | chr2 | 211341373 |
|
chr2:211341181-211341536 | Island | LANCL1;LANCL1;LANCL1;CPS1;LANCL1;LANCL1 | 1stExon;5’UTR;5’UTR;TSS1500;1stExon;5’UTR | 0.9942232 | -4.872929 | 7.841211 | 0.0001065 | 0.9920423 | -3.403136 |
cg15081882 | chr6 | 31588692 |
|
chr6:31587779-31589024 | Island | BAT2 | 5’UTR | 1.0444103 | -5.953226 | 7.806689 | 0.0001095 | 0.9920423 | -3.404636 |
cg19450240 | chr16 | 74734251 |
|
chr16:74734152-74734572 | Island | MLKL;MLKL | 5’UTR;5’UTR | -0.9404235 | -4.974311 | -7.775852 | 0.0001123 | 0.9920423 | -3.405989 |
cg14490783 | chr17 | 39184887 |
|
OpenSea | KRTAP1-5 | TSS1500 | -0.9283875 | 2.577990 | -7.775659 | 0.0001123 | 0.9920423 | -3.405998 |
saveRDS(design_tw, "buccal_design_ilanguage.rds")
bDat = ilogit2(mvals)
bDat_new = getBeta(gmset_flt)
#View(bDat)
write.csv(bDat,file="ASD_buccal_beta_onADOS_withintw_Nov27.csv",row.names=TRUE)
vioplot(bDat)
#gwam <- colMeans(bDat)
gwam <- apply(bDat,2,median)
message("GWAM assocation with ADOS")
## GWAM assocation with ADOS
mylm <- lm(gwam~ADOS)
summary(mylm)
##
## Call:
## lm(formula = gwam ~ ADOS)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0105251 -0.0033729 -0.0005064 0.0019995 0.0180868
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5101155 0.0074943 68.067 6.76e-10 ***
## ADOS 0.0004096 0.0007353 0.557 0.598
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009442 on 6 degrees of freedom
## Multiple R-squared: 0.04918, Adjusted R-squared: -0.1093
## F-statistic: 0.3104 on 1 and 6 DF, p-value: 0.5976
message("GWAM assocation with SRS")
## GWAM assocation with SRS
mylm <- lm(gwam~SRS)
summary(mylm)
##
## Call:
## lm(formula = gwam ~ SRS)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.007020 -0.005317 -0.003939 0.003673 0.015638
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5066154 0.0065454 77.40 3.13e-10 ***
## SRS 0.0001012 0.0000810 1.25 0.258
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.008625 on 6 degrees of freedom
## Multiple R-squared: 0.2065, Adjusted R-squared: 0.0743
## F-statistic: 1.562 on 1 and 6 DF, p-value: 0.2579
message("GWAM assocation with motor impairment")
## GWAM assocation with motor impairment
mylm <- lm(gwam~motor)
summary(mylm)
##
## Call:
## lm(formula = gwam ~ motor)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0145370 -0.0028985 0.0005501 0.0032915 0.0157135
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5145370 0.0043063 119.485 2.32e-11 ***
## motor -0.0009113 0.0035161 -0.259 0.804
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009629 on 6 degrees of freedom
## Multiple R-squared: 0.01107, Adjusted R-squared: -0.1538
## F-statistic: 0.06717 on 1 and 6 DF, p-value: 0.8042
message("GWAM assocation with diagnosis")
## GWAM assocation with diagnosis
mylm <- lm(gwam~diagnosis)
summary(mylm)
##
## Call:
## lm(formula = gwam ~ diagnosis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.013759 -0.003534 -0.000589 0.003880 0.016492
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.138e-01 5.229e-03 98.250 7.49e-11 ***
## diagnosis 9.496e-05 3.953e-03 0.024 0.982
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009682 on 6 degrees of freedom
## Multiple R-squared: 9.617e-05, Adjusted R-squared: -0.1666
## F-statistic: 0.0005771 on 1 and 6 DF, p-value: 0.9816
message("GWAM assocation with iIQ")
## GWAM assocation with iIQ
mylm <- lm(gwam~iiq)
summary(mylm)
##
## Call:
## lm(formula = gwam ~ iiq)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.012389 -0.002407 -0.000714 0.001730 0.017685
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.513854 0.003270 157.16 4.48e-12 ***
## iiq 0.002657 0.003495 0.76 0.476
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009248 on 6 degrees of freedom
## Multiple R-squared: 0.08785, Adjusted R-squared: -0.06418
## F-statistic: 0.5779 on 1 and 6 DF, p-value: 0.476
plot(gwam~iiq)
abline(mylm)
message("GWAM assocation with ilanguage")
## GWAM assocation with ilanguage
mylm <- lm(gwam~ilanguage)
summary(mylm)
##
## Call:
## lm(formula = gwam ~ ilanguage)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0094937 -0.0042126 -0.0003427 0.0020640 0.0152664
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.513854 0.002816 182.468 1.83e-12 ***
## ilanguage 0.005097 0.003011 1.693 0.141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.007965 on 6 degrees of freedom
## Multiple R-squared: 0.3233, Adjusted R-squared: 0.2105
## F-statistic: 2.867 on 1 and 6 DF, p-value: 0.1414
plot(gwam~ilanguage)
abline(mylm)
probes_body <- rownames(ann_sub[grep("Body",ann_sub$UCSC_RefGene_Group),])
bDat_body <- bDat[which(rownames(bDat) %in% probes_body),]
gwam <- apply(bDat_body,2,median)
probes_body <- rownames(ann_sub[grep("Island",ann_sub$Relation_to_Island),])
bDat_body <- bDat[which(rownames(bDat) %in% probes_body),]
gwam <- apply(bDat_body,2,median)
res <- read.csv("limma_buccal_ADOS.csv")
TOPPROBES <- head(res$Name,9)
par(mfrow=c(3,3))
sapply(TOPPROBES,effect_plot)
## $cg05143078
## NULL
##
## $cg15365028
## NULL
##
## $cg10535017
## NULL
##
## $cg25208142
## NULL
##
## $cg05616303
## NULL
##
## $cg06818937
## NULL
##
## $cg05075067
## NULL
##
## $cg01157070
## NULL
##
## $cg11534677
## NULL
pdf("effect_buccal.pdf")
par(mfrow=c(3,3))
sapply(TOPPROBES,effect_plot)
## $cg05143078
## NULL
##
## $cg15365028
## NULL
##
## $cg10535017
## NULL
##
## $cg25208142
## NULL
##
## $cg05616303
## NULL
##
## $cg06818937
## NULL
##
## $cg05075067
## NULL
##
## $cg01157070
## NULL
##
## $cg11534677
## NULL
dev.off()
## png
## 2
par(mfrow=c(1,1))
Gene Ontology analysis (gometh): top 1000 probes (limma data).
sigCpGs_1k = res$Name[1:1000]
sigCpGs_1k = as.character(sigCpGs_1k)
all = res$Name
length(all)
# kegg
gometh_kegg <- gometh(sig.cpg = sigCpGs_1k, all.cpg = all, collection = "KEGG", prior.prob=TRUE)
gometh_kegg <- subset(gometh_kegg,DE>2)
gometh_kegg$FDR <- p.adjust(gometh_kegg$P.DE)
gometh_kegg <- gometh_kegg[order(gometh_kegg$P.DE),]
head( gometh_kegg , 20)
# GO terms
gometh_go <- gometh(sig.cpg = sigCpGs_1k, all.cpg = all, collection = "GO" , prior.prob=TRUE)
gometh_go <- subset(gometh_go,DE>2)
gometh_go$FDR <- p.adjust(gometh_go$P.DE)
gometh_go <- gometh_go[order(gometh_go$P.DE),]
head( gometh_go , 20)
Now specifically analyse hypermethylated probes
res2 <- subset(res,logFC>0)
sigCpGs_1k = res2$Name[1:1000]
sigCpGs_1k = as.character(sigCpGs_1k)
# kegg
gometh_kegg <- gometh(sig.cpg = sigCpGs_1k, all.cpg = all, collection = "KEGG", prior.prob=TRUE)
gometh_kegg <- subset(gometh_kegg,DE>2)
gometh_kegg$FDR <- p.adjust(gometh_kegg$P.DE)
gometh_kegg <- gometh_kegg[order(gometh_kegg$P.DE),]
head( gometh_kegg , 20)
# GO terms
gometh_go <- gometh(sig.cpg = sigCpGs_1k, all.cpg = all, collection = "GO" , prior.prob=TRUE)
gometh_go <- subset(gometh_go,DE>2)
gometh_go$FDR <- p.adjust(gometh_go$P.DE)
gometh_go <- gometh_go[order(gometh_go$P.DE),]
head( gometh_go , 20)
Now specifically analyse hypomethylated probes
res2 <- subset(res,logFC<0)
sigCpGs_1k = res2$Name[1:1000]
sigCpGs_1k = as.character(sigCpGs_1k)
# kegg
gometh_kegg <- gometh(sig.cpg = sigCpGs_1k, all.cpg = all, collection = "KEGG", prior.prob=TRUE)
gometh_kegg <- subset(gometh_kegg,DE>2)
gometh_kegg$FDR <- p.adjust(gometh_kegg$P.DE)
gometh_kegg <- gometh_kegg[order(gometh_kegg$P.DE),]
head( gometh_kegg , 20)
# GO terms
gometh_go <- gometh(sig.cpg = sigCpGs_1k, all.cpg = all, collection = "GO" , prior.prob=TRUE)
gometh_go <- subset(gometh_go,DE>2)
gometh_go$FDR <- p.adjust(gometh_go$P.DE)
gometh_go <- gometh_go[order(gometh_go$P.DE),]
head( gometh_go , 20)
#design matrix in regression
design_tw <- model.matrix(~ADOS+Twin_Group)
design_tw_dmrc <- model.matrix(~ADOS)
#myannotation <- cpg.annotate("array", mDat, analysis.type="differential", design=design_tw, coef=2, fdr=1)
myannotation <- cpg.annotate("array", mvals, what = "M",
arraytype = "EPIC", analysis.type="differential", design_tw, coef=2)
## Your contrast returned no individually significant probes. Try increasing the fdr. Alternatively, set pcutoff manually in dmrcate() to return DMRs, but be warned there is an increased risk of Type I errors.
dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2, pcutoff=0.001)
## Fitting chr1...
## Fitting chr2...
## Fitting chr3...
## Fitting chr4...
## Fitting chr5...
## Fitting chr6...
## Fitting chr7...
## Fitting chr8...
## Fitting chr9...
## Fitting chr10...
## Fitting chr11...
## Fitting chr12...
## Fitting chr13...
## Fitting chr14...
## Fitting chr15...
## Fitting chr16...
## Fitting chr17...
## Fitting chr18...
## Fitting chr19...
## Fitting chr20...
## Fitting chr21...
## Fitting chr22...
## Demarcating regions...
## Done!
results.ranges <- data.frame(extractRanges(dmrcoutput, genome = "hg19") )
## snapshotDate(): 2023-04-24
## see ?DMRcatedata and browseVignettes('DMRcatedata') for documentation
## loading from cache
head(results.ranges, 20)
## seqnames start end width strand no.cpgs min_smoothed_fdr Stouffer
## 1 chr1 6515597 6515624 28 * 2 2.821586e-04 0.967935
## 2 chr1 11174802 11174850 49 * 2 1.897069e-06 0.967935
## 3 chr1 16010724 16010732 9 * 2 6.987128e-04 0.967935
## 4 chr1 150739309 150739533 225 * 2 3.928301e-04 0.967935
## 5 chr1 152087267 152087315 49 * 2 3.535447e-04 0.967935
## 6 chr1 167035992 167036150 159 * 2 5.829688e-06 0.967935
## 7 chr1 177669385 177669462 78 * 2 6.729763e-04 0.967935
## 8 chr1 183560913 183560923 11 * 2 2.461174e-04 0.967935
## 9 chr1 218695426 218695459 34 * 2 4.032992e-04 0.967935
## 10 chr1 222227333 222227490 158 * 2 5.134055e-04 0.967935
## 11 chr2 7909341 7909485 145 * 2 8.740165e-05 0.967935
## 12 chr2 17941268 17941593 326 * 2 1.629182e-07 0.967935
## 13 chr2 27342798 27342877 80 * 2 4.941410e-04 0.967935
## 14 chr2 45879684 45880618 935 * 2 2.380826e-04 0.967935
## 15 chr2 73616832 73617110 279 * 2 2.416732e-04 0.967935
## 16 chr2 100106147 100106285 139 * 2 2.346173e-05 0.967935
## 17 chr2 101868356 101868516 161 * 2 8.728933e-04 0.967935
## 18 chr2 136742286 136742428 143 * 2 1.785300e-05 0.967935
## 19 chr2 153363436 153364045 610 * 2 1.496503e-06 0.967935
## 20 chr2 182548750 182548786 37 * 2 5.880878e-04 0.967935
## HMFDR Fisher maxdiff meandiff overlapping.genes
## 1 0.9047411 0.982442 -0.005000101 -0.0046987065 ESPN
## 2 0.9047411 0.982442 -0.011220365 -0.0089553767 MTOR
## 3 0.9047411 0.982442 0.001854973 0.0017242523 <NA>
## 4 0.9047411 0.982442 -0.016094921 -0.0106117989 <NA>
## 5 0.9047411 0.982442 -0.010921456 -0.0105541593 <NA>
## 6 0.9047411 0.982442 0.003724200 0.0036397926 GPA33
## 7 0.9047411 0.982442 -0.013327799 -0.0038219775 <NA>
## 8 0.9047411 0.982442 -0.009560729 -0.0003340177 SMG7
## 9 0.9047411 0.982442 -0.012709739 -0.0093789342 C1orf143
## 10 0.9047411 0.982442 -0.017413191 -0.0119660084 RP11-400N13.3
## 11 0.9047411 0.982442 -0.020877842 -0.0071641853 <NA>
## 12 0.9047411 0.982442 -0.017672562 -0.0124820782 GEN1, SMC6
## 13 0.9047411 0.982442 -0.006619968 -0.0065196253 <NA>
## 14 0.9047411 0.982442 -0.012151324 -0.0049426212 PRKCE
## 15 0.9047411 0.982442 -0.013602305 -0.0089560660 ALMS1
## 16 0.9047411 0.982442 0.001872926 0.0004131779 REV1
## 17 0.9047411 0.982442 0.011164324 0.0091928148 TBC1D8
## 18 0.9047411 0.982442 0.004480379 0.0031129951 DARS
## 19 0.9047411 0.982442 -0.018027597 -0.0132216403 FMNL2
## 20 0.9047411 0.982442 0.004084872 0.0027096631 AC013733.3
write.csv(results.ranges, file = "dmrcoutput_buccal.csv", row.names = TRUE)
sessionInfo()
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] DMRcatedata_2.18.0
## [2] IlluminaHumanMethylationEPICmanifest_0.3.0
## [3] vioplot_0.4.0
## [4] zoo_1.8-12
## [5] sm_2.2-5.7.1
## [6] kableExtra_1.3.4
## [7] mitch_1.12.0
## [8] FlowSorted.Blood.EPIC_2.4.2
## [9] ExperimentHub_2.8.1
## [10] AnnotationHub_3.8.0
## [11] BiocFileCache_2.8.0
## [12] dbplyr_2.3.3
## [13] DMRcate_2.14.1
## [14] ggplot2_3.4.3
## [15] reshape2_1.4.4
## [16] FlowSorted.Blood.450k_1.38.0
## [17] WGCNA_1.72-1
## [18] fastcluster_1.2.3
## [19] dynamicTreeCut_1.63-1
## [20] gplots_3.1.3
## [21] RColorBrewer_1.1-3
## [22] ruv_0.9.7.1
## [23] IlluminaHumanMethylationEPICanno.ilm10b2.hg19_0.6.0
## [24] limma_3.56.2
## [25] missMethyl_1.34.0
## [26] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [27] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1
## [28] minfi_1.46.0
## [29] bumphunter_1.42.0
## [30] locfit_1.5-9.8
## [31] iterators_1.0.14
## [32] foreach_1.5.2
## [33] Biostrings_2.68.1
## [34] XVector_0.40.0
## [35] SummarizedExperiment_1.30.2
## [36] Biobase_2.60.0
## [37] MatrixGenerics_1.12.3
## [38] matrixStats_1.0.0
## [39] GenomicRanges_1.52.0
## [40] GenomeInfoDb_1.36.3
## [41] IRanges_2.34.1
## [42] S4Vectors_0.38.1
## [43] BiocGenerics_0.46.0
##
## loaded via a namespace (and not attached):
## [1] DSS_2.48.0 ProtGenerics_1.32.0
## [3] bitops_1.0-7 webshot_0.5.5
## [5] httr_1.4.7 doParallel_1.0.17
## [7] tools_4.3.1 doRNG_1.8.6
## [9] backports_1.4.1 utf8_1.2.3
## [11] R6_2.5.1 HDF5Array_1.28.1
## [13] lazyeval_0.2.2 Gviz_1.44.1
## [15] rhdf5filters_1.12.1 permute_0.9-7
## [17] withr_2.5.0 GGally_2.1.2
## [19] prettyunits_1.1.1 gridExtra_2.3
## [21] base64_2.0.1 preprocessCore_1.62.1
## [23] cli_3.6.1 sass_0.4.7
## [25] readr_2.1.4 genefilter_1.82.1
## [27] askpass_1.2.0 systemfonts_1.0.4
## [29] Rsamtools_2.16.0 foreign_0.8-85
## [31] svglite_2.1.1 siggenes_1.74.0
## [33] illuminaio_0.42.0 R.utils_2.12.2
## [35] dichromat_2.0-0.1 scrime_1.3.5
## [37] BSgenome_1.68.0 readxl_1.4.3
## [39] rstudioapi_0.15.0 impute_1.74.1
## [41] RSQLite_2.3.1 generics_0.1.3
## [43] BiocIO_1.10.0 gtools_3.9.4
## [45] dplyr_1.1.3 GO.db_3.17.0
## [47] Matrix_1.6-1 interp_1.1-4
## [49] fansi_1.0.4 abind_1.4-5
## [51] R.methodsS3_1.8.2 lifecycle_1.0.3
## [53] edgeR_3.42.4 yaml_2.3.7
## [55] rhdf5_2.44.0 grid_4.3.1
## [57] blob_1.2.4 promises_1.2.1
## [59] crayon_1.5.2 lattice_0.21-8
## [61] echarts4r_0.4.5 GenomicFeatures_1.52.2
## [63] annotate_1.78.0 KEGGREST_1.40.0
## [65] pillar_1.9.0 knitr_1.44
## [67] beanplot_1.3.1 rjson_0.2.21
## [69] codetools_0.2-19 glue_1.6.2
## [71] data.table_1.14.8 vctrs_0.6.3
## [73] png_0.1-8 cellranger_1.1.0
## [75] gtable_0.3.4 cachem_1.0.8
## [77] xfun_0.40 mime_0.12
## [79] S4Arrays_1.0.6 survival_3.5-7
## [81] statmod_1.5.0 ellipsis_0.3.2
## [83] interactiveDisplayBase_1.38.0 nlme_3.1-163
## [85] bit64_4.0.5 bsseq_1.36.0
## [87] progress_1.2.2 filelock_1.0.2
## [89] bslib_0.5.1 nor1mix_1.3-0
## [91] KernSmooth_2.23-22 rpart_4.1.19
## [93] colorspace_2.1-0 DBI_1.1.3
## [95] Hmisc_5.1-1 nnet_7.3-19
## [97] tidyselect_1.2.0 bit_4.0.5
## [99] compiler_4.3.1 curl_5.0.2
## [101] rvest_1.0.3 htmlTable_2.4.1
## [103] xml2_1.3.5 DelayedArray_0.26.7
## [105] rtracklayer_1.60.1 checkmate_2.2.0
## [107] scales_1.2.1 caTools_1.18.2
## [109] quadprog_1.5-8 rappdirs_0.3.3
## [111] stringr_1.5.0 digest_0.6.33
## [113] rmarkdown_2.24 GEOquery_2.68.0
## [115] htmltools_0.5.6 pkgconfig_2.0.3
## [117] jpeg_0.1-10 base64enc_0.1-3
## [119] sparseMatrixStats_1.12.2 highr_0.10
## [121] fastmap_1.1.1 ensembldb_2.24.0
## [123] rlang_1.1.1 htmlwidgets_1.6.2
## [125] shiny_1.7.5 DelayedMatrixStats_1.22.6
## [127] jquerylib_0.1.4 jsonlite_1.8.7
## [129] BiocParallel_1.34.2 mclust_6.0.0
## [131] R.oo_1.25.0 VariantAnnotation_1.46.0
## [133] RCurl_1.98-1.12 magrittr_2.0.3
## [135] Formula_1.2-5 GenomeInfoDbData_1.2.10
## [137] Rhdf5lib_1.22.1 munsell_0.5.0
## [139] Rcpp_1.0.11 stringi_1.7.12
## [141] zlibbioc_1.46.0 MASS_7.3-60
## [143] plyr_1.8.8 org.Hs.eg.db_3.17.0
## [145] deldir_1.0-9 splines_4.3.1
## [147] multtest_2.56.0 hms_1.1.3
## [149] rngtools_1.5.2 biomaRt_2.56.1
## [151] BiocVersion_3.17.1 XML_3.99-0.14
## [153] evaluate_0.21 latticeExtra_0.6-30
## [155] biovizBase_1.48.0 BiocManager_1.30.22
## [157] httpuv_1.6.11 tzdb_0.4.0
## [159] tidyr_1.3.0 openssl_2.1.0
## [161] purrr_1.0.2 reshape_0.8.9
## [163] xtable_1.8-4 restfulr_0.0.15
## [165] AnnotationFilter_1.24.0 later_1.3.1
## [167] viridisLite_0.4.2 tibble_3.2.1
## [169] beeswarm_0.4.0 memoise_2.0.1
## [171] AnnotationDbi_1.62.2 GenomicAlignments_1.36.0
## [173] cluster_2.1.4