Introduction

Here I’m using the new mitch package to compare methylation and RNA expression data from the RELIEF patients.

Mitch: https://doi.org/10.1186/s12864-020-06856-9

The contrasts I’m looking at are:

  1. Base-line versus post-op for all patients.

  2. Low versus high CRP groups in post-op samples.

  3. Low versus high CRP groups in base-line samples.

Packages

suppressPackageStartupMessages({
    library("mitch")
})

Import read counts

Need to import the data and merge the RNA and array data. I notices that only 11370 genes had promoter methylation values, while 21907 had RNA expression values. We might need to look at updating the array annotation to include more genes as the array annotation is from ~2014 and might be missing a lot of ncRNA genes.

# t0_v_pod_rna.tsv t0vPod_meth.tsv t0_v_pod
x <- read.table("t0_v_pod_rna.tsv",header=TRUE, sep="\t")
x$gene <- sapply(strsplit(rownames(x)," "),"[[",2)
x <- x[,c(4,ncol(x))]
x <- aggregate(. ~ gene, x, sum)
rownames(x) <- x$gene
x$gene=NULL

y <- read.csv("t0vPod_meth.tsv")
y$genename <- sapply(strsplit(y[,1],"\t"),"[[",1)
y$value <- as.numeric(sapply(strsplit(y[,1],"\t"),"[[",2))
y$t = NULL
row.names(y) <- y$genename
y$t = y$genename = NULL

z <- merge(x,y,by=0)
rownames(z) <- z$Row.names
z$Row.names = NULL
colnames(z) <- c("RNA","meth")
t0_v_pod <- z

# pod_crp_rna.tsv t1_crp_meth.tsv pod_crp
x <- read.table("pod_crp_rna.tsv",header=TRUE, sep="\t")
x$gene <- sapply(strsplit(rownames(x)," "),"[[",2)
x <- x[,c(4,ncol(x))]
x <- aggregate(. ~ gene, x, sum)
rownames(x) <- x$gene
x$gene=NULL

y <- read.csv("t1_crp_meth.tsv")
y$genename <- sapply(strsplit(y[,1],"\t"),"[[",1)
y$value <- as.numeric(sapply(strsplit(y[,1],"\t"),"[[",2))
y$t = NULL
row.names(y) <- y$genename
y$t = y$genename = NULL

z <- merge(x,y,by=0)
rownames(z) <- z$Row.names
z$Row.names = NULL
colnames(z) <- c("RNA","meth")
pod_crp <- z

# t0_crp_rna.tsv t0_crp_meth.tsv t0_crp
x <- read.table("t0_crp_rna.tsv",header=TRUE, sep="\t")
x$gene <- sapply(strsplit(rownames(x)," "),"[[",2)
x <- x[,c(4,ncol(x))]
x <- aggregate(. ~ gene, x, sum)
rownames(x) <- x$gene
x$gene=NULL

y <- read.csv("t0_crp_meth.tsv")
y$genename <- sapply(strsplit(y[,1],"\t"),"[[",1)
y$value <- as.numeric(sapply(strsplit(y[,1],"\t"),"[[",2))
y$t = NULL
row.names(y) <- y$genename
y$t = y$genename = NULL

z <- merge(x,y,by=0)
rownames(z) <- z$Row.names
z$Row.names = NULL
colnames(z) <- c("RNA","meth")
t0_crp <- z

Obtaining reactome gene sets

download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip", destfile="ReactomePathways.gmt.zip")
unzip("ReactomePathways.gmt.zip")
genesets <- gmt_import("ReactomePathways.gmt")

Integrative pathway analysis

For each of the three contrast indicated above I have set up mitch analyses.

# t0_v_pod
head(t0_v_pod)
##              RNA        meth
## A1BG   2.6192564 -0.45188238
## AAAS  -2.6372410  0.06143186
## AACS   0.1010134  0.13997068
## AAGAB  1.0702585 -0.59522248
## AAK1  -3.0047762 -0.32725606
## AAMDC  2.2859640 -0.21261544
dim(t0_v_pod)
## [1] 9311    2
capture.output(
    res <- mitch_calc(x=t0_v_pod, genesets=genesets,priority="significance")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Note: When prioritising by significance (ie: small 
##             p-values), large effect sizes might be missed.
head(res$enrichment_result,30)
##                                                                                   set
## 603                                                          Neutrophil degranulation
## 427                                                              Innate Immune System
## 411                                                                     Immune System
## 1124                                                       Vesicle-mediated transport
## 508                                                              Membrane Trafficking
## 908                                                               Signal Transduction
## 968                                            Signaling by Receptor Tyrosine Kinases
## 216                                                                           Disease
## 943                                                         Signaling by Interleukins
## 524                                                            Metabolism of proteins
## 1155                                                                  rRNA processing
## 511                                                                        Metabolism
## 503                     Major pathway of rRNA processing in the nucleolus and cytosol
## 687                                           Post-translational protein modification
## 1156                                       rRNA processing in the nucleus and cytosol
## 229  Diseases of signal transduction by growth factor receptors and second messengers
## 350                                                   Gene expression (Transcription)
## 396                                                                        Hemostasis
## 352                                                     Generic Transcription Pathway
## 1103                                                     Transport of small molecules
## 417                                                                Infectious disease
## 705                                                             Programmed Cell Death
## 127                                              Cellular response to chemical stress
## 675                                    Platelet activation, signaling and aggregation
## 131                                            Cellular responses to external stimuli
## 252                                                              EPH-Ephrin signaling
## 60                                                  Asparagine N-linked glycosylation
## 765                                                   RNA Polymerase II Transcription
## 512                                                                 Metabolism of RNA
## 518                                                              Metabolism of lipids
##      setSize      pMANOVA       s.RNA        s.meth        p.RNA       p.meth
## 603      305 5.795072e-54  0.52291915 -4.989606e-02 2.977618e-55 1.377381e-01
## 427      616 1.274048e-46  0.34770281 -1.369349e-02 8.508006e-48 5.695027e-01
## 411     1142 2.008686e-30  0.20194280  4.931333e-02 1.163054e-28 6.855574e-03
## 1124     442 1.925675e-20  0.26657293  3.469301e-05 2.190807e-21 9.990164e-01
## 508      436 2.226129e-20  0.26789766 -1.369686e-04 2.521765e-21 9.961417e-01
## 908     1292 1.724093e-18  0.15115957  2.675418e-02 2.127594e-18 1.221857e-01
## 968      284 6.360102e-13  0.25268951  4.172771e-02 3.548689e-13 2.304665e-01
## 216      930 7.120276e-12  0.12819832  5.203193e-02 1.270201e-10 9.117658e-03
## 943      263 1.384831e-11  0.25250376  1.506036e-02 2.559798e-12 6.767067e-01
## 524     1263 1.630373e-11  0.09904508  6.447656e-02 1.409068e-08 2.236244e-04
## 1155     159 1.709576e-11 -0.28925183  1.713273e-01 3.634821e-10 2.067426e-04
## 511     1216 3.159757e-11  0.12325164 -1.481645e-02 3.673509e-12 4.041018e-01
## 503      147 5.246796e-11 -0.28255196  1.931798e-01 3.832561e-09 5.677343e-05
## 687      890 7.818233e-11  0.12066837  5.808246e-02 2.947190e-09 4.311271e-03
## 1156     154 1.282056e-10 -0.27445046  1.795163e-01 4.778668e-09 1.294478e-04
## 229      265 1.361496e-10  0.23986167  1.409567e-02 2.502505e-11 6.952870e-01
## 350     1006 1.807766e-10 -0.12769308 -7.410324e-03 3.308719e-11 7.006633e-01
## 396      304 1.928866e-10  0.22405600  1.400227e-03 2.701135e-11 9.668301e-01
## 352      803 3.145790e-10 -0.13037323 -4.228794e-02 9.234432e-10 4.725765e-02
## 1103     342 1.212177e-09  0.20361036 -2.036188e-02 1.482241e-10 5.221420e-01
## 417      530 4.837266e-09  0.11609500  9.958465e-02 6.878294e-06 1.146606e-04
## 705      153 1.123935e-08  0.27896464  3.259124e-02 2.990542e-09 4.886865e-01
## 127      116 1.145043e-08  0.32588926 -3.298457e-02 1.480095e-09 5.409360e-01
## 675      133 1.352266e-08  0.29055423  6.252939e-02 8.089221e-09 2.149918e-01
## 131      457 2.726624e-08  0.12084587  9.945980e-02 1.271123e-05 3.282151e-04
## 252       55 3.523329e-08  0.45099788 -1.116288e-01 7.450318e-09 1.528481e-01
## 60       222 3.899765e-08  0.22605189  1.718244e-02 8.015755e-09 6.613486e-01
## 765      895 4.609059e-08 -0.10987186 -3.347946e-02 6.086883e-08 9.910249e-02
## 512      535 6.676233e-08 -0.09179836  1.229236e-01 3.553622e-04 1.724041e-06
## 518      427 7.260730e-08  0.16383847 -9.591751e-03 9.913576e-09 7.374058e-01
##         s.dist         SD p.adjustMANOVA
## 603  0.5252943 0.40504152   6.733874e-51
## 427  0.3479724 0.25554578   7.402217e-44
## 411  0.2078766 0.10792533   7.780310e-28
## 1124 0.2665729 0.18847099   5.173524e-18
## 508  0.2678977 0.18952910   5.173524e-18
## 908  0.1535090 0.08796789   3.338994e-16
## 968  0.2561117 0.14917251   1.055777e-10
## 216  0.1383551 0.05385777   1.034220e-09
## 943  0.2529525 0.16789783   1.787971e-09
## 524  0.1181827 0.02444363   1.805934e-09
## 1155 0.3361840 0.32567862   1.805934e-09
## 511  0.1241390 0.09762888   3.059698e-09
## 503  0.3422777 0.33639312   4.689828e-09
## 687  0.1339195 0.04425492   6.489134e-09
## 1156 0.3279469 0.32100301   9.887863e-09
## 229  0.2402755 0.15964067   9.887863e-09
## 350  0.1279079 0.08505275   1.235661e-08
## 396  0.2240604 0.15744141   1.245190e-08
## 352  0.1370600 0.06228571   1.923899e-08
## 1103 0.2046260 0.15837229   7.042749e-08
## 417  0.1529547 0.01167458   2.676621e-07
## 705  0.2808620 0.17421230   5.784959e-07
## 127  0.3275543 0.25376212   5.784959e-07
## 675  0.2972065 0.16123791   6.547221e-07
## 131  0.1565119 0.01512224   1.267335e-06
## 252  0.4646074 0.39783715   1.574657e-06
## 60   0.2267040 0.14769300   1.678343e-06
## 765  0.1148595 0.05401758   1.912760e-06
## 512  0.1534182 0.15183136   2.675098e-06
## 518  0.1641190 0.12263369   2.812323e-06
unlink("t0_v_pod_int.html")
capture.output(
    mitch_report(res, "t0_v_pod_int.html")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/RtmpbT00es/t0_v_pod_int.rds ".
## 
## 
## processing file: mitch.Rmd
## output file: /mnt/bfx6/bfx/bain/inflam/integrate/mitch.knit.md
## 
## Output created: /tmp/RtmpbT00es/mitch_report.html
# pod_crp
head(pod_crp)
##               RNA        meth
## A1BG  -0.30654761 0.100632259
## AAAS  -0.72511657 0.230035602
## AACS   0.09916863 0.682403328
## AAGAB  0.67982671 0.001540913
## AAK1  -0.73201617 0.360863030
## AAMDC -0.04498728 0.383673218
dim(pod_crp)
## [1] 9286    2
capture.output(
    res <- mitch_calc(x=pod_crp, genesets=genesets,priority="significance")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Note: When prioritising by significance (ie: small 
##             p-values), large effect sizes might be missed.
head(res$enrichment_result,30)
##                                                                               set
## 602                                                      Neutrophil degranulation
## 426                                                          Innate Immune System
## 1154                                                              rRNA processing
## 1155                                   rRNA processing in the nucleus and cytosol
## 502                 Major pathway of rRNA processing in the nucleolus and cytosol
## 410                                                                 Immune System
## 273                                             Eukaryotic Translation Elongation
## 306                                      Formation of a pool of free 40S subunits
## 659                                                      Peptide chain elongation
## 907                                                           Signal Transduction
## 511                                                             Metabolism of RNA
## 1084                                                                  Translation
## 474             L13a-mediated translational silencing of Ceruloplasmin expression
## 341                       GTP hydrolysis and joining of the 60S ribosomal subunit
## 895                                                      Selenocysteine synthesis
## 1126                                                       Viral mRNA Translation
## 419                             Influenza Viral RNA Transcription and Replication
## 275                                            Eukaryotic Translation Termination
## 107                                          Cap-dependent Translation Initiation
## 274                                             Eukaryotic Translation Initiation
## 507                                                          Membrane Trafficking
## 609  Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
## 1123                                                   Vesicle-mediated transport
## 854                           Response of EIF2AK4 (GCN2) to amino acid deficiency
## 894                                                   Selenoamino acid metabolism
## 418                                                           Influenza Infection
## 877                   SRP-dependent cotranslational protein targeting to membrane
## 608     Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
## 610                                                 Nonsense-Mediated Decay (NMD)
## 967                                        Signaling by Receptor Tyrosine Kinases
##      setSize      pMANOVA      s.RNA        s.meth        p.RNA       p.meth
## 602      305 1.839942e-43  0.4682129 -0.0637568200 1.556093e-44 5.788476e-02
## 426      616 3.632803e-39  0.3179279  0.0009946224 3.598477e-40 9.670495e-01
## 1154     159 2.242209e-36 -0.5836874  0.1227452172 6.593984e-37 7.863070e-03
## 1155     154 1.524395e-35 -0.5845706  0.1329846238 6.490250e-36 4.585052e-03
## 502      147 2.326663e-35 -0.5967108  0.1345649541 9.377045e-36 5.053185e-03
## 410     1142 8.468712e-34  0.2184200  0.0348905773 2.870621e-33 5.581816e-02
## 273       70 2.390361e-26 -0.7344990  0.2052238343 2.057379e-26 3.046100e-03
## 306       76 8.930095e-26 -0.6998628  0.1819218241 4.840533e-26 6.221404e-03
## 659       67 3.937790e-25 -0.7320038  0.2080275486 3.431098e-25 3.293493e-03
## 907     1290 5.270862e-25  0.1705675  0.0528060542 5.570059e-23 2.298511e-03
## 511      535 5.950107e-25 -0.2593991  0.0963754209 4.749592e-24 1.774875e-04
## 1084     234 6.928909e-25 -0.4016650  0.0472209947 5.814428e-26 2.167733e-01
## 474       85 1.427499e-23 -0.6269152  0.1904255931 1.676289e-23 2.467955e-03
## 341       86 1.510523e-23 -0.6214611  0.1954170880 2.257091e-23 1.779893e-03
## 895       68 1.635992e-23 -0.7054580  0.1839718964 7.885506e-24 8.841144e-03
## 1126      67 2.227142e-23 -0.7008968  0.2198493378 3.210041e-23 1.896199e-03
## 419      110 4.420886e-23 -0.5317726  0.2148727907 6.245388e-22 1.039331e-04
## 275       70 1.335358e-22 -0.6848617  0.1581132192 3.693743e-23 2.245165e-02
## 107       93 2.306870e-22 -0.5796381  0.1930840319 4.628933e-22 1.330093e-03
## 274       93 2.306870e-22 -0.5796381  0.1930840319 4.628933e-22 1.330093e-03
## 507      436 7.777816e-22  0.2779962 -0.0023314155 7.609158e-23 9.344047e-01
## 609       72 1.019976e-21 -0.6507911  0.2057979403 1.301906e-21 2.585238e-03
## 1123     442 1.603235e-21  0.2736656  0.0040378118 1.865388e-22 8.859168e-01
## 854       76 1.049725e-20 -0.6245443  0.1670866907 4.826701e-21 1.198122e-02
## 894       76 3.411738e-20 -0.6162866  0.1661609235 1.574327e-20 1.246250e-02
## 418      128 8.196374e-20 -0.4477489  0.2068683119 2.544846e-18 5.650395e-05
## 877       85 6.571163e-19 -0.5501435  0.2047872034 1.923401e-18 1.131216e-03
## 608       86 1.637725e-18 -0.5365319  0.2151845298 8.407537e-18 5.796399e-04
## 610       86 1.637725e-18 -0.5365319  0.2151845298 8.407537e-18 5.796399e-04
## 967      284 1.177266e-14  0.2731803  0.0329426012 3.750258e-15 3.438222e-01
##         s.dist         SD p.adjustMANOVA
## 602  0.4725338 0.37615937   2.136172e-40
## 426  0.3179295 0.22410568   2.108842e-36
## 1154 0.5964539 0.49952326   8.677349e-34
## 1155 0.5995062 0.50738816   4.424556e-33
## 502  0.6116956 0.51709006   5.402510e-33
## 410  0.2211892 0.12977491   1.638696e-31
## 273  0.7626307 0.66448439   3.964585e-24
## 306  0.7231207 0.62351592   1.295980e-23
## 659  0.7609895 0.66470256   5.079749e-23
## 907  0.1785546 0.08326988   6.119470e-23
## 511  0.2767239 0.25157060   6.280067e-23
## 1084 0.4044312 0.31741035   6.703720e-23
## 474  0.6551982 0.57794724   1.252656e-21
## 341  0.6514612 0.57762009   1.252656e-21
## 895  0.7290519 0.62892191   1.266258e-21
## 1126 0.7345679 0.65106580   1.616070e-21
## 419  0.5735437 0.52795802   3.019205e-21
## 275  0.7028765 0.59607330   8.613056e-21
## 107  0.6109515 0.54639705   1.339138e-20
## 274  0.6109515 0.54639705   1.339138e-20
## 507  0.2780059 0.19822153   4.300021e-20
## 609  0.6825553 0.60569990   5.382692e-20
## 1123 0.2736954 0.19065564   8.092851e-20
## 854  0.6465087 0.55976761   5.078046e-19
## 894  0.6382936 0.55327398   1.584411e-18
## 418  0.4932277 0.46288427   3.659996e-18
## 877  0.5870227 0.53381664   2.825600e-17
## 608  0.5780751 0.53154375   6.556548e-17
## 610  0.5780751 0.53154375   6.556548e-17
## 967  0.2751594 0.16987370   4.556020e-13
unlink("pod_crp_int.html")
capture.output(
    mitch_report(res, "pod_crp_int.html")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/RtmpbT00es/pod_crp_int.rds ".
## 
## 
## processing file: mitch.Rmd
## output file: /mnt/bfx6/bfx/bain/inflam/integrate/mitch.knit.md
## 
## Output created: /tmp/RtmpbT00es/mitch_report.html
# t0_crp
head(t0_crp)
##              RNA      meth
## A1BG  -3.3462109 0.9487855
## AAAS  -0.3078565 0.4334437
## AACS  -0.4896883 0.8690806
## AAGAB  1.1384144 0.5727567
## AAK1   0.5029925 0.7201373
## AAMDC -1.2878387 0.8935852
dim(t0_crp)
## [1] 9321    2
capture.output(
    res <- mitch_calc(x=t0_crp, genesets=genesets,priority="significance")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Note: When prioritising by significance (ie: small 
##             p-values), large effect sizes might be missed.
head(res$enrichment_result,30)
##                                                                               set
## 274                                             Eukaryotic Translation Elongation
## 660                                                      Peptide chain elongation
## 307                                      Formation of a pool of free 40S subunits
## 897                                                      Selenocysteine synthesis
## 1130                                                       Viral mRNA Translation
## 276                                            Eukaryotic Translation Termination
## 475             L13a-mediated translational silencing of Ceruloplasmin expression
## 896                                                   Selenoamino acid metabolism
## 342                       GTP hydrolysis and joining of the 60S ribosomal subunit
## 610  Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
## 107                                          Cap-dependent Translation Initiation
## 275                                             Eukaryotic Translation Initiation
## 856                           Response of EIF2AK4 (GCN2) to amino acid deficiency
## 833                                   Regulation of expression of SLITs and ROBOs
## 879                   SRP-dependent cotranslational protein targeting to membrane
## 609     Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
## 611                                                 Nonsense-Mediated Decay (NMD)
## 130                                               Cellular response to starvation
## 71                                                                  Axon guidance
## 596                                                    Nervous system development
## 968                                                   Signaling by ROBO receptors
## 420                             Influenza Viral RNA Transcription and Replication
## 1088                                                                  Translation
## 131                                        Cellular responses to external stimuli
## 132                                                  Cellular responses to stress
## 603                                                      Neutrophil degranulation
## 511                                                                    Metabolism
## 1160                                   rRNA processing in the nucleus and cytosol
## 214                                                         Developmental Biology
## 1159                                                              rRNA processing
##      setSize      pMANOVA      s.RNA        s.meth        p.RNA     p.meth
## 274       70 3.258046e-31 -0.8067915 -0.0891702827 1.456184e-31 0.19801642
## 660       67 1.738058e-29 -0.7987446 -0.1015809218 1.036587e-29 0.15132710
## 307       76 4.759693e-29 -0.7468845 -0.0816344539 1.879334e-29 0.21963374
## 897       68 3.255640e-27 -0.7662189 -0.0650091226 7.640162e-28 0.35495549
## 1130      67 9.036884e-27 -0.7630682 -0.0807331400 3.027390e-27 0.25413821
## 276       70 1.732271e-26 -0.7422703 -0.0807542042 6.066653e-27 0.24372635
## 475       85 5.910754e-26 -0.6700303 -0.0533666217 1.238251e-26 0.39632401
## 896       76 1.736220e-25 -0.6974581 -0.0834248954 7.129800e-26 0.20968685
## 342       86 1.355598e-24 -0.6491381 -0.0431372055 2.297222e-25 0.49044667
## 610       72 1.454166e-23 -0.6897322 -0.0731009959 4.317261e-24 0.28457759
## 107       93 1.535829e-23 -0.6106474 -0.0401815885 2.546915e-24 0.50430811
## 275       93 1.535829e-23 -0.6106474 -0.0401815885 2.546915e-24 0.50430811
## 856       76 5.391045e-22 -0.6490478 -0.0627793117 1.317139e-22 0.34518484
## 833      122 1.215849e-18 -0.4709083 -0.0496187219 3.020337e-19 0.34571912
## 879       85 2.353438e-18 -0.5525565 -0.0906096349 1.363646e-18 0.14981242
## 609       86 8.857790e-18 -0.5468428 -0.0534191209 1.955780e-18 0.39312006
## 611       86 8.857790e-18 -0.5468428 -0.0534191209 1.955780e-18 0.39312006
## 130      119 1.097946e-17 -0.4690942 -0.0005534055 1.107063e-18 0.99171178
## 71       295 1.684724e-17 -0.2970875 -0.0227373276 2.943405e-18 0.50570496
## 596      307 1.445504e-16 -0.2830552 -0.0229487392 2.614699e-17 0.49347050
## 968      153 1.714218e-15 -0.3856152 -0.0164510831 2.264908e-16 0.72671223
## 420      110 5.567492e-15 -0.4445317 -0.0306728122 8.956213e-16 0.57969384
## 1088     234 3.991040e-14 -0.2816986 -0.0870257972 1.592675e-13 0.02280668
## 131      457 1.775564e-12 -0.2019760 -0.0134440986 2.827067e-13 0.62740947
## 132      452 2.146138e-12 -0.2024482 -0.0124047468 3.306123e-13 0.65594350
## 603      305 3.801828e-12 -0.2402156 -0.0263560592 8.351452e-13 0.43304056
## 511     1216 5.099476e-12 -0.1248466  0.0345132959 1.923375e-12 0.05192319
## 1160     154 7.221995e-12 -0.3264845 -0.0597626438 3.227685e-12 0.20274204
## 214      451 1.058663e-11 -0.1957744 -0.0180848272 2.018446e-12 0.51643904
## 1159     159 1.563430e-11 -0.3156859 -0.0614638808 7.739023e-12 0.18326224
##         s.dist        SD p.adjustMANOVA
## 274  0.8117043 0.5074349   3.798882e-28
## 660  0.8051780 0.4929691   1.013288e-26
## 307  0.7513326 0.4704028   1.849934e-26
## 897  0.7689718 0.4958302   9.490191e-25
## 1130 0.7673271 0.4824837   2.107401e-24
## 276  0.7466502 0.4677625   3.366381e-24
## 475  0.6721522 0.4360471   9.845628e-24
## 896  0.7024297 0.4341870   2.530541e-23
## 342  0.6505699 0.4285074   1.756252e-22
## 610  0.6935952 0.4360241   1.492314e-21
## 107  0.6119679 0.4033802   1.492314e-21
## 275  0.6119679 0.4033802   1.492314e-21
## 856  0.6520770 0.4145545   4.835353e-20
## 833  0.4735152 0.2978967   1.012629e-16
## 879  0.5599364 0.3266458   1.829406e-16
## 609  0.5494457 0.3489032   6.075402e-16
## 611  0.5494457 0.3489032   6.075402e-16
## 130  0.4690945 0.3313084   7.112252e-16
## 71   0.2979563 0.1939949   1.033889e-15
## 596  0.2839839 0.1839230   8.427286e-15
## 968  0.3859660 0.2610385   9.517989e-14
## 420  0.4455887 0.2926425   2.950771e-13
## 1088 0.2948348 0.1376544   2.023284e-12
## 131  0.2024229 0.1333122   8.626281e-11
## 132  0.2028279 0.1343810   1.000959e-10
## 603  0.2416571 0.1512215   1.704974e-10
## 511  0.1295293 0.1126845   2.202218e-10
## 1160 0.3319091 0.1886008   3.007445e-10
## 214  0.1966079 0.1256455   4.256556e-10
## 1159 0.3216138 0.1797621   6.076531e-10
unlink("t0_crp_int.html")
capture.output(
    mitch_report(res, "t0_crp_int.html")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/RtmpbT00es/t0_crp_int.rds ".
## 
## 
## processing file: mitch.Rmd
## output file: /mnt/bfx6/bfx/bain/inflam/integrate/mitch.knit.md
## 
## Output created: /tmp/RtmpbT00es/mitch_report.html

Session information

sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.2 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] pkgload_1.2.0   GGally_2.1.1    ggplot2_3.3.3   reshape2_1.4.4 
##  [5] beeswarm_0.3.1  gplots_3.1.1    gtools_3.8.2    tibble_3.1.0   
##  [9] dplyr_1.0.5     echarts4r_0.4.0 mitch_1.2.2    
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.6         rprojroot_2.0.2    assertthat_0.2.1   digest_0.6.27     
##  [5] utf8_1.2.1         mime_0.10          R6_2.5.0           plyr_1.8.6        
##  [9] evaluate_0.14      highr_0.8          pillar_1.5.1       rlang_0.4.10      
## [13] jquerylib_0.1.3    rmarkdown_2.7      labeling_0.4.2     desc_1.3.0        
## [17] stringr_1.4.0      htmlwidgets_1.5.3  munsell_0.5.0      shiny_1.6.0       
## [21] compiler_4.0.3     httpuv_1.5.5       xfun_0.22          pkgconfig_2.0.3   
## [25] htmltools_0.5.1.1  tidyselect_1.1.0   gridExtra_2.3      reshape_0.8.8     
## [29] fansi_0.4.2        crayon_1.4.1       withr_2.4.1        later_1.1.0.1     
## [33] MASS_7.3-53.1      bitops_1.0-6       grid_4.0.3         jsonlite_1.7.2    
## [37] xtable_1.8-4       gtable_0.3.0       lifecycle_1.0.0    DBI_1.1.1         
## [41] magrittr_2.0.1     scales_1.1.1       KernSmooth_2.23-18 stringi_1.5.3     
## [45] farver_2.1.0       promises_1.2.0.1   testthat_3.0.2     bslib_0.2.4       
## [49] ellipsis_0.3.1     generics_0.1.0     vctrs_0.3.6        RColorBrewer_1.1-2
## [53] tools_4.0.3        glue_1.4.2         purrr_0.3.4        parallel_4.0.3    
## [57] fastmap_1.1.0      yaml_2.2.1         colorspace_2.0-0   caTools_1.18.1    
## [61] knitr_1.31         sass_0.3.1