Introduction

Here I'm using the new mitch package to compare methylation and RNA expression data from the RELIEF patients.

Mitch: https://doi.org/10.1186/s12864-020-06856-9

The contrasts I'm looking at are:

  1. Base-line versus post-op for all patients.

  2. Low versus high CRP groups in post-op samples.

  3. Low versus high CRP groups in base-line samples.

Packages

suppressPackageStartupMessages({
    library("mitch")
})

Import read counts

Need to import the data and merge the RNA and array data. I notices that only 11370 genes had promoter methylation values, while 21907 had RNA expression values. We might need to look at updating the array annotation to include more genes as the array annotation is from ~2014 and might be missing a lot of ncRNA genes.

# t0_v_pod_rna.tsv t0vPod_meth.tsv t0_v_pod
x <- read.table("t0_v_pod_rna.tsv",header=TRUE, sep="\t")
x$gene <- sapply(strsplit(rownames(x)," "),"[[",2)
x <- x[,c(4,ncol(x))]
x <- aggregate(. ~ gene, x, sum)
rownames(x) <- x$gene
x$gene=NULL

y <- read.csv("t0vPod_meth.tsv")
y$genename <- sapply(strsplit(y[,1],"\t"),"[[",1)
y$value <- as.numeric(sapply(strsplit(y[,1],"\t"),"[[",2))
y$t = NULL
row.names(y) <- y$genename
y$t = y$genename = NULL

z <- merge(x,y,by=0)
rownames(z) <- z$Row.names
z$Row.names = NULL
colnames(z) <- c("RNA","meth")
t0_v_pod <- z

# pod_crp_rna.tsv t1_crp_meth.tsv pod_crp
x <- read.table("pod_crp_rna.tsv",header=TRUE, sep="\t")
x$gene <- sapply(strsplit(rownames(x)," "),"[[",2)
x <- x[,c(4,ncol(x))]
x <- aggregate(. ~ gene, x, sum)
rownames(x) <- x$gene
x$gene=NULL

y <- read.csv("t1_crp_meth.tsv")
y$genename <- sapply(strsplit(y[,1],"\t"),"[[",1)
y$value <- as.numeric(sapply(strsplit(y[,1],"\t"),"[[",2))
y$t = NULL
row.names(y) <- y$genename
y$t = y$genename = NULL

z <- merge(x,y,by=0)
rownames(z) <- z$Row.names
z$Row.names = NULL
colnames(z) <- c("RNA","meth")
pod_crp <- z

# t0_crp_rna.tsv t0_crp_meth.tsv t0_crp
x <- read.table("t0_crp_rna.tsv",header=TRUE, sep="\t")
x$gene <- sapply(strsplit(rownames(x)," "),"[[",2)
x <- x[,c(4,ncol(x))]
x <- aggregate(. ~ gene, x, sum)
rownames(x) <- x$gene
x$gene=NULL

y <- read.csv("t0_crp_meth.tsv")
y$genename <- sapply(strsplit(y[,1],"\t"),"[[",1)
y$value <- as.numeric(sapply(strsplit(y[,1],"\t"),"[[",2))
y$t = NULL
row.names(y) <- y$genename
y$t = y$genename = NULL

z <- merge(x,y,by=0)
rownames(z) <- z$Row.names
z$Row.names = NULL
colnames(z) <- c("RNA","meth")
t0_crp <- z

Obtaining reactome gene sets

download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip", destfile="ReactomePathways.gmt.zip")
unzip("ReactomePathways.gmt.zip")
genesets <- gmt_import("ReactomePathways.gmt")

Integrative pathway analysis

For each of the three contrast indicated above I have set up mitch analyses.

# t0_v_pod
head(t0_v_pod)
##               RNA        meth
## A1BG   2.62454842 -0.45188238
## AAAS  -2.57494043  0.06143186
## AACS   0.09686573  0.13997068
## AAGAB  1.08711796 -0.59522248
## AAK1  -2.99514827 -0.32725606
## AAMDC  2.30068224 -0.21261544
dim(t0_v_pod)
## [1] 9311    2
capture.output(
    res <- mitch_calc(x=t0_v_pod, genesets=genesets,priority="significance")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Note: When prioritising by significance (ie: small 
##             p-values), large effect sizes might be missed.
head(res$enrichment_result,30)
##                                                                                   set
## 597                                                          Neutrophil degranulation
## 421                                                              Innate Immune System
## 406                                                                     Immune System
## 1080                                                       Vesicle-mediated transport
## 502                                                              Membrane Trafficking
## 873                                                               Signal Transduction
## 925                                            Signaling by Receptor Tyrosine Kinases
## 215                                                                           Disease
## 518                                                            Metabolism of proteins
## 1112                                                                  rRNA processing
## 900                                                         Signaling by Interleukins
## 505                                                                        Metabolism
## 497                     Major pathway of rRNA processing in the nucleolus and cytosol
## 681                                           Post-translational protein modification
## 1113                                       rRNA processing in the nucleus and cytosol
## 346                                                   Gene expression (Transcription)
## 391                                                                        Hemostasis
## 227  Diseases of signal transduction by growth factor receptors and second messengers
## 348                                                     Generic Transcription Pathway
## 1059                                                     Transport of small molecules
## 669                                    Platelet activation, signaling and aggregation
## 411                                                                Infectious disease
## 130                                            Cellular responses to external stimuli
## 62                                                  Asparagine N-linked glycosylation
## 249                                                              EPH-Ephrin signaling
## 740                                                   RNA Polymerase II Transcription
## 506                                                                 Metabolism of RNA
## 414                                 Influenza Viral RNA Transcription and Replication
## 131                                                      Cellular responses to stress
## 512                                                              Metabolism of lipids
##      setSize      pMANOVA       s.RNA        s.meth        p.RNA       p.meth
## 597      306 1.468753e-53  0.52014894 -4.817730e-02 7.523155e-55 1.511729e-01
## 421      617 2.235824e-46  0.34649579 -1.287089e-02 1.523065e-47 5.926374e-01
## 406     1197 1.780152e-29  0.19417700  4.940109e-02 1.210139e-27 5.714622e-03
## 1080     442 1.982334e-20  0.26649538  3.469301e-05 2.249954e-21 9.990164e-01
## 502      436 2.306787e-20  0.26779997 -1.369686e-04 2.607122e-21 9.961417e-01
## 873     1172 3.067540e-18  0.15673073  2.653323e-02 3.163302e-18 1.413313e-01
## 925      284 8.883463e-13  0.25114562  4.172771e-02 4.930813e-13 2.304665e-01
## 215      871 1.148062e-11  0.13088731  5.288251e-02 1.816388e-10 1.005902e-02
## 518     1263 1.284806e-11  0.09782930  6.718852e-02 2.112367e-08 1.200267e-04
## 1112     159 1.713008e-11 -0.28918860  1.713273e-01 3.667009e-10 2.067426e-04
## 900      262 1.718144e-11  0.25172703  1.617150e-02 3.273024e-12 6.549493e-01
## 505     1215 2.399116e-11  0.12397729 -1.526985e-02 2.792774e-12 3.900374e-01
## 497      147 4.736339e-11 -0.28337000  1.931798e-01 3.455492e-09 5.677343e-05
## 681      889 9.726147e-11  0.11964406  5.882713e-02 4.075975e-09 3.857327e-03
## 1113     154 1.179556e-10 -0.27509719  1.795163e-01 4.396930e-09 1.294478e-04
## 346     1007 1.575485e-10 -0.12786171 -8.612401e-03 3.056600e-11 6.548887e-01
## 391      304 1.936176e-10  0.22404358  1.400227e-03 2.707947e-11 9.668301e-01
## 227      260 2.049340e-10  0.24008737  1.287151e-02 3.643800e-11 7.230537e-01
## 348      803 4.393940e-10 -0.12926461 -4.228794e-02 1.279522e-09 4.725765e-02
## 1059     342 1.173140e-09  0.20377140 -2.036188e-02 1.433676e-10 5.221420e-01
## 669      133 1.374361e-08  0.29044446  6.252939e-02 8.194595e-09 2.149918e-01
## 411      486 1.721756e-08  0.11247182  1.051064e-01 2.884260e-05 9.295143e-05
## 130      397 2.577235e-08  0.12168615  1.151699e-01 3.951393e-05 1.002380e-04
## 62       223 2.834605e-08  0.22710577  2.068267e-02 6.329616e-09 5.971898e-01
## 249       55 4.439792e-08  0.44780388 -1.116288e-01 9.499295e-09 1.528481e-01
## 740      895 5.888276e-08 -0.10899537 -3.347946e-02 7.745657e-08 9.910249e-02
## 506      535 6.445924e-08 -0.09204202  1.229236e-01 3.427065e-04 1.724041e-06
## 414      110 7.144080e-08 -0.22515734  2.416496e-01 4.757849e-05 1.268767e-05
## 131      392 7.667985e-08  0.11642938  1.143912e-01 9.274670e-05 1.228631e-04
## 512      427 1.014328e-07  0.16217034 -9.591751e-03 1.397159e-08 7.374058e-01
##         s.dist          SD p.adjustMANOVA
## 597  0.5223753 0.401867337   1.645003e-50
## 421  0.3467348 0.254110613   1.252062e-43
## 406  0.2003626 0.102372032   6.645900e-27
## 1080 0.2664954 0.188416158   5.167203e-18
## 502  0.2678000 0.189460029   5.167203e-18
## 873  0.1589608 0.092063537   5.726075e-16
## 925  0.2545885 0.148080826   1.421354e-10
## 215  0.1411667 0.055157722   1.598870e-09
## 518  0.1186797 0.021666303   1.598870e-09
## 1112 0.3361296 0.325633915   1.749383e-09
## 900  0.2522459 0.166562912   1.749383e-09
## 505  0.1249141 0.098462598   2.239175e-09
## 497  0.3429533 0.336971570   4.080538e-09
## 681  0.1333242 0.043004067   7.780917e-09
## 1113 0.3284883 0.321460311   8.807354e-09
## 346  0.1281514 0.084321996   1.102839e-08
## 391  0.2240480 0.157432625   1.275145e-08
## 227  0.2404322 0.160665877   1.275145e-08
## 348  0.1360059 0.061501793   2.590112e-08
## 1059 0.2047862 0.158486168   6.569582e-08
## 669  0.2970992 0.161160291   7.329928e-07
## 411  0.1539391 0.005208152   8.765305e-07
## 130  0.1675459 0.004607668   1.255001e-06
## 62   0.2280456 0.145963171   1.322815e-06
## 249  0.4615076 0.395578657   1.989027e-06
## 740  0.1140213 0.053397812   2.536488e-06
## 506  0.1535641 0.152003651   2.673865e-06
## 414  0.3302883 0.330082372   2.857632e-06
## 131  0.1632212 0.001441214   2.961429e-06
## 512  0.1624538 0.121454140   3.786823e-06
unlink("t0_v_pod_int.html")
capture.output(
    mitch_report(res, "t0_v_pod_int.html")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/RtmpJ0JTVz/./t0_v_pod_int.RData ".
## 
## 
## processing file: mitch.Rmd
## output file: /mnt/bfx6/bfx/bain/inflam/integrate/mitch.knit.md
## 
## Output created: /tmp/RtmpJ0JTVz/mitch_report.html
# pod_crp
head(pod_crp)
##              RNA        meth
## A1BG  -0.2700849 0.100632259
## AAAS  -1.3836098 0.230035602
## AACS  -0.3700472 0.682403328
## AAGAB  1.4820262 0.001540913
## AAK1  -1.0782919 0.360863030
## AAMDC  0.4638045 0.383673218
dim(pod_crp)
## [1] 9286    2
capture.output(
    res <- mitch_calc(x=pod_crp, genesets=genesets,priority="significance")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Note: When prioritising by significance (ie: small 
##             p-values), large effect sizes might be missed.
head(res$enrichment_result,30)
##                                                                               set
## 596                                                      Neutrophil degranulation
## 420                                                          Innate Immune System
## 405                                                                 Immune System
## 1111                                                              rRNA processing
## 1112                                   rRNA processing in the nucleus and cytosol
## 496                 Major pathway of rRNA processing in the nucleolus and cytosol
## 872                                                           Signal Transduction
## 501                                                          Membrane Trafficking
## 1079                                                   Vesicle-mediated transport
## 270                                             Eukaryotic Translation Elongation
## 653                                                      Peptide chain elongation
## 302                                      Formation of a pool of free 40S subunits
## 413                             Influenza Viral RNA Transcription and Replication
## 505                                                             Metabolism of RNA
## 864                                                      Selenocysteine synthesis
## 1082                                                       Viral mRNA Translation
## 272                                            Eukaryotic Translation Termination
## 337                       GTP hydrolysis and joining of the 60S ribosomal subunit
## 468             L13a-mediated translational silencing of Ceruloplasmin expression
## 603  Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
## 108                                          Cap-dependent Translation Initiation
## 271                                             Eukaryotic Translation Initiation
## 823                           Response of EIF2AK4 (GCN2) to amino acid deficiency
## 412                                                           Influenza Infection
## 863                                                   Selenoamino acid metabolism
## 1040                                                                  Translation
## 602     Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
## 604                                                 Nonsense-Mediated Decay (NMD)
## 846                   SRP-dependent cotranslational protein targeting to membrane
## 924                                        Signaling by Receptor Tyrosine Kinases
##      setSize      pMANOVA      s.RNA        s.meth        p.RNA       p.meth
## 596      306 1.487587e-50  0.5045446 -0.0656942807 1.131455e-51 5.031132e-02
## 420      617 2.850417e-45  0.3417930 -0.0001056317 2.740134e-46 9.964969e-01
## 405     1197 2.340569e-36  0.2228507  0.0319867745 6.192932e-36 7.362818e-02
## 1111     159 3.547566e-31 -0.5384983  0.1227452172 1.255146e-31 7.863070e-03
## 1112     154 2.702367e-30 -0.5374109  0.1329846238 1.409868e-30 4.585052e-03
## 496      147 3.990555e-30 -0.5484777  0.1345649541 1.967766e-30 5.053185e-03
## 872     1169 6.626950e-25  0.1769962  0.0560376984 8.882539e-23 1.915513e-03
## 501      436 1.145893e-23  0.2897165 -0.0023314155 1.104852e-24 9.344047e-01
## 1079     442 2.465903e-23  0.2852730  0.0040378118 2.852218e-24 8.859168e-01
## 270       70 2.862458e-22 -0.6701854  0.2052238343 3.061240e-22 3.046100e-03
## 653       67 3.296912e-21 -0.6670730  0.2080275486 3.568129e-21 3.293493e-03
## 302       76 1.028293e-20 -0.6216784  0.1819218241 7.288162e-21 6.221404e-03
## 413      110 2.064205e-20 -0.4946421  0.2148727907 3.544765e-19 1.039331e-04
## 505      535 6.333406e-20 -0.2276202  0.0963754209 7.314170e-19 1.774875e-04
## 864       68 7.850755e-20 -0.6432268  0.1839718964 4.603308e-20 8.841144e-03
## 1082      67 1.488766e-19 -0.6343535  0.2198493378 2.725847e-19 1.896199e-03
## 272       70 7.099956e-19 -0.6217851  0.1581132192 2.365543e-19 2.245165e-02
## 337       86 2.890064e-18 -0.5387816  0.1954170880 6.131585e-18 1.779893e-03
## 468       85 3.105969e-18 -0.5431622  0.1904255931 5.147493e-18 2.467955e-03
## 603       72 3.408472e-18 -0.5892754  0.2057979403 5.470769e-18 2.585238e-03
## 108       93 3.441137e-17 -0.4988379  0.1930840319 1.000789e-16 1.330093e-03
## 271       93 3.441137e-17 -0.4988379  0.1930840319 1.000789e-16 1.330093e-03
## 823       76 4.251706e-17 -0.5623493  0.1670866907 2.418844e-17 1.198122e-02
## 412      128 4.338902e-17 -0.4083673  0.2068683119 1.727649e-15 5.650395e-05
## 863       76 7.449484e-17 -0.5580947  0.1661609235 4.194205e-17 1.246250e-02
## 1040     234 1.062533e-16 -0.3264387  0.0472209947 1.177668e-17 2.167733e-01
## 602       86 1.507942e-15 -0.4833847  0.2151845298 9.965199e-15 5.796399e-04
## 604       86 1.507942e-15 -0.4833847  0.2151845298 9.965199e-15 5.796399e-04
## 846       85 7.973763e-15 -0.4766016  0.2047872034 3.285886e-14 1.131216e-03
## 924      284 8.985486e-15  0.2742998  0.0329426012 2.895360e-15 3.438222e-01
##         s.dist         SD p.adjustMANOVA
## 596  0.5088035 0.40321978   1.664610e-47
## 420  0.3417930 0.24175882   1.594808e-42
## 405  0.2251346 0.13496116   8.730322e-34
## 1111 0.5523105 0.46756979   9.924316e-29
## 1112 0.5536203 0.47404122   6.047898e-28
## 496  0.5647437 0.48298407   7.442386e-28
## 872  0.1856553 0.08553059   1.059365e-22
## 501  0.2897259 0.20650905   1.602818e-21
## 1079 0.2853016 0.19886334   3.065940e-21
## 270  0.7009032 0.61900780   3.203091e-20
## 653  0.6987574 0.61878955   3.353859e-19
## 302  0.6477496 0.56823115   9.588836e-19
## 413  0.5392969 0.50170283   1.776804e-18
## 505  0.2471825 0.22909953   5.062201e-18
## 864  0.6690190 0.58491781   5.856663e-18
## 1082 0.6713703 0.60401259   1.041206e-17
## 272  0.6415735 0.55147139   4.673442e-17
## 337  0.5731260 0.51915687   1.796657e-16
## 468  0.5755754 0.51872489   1.829252e-16
## 603  0.6241781 0.56220173   1.907040e-16
## 108  0.5349025 0.48926272   1.750287e-15
## 271  0.5349025 0.48926272   1.750287e-15
## 823  0.5866470 0.51578912   2.023013e-15
## 412  0.4577755 0.43503730   2.023013e-15
## 863  0.5823051 0.51212610   3.334389e-15
## 1040 0.3298364 0.26421730   4.572977e-15
## 602  0.5291174 0.49396306   6.026383e-14
## 604  0.5291174 0.49396306   6.026383e-14
## 846  0.5187359 0.48181468   3.076773e-13
## 924  0.2762708 0.17066529   3.351586e-13
unlink("pod_crp_int.html")
capture.output(
    mitch_report(res, "pod_crp_int.html")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/RtmpJ0JTVz/./pod_crp_int.RData ".
## 
## 
## processing file: mitch.Rmd
## output file: /mnt/bfx6/bfx/bain/inflam/integrate/mitch.knit.md
## 
## Output created: /tmp/RtmpJ0JTVz/mitch_report.html
# t0_crp
head(t0_crp)
##              RNA      meth
## A1BG  -3.3590111 0.9487855
## AAAS  -0.7287326 0.4334437
## AACS  -0.6787675 0.8690806
## AAGAB  1.3669141 0.5727567
## AAK1   0.2026914 0.7201373
## AAMDC -1.6832172 0.8935852
dim(t0_crp)
## [1] 9321    2
capture.output(
    res <- mitch_calc(x=t0_crp, genesets=genesets,priority="significance")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Note: When prioritising by significance (ie: small 
##             p-values), large effect sizes might be missed.
head(res$enrichment_result,30)
##                                                                                                         set
## 271                                                                       Eukaryotic Translation Elongation
## 654                                                                                Peptide chain elongation
## 303                                                                Formation of a pool of free 40S subunits
## 866                                                                                Selenocysteine synthesis
## 273                                                                      Eukaryotic Translation Termination
## 1086                                                                                 Viral mRNA Translation
## 865                                                                             Selenoamino acid metabolism
## 469                                       L13a-mediated translational silencing of Ceruloplasmin expression
## 338                                                 GTP hydrolysis and joining of the 60S ribosomal subunit
## 604                            Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
## 108                                                                    Cap-dependent Translation Initiation
## 272                                                                       Eukaryotic Translation Initiation
## 825                                                     Response of EIF2AK4 (GCN2) to amino acid deficiency
## 848                                             SRP-dependent cotranslational protein targeting to membrane
## 603                               Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
## 605                                                                           Nonsense-Mediated Decay (NMD)
## 1044                                                                                            Translation
## 414                                                       Influenza Viral RNA Transcription and Replication
## 802                                                             Regulation of expression of SLITs and ROBOs
## 1116                                                                                        rRNA processing
## 1117                                                             rRNA processing in the nucleus and cytosol
## 497                                           Major pathway of rRNA processing in the nucleolus and cytosol
## 413                                                                                     Influenza Infection
## 925                                                                             Signaling by ROBO receptors
## 307                                     Formation of the ternary complex, and subsequently, the 43S complex
## 507                                                               Metabolism of amino acids and derivatives
## 73                                                                                            Axon guidance
## 39   Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S
## 1045                                                               Translation initiation complex formation
## 590                                                                              Nervous system development
##      setSize      pMANOVA      s.RNA      s.meth        p.RNA     p.meth
## 271       70 7.592605e-37 -0.8793644 -0.08917028 3.159748e-37 0.19801642
## 654       67 5.096027e-35 -0.8738391 -0.10158092 2.836024e-35 0.15132710
## 303       76 2.336377e-33 -0.8027241 -0.08163445 8.552038e-34 0.21963374
## 866       68 7.340406e-33 -0.8447022 -0.06500912 1.596409e-33 0.35495549
## 273       70 6.848944e-32 -0.8176382 -0.08075420 2.229928e-32 0.24372635
## 1086      67 1.173370e-31 -0.8327113 -0.08073314 3.649929e-32 0.25413821
## 865       76 2.492653e-30 -0.7639805 -0.08342490 9.514672e-31 0.20968685
## 469       85 3.004403e-29 -0.7129570 -0.05336662 5.845660e-30 0.39632401
## 338       86 6.002228e-28 -0.6936352 -0.04313721 9.452234e-29 0.49044667
## 604       72 1.055212e-27 -0.7507028 -0.07310100 2.904327e-28 0.28457759
## 108       93 2.183839e-26 -0.6479974 -0.04018159 3.373717e-27 0.50430811
## 272       93 2.183839e-26 -0.6479974 -0.04018159 3.373717e-27 0.50430811
## 825       76 3.129958e-26 -0.7116649 -0.06277931 7.073576e-27 0.34518484
## 848       85 6.982717e-22 -0.6073727 -0.09060963 3.753876e-22 0.14981242
## 603       86 1.120157e-21 -0.6070384 -0.05341912 2.273789e-22 0.39312006
## 605       86 1.120157e-21 -0.6070384 -0.05341912 2.273789e-22 0.39312006
## 1044     234 2.809200e-21 -0.3557510 -0.08702580 1.087705e-20 0.02280668
## 414      110 1.097052e-20 -0.5265582 -0.03067281 1.562292e-21 0.57969384
## 802      122 3.082890e-19 -0.4790792 -0.04961872 7.222423e-20 0.34571912
## 1116     159 5.583970e-18 -0.4025720 -0.06146388 2.465499e-18 0.18326224
## 1117     154 6.425347e-18 -0.4087332 -0.05976264 2.565815e-18 0.20274204
## 497      147 1.589518e-16 -0.3993673 -0.06636324 7.768705e-17 0.16682424
## 413      128 4.199904e-15 -0.4144254 -0.02891126 6.576611e-16 0.57372866
## 925      153 2.247445e-14 -0.3708723 -0.01645108 2.966564e-15 0.72671223
## 307       40 1.958488e-11 -0.6259940 -0.10900765 7.364966e-12 0.23348106
## 507      219 5.688460e-11 -0.2652074 -0.04160258 1.759355e-11 0.29204496
## 73       295 1.021488e-10 -0.2288830 -0.02273733 1.978458e-11 0.50570496
## 39        48 2.228794e-10 -0.5468295 -0.07507010 5.688713e-11 0.36896296
## 1045      47 2.643447e-10 -0.5502182 -0.07688849 6.866110e-11 0.36250956
## 590      307 2.650546e-10 -0.2196547 -0.02294874 5.306452e-11 0.49347050
##         s.dist        SD p.adjustMANOVA
## 271  0.8838739 0.5587516   8.534088e-34
## 654  0.8797236 0.5460690   2.863967e-32
## 303  0.8068644 0.5098874   8.753627e-31
## 866  0.8472001 0.5513263   2.062654e-30
## 273  0.8216164 0.5210557   1.539643e-29
## 1086 0.8366158 0.5317289   2.198113e-29
## 865  0.7685219 0.4812255   4.002489e-28
## 469  0.7149515 0.4664008   4.221186e-27
## 338  0.6949752 0.4599715   7.496115e-26
## 604  0.7542535 0.4791368   1.186059e-25
## 108  0.6492421 0.4297907   2.045529e-24
## 272  0.6492421 0.4297907   2.045529e-24
## 825  0.7144286 0.4588314   2.706210e-24
## 848  0.6140942 0.3654067   5.606124e-20
## 603  0.6093843 0.3914680   7.869102e-20
## 605  0.6093843 0.3914680   7.869102e-20
## 1044 0.3662407 0.1900174   1.857377e-19
## 414  0.5274508 0.3506439   6.850480e-19
## 802  0.4816418 0.3036744   1.823773e-17
## 1116 0.4072371 0.2411999   3.138191e-16
## 1117 0.4130792 0.2467594   3.439091e-16
## 497  0.4048436 0.2354695   8.120994e-15
## 413  0.4154326 0.2725996   2.052475e-13
## 925  0.3712369 0.2506136   1.052553e-12
## 307  0.6354141 0.3655645   8.805364e-10
## 507  0.2684506 0.1581125   2.459165e-09
## 73   0.2300096 0.1457670   4.252416e-09
## 39   0.5519584 0.3335843   8.947017e-09
## 1045 0.5555645 0.3346946   9.930713e-09
## 590  0.2208502 0.1390921   9.930713e-09
unlink("t0_crp_int.html")
capture.output(
    mitch_report(res, "t0_crp_int.html")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/RtmpJ0JTVz/./t0_crp_int.RData ".
## 
## 
## processing file: mitch.Rmd
## output file: /mnt/bfx6/bfx/bain/inflam/integrate/mitch.knit.md
## 
## Output created: /tmp/RtmpJ0JTVz/mitch_report.html

Session information

sessionInfo()
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] pkgload_1.1.0                                      
##  [2] GGally_2.0.0                                       
##  [3] ggplot2_3.3.2                                      
##  [4] reshape2_1.4.4                                     
##  [5] gtools_3.8.2                                       
##  [6] tibble_3.0.1                                       
##  [7] dplyr_1.0.0                                        
##  [8] echarts4r_0.3.2                                    
##  [9] mitch_1.0.6                                        
## [10] FlowSorted.Blood.EPIC_1.6.1                        
## [11] ExperimentHub_1.14.0                               
## [12] AnnotationHub_2.20.0                               
## [13] BiocFileCache_1.12.0                               
## [14] dbplyr_1.4.4                                       
## [15] nlme_3.1-148                                       
## [16] quadprog_1.5-8                                     
## [17] genefilter_1.70.0                                  
## [18] topconfects_1.4.0                                  
## [19] gplots_3.0.3                                       
## [20] beeswarm_0.2.3                                     
## [21] IlluminaHumanMethylationEPICmanifest_0.3.0         
## [22] IlluminaHumanMethylationEPICanno.ilm10b2.hg19_0.6.0
## [23] limma_3.44.3                                       
## [24] missMethyl_1.22.0                                  
## [25] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [26] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0 
## [27] minfi_1.34.0                                       
## [28] bumphunter_1.30.0                                  
## [29] locfit_1.5-9.4                                     
## [30] iterators_1.0.12                                   
## [31] foreach_1.5.0                                      
## [32] Biostrings_2.56.0                                  
## [33] XVector_0.28.0                                     
## [34] SummarizedExperiment_1.18.1                        
## [35] DelayedArray_0.14.0                                
## [36] matrixStats_0.56.0                                 
## [37] Biobase_2.48.0                                     
## [38] GenomicRanges_1.40.0                               
## [39] GenomeInfoDb_1.24.2                                
## [40] IRanges_2.22.2                                     
## [41] S4Vectors_0.26.1                                   
## [42] BiocGenerics_0.34.0                                
## 
## loaded via a namespace (and not attached):
##   [1] backports_1.1.8               plyr_1.8.6                   
##   [3] splines_4.0.2                 BiocParallel_1.22.0          
##   [5] digest_0.6.25                 htmltools_0.5.0              
##   [7] gdata_2.18.0                  magrittr_1.5                 
##   [9] memoise_1.1.0                 readr_1.3.1                  
##  [11] annotate_1.66.0               askpass_1.1                  
##  [13] siggenes_1.62.0               prettyunits_1.1.1            
##  [15] colorspace_1.4-1              blob_1.2.1                   
##  [17] rappdirs_0.3.1                xfun_0.15                    
##  [19] jsonlite_1.7.0                crayon_1.3.4                 
##  [21] RCurl_1.98-1.2                GEOquery_2.56.0              
##  [23] survival_3.2-3                glue_1.4.1                   
##  [25] gtable_0.3.0                  zlibbioc_1.34.0              
##  [27] Rhdf5lib_1.10.0               HDF5Array_1.16.1             
##  [29] scales_1.1.1                  DBI_1.1.0                    
##  [31] rngtools_1.5                  Rcpp_1.0.4.6                 
##  [33] xtable_1.8-4                  progress_1.2.2               
##  [35] bit_1.1-15.2                  mclust_5.4.6                 
##  [37] preprocessCore_1.50.0         htmlwidgets_1.5.1            
##  [39] httr_1.4.1                    RColorBrewer_1.1-2           
##  [41] ellipsis_0.3.1                farver_2.0.3                 
##  [43] pkgconfig_2.0.3               reshape_0.8.8                
##  [45] XML_3.99-0.3                  labeling_0.3                 
##  [47] tidyselect_1.1.0              rlang_0.4.6                  
##  [49] later_1.1.0.1                 AnnotationDbi_1.50.1         
##  [51] pbmcapply_1.5.0               munsell_0.5.0                
##  [53] BiocVersion_3.11.1            tools_4.0.2                  
##  [55] generics_0.0.2                RSQLite_2.2.0                
##  [57] evaluate_0.14                 stringr_1.4.0                
##  [59] fastmap_1.0.1                 yaml_2.2.1                   
##  [61] knitr_1.29                    org.Hs.eg.db_3.11.4          
##  [63] bit64_0.9-7                   beanplot_1.2                 
##  [65] caTools_1.18.0                scrime_1.3.5                 
##  [67] purrr_0.3.4                   doRNG_1.8.2                  
##  [69] mime_0.9                      nor1mix_1.3-0                
##  [71] xml2_1.3.2                    biomaRt_2.44.1               
##  [73] compiler_4.0.2                curl_4.3                     
##  [75] interactiveDisplayBase_1.26.3 testthat_2.3.2               
##  [77] statmod_1.4.34                stringi_1.4.6                
##  [79] highr_0.8                     desc_1.2.0                   
##  [81] GenomicFeatures_1.40.0        lattice_0.20-41              
##  [83] Matrix_1.2-18                 multtest_2.44.0              
##  [85] vctrs_0.3.1                   pillar_1.4.4                 
##  [87] lifecycle_0.2.0               BiocManager_1.30.10          
##  [89] data.table_1.12.8             bitops_1.0-6                 
##  [91] httpuv_1.5.4                  rtracklayer_1.48.0           
##  [93] R6_2.4.1                      promises_1.1.1               
##  [95] gridExtra_2.3                 KernSmooth_2.23-17           
##  [97] codetools_0.2-16              MASS_7.3-51.6                
##  [99] assertthat_0.2.1              rhdf5_2.32.1                 
## [101] rprojroot_1.3-2               openssl_1.4.2                
## [103] withr_2.2.0                   GenomicAlignments_1.24.0     
## [105] Rsamtools_2.4.0               GenomeInfoDbData_1.2.3       
## [107] hms_0.5.3                     grid_4.0.2                   
## [109] tidyr_1.1.0                   base64_2.0                   
## [111] rmarkdown_2.3                 DelayedMatrixStats_1.10.0    
## [113] illuminaio_0.30.0             shiny_1.5.0