Here we will generate some graphs:
To show the number of increased /decreased genes / probes in each contrast
To show the number of increased /decreased reactome genesets in each contrast
Other ideas include Euler/Venn and UpSet diagrams
suppressPackageStartupMessages({
library("gplots")
library("mitch")
library("kableExtra")
library("eulerr")
library("UpSetR")
library(ggplot2)
})
There are 3 contrasts we are focusing on:
post-op samples of patients with low CRP compared to high CRP
baseline samples of patients with low CRP compared to high CRP
compare pre-op samples to post-op samples
rna_podcrp <- read.table("pod_crp_rna.tsv",header=TRUE,sep="\t")
rna_t0crp <- read.table("t0_crp_rna.tsv",header=TRUE,sep="\t")
rna_t0_v_pod <- read.table("t0_v_pod_rna.tsv",header=TRUE,sep="\t")
meth_podcrp <- read.table("dm11.tsv",header=TRUE,sep="\t")
meth_t0crp <- read.table("dm12.tsv",header=TRUE,sep="\t")
meth_t0_v_pod <- read.table("dm10.tsv",header=TRUE,sep="\t")
Here the methylation data is represented by probes, not summarised to gene names.
rna_podcrp_up <- rownames(subset(rna_podcrp, padj < 0.05 & log2FoldChange > 0 ))
rna_podcrp_dn <- rownames(subset(rna_podcrp, padj < 0.05 & log2FoldChange < 0 ))
rna_t0crp_up <- rownames(subset(rna_t0crp, padj < 0.05 & log2FoldChange > 0 ))
rna_t0crp_dn <- rownames(subset(rna_t0crp, padj < 0.05 & log2FoldChange <0 ))
rna_t0_v_pod_up <- rownames(subset(rna_t0_v_pod, padj < 0.05 & log2FoldChange > 0 ))
rna_t0_v_pod_dn <- rownames(subset(rna_t0_v_pod, padj < 0.05 & log2FoldChange < 0 ))
meth_podcrp_up <- rownames(subset(meth_podcrp, adj.P.Val < 0.05 & logFC > 0 ))
meth_podcrp_dn <- rownames(subset(meth_podcrp, adj.P.Val < 0.05 & logFC < 0 ))
meth_t0crp_up <- rownames(subset(meth_t0crp, adj.P.Val < 0.05 & logFC > 0 ))
meth_t0crp_dn <- rownames(subset(meth_t0crp, adj.P.Val < 0.05 & logFC < 0 ))
meth_t0_v_pod_up <- rownames(subset(meth_t0_v_pod, adj.P.Val < 0.05 & logFC > 0 ))
meth_t0_v_pod_dn <- rownames(subset(meth_t0_v_pod, adj.P.Val < 0.05 & logFC < 0 ))
xl <- list("RNA POD CRP up"=rna_podcrp_up,
"RNA POD CRP down"=rna_podcrp_dn,
"RNA t0 CRP up"=rna_t0crp_up,
"RNA t0 CRP down"=rna_t0crp_dn,
"RNA t0 Vs POD up"=rna_t0_v_pod_up,
"RNA t0 Vs POD down"=rna_t0_v_pod_dn,
"Meth POD CRP up"=meth_podcrp_up,
"Meth POD CRP down"=meth_podcrp_dn,
"Meth t0 CRP up"=meth_t0crp_up,
"Meth t0 CRP down"=meth_t0crp_dn,
"Meth t0 Vs POD up"=meth_t0_v_pod_up,
"Meth t0 Vs POD down"=meth_t0_v_pod_dn)
xlr <- sapply(xl,length)
xlr_up <- xlr[grep("up",names(xlr))]
xlr_dn <- xlr[grep("down",names(xlr))]
MAX=max(xlr_up)*1.2
MIN=-max(xlr_dn)*1.2
par(mar=c(5,5,5,5))
names(xlr_up) <- gsub(" up","",names(xlr_up))
barplot(xlr_up,ylim=c(MIN,MAX),cex.names=0.8,ylab="no. genes/probes up- and down-regulated",col="lightblue")
text(x = (1:length(xlr_up)*1.2)-0.5 , y = xlr_up , label = xlr_up, pos = 3, cex = 1, col = "black")
barplot(-xlr_dn,ylim=c(MIN,MAX),cex.names=0.5, col="pink",add=T, xaxt='n')
text(x = (1:length(xlr_up)*1.2)-0.5 , y = -xlr_dn-5000 , label = xlr_dn, pos = 3, cex = 1, col = "black")
MAX=max(xlr_up)*1.4
MIN=-max(xlr_dn)*1.4
par(mar=c(5,15,5,5))
barplot(xlr_up,xlim=c(MIN,MAX),cex.names=1,main="no. genes/probes up- and down-regulated",col="lightblue",horiz=TRUE,las=1)
text(y = (1:length(xlr_up)*1.2)-0.75 , x = xlr_up + 5000 , label = xlr_up, pos = 3, cex = 1, col = "black")
barplot(-xlr_dn,ylim=c(MIN,MAX),cex.names=0.5, col="pink",add=T, yaxt='n',horiz=TRUE,las=1)
text(y = (1:length(xlr_up)*1.2)-0.75 , x = -xlr_dn-5000 , label = xlr_dn, pos = 3, cex = 1, col = "black")
Here the methylation data is summarised to gene names. RNA-seq data is also summarised to gene names.
rna_podcrp_up <- rownames(subset(rna_podcrp, padj < 0.05 & log2FoldChange > 0 ))
if (length(rna_podcrp_up)>0) { rna_podcrp_up <- unique(sapply(strsplit(rna_podcrp_up," "),"[[",2)) }
rna_podcrp_dn <- rownames(subset(rna_podcrp, padj < 0.05 & log2FoldChange < 0 ))
if (length(rna_podcrp_dn)>0) { rna_podcrp_dn <- unique(sapply(strsplit(rna_podcrp_dn," "),"[[",2)) }
rna_t0crp_up <- rownames(subset(rna_t0crp, padj < 0.05 & log2FoldChange > 0 ))
if (length(rna_t0crp_up)>0) { rna_t0crp_up <- unique(sapply(strsplit(rna_t0crp_up," "),"[[",2)) }
rna_t0crp_dn <- rownames(subset(rna_t0crp, padj < 0.05 & log2FoldChange <0 ))
if (length(rna_t0crp_dn)>0) { rna_t0crp_dn <- unique(sapply(strsplit(rna_t0crp_dn," "),"[[",2)) }
rna_t0_v_pod_up <- rownames(subset(rna_t0_v_pod, padj < 0.05 & log2FoldChange > 0 ))
if (length(rna_t0_v_pod_up)>0) { rna_t0_v_pod_up <- unique(sapply(strsplit(rna_t0_v_pod_up," "),"[[",2)) }
rna_t0_v_pod_dn <- rownames(subset(rna_t0_v_pod, padj < 0.05 & log2FoldChange < 0 ))
if (length(rna_t0_v_pod_dn)>0) { rna_t0_v_pod_dn <- unique(sapply(strsplit(rna_t0_v_pod_dn," "),"[[",2)) }
g <- subset(meth_podcrp, adj.P.Val < 0.05 & logFC > 0 )$UCSC_RefGene_Name
g<-g[which(g!="")]
g<-sapply(strsplit(g,";"),"[[",1)
meth_podcrp_up <- unique(g)
g <- subset(meth_podcrp, adj.P.Val < 0.05 & logFC < 0 )$UCSC_RefGene_Name
g<-g[which(g!="")]
g<-sapply(strsplit(g,";"),"[[",1)
meth_podcrp_dn <- unique(g)
g <- meth_podcrp$UCSC_RefGene_Name
g<-g[which(g!="")]
g<-sapply(strsplit(g,";"),"[[",1)
meth_podcrp_all <- unique(g)
g <- subset(meth_t0crp, adj.P.Val < 0.05 & logFC > 0 )$UCSC_RefGene_Name
g<-g[which(g!="")]
g<-sapply(strsplit(g,";"),"[[",1)
meth_t0crp_up <- unique(g)
g <- subset(meth_t0crp, adj.P.Val < 0.05 & logFC < 0 )$UCSC_RefGene_Name
g<-g[which(g!="")]
g<-sapply(strsplit(g,";"),"[[",1)
meth_t0crp_dn <- unique(g)
g <- subset(meth_t0_v_pod, adj.P.Val < 0.05 & logFC > 0 )$UCSC_RefGene_Name
g<-g[which(g!="")]
g<-sapply(strsplit(g,";"),"[[",1)
meth_t0_v_pod_up <- unique(g)
g <- subset(meth_t0_v_pod, adj.P.Val < 0.05 & logFC < 0 )$UCSC_RefGene_Name
g<-g[which(g!="")]
g<-sapply(strsplit(g,";"),"[[",1)
meth_t0_v_pod_dn <- unique(g)
g <- meth_t0_v_pod$UCSC_RefGene_Name
g<-g[which(g!="")]
g<-sapply(strsplit(g,";"),"[[",1)
meth_t0_v_pod_all <- unique(g)
xl <- list("RNA POD CRP up"=rna_podcrp_up,
"RNA POD CRP down"=rna_podcrp_dn,
"RNA t0 CRP up"=rna_t0crp_up,
"RNA t0 CRP down"=rna_t0crp_dn,
"RNA t0 Vs POD up"=rna_t0_v_pod_up,
"RNA t0 Vs POD down"=rna_t0_v_pod_dn,
"Meth POD CRP up"=meth_podcrp_up,
"Meth POD CRP down"=meth_podcrp_dn,
"Meth t0 CRP up"=meth_t0crp_up,
"Meth t0 CRP down"=meth_t0crp_dn,
"Meth t0 Vs POD up"=meth_t0_v_pod_up,
"Meth t0 Vs POD down"=meth_t0_v_pod_dn)
xlr <- sapply(xl,length)
xlr_up <- xlr[grep("up",names(xlr))]
xlr_dn <- xlr[grep("down",names(xlr))]
MAX=max(xlr_up)*1.2
MIN=-max(xlr_dn)*1.2
par(mar=c(5,5,5,5))
names(xlr_up) <- gsub(" up","",names(xlr_up))
barplot(xlr_up,ylim=c(MIN,MAX),cex.names=0.8,ylab="no. genes/probes up- and down-regulated",col="lightblue")
text(x = (1:length(xlr_up)*1.2)-0.5 , y = xlr_up , label = xlr_up, pos = 3, cex = 1, col = "black")
barplot(-xlr_dn,ylim=c(MIN,MAX),cex.names=0.5, col="pink",add=T, xaxt='n')
text(x = (1:length(xlr_up)*1.2)-0.5 , y = -xlr_dn-1000 , label = xlr_dn, pos = 3, cex = 1, col = "black")
MAX=max(xlr_up)*1.4
MIN=-max(xlr_dn)*1.4
par(mar=c(5,15,5,5))
barplot(xlr_up,xlim=c(MIN,MAX),cex.names=1,main="no. genes/probes up- and down-regulated",col="lightblue",horiz=TRUE,las=1)
text(y = (1:length(xlr_up)*1.2)-0.75 , x = xlr_up + 1000 , label = xlr_up, pos = 3, cex = 1, col = "black")
barplot(-xlr_dn,ylim=c(MIN,MAX),cex.names=0.5, col="pink",add=T, yaxt='n',horiz=TRUE,las=1)
text(y = (1:length(xlr_up)*1.2)-0.75 , x = -xlr_dn-1000 , label = xlr_dn, pos = 3, cex = 1, col = "black")
Now to identify the gene overlaps (same omics different contrasts).
v1 <- list("RNA POD CRP up"=rna_podcrp_up,
"RNA POD CRP down"=rna_podcrp_dn,
"RNA t0 CRP up"=rna_t0crp_up,
"RNA t0 CRP down"=rna_t0crp_dn,
"RNA t0 Vs POD up"=rna_t0_v_pod_up,
"RNA t0 Vs POD down"=rna_t0_v_pod_dn)
plot(euler(v1),quantities = TRUE)
## Warning in colSums(id & !empty) == 0 | merged_sets: longer object length is not
## a multiple of shorter object length
v1 <- list( "Meth POD CRP up"=meth_podcrp_up,
"Meth POD CRP down"=meth_podcrp_dn,
"Meth t0 CRP up"=meth_t0crp_up,
"Meth t0 CRP down"=meth_t0crp_dn,
"Meth t0 Vs POD up"=meth_t0_v_pod_up,
"Meth t0 Vs POD down"=meth_t0_v_pod_dn)
plot(euler(v1),quantities = TRUE)
## Warning in colSums(id & !empty) == 0 | merged_sets: longer object length is not
## a multiple of shorter object length
Now to identify the overlaps (same contrast different omics).
v1 <- list("RNA POD CRP up"=rna_podcrp_up,
"RNA POD CRP down"=rna_podcrp_dn,
"Meth POD CRP up"=meth_podcrp_up,
"Meth POD CRP down"=meth_podcrp_dn)
plot(euler(v1),quantities = TRUE)
v1 <- list( "RNA t0 CRP up"=rna_t0crp_up,
"RNA t0 CRP down"=rna_t0crp_dn,
"Meth t0 CRP up"=meth_t0crp_up,
"Meth t0 CRP down"=meth_t0crp_dn)
plot(euler(v1),quantities = TRUE)
v1 <- list("RNA t0 Vs POD up"=rna_t0_v_pod_up,
"RNA t0 Vs POD down"=rna_t0_v_pod_dn,
"Meth t0 Vs POD up"=meth_t0_v_pod_up,
"Meth t0 Vs POD down"=meth_t0_v_pod_dn)
plot(euler(v1),quantities = TRUE)
Using the fisher test based on this tutorial https://seqqc.wordpress.com/2019/07/25/how-to-use-phyper-in-r/
Firstly for baseline vs post-op.
over representation meth_t0_v_pod_dn and rna_t0_v_pod_up OR=2.1 p=2.2e-16
under representation meth_t0_v_pod_up and rna_t0_v_pod_up OR=1.3 p=1
over representation meth_t0_v_pod_up and rna_t0_v_pod_dn OR=1.2 p=2.5e-6
under representation meth_t0_v_pod_dn and rna_t0_v_pod_dn OR=0.81 p-6.6e-11
# over representation meth_t0_v_pod_dn and rna_t0_v_pod_up
s1 = meth_t0_v_pod_dn
s2 = rna_t0_v_pod_up
tot = meth_t0_v_pod_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1,s2)) ,
length(s2) - length(intersect(s1,s2)),
length(tot) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='greater')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(tot) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value < 2.2e-16
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
## 1.987566 Inf
## sample estimates:
## odds ratio
## 2.101154
# under representation meth_t0_v_pod_up and rna_t0_v_pod_up
s1 = meth_t0_v_pod_up
s2 = rna_t0_v_pod_up
tot = meth_t0_v_pod_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1 , s2)) ,
length(s2) - length(intersect(s1 , s2)),
length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='less')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 1
## alternative hypothesis: true odds ratio is less than 1
## 95 percent confidence interval:
## 0.000000 1.381368
## sample estimates:
## odds ratio
## 1.292886
# over representation meth_t0_v_pod_up and rna_t0_v_pod_dn
s1 = meth_t0_v_pod_up
s2 = rna_t0_v_pod_dn
tot = meth_t0_v_pod_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1,s2)) ,
length(s2) - length(intersect(s1,s2)),
length(tot) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='greater')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(tot) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 2.491e-06
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
## 1.122921 Inf
## sample estimates:
## odds ratio
## 1.19877
# under representation meth_t0_v_pod_dn and rna_t0_v_pod_dn
s1 = meth_t0_v_pod_dn
s2 = rna_t0_v_pod_dn
tot = meth_t0_v_pod_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1 , s2)) ,
length(s2) - length(intersect(s1 , s2)),
length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='less')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 6.601e-11
## alternative hypothesis: true odds ratio is less than 1
## 95 percent confidence interval:
## 0.0000000 0.8535117
## sample estimates:
## odds ratio
## 0.8074922
Next for low vs high CRP.
over representation meth_podcrp_dn and rna_podcrp_up OR=2.8 p=1.1e-8
under representation meth_podcrp_up and rna_podcrp_up OR=0.79 p=0.23
over representation meth_podcrp_up and rna_podcrp_dn OR=5.3 p=2.2e-16
under representation meth_podcrp_dn and rna_podcrp_dn OR=1.2 p=0.80
# over representation meth_podcrp_dn and rna_podcrp_up
s1 = meth_podcrp_dn
s2 = rna_podcrp_up
tot = meth_podcrp_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1,s2)) ,
length(s2) - length(intersect(s1,s2)),
length(tot) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='greater')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(tot) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 1.09e-08
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
## 2.12314 Inf
## sample estimates:
## odds ratio
## 2.823862
# under representation meth_podcrp_up and rna_podcrp_up
s1 = meth_podcrp_up
s2 = rna_podcrp_up
tot = meth_podcrp_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1 , s2)) ,
length(s2) - length(intersect(s1 , s2)),
length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='less')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 0.2327
## alternative hypothesis: true odds ratio is less than 1
## 95 percent confidence interval:
## 0.000000 1.248886
## sample estimates:
## odds ratio
## 0.7892876
# over representation meth_podcrp_up and rna_podcrp_dn
s1 = meth_podcrp_up
s2 = rna_podcrp_dn
tot = meth_podcrp_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1,s2)) ,
length(s2) - length(intersect(s1,s2)),
length(tot) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='greater')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(tot) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value < 2.2e-16
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
## 4.094566 Inf
## sample estimates:
## odds ratio
## 5.280571
# under representation meth_podcrp_dn and rna_podcrp_dn
s1 = meth_podcrp_dn
s2 = rna_podcrp_dn
tot = meth_podcrp_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1 , s2)) ,
length(s2) - length(intersect(s1 , s2)),
length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='less')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 0.8023
## alternative hypothesis: true odds ratio is less than 1
## 95 percent confidence interval:
## 0.000000 1.876394
## sample estimates:
## odds ratio
## 1.200895
Starting with the RNA analysis.
#download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip", destfile="ReactomePathways.gmt.zip")
#unzip("ReactomePathways.gmt.zip")
genesets <- gmt_import("ReactomePathways.gmt")
mitch_bubbleplot <- function(res,n) {
top <- head(res$enrichment_result,n)
top <- top[order(top$s.dist),]
top$set <- substr(top$set,start=1,stop=60)
top$set <- factor(top$set, levels = top$set[order(top$s.dist)])
ggplot(top, aes(s.dist, set, size = setSize)) + geom_point(aes(colour=-log10(top$p.adjustANOVA)))
}
gt <- as.data.frame(rownames(rna_podcrp))
gt$genename <- sapply(strsplit(gt[,1]," "),"[[",2)
y <-mitch_import(x=rna_podcrp,DEtype="deseq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 21664
## Note: no. genes in output = 21631
## Note: estimated proportion of input genes in output = 0.998
yres <- mitch_calc(y,genesets=genesets)
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
mitch_bubbleplot(yres,30)
rna_podcrp_up <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist > 0)$set
rna_podcrp_dn <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist < 0)$set
gt <- as.data.frame(rownames(rna_t0crp))
gt$genename <- sapply(strsplit(gt[,1]," "),"[[",2)
y <-mitch_import(x=rna_t0crp,DEtype="deseq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 22158
## Note: no. genes in output = 22124
## Note: estimated proportion of input genes in output = 0.998
yres <- mitch_calc(y,genesets=genesets)
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
mitch_bubbleplot(yres,30)
rna_t0crp_up <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist > 0)$set
rna_t0crp_dn <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist < 0)$set
gt <- as.data.frame(rownames(rna_t0_v_pod))
gt$genename <- sapply(strsplit(gt[,1]," "),"[[",2)
y <-mitch_import(x=rna_t0_v_pod,DEtype="deseq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 21940
## Note: no. genes in output = 21907
## Note: estimated proportion of input genes in output = 0.998
yres <- mitch_calc(y,genesets=genesets)
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
mitch_bubbleplot(yres,30)
rna_t0_v_pod_up <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist > 0)$set
rna_t0_v_pod_dn <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist < 0)$set
run_mitch_rank <-function(dma){
dmap <- dma[grep("Promoter_Associated",dma$Regulatory_Feature_Group),]
dmap[which(dmap$UCSC_RefGene_Name==""),2] <- "NA"
dmap$genename <- sapply(strsplit(dmap$UCSC_RefGene_Name,";"),"[[",1)
dmap2 <- dmap[,c("genename","t")]
rank <- aggregate(. ~ genename,dmap2,mean)
rownames(rank) <- rank$genename
rank$genename=NULL
return(rank)
}
run_mitch_1d <- function(dma,name) {
library("mitch")
rank <- run_mitch_rank(dma)
res <- mitch_calc(x = rank,genesets = genesets, priority = "significance",resrows=20)
return(res)
}
yres <- run_mitch_1d(dma= meth_podcrp , name="meth_podcrp")
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
mitch_bubbleplot(yres,30)
meth_podcrp_up <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist > 0)$set
meth_podcrp_dn <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist < 0)$set
yres <- run_mitch_1d(dma= meth_t0crp , name="meth_t0crp")
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
mitch_bubbleplot(yres,30)
meth_t0crp_up <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist > 0)$set
meth_t0crp_dn <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist < 0)$set
yres <- run_mitch_1d(dma= meth_t0_v_pod , name="meth_t0_v_pod")
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
mitch_bubbleplot(yres,30)
meth_t0_v_pod_up <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist > 0)$set
meth_t0_v_pod_dn <- subset(yres$enrichment_result,p.adjustANOVA < 0.05 & s.dist < 0)$set
xl <- list("RNA POD CRP up"=rna_podcrp_up,
"RNA POD CRP down"=rna_podcrp_dn,
"RNA t0 CRP up"=rna_t0crp_up,
"RNA t0 CRP down"=rna_t0crp_dn,
"RNA t0 Vs POD up"=rna_t0_v_pod_up,
"RNA t0 Vs POD down"=rna_t0_v_pod_dn,
"Meth POD CRP up"=meth_podcrp_up,
"Meth POD CRP down"=meth_podcrp_dn,
"Meth t0 CRP up"=meth_t0crp_up,
"Meth t0 CRP down"=meth_t0crp_dn,
"Meth t0 Vs POD up"=meth_t0_v_pod_up,
"Meth t0 Vs POD down"=meth_t0_v_pod_dn)
xlr <- sapply(xl,length)
xlr_up <- xlr[grep("up",names(xlr))]
xlr_dn <- xlr[grep("down",names(xlr))]
MAX=max(xlr_up)*1.2
MIN=-max(xlr_dn)*1.2
par(mar=c(5,5,5,5))
names(xlr_up) <- gsub(" up","",names(xlr_up))
barplot(xlr_up,ylim=c(MIN,MAX),cex.names=0.7,ylab="no. gene sets up- and down-regulated",col="lightblue")
text(x = (1:length(xlr_up)*1.2)-0.5 , y = xlr_up , label = xlr_up, pos = 3, cex = 1, col = "black")
barplot(-xlr_dn,ylim=c(MIN,MAX),cex.names=0.5, col="pink",add=T, xaxt='n')
text(x = (1:length(xlr_up)*1.2)-0.5 , y = -xlr_dn-50 , label = xlr_dn, pos = 3, cex = 1, col = "black")
MAX=max(xlr_up)*1.4
MIN=-max(xlr_dn)*1.4
par(mar=c(5,15,5,5))
barplot(xlr_up,xlim=c(MIN,MAX),cex.names=1,main="no. gene sets up- and down-regulated",col="lightblue",horiz=TRUE,las=1)
text(y = (1:length(xlr_up)*1.2)-0.75 , x = xlr_up + 50 , label = xlr_up, pos = 3, cex = 1, col = "black")
barplot(-xlr_dn,ylim=c(MIN,MAX),cex.names=0.5, col="pink",add=T, yaxt='n',horiz=TRUE,las=1)
text(y = (1:length(xlr_up)*1.2)-0.75 , x = -xlr_dn-50 , label = xlr_dn, pos = 3, cex = 1, col = "black")
Now to identify the gene set overlaps (same omics different contrasts).
v1 <- list("RNA POD CRP up"=rna_podcrp_up,
"RNA POD CRP down"=rna_podcrp_dn,
"RNA t0 CRP up"=rna_t0crp_up,
"RNA t0 CRP down"=rna_t0crp_dn,
"RNA t0 Vs POD up"=rna_t0_v_pod_up,
"RNA t0 Vs POD down"=rna_t0_v_pod_dn)
plot(euler(v1),quantities = TRUE)
v1 <- list( "Meth POD CRP up"=meth_podcrp_up,
"Meth POD CRP down"=meth_podcrp_dn,
"Meth t0 CRP up"=meth_t0crp_up,
"Meth t0 CRP down"=meth_t0crp_dn,
"Meth t0 Vs POD up"=meth_t0_v_pod_up,
"Meth t0 Vs POD down"=meth_t0_v_pod_dn)
plot(euler(v1),quantities = TRUE)
Now to identify the gene set overlaps (same contrast different omics).
v1 <- list("RNA POD CRP up"=rna_podcrp_up,
"RNA POD CRP down"=rna_podcrp_dn,
"Meth POD CRP up"=meth_podcrp_up,
"Meth POD CRP down"=meth_podcrp_dn)
plot(euler(v1),quantities = TRUE)
## Warning in colSums(id & !empty) == 0 | merged_sets: longer object length is not
## a multiple of shorter object length
v1 <- list( "RNA t0 CRP up"=rna_t0crp_up,
"RNA t0 CRP down"=rna_t0crp_dn,
"Meth t0 CRP up"=meth_t0crp_up,
"Meth t0 CRP down"=meth_t0crp_dn)
plot(euler(v1),quantities = TRUE)
v1 <- list("RNA t0 Vs POD up"=rna_t0_v_pod_up,
"RNA t0 Vs POD down"=rna_t0_v_pod_dn,
"Meth t0 Vs POD up"=meth_t0_v_pod_up,
"Meth t0 Vs POD down"=meth_t0_v_pod_dn)
plot(euler(v1),quantities = TRUE)
Using the fisher test based on this tutorial https://seqqc.wordpress.com/2019/07/25/how-to-use-phyper-in-r/
Firstly for baseline vs post-op.
over representation meth_t0_v_pod_dn and rna_t0_v_pod_up OR=2.1 p=2.2e-16
under representation meth_t0_v_pod_up and rna_t0_v_pod_up OR=1.3 p=1
over representation meth_t0_v_pod_up and rna_t0_v_pod_dn OR=1.2 p=2.5e-6
under representation meth_t0_v_pod_dn and rna_t0_v_pod_dn OR=0.81 p-6.6e-11
# over representation meth_t0_v_pod_dn and rna_t0_v_pod_up
s1 = meth_t0_v_pod_dn
s2 = rna_t0_v_pod_up
tot = meth_t0_v_pod_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1,s2)) ,
length(s2) - length(intersect(s1,s2)),
length(tot) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='greater')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(tot) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 1
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
## 0 Inf
## sample estimates:
## odds ratio
## 0
# under representation meth_t0_v_pod_up and rna_t0_v_pod_up
s1 = meth_t0_v_pod_up
s2 = rna_t0_v_pod_up
tot = meth_t0_v_pod_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1 , s2)) ,
length(s2) - length(intersect(s1 , s2)),
length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='less')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 0.9999
## alternative hypothesis: true odds ratio is less than 1
## 95 percent confidence interval:
## 0.00000 17.90319
## sample estimates:
## odds ratio
## 7.744478
# over representation meth_t0_v_pod_up and rna_t0_v_pod_dn
s1 = meth_t0_v_pod_up
s2 = rna_t0_v_pod_dn
tot = meth_t0_v_pod_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1,s2)) ,
length(s2) - length(intersect(s1,s2)),
length(tot) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='greater')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(tot) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value < 2.2e-16
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
## 327.1081 Inf
## sample estimates:
## odds ratio
## 626.0282
# under representation meth_t0_v_pod_dn and rna_t0_v_pod_dn
s1 = meth_t0_v_pod_dn
s2 = rna_t0_v_pod_dn
tot = meth_t0_v_pod_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1 , s2)) ,
length(s2) - length(intersect(s1 , s2)),
length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='less')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 0.9931
## alternative hypothesis: true odds ratio is less than 1
## 95 percent confidence interval:
## 0.000 1026.969
## sample estimates:
## odds ratio
## 0
Next for low vs high CRP.
over representation meth_podcrp_dn and rna_podcrp_up OR=2.8 p=1.1e-8
under representation meth_podcrp_up and rna_podcrp_up OR=0.79 p=0.23
over representation meth_podcrp_up and rna_podcrp_dn OR=5.3 p=2.2e-16
under representation meth_podcrp_dn and rna_podcrp_dn OR=1.2 p=0.80
# over representation meth_podcrp_dn and rna_podcrp_up
s1 = meth_podcrp_dn
s2 = rna_podcrp_up
tot = meth_podcrp_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1,s2)) ,
length(s2) - length(intersect(s1,s2)),
length(tot) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='greater')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(tot) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 1
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
## 0 Inf
## sample estimates:
## odds ratio
## 0
# under representation meth_podcrp_up and rna_podcrp_up
s1 = meth_podcrp_up
s2 = rna_podcrp_up
tot = meth_podcrp_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1 , s2)) ,
length(s2) - length(intersect(s1 , s2)),
length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='less')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 0.9986
## alternative hypothesis: true odds ratio is less than 1
## 95 percent confidence interval:
## 0.0000 107.3482
## sample estimates:
## odds ratio
## 19.0969
# over representation meth_podcrp_up and rna_podcrp_dn
s1 = meth_podcrp_up
s2 = rna_podcrp_dn
tot = meth_podcrp_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1,s2)) ,
length(s2) - length(intersect(s1,s2)),
length(tot) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='greater')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(tot) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 8.766e-15
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
## 77.13462 Inf
## sample estimates:
## odds ratio
## 225.731
# under representation meth_podcrp_dn and rna_podcrp_dn
s1 = meth_podcrp_dn
s2 = rna_podcrp_dn
tot = meth_podcrp_all
fisher.test(matrix(c(
length(intersect(s1 , s2)),
length(s1) - length(intersect(s1 , s2)) ,
length(s2) - length(intersect(s1 , s2)),
length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1,s2))
), 2, 2), alternative='less')
##
## Fisher's Exact Test for Count Data
##
## data: matrix(c(length(intersect(s1, s2)), length(s1) - length(intersect(s1, s2)), length(s2) - length(intersect(s1, s2)), length(meth_t0_v_pod_all) - length(s1) - length(s2) + length(intersect(s1, s2))), 2, 2)
## p-value = 1
## alternative hypothesis: true odds ratio is less than 1
## 95 percent confidence interval:
## 0 Inf
## sample estimates:
## odds ratio
## 0
Session information.
sessionInfo()
## R version 4.1.0 (2021-05-18)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ggplot2_3.3.3 UpSetR_1.4.0 eulerr_6.1.0 kableExtra_1.3.4
## [5] mitch_1.4.0 gplots_3.1.1
##
## loaded via a namespace (and not attached):
## [1] httr_1.4.2 sass_0.4.0 jsonlite_1.7.2 viridisLite_0.4.0
## [5] gtools_3.8.2 bslib_0.2.5.1 shiny_1.6.0 assertthat_0.2.1
## [9] highr_0.9 yaml_2.2.1 pillar_1.6.1 glue_1.4.2
## [13] digest_0.6.27 RColorBrewer_1.1-2 promises_1.2.0.1 polyclip_1.10-0
## [17] rvest_1.0.0 colorspace_2.0-1 htmltools_0.5.1.1 httpuv_1.6.1
## [21] plyr_1.8.6 pkgconfig_2.0.3 purrr_0.3.4 xtable_1.8-4
## [25] scales_1.1.1 webshot_0.5.2 svglite_2.0.0 later_1.2.0
## [29] tibble_3.1.2 echarts4r_0.4.0 generics_0.1.0 farver_2.1.0
## [33] ellipsis_0.3.2 withr_2.4.2 magrittr_2.0.1 crayon_1.4.1
## [37] mime_0.10 evaluate_0.14 GGally_2.1.1 fansi_0.5.0
## [41] MASS_7.3-54 xml2_1.3.2 beeswarm_0.3.1 tools_4.1.0
## [45] lifecycle_1.0.0 stringr_1.4.0 munsell_0.5.0 compiler_4.1.0
## [49] jquerylib_0.1.4 caTools_1.18.2 systemfonts_1.0.2 rlang_0.4.11
## [53] grid_4.1.0 rstudioapi_0.13 htmlwidgets_1.5.3 labeling_0.4.2
## [57] bitops_1.0-7 rmarkdown_2.8 gtable_0.3.0 DBI_1.1.1
## [61] reshape_0.8.8 reshape2_1.4.4 R6_2.5.0 gridExtra_2.3
## [65] knitr_1.33 dplyr_1.0.6 fastmap_1.1.0 utf8_1.2.1
## [69] KernSmooth_2.23-20 polylabelr_0.2.0 stringi_1.6.2 parallel_4.1.0
## [73] Rcpp_1.0.6 vctrs_0.3.8 tidyselect_1.1.1 xfun_0.23