Scatterplot of all genes

Rank-rank plot of all genes

number of genes in each quadrant

geneset size

number of genesets FDR<0.05

Scatterplot of all gene sets; FDR<0.05 in red

s.low.CRP

0.5 0.0 -0.5 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 8.0

Scatterplot of all gene sets; top 50 in red

s.low.CRP

s.high.CRP

GAB1 signalosome Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gen RORA activates gene expression Folding of actin by CCT/TriC BMAL1:CLOCK,NPAS2 activates circadian gene expression HDMs demethylate histones tRNA processing in the mitochondrion Formation of the ternary complex, and subsequently, the 43S complex L13a-mediated translational silencing of Ceruloplasmin expression Purine ribonucleoside monophosphate biosynthesis Nucleobase biosynthesis Regulation of Complement cascade FCERI mediated MAPK activation Response of EIF2AK4 (GCN2) to amino acid deficiency Viral mRNA Translation **Eukaryotic Translation Termination** Antigen activates B Cell Receptor (BCR) leading to generation of second messen Peptide chain elongation FCGR3A-mediated IL10 synthesis Role of phospholipids in phagocytosis PCNA-Dependent Long Patch Base Excision Repair Role of LAT2/NTAL/LAB on calcium mobilization Initial triggering of complement CD22 mediated BCR regulation Classical antibody-mediated complement activation

effect size versus statistical significance

s.dist (effect size)

-log(p.adjustIMANOVA) (significance)

Scavenging of heme from plasma

Scavenging of heme from plasma

Rank in contrast low CRP

Scavenging of heme from plasma

Classical antibody-mediated complement activation

Classical antibody-mediated complement activation

Rank in contrast low CRP

Classical antibody-mediated complement activat

CD22 mediated BCR regulation

CD22 mediated BCR regulation

Rank in contrast low CRP

CD22 mediated BCR regulation

Creation of C4 and C2 activators

Creation of C4 and C2 activators

FCGR activation

FCGR activation

Rank in contrast low CRP

Initial triggering of complement

Initial triggering of complement

Rank in contrast low CRP

Initial triggering of complement

Role of LAT2/NTAL/LAB on calcium mobilization

Role of LAT2/NTAL/LAB on calcium mobilization

Rank in contrast low CRP

Role of LAT2/NTAL/LAB on calcium mobilization

Binding and Uptake of Ligands by Scavenger Receptor:

Binding and Uptake of Ligands by Scavenger Receptors

Rank in contrast low CRP

Binding and Uptake of Ligands by Scavenger Re

Purine ribonucleoside monophosphate biosynthesis

10000 5000 0 -5000 -10000 -10000 -5000 5000 10000 0

Purine ribonucleoside monophosphate biosynthesis

Rank in contrast low CRP

Purine ribonucleoside monophosphate biosynthe

Regulation of Complement cascade

Regulation of Complement cascade

Rank in contrast low CRP

Rank in contrast high CRP

Regulation of Complement cascade

HDMs demethylate histones

HDMs demethylate histones

HDMs demethylate histones 10000-5000 0-

Trafficking of GluR2–containing AMPA receptors

Trafficking of GluR2–containing AMPA receptors

Trafficking of GluR2–containing AMPA receptors

Complement cascade

Complement cascade

Nucleobase biosynthesis

Nucleobase biosynthesis

Removal of the Flap Intermediate

10000 5000 0 -5000 -10000 -10000 -5000 0 5000 10000

Rank in contrast high CRP

Rank in contrast low CRP

Removal of the Flap Intermediate

Removal of the Flap Intermediate

Pre-NOTCH Processing in Golgi

Pre-NOTCH Processing in Golgi

Pre-NOTCH Processing in Golgi

Processive synthesis on the lagging strand

Processive synthesis on the lagging strand

Rank in contrast low CRP

Rank in contrast high CRP

Processive synthesis on the lagging strand

Role of phospholipids in phagocytosis

Role of phospholipids in phagocytosis

Rank in contrast low CRP

Rank in contrast high CRP

Elevation of cytosolic Ca2+ levels

Elevation of cytosolic Ca2+ levels

Rank in contrast low CRP

Rank in contrast high CRP

Elevation of cytosolic Ca2+ levels

FCERI mediated MAPK activation

FCERI mediated MAPK activation

FCERI mediated MAPK activation

FCERI mediated Ca+2 mobilization

FCERI mediated Ca+2 mobilization

Rank in contrast low CRP

Rank in contrast high CRP

FCERI mediated Ca+2 mobilization

stimulates transcription of AR (androgen receptor) regulated

PKN1 stimulates transcription of AR (androgen receptor) regulated genes K

Activated PKN1 stimulates transcription of AR (a

PCNA–Dependent Long Patch Base Excision Repair

PCNA–Dependent Long Patch Base Excision Repair

Rank in contrast low CRP

Rank in contrast high CRP

PCNA–Dependent Long Patch Base Excision Re

WNT5A-dependent internalization of FZD4

WNT5A-dependent internalization of FZD4

WNT5A-dependent internalization of FZD4

Lagging Strand Synthesis

Lagging Strand Synthesis

FCGR3A-mediated IL10 synthesis

FCGR3A-mediated IL10 synthesis

Rank in contrast low CRP

FCGR3A-mediated IL10 synthesis

RORA activates gene expression

RORA activates gene expression

Rank in contrast low CRP

Rank in contrast high CRP

RORA activates gene expression

Eukaryotic Translation Elongation

Eukaryotic Translation Elongation

Rank in contrast low CRP

Rank in contrast high CRP

Eukaryotic Translation Elongation

FCERI mediated NF-kB activation

FCERI mediated NF-kB activation

Rank in contrast low CRP

Rank in contrast high CRP

FCERI mediated NF-kB activation

Folding of actin by CCT/TriC

Folding of actin by CCT/TriC

Rank in contrast high CRP

Folding of actin by CCT/TriC

Peptide chain elongation

Peptide chain elongation

Formation of a pool of free 40S subunits

Rank in contrast low CRP

Formation of a pool of free 40S subunits

Formation of a pool of free 40S subunits

Viral mRNA Translation

Viral mRNA Translation

Rank in contrast high CRP

TNFs bind their physiological receptors

TNFs bind their physiological receptors

Rank in contrast low CRP

Rank in contrast high CRP

TNFs bind their physiological receptors

GAB1 signalosome

GAB1 signalosome

Selenocysteine synthesis

Selenocysteine synthesis

Selenocysteine synthesis

ctivates B Cell Receptor (BCR) leading to generation of seco

Antigen activates B Cell Receptor (BCR) leading

ormation of the ternary complex, and subsequently, the 43S c

Formation of the ternary complex, and subsequently, the 43S complex

10000-5000-Position in rank 0 -5000--10000low CRP high CRP Var2

Formation of the ternary complex, and subseque

Eukaryotic Translation Termination

10000 5000 0 -5000 -10000 -10000 -5000 5000 10000 0

Eukaryotic Translation Termination

Rank in contrast low CRP

Rank in contrast high CRP

Eukaryotic Translation Termination

se Mediated Decay (NMD) independent of the Exon Junction (

onsense Mediated Decay (NMD) independent of the Exon Junction Complex

Rank in contrast low CRP

Nonsense Mediated Decay (NMD) independent of

BMAL1:CLOCK,NPAS2 activates circadian gene expressi

BMAL1:CLOCK,NPAS2 activates circadian gene expression

BMAL1:CLOCK,NPAS2 activates circadian gene

Response of EIF2AK4 (GCN2) to amino acid deficiency

Response of EIF2AK4 (GCN2) to amino acid deficiency

Response of EIF2AK4 (GCN2) to amino acid def

L13a–mediated translational silencing of Ceruloplasmin expr

Rank in contrast low CRP

L13a-mediated translational silencing of Ceruloplasmin expression

Rank in contrast low CRP

Rank in contrast high CRP

L13a-mediated translational silencing of Cerulop

GTP hydrolysis and joining of the 60S ribosomal subun

10000 5000 0 -5000 -10000 -10000 -5000 5000 10000 0

GTP hydrolysis and joining of the 60S ribosomal subunit

Rank in contrast low CRP

Rank in contrast high CRP

tRNA processing in the mitochondrion

tRNA processing in the mitochondrion

Rank in contrast low CRP

Rank in contrast high CRP

tRNA processing in the mitochondrion

Platelet calcium homeostasis

Platelet calcium homeostasis

Rank in contrast low CRP

Rank in contrast high CRP

Platelet calcium homeostasis

Processing of SMDT1

Processing of SMDT1

Rank in contrast low CRP

Rank in contrast high CRP

rRNA processing in the nucleus and cytosol

rRNA processing in the nucleus and cytosol

Rank in contrast low CRP

Rank in contrast high CRP

rRNA processing in the nucleus and cytosol

WNT5A-dependent internalization of FZD2, FZD5 and RO

WNT5A-dependent internalization of FZD2, FZD5 and ROR2

WNT5A-dependent internalization of FZD2, FZD

SRP-dependent cotranslational protein targeting to memb

SRP-dependent cotranslational protein targeting to membrane

SRP-dependent cotranslational protein targeting

