Source: https://github.com/markziemann/background

Intro

Here we are performing an analysis of some gene expression data to demonstrate the difference between ORA and FCS methods and to highlight the differences caused by improper background gene set use.

The dataset being used is SRP097759 and we are comparing the effect of control construct versus SAHH overexpression construct.

Data are obtained from http://dee2.io/

suppressPackageStartupMessages({
  library("getDEE2")
  library("DESeq2")
  library("clusterProfiler")
  library("mitch")
  library("kableExtra")
  library("eulerr")
  library("biomaRt")
})

Get expression data and make an MDS plot

name = "SRP097759"
mdat <- getDEE2Metadata("hsapiens")
samplesheet <- mdat[grep("SRP097759",mdat$SRP_accession),]
samplesheet <- samplesheet[order(samplesheet$SRR_accession),]
samplesheet$trt <- as.factor(c(0,0,1,1))
s1 <- samplesheet

s1 %>%
  kbl(caption = "sample sheet") %>%
  kable_paper("hover", full_width = F)
sample sheet
SRR_accession QC_summary SRX_accession SRS_accession SRP_accession Experiment_title GEO_series trt
335608 SRR5201525 PASS SRX2515472 SRS1938681 SRP097759 GSM2467589: RNAseq.G13; Homo sapiens; RNA-Seq GSE94055 0
335609 SRR5201526 PASS SRX2515473 SRS1938682 SRP097759 GSM2467590: RNAseq.G17; Homo sapiens; RNA-Seq GSE94055 0
335610 SRR5201527 PASS SRX2515474 SRS1938683 SRP097759 GSM2467591: RNAseq.S27; Homo sapiens; RNA-Seq GSE94055 1
335611 SRR5201528 PASS SRX2515475 SRS1938684 SRP097759 GSM2467592: RNAseq.S29; Homo sapiens; RNA-Seq GSE94055 1
w <- getDEE2("hsapiens", samplesheet$SRR_accession,
  metadata=mdat,legacy = TRUE)
## For more information about DEE2 QC metrics, visit
##     https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
x <- Tx2Gene(w)
x <- x$Tx2Gene

# save the genetable for later
gt <- w$GeneInfo[,1,drop=FALSE]
gt$accession <- rownames(gt)

# counts 
x1 <- x[,which(colnames(x) %in% samplesheet$SRR_accession)]

Here show the number of genes in the annotation set, and those detected above the detection threshold.

# filter out lowly expressed genes
x1 <- x1[which(rowSums(x1)/ncol(x1)>=(10)),]
nrow(x)
## [1] 39297
nrow(x1)
## [1] 19139

Now multidimensional scaling (MDS) plot to show the correlation between the datasets. If the control and case datasets are clustered separately, then it is likely that there will be many differentially expressed genes with FDR<0.05.

plot(cmdscale(dist(t(x1))), xlab="Coordinate 1", ylab="Coordinate 2", pch=19, col=s1$trt, main="MDS")

Differential expression

Now run DESeq2 for control vs case.

y <- DESeqDataSetFromMatrix(countData = round(x1), colData = s1, design = ~ trt)
## converting counts to integer mode
y <- DESeq(y)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- results(y)
de <- as.data.frame(de[order(de$pvalue),])
rownames(de) <- sapply(strsplit(rownames(de),"\\."),"[[",1)
head(de) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
ENSG00000134595 3173.1310 -2.876180 0.2467384 -11.656797 0 0
ENSG00000171903 661.5568 6.551052 0.5750249 11.392640 0 0
ENSG00000163564 288.0486 5.798946 0.5244902 11.056347 0 0
ENSG00000101444 48422.6462 2.625969 0.2676599 9.810841 0 0
ENSG00000233388 281.4377 4.562136 0.5468871 8.342007 0 0
ENSG00000139219 11276.3465 -1.563221 0.2182972 -7.160976 0 0

Now let’s have a look at some of the charts showing differential expression. In particular, an MA plot and volcano plot.

maplot <- function(de,contrast_name) {
  sig <-subset(de, padj < 0.05 )
  up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
  dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
  GENESUP <- length(up)
  GENESDN <- length(dn)
  DET=nrow(de)
  SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down", DET, "detected")
  ns <-subset(de, padj > 0.05 )
  plot(log2(de$baseMean),de$log2FoldChange, 
       xlab="log2 basemean", ylab="log2 foldchange",
       pch=19, cex=0.5, col="dark gray",
       main=contrast_name, cex.main=0.7)
  points(log2(sig$baseMean),sig$log2FoldChange,
         pch=19, cex=0.5, col="red")
  mtext(SUBHEADER,cex = 0.7)
}

make_volcano <- function(de,name) {
    sig <- subset(de,padj<0.05)
    N_SIG=nrow(sig)
    N_UP=nrow(subset(sig,log2FoldChange>0))
    N_DN=nrow(subset(sig,log2FoldChange<0))
    DET=nrow(de)
    HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn", DET, "detected")
    plot(de$log2FoldChange,-log10(de$padj),cex=0.5,pch=19,col="darkgray",
        main=name, xlab="log2 FC", ylab="-log10 pval", xlim=c(-6,6))
    mtext(HEADER)
    grid()
    points(sig$log2FoldChange,-log10(sig$padj),cex=0.5,pch=19,col="red")
}

maplot(de,name)

make_volcano(de,name)

Need to add gene symbol

mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))

genes <- getBM(filters= "ensembl_gene_id",
  attributes= c("ensembl_gene_id","hgnc_symbol"),
  values=rownames(de), mart= mart)
## Batch submitting query [=======>-----------------------] 25% eta: 21sBatch
## submitting query [===============>---------------] 50% eta: 31sBatch submitting
## query [======================>--------] 75% eta: 11s
m <- merge(de,genes,by.x=0,by.y="ensembl_gene_id")
rownames(m) <- paste(m$Row.names,m$hgnc_symbol)
m$Row.names = m$hgnc_symbol = NULL
dim(de)
## [1] 19139     6
dim(m)
## [1] 18973     6

Save table

saveRDS(m,"bulkrna5.Rds")

Session information

sessionInfo()
## R version 4.4.0 (2024-04-24)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
##  [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
##  [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] biomaRt_2.58.0              eulerr_7.0.2               
##  [3] kableExtra_1.4.0            mitch_1.14.0               
##  [5] clusterProfiler_4.10.0      DESeq2_1.42.0              
##  [7] SummarizedExperiment_1.32.0 Biobase_2.62.0             
##  [9] MatrixGenerics_1.14.0       matrixStats_1.3.0          
## [11] GenomicRanges_1.54.1        GenomeInfoDb_1.38.5        
## [13] IRanges_2.36.0              S4Vectors_0.40.2           
## [15] BiocGenerics_0.48.1         getDEE2_1.12.0             
## 
## loaded via a namespace (and not attached):
##   [1] splines_4.4.0           later_1.3.2             bitops_1.0-7           
##   [4] ggplotify_0.1.2         filelock_1.0.3          tibble_3.2.1           
##   [7] polyclip_1.10-6         XML_3.99-0.16.1         lifecycle_1.0.4        
##  [10] lattice_0.22-6          MASS_7.3-60.2           magrittr_2.0.3         
##  [13] sass_0.4.9              rmarkdown_2.26          jquerylib_0.1.4        
##  [16] yaml_2.3.8              httpuv_1.6.15           cowplot_1.1.3          
##  [19] DBI_1.2.2               RColorBrewer_1.1-3      abind_1.4-5            
##  [22] zlibbioc_1.48.0         purrr_1.0.2             ggraph_2.2.1           
##  [25] RCurl_1.98-1.14         yulab.utils_0.1.4       tweenr_2.0.3           
##  [28] rappdirs_0.3.3          GenomeInfoDbData_1.2.11 enrichplot_1.22.0      
##  [31] ggrepel_0.9.5           tidytree_0.4.6          svglite_2.1.3          
##  [34] codetools_0.2-20        DelayedArray_0.28.0     DOSE_3.28.2            
##  [37] xml2_1.3.6              ggforce_0.4.2           tidyselect_1.2.1       
##  [40] aplot_0.2.2             farver_2.1.1            viridis_0.6.5          
##  [43] BiocFileCache_2.10.1    jsonlite_1.8.8          tidygraph_1.3.1        
##  [46] systemfonts_1.0.6       tools_4.4.0             progress_1.2.3         
##  [49] treeio_1.26.0           Rcpp_1.0.12             glue_1.7.0             
##  [52] gridExtra_2.3           SparseArray_1.2.3       xfun_0.43              
##  [55] qvalue_2.34.0           dplyr_1.1.4             withr_3.0.0            
##  [58] fastmap_1.1.1           GGally_2.2.1            fansi_1.0.6            
##  [61] caTools_1.18.2          digest_0.6.35           R6_2.5.1               
##  [64] mime_0.12               gridGraphics_0.5-1      colorspace_2.1-0       
##  [67] GO.db_3.18.0            gtools_3.9.5            RSQLite_2.3.6          
##  [70] utf8_1.2.4              tidyr_1.3.1             generics_0.1.3         
##  [73] data.table_1.15.4       prettyunits_1.2.0       graphlayouts_1.1.1     
##  [76] httr_1.4.7              htmlwidgets_1.6.4       S4Arrays_1.2.0         
##  [79] scatterpie_0.2.2        ggstats_0.6.0           pkgconfig_2.0.3        
##  [82] gtable_0.3.5            blob_1.2.4              XVector_0.42.0         
##  [85] shadowtext_0.1.3        htmltools_0.5.8.1       fgsea_1.28.0           
##  [88] echarts4r_0.4.5         scales_1.3.0            png_0.1-8              
##  [91] ggfun_0.1.4             knitr_1.46              rstudioapi_0.16.0      
##  [94] reshape2_1.4.4          nlme_3.1-164            curl_5.2.1             
##  [97] cachem_1.0.8            stringr_1.5.1           KernSmooth_2.23-22     
## [100] parallel_4.4.0          HDO.db_0.99.1           AnnotationDbi_1.64.1   
## [103] pillar_1.9.0            grid_4.4.0              vctrs_0.6.5            
## [106] gplots_3.1.3.1          promises_1.3.0          dbplyr_2.5.0           
## [109] xtable_1.8-4            beeswarm_0.4.0          evaluate_0.23          
## [112] cli_3.6.2               locfit_1.5-9.9          compiler_4.4.0         
## [115] rlang_1.1.3             crayon_1.5.2            plyr_1.8.9             
## [118] fs_1.6.4                stringi_1.8.3           viridisLite_0.4.2      
## [121] BiocParallel_1.36.0     htm2txt_2.2.2           munsell_0.5.1          
## [124] Biostrings_2.70.1       lazyeval_0.2.2          GOSemSim_2.28.0        
## [127] Matrix_1.7-0            hms_1.1.3               patchwork_1.2.0        
## [130] bit64_4.0.5             ggplot2_3.5.1           KEGGREST_1.42.0        
## [133] shiny_1.8.1.1           highr_0.10              igraph_2.0.3           
## [136] memoise_2.0.1           bslib_0.7.0             ggtree_3.10.0          
## [139] fastmatch_1.1-4         bit_4.0.5               ape_5.8                
## [142] gson_0.1.0