Source: https://github.com/markziemann/background

Intro

Here we are performing an analysis of some gene expression data to demonstrate the difference between ORA and FCS methods and to highlight the differences caused by improper background gene set use.

The dataset being used is SRP253951 and we are comparing A549 cells with and without infection with SARS-CoV-2.

Data are obtained from http://dee2.io/

suppressPackageStartupMessages({
  library("getDEE2")
  library("DESeq2")
  library("clusterProfiler")
  library("mitch")
  library("kableExtra")
  library("eulerr")
  library("biomaRt")
})

Get expression data and make an MDS plot

name = "SRP253951"
mdat <- getDEE2Metadata("hsapiens")
samplesheet <- mdat[grep("SRP253951",mdat$SRP_accession),]

samplesheet <- mdat[which(mdat$SRX_accession %in% c("SRX8089264","SRX8089265","SRX8089266","SRX8089267","SRX8089268","SRX8089269")),]

samplesheet$trt <- factor(c(0,0,0,1,1,1))
s1 <- samplesheet

s1 %>% kbl(caption = "sample sheet") %>% kable_paper("hover", full_width = F)
sample sheet
SRR_accession QC_summary SRX_accession SRS_accession SRP_accession Experiment_title GEO_series trt
148857 SRR11517674 PASS SRX8089264 SRS6456133 SRP253951 GSM4462336: Series5_A549_Mock_1; Homo sapiens; RNA-Seq GSE147507 0
148858 SRR11517675 PASS SRX8089265 SRS6456134 SRP253951 GSM4462337: Series5_A549_Mock_2; Homo sapiens; RNA-Seq GSE147507 0
148859 SRR11517676 PASS SRX8089266 SRS6456135 SRP253951 GSM4462338: Series5_A549_Mock_3; Homo sapiens; RNA-Seq GSE147507 0
148860 SRR11517677 PASS SRX8089267 SRS6456136 SRP253951 GSM4462339: Series5_A549_SARS-CoV-2_1; Homo sapiens; RNA-Seq GSE147507 1
148861 SRR11517678 PASS SRX8089268 SRS6456137 SRP253951 GSM4462340: Series5_A549_SARS-CoV-2_2; Homo sapiens; RNA-Seq GSE147507 1
148862 SRR11517679 PASS SRX8089269 SRS6456139 SRP253951 GSM4462341: Series5_A549_SARS-CoV-2_3; Homo sapiens; RNA-Seq GSE147507 1
w <- getDEE2("hsapiens",samplesheet$SRR_accession,metadata=mdat,legacy = TRUE)
## For more information about DEE2 QC metrics, visit
##     https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
x <- Tx2Gene(w)
x <- x$Tx2Gene

# save the genetable for later
gt <- w$GeneInfo[,1,drop=FALSE]
gt$accession <- rownames(gt)

# counts 
x1 <- x[,which(colnames(x) %in% samplesheet$SRR_accession)]

Here show the number of genes in the annotation set, and those detected above the detection threshold.

# filter out lowly expressed genes
x1 <- x1[which(rowSums(x1)/ncol(x1)>=(10)),]
nrow(x)
## [1] 39297
nrow(x1)
## [1] 15182

Now multidimensional scaling (MDS) plot to show the correlation between the datasets. If the control and case datasets are clustered separately, then it is likely that there will be many differentially expressed genes with FDR<0.05.

plot(cmdscale(dist(t(x1))), xlab="Coordinate 1", ylab="Coordinate 2", pch=19, col=s1$trt, main="MDS")

Differential expression

Now run DESeq2 for control vs case.

y <- DESeqDataSetFromMatrix(countData = round(x1), colData = s1, design = ~ trt)
## converting counts to integer mode
y <- DESeq(y)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- results(y)
de <- as.data.frame(de[order(de$pvalue),])
rownames(de) <- sapply(strsplit(rownames(de),"\\."),"[[",1)
head(de) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
ENSG00000113739 3523.734 4.004593 0.1012568 39.54888 0 0
ENSG00000176153 8851.309 -2.785312 0.0820808 -33.93378 0 0
ENSG00000058085 5767.111 3.699041 0.1148334 32.21223 0 0
ENSG00000169710 6917.854 -2.259158 0.0703230 -32.12547 0 0
ENSG00000170421 41561.919 -2.233482 0.0742019 -30.10007 0 0
ENSG00000100297 2476.082 -2.364383 0.0802583 -29.45965 0 0

Now let’s have a look at some of the charts showing differential expression. In particular, an MA plot and volcano plot.

maplot <- function(de,contrast_name) {
  sig <-subset(de, padj < 0.05 )
  up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
  dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
  GENESUP <- length(up)
  GENESDN <- length(dn)
  DET=nrow(de)
  SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down", DET, "detected")
  ns <-subset(de, padj > 0.05 )
  plot(log2(de$baseMean),de$log2FoldChange, 
       xlab="log2 basemean", ylab="log2 foldchange",
       pch=19, cex=0.5, col="dark gray",
       main=contrast_name, cex.main=0.7)
  points(log2(sig$baseMean),sig$log2FoldChange,
         pch=19, cex=0.5, col="red")
  mtext(SUBHEADER,cex = 0.7)
}

make_volcano <- function(de,name) {
    sig <- subset(de,padj<0.05)
    N_SIG=nrow(sig)
    N_UP=nrow(subset(sig,log2FoldChange>0))
    N_DN=nrow(subset(sig,log2FoldChange<0))
    DET=nrow(de)
    HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn", DET, "detected")
    plot(de$log2FoldChange,-log10(de$padj),cex=0.5,pch=19,col="darkgray",
        main=name, xlab="log2 FC", ylab="-log10 pval", xlim=c(-6,6))
    mtext(HEADER)
    grid()
    points(sig$log2FoldChange,-log10(sig$padj),cex=0.5,pch=19,col="red")
}

maplot(de,name)

make_volcano(de,name)

Need to add gene symbol

mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))

genes <- getBM(filters= "ensembl_gene_id",
  attributes= c("ensembl_gene_id","hgnc_symbol"),
  values=rownames(de), mart= mart)
## Batch submitting query [=======>-----------------------] 25% eta: 2mBatch
## submitting query [===============>---------------] 50% eta: 1mBatch submitting
## query [======================>--------] 75% eta: 30s
m <- merge(de,genes,by.x=0,by.y="ensembl_gene_id")
rownames(m) <- paste(m$Row.names,m$hgnc_symbol)
m$Row.names = m$hgnc_symbol = NULL
dim(de)
## [1] 15182     6
dim(m)
## [1] 15072     6

Save table

saveRDS(m,"bulkrna6.Rds")

Session information

sessionInfo()
## R version 4.4.0 (2024-04-24)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
##  [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
##  [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] biomaRt_2.58.0              eulerr_7.0.2               
##  [3] kableExtra_1.4.0            mitch_1.14.0               
##  [5] clusterProfiler_4.10.0      DESeq2_1.42.0              
##  [7] SummarizedExperiment_1.32.0 Biobase_2.62.0             
##  [9] MatrixGenerics_1.14.0       matrixStats_1.3.0          
## [11] GenomicRanges_1.54.1        GenomeInfoDb_1.38.5        
## [13] IRanges_2.36.0              S4Vectors_0.40.2           
## [15] BiocGenerics_0.48.1         getDEE2_1.12.0             
## 
## loaded via a namespace (and not attached):
##   [1] splines_4.4.0           later_1.3.2             bitops_1.0-7           
##   [4] ggplotify_0.1.2         filelock_1.0.3          tibble_3.2.1           
##   [7] polyclip_1.10-6         XML_3.99-0.16.1         lifecycle_1.0.4        
##  [10] lattice_0.22-6          MASS_7.3-60.2           magrittr_2.0.3         
##  [13] sass_0.4.9              rmarkdown_2.26          jquerylib_0.1.4        
##  [16] yaml_2.3.8              httpuv_1.6.15           cowplot_1.1.3          
##  [19] DBI_1.2.2               RColorBrewer_1.1-3      abind_1.4-5            
##  [22] zlibbioc_1.48.0         purrr_1.0.2             ggraph_2.2.1           
##  [25] RCurl_1.98-1.14         yulab.utils_0.1.4       tweenr_2.0.3           
##  [28] rappdirs_0.3.3          GenomeInfoDbData_1.2.11 enrichplot_1.22.0      
##  [31] ggrepel_0.9.5           tidytree_0.4.6          svglite_2.1.3          
##  [34] codetools_0.2-20        DelayedArray_0.28.0     DOSE_3.28.2            
##  [37] xml2_1.3.6              ggforce_0.4.2           tidyselect_1.2.1       
##  [40] aplot_0.2.2             farver_2.1.1            viridis_0.6.5          
##  [43] BiocFileCache_2.10.1    jsonlite_1.8.8          tidygraph_1.3.1        
##  [46] systemfonts_1.0.6       tools_4.4.0             progress_1.2.3         
##  [49] treeio_1.26.0           Rcpp_1.0.12             glue_1.7.0             
##  [52] gridExtra_2.3           SparseArray_1.2.3       xfun_0.43              
##  [55] qvalue_2.34.0           dplyr_1.1.4             withr_3.0.0            
##  [58] fastmap_1.1.1           GGally_2.2.1            fansi_1.0.6            
##  [61] caTools_1.18.2          digest_0.6.35           R6_2.5.1               
##  [64] mime_0.12               gridGraphics_0.5-1      colorspace_2.1-0       
##  [67] GO.db_3.18.0            gtools_3.9.5            RSQLite_2.3.6          
##  [70] utf8_1.2.4              tidyr_1.3.1             generics_0.1.3         
##  [73] data.table_1.15.4       prettyunits_1.2.0       graphlayouts_1.1.1     
##  [76] httr_1.4.7              htmlwidgets_1.6.4       S4Arrays_1.2.0         
##  [79] scatterpie_0.2.2        ggstats_0.6.0           pkgconfig_2.0.3        
##  [82] gtable_0.3.5            blob_1.2.4              XVector_0.42.0         
##  [85] shadowtext_0.1.3        htmltools_0.5.8.1       fgsea_1.28.0           
##  [88] echarts4r_0.4.5         scales_1.3.0            png_0.1-8              
##  [91] ggfun_0.1.4             knitr_1.46              rstudioapi_0.16.0      
##  [94] reshape2_1.4.4          nlme_3.1-164            curl_5.2.1             
##  [97] cachem_1.0.8            stringr_1.5.1           KernSmooth_2.23-22     
## [100] parallel_4.4.0          HDO.db_0.99.1           AnnotationDbi_1.64.1   
## [103] pillar_1.9.0            grid_4.4.0              vctrs_0.6.5            
## [106] gplots_3.1.3.1          promises_1.3.0          dbplyr_2.5.0           
## [109] xtable_1.8-4            beeswarm_0.4.0          evaluate_0.23          
## [112] cli_3.6.2               locfit_1.5-9.9          compiler_4.4.0         
## [115] rlang_1.1.3             crayon_1.5.2            plyr_1.8.9             
## [118] fs_1.6.4                stringi_1.8.3           viridisLite_0.4.2      
## [121] BiocParallel_1.36.0     htm2txt_2.2.2           munsell_0.5.1          
## [124] Biostrings_2.70.1       lazyeval_0.2.2          GOSemSim_2.28.0        
## [127] Matrix_1.7-0            hms_1.1.3               patchwork_1.2.0        
## [130] bit64_4.0.5             ggplot2_3.5.1           KEGGREST_1.42.0        
## [133] shiny_1.8.1.1           highr_0.10              igraph_2.0.3           
## [136] memoise_2.0.1           bslib_0.7.0             ggtree_3.10.0          
## [139] fastmatch_1.1-4         bit_4.0.5               ape_5.8                
## [142] gson_0.1.0