Scatterplot of all genes

Rank-rank plot of all genes

number of genes in each quadrant

Gene set size

Histogram of geneset size

200

Frequency

Trimmed histogram of geneset size

number of genesets FDR<0.05

Scatterplot of all gene sets; FDR<0.05 in red

Scatterplot of all gene sets; top 50 in red

effect size versus statistical significance

EUKARYOTIC TRANSLATION ELONGATION

EUKARYOTIC TRANSLATION ELONGATION

EUKARYOTIC TRANSLATION ELONGATION

TRAFFICKING AND PROCESSING OF ENDOSOMAL TLI

TRAFFICKING AND PROCESSING OF ENDOSOMAL TLR

TRAFFICKING AND PROCESSING OF ENDOSC

MET ACTIVATES RAP1 AND RAC1

MET ACTIVATES RAP1 AND RAC1

MET ACTIVATES RAP1 AND RAC1

COMPLEX I BIOGENESIS

COMPLEX I BIOGENESIS

COMPLEX I BIOGENESIS

RESPONSE OF EIF2AK4 GCN2 TO AMINO ACID DEFICIEN

RESPONSE OF EIF2AK4 GCN2 TO AMINO ACID DEFICIENCY

RESPONSE OF EIF2AK4 GCN2 TO AMINO ACII

PHA LINOLENIC OMEGA3 AND LINOLEIC OMEGA6 ACID MET

ALPHA LINOLENIC OMEGA3 AND LINOLEIC OMEGA6 ACID METABOLIS

ALPHA LINOLENIC OMEGA3 AND LINOLEIC OF

DEPENDENT COTRANSLATIONAL PROTEIN TARGETING TO I

SRP DEPENDENT COTRANSLATIONAL PROTEIN TARGETING TO MEMBRA

SRP DEPENDENT COTRANSLATIONAL PROTE

ADP SIGNALLING THROUGH P2Y PURINOCEPTOR 12

ADP SIGNALLING THROUGH P2Y PURINOCEPTOR 12

ADP SIGNALLING THROUGH P2Y PURINOCEP

INITIAL TRIGGERING OF COMPLEMENT

INITIAL TRIGGERING OF COMPLEMENT

INITIAL TRIGGERING OF COMPLEMENT

CD28 DEPENDENT VAV1 PATHWAY

CD28 DEPENDENT VAV1 PATHWAY

CD28 DEPENDENT VAV1 PATHWAY

EUKARYOTIC TRANSLATION INITIATION

EUKARYOTIC TRANSLATION INITIATION

EUKARYOTIC TRANSLATION INITIATION

NUCLEOTIDE LIKE PURINERGIC RECEPTORS

NUCLEOTIDE LIKE PURINERGIC RECEPTORS

NUCLEOTIDE LIKE PURINERGIC RECEPTORS

PINK1 PRKN MEDIATED MITOPHAGY

PINK1 PRKN MEDIATED MITOPHAGY

PINK1 PRKN MEDIATED MITOPHAGY

RESPIRATORY ELECTRON TRANSPORT

RESPIRATORY ELECTRON TRANSPORT

RESPIRATORY ELECTRON TRANSPORT

SIS OF BILE ACIDS AND BILE SALTS VIA 7ALPHA HYDROXY

NTHESIS OF BILE ACIDS AND BILE SALTS VIA 7ALPHA HYDROXYCHOLES

SYNTHESIS OF BILE ACIDS AND BILE SALTS \

JPON BINDING OF THE CAP BINDING COMPLEX AND EIFS A

IRNA UPON BINDING OF THE CAP BINDING COMPLEX AND EIFS AND SUB

ACTIVATION OF THE MRNA UPON BINDING OF

HOSPHORYLATION THROUGH THE ACTIVATION OF ADENYI

REB1 PHOSPHORYLATION THROUGH THE ACTIVATION OF ADENYLATE CY 5000 Rank in contrast OVA 0 -5000

0

Rank in contrast LPS

5000

-5000

CREB1 PHOSPHORYLATION THROUGH THE A

T ATP SYNTHESIS BY CHEMIOSMOTIC COUPLING AND HEA

ISPORT ATP SYNTHESIS BY CHEMIOSMOTIC COUPLING AND HEAT PRODU

RESPIRATORY ELECTRON TRANSPORT ATP S

COLLAGEN CHAIN TRIMERIZATION

COLLAGEN CHAIN TRIMERIZATION

COLLAGEN CHAIN TRIMERIZATION

ASPARTATE AND ASPARAGINE METABOLISM

ASPARTATE AND ASPARAGINE METABOLISM

ASPARTATE AND ASPARAGINE METABOLISM

SHC MEDIATED CASCADE FGFR3

SHC MEDIATED CASCADE FGFR3

SHC MEDIATED CASCADE FGFR3

SYNTHESIS OF ACTIVE UBIQUITIN ROLES OF E1 AND E2 EN

SYNTHESIS OF ACTIVE UBIQUITIN ROLES OF E1 AND E2 ENZYMES

SYNTHESIS OF ACTIVE UBIQUITIN ROLES OF

SYNTHESIS OF VERY LONG CHAIN FATTY ACYL COAS

SYNTHESIS OF VERY LONG CHAIN FATTY ACYL COAS

SYNTHESIS OF VERY LONG CHAIN FATTY AC

SELENOAMINO ACID METABOLISM

SELENOAMINO ACID METABOLISM

SELENOAMINO ACID METABOLISM

SIGNALING BY FGFR3 FUSIONS IN CANCER

SIGNALING BY FGFR3 FUSIONS IN CANCER

SIGNALING BY FGFR3 FUSIONS IN CANCER

SCAVENGING BY CLASS A RECEPTORS

SCAVENGING BY CLASS A RECEPTORS

SCAVENGING BY CLASS A RECEPTORS

SYNTHESIS OF PIPS AT THE LATE ENDOSOME MEMBRA

SYNTHESIS OF PIPS AT THE LATE ENDOSOME MEMBRANE

SYNTHESIS OF PIPS AT THE LATE ENDOSOM

ATF6 ATF6 ALPHA ACTIVATES CHAPERONE GENES

ATF6 ATF6 ALPHA ACTIVATES CHAPERONE GENES

ATF6 ATF6 ALPHA ACTIVATES CHAPERONE G

ACTIVATION OF RAC1

ACTIVATION OF RAC1

ACTIVATION OF RAC1

TRIGLYCERIDE CATABOLISM

TRIGLYCERIDE CATABOLISM

TRIGLYCERIDE CATABOLISM

TRANSCRIPTIONAL REGULATION OF PLURIPOTENT STEM (

TRANSCRIPTIONAL REGULATION OF PLURIPOTENT STEM CELLS

TRANSCRIPTIONAL REGULATION OF PLURIPO

PI 3K CASCADE FGFR3

PI 3K CASCADE FGFR3

PI 3K CASCADE FGFR3

SHC MEDIATED CASCADE FGFR4

SHC MEDIATED CASCADE FGFR4

SHC MEDIATED CASCADE FGFR4

FRS MEDIATED FGFR3 SIGNALING

FRS MEDIATED FGFR3 SIGNALING

FRS MEDIATED FGFR3 SIGNALING

COMPLEMENT CASCADE

COMPLEMENT CASCADE

COMPLEMENT CASCADE

FRS MEDIATED FGFR4 SIGNALING

FRS MEDIATED FGFR4 SIGNALING

FRS MEDIATED FGFR4 SIGNALING

CRMPS IN SEMA3A SIGNALING

CRMPS IN SEMA3A SIGNALING

CRMPS IN SEMA3A SIGNALING

NONSENSE MEDIATED DECAY NMD

NONSENSE MEDIATED DECAY NMD

NONSENSE MEDIATED DECAY NMD

PI 3K CASCADE FGFR4

PI 3K CASCADE FGFR4

PI 3K CASCADE FGFR4

BLOOD GROUP SYSTEMS BIOSYNTHESIS

BLOOD GROUP SYSTEMS BIOSYNTHESIS

BLOOD GROUP SYSTEMS BIOSYNTHESIS

G BETA GAMMA SIGNALLING THROUGH CDC42

G BETA GAMMA SIGNALLING THROUGH CDC42

G BETA GAMMA SIGNALLING THROUGH CDC4

FORMATION OF ATP BY CHEMIOSMOTIC COUPLING

FORMATION OF ATP BY CHEMIOSMOTIC COUPLING

FORMATION OF ATP BY CHEMIOSMOTIC COU

PLATELET SENSITIZATION BY LDL

PLATELET SENSITIZATION BY LDL

PLATELET SENSITIZATION BY LDL

RHOBTB3 ATPASE CYCLE

RHOBTB3 ATPASE CYCLE

RHOBTB3 ATPASE CYCLE

CITRIC ACID CYCLE TCA CYCLE

CITRIC ACID CYCLE TCA CYCLE

CITRIC ACID CYCLE TCA CYCLE

GLYCOGEN STORAGE DISEASES

GLYCOGEN STORAGE DISEASES

GLYCOGEN STORAGE DISEASES

SEROTONIN RECEPTORS

SEROTONIN RECEPTORS

SEROTONIN RECEPTORS

CITRIC ACID TCA CYCLE AND RESPIRATORY ELECTRON TF

THE CITRIC ACID TCA CYCLE AND RESPIRATORY ELECTRON TRANSPO

THE CITRIC ACID TCA CYCLE AND RESPIRATOR

DARPP 32 EVENTS

DARPP 32 EVENTS

DARPP 32 EVENTS

ACTIVATION OF IRF3 IRF7 MEDIATED BY TBK1 IKK EPSIL

ACTIVATION OF IRF3 IRF7 MEDIATED BY TBK1 IKK EPSILON

ACTIVATION OF IRF3 IRF7 MEDIATED BY TBK1

