Introduction

Test whether Gal3 KO causes changes to expressionn of mitochondrial genes.

library("mitch")

Read in reference data

Read in a gene table, reactome gene sets and the mitochondrially encoded gene.

gt <- read.table("genetable.tsv")
head(gt)
##                         V1    V2
## 1 ENSMUSG00000000001_Gnai3 Gnai3
## 2 ENSMUSG00000000028_Cdc45 Cdc45
## 3   ENSMUSG00000000031_H19   H19
## 4 ENSMUSG00000000037_Scml2 Scml2
## 5  ENSMUSG00000000056_Narf  Narf
## 6  ENSMUSG00000000058_Cav2  Cav2
reactome <- gmt_import("m2.cp.reactome.v2024.1.Mm.symbols.gmt")
mtgenes <- readLines("mtgenes.txt")
mtgenes <- sapply(strsplit(mtgenes,"_"),"[[",2)
mt_trna <- mtgenes[grep("mt-T",mtgenes)]
mt_mrna <- mtgenes[grep("mt-T",mtgenes,invert=TRUE)]
mtgenelist <- list("mtgenes"=mtgenes,"mt tRNA"=mt_trna, "mt mRNA"=mt_mrna)

Comparison 1 WILD TYPE VERSUS GAL3 KO

Gal3KO causes a subtle increase iin electron transport, but no changes to other mitochondrial pathways.

wt_v_gal3ko <- read.table("WTvsGAL3KO.tsv",row.names=1,header=TRUE)
head(wt_v_gal3ko)
##                                  logFC     logCPM       LR        PValue
## ENSMUSG00000088025_Rprl3     7.1388625  4.6718624 912.8749 1.559547e-200
## ENSMUSG00000097431_Gm26782  -1.9635345  2.6124053 603.9507 2.314757e-133
## ENSMUSG00000087775_Rprl2     4.8667199  0.9246235 299.0305  5.357773e-67
## ENSMUSG00000021908_Gm6768    3.6461143  1.3744482 217.9958  2.474886e-49
## ENSMUSG00000071470_Ccnb1ip1  5.4338686 -0.5132433 134.8661  3.531964e-31
## ENSMUSG00000022193_Psmb5    -0.7204651  3.6202031 127.0168  1.842077e-29
##                                       FDR   dispersion Gal3Ko_rep1.x
## ENSMUSG00000088025_Rprl3    2.378153e-196 3.479995e-03    1161.79000
## ENSMUSG00000097431_Gm26782  1.764886e-129 2.035316e-04      45.06740
## ENSMUSG00000087775_Rprl2     2.723356e-63 1.362906e-01      81.57848
## ENSMUSG00000021908_Gm6768    9.434883e-46 9.765625e-05     110.61975
## ENSMUSG00000071470_Ccnb1ip1  1.077178e-27 4.650901e-03      27.95984
## ENSMUSG00000022193_Psmb5     4.681639e-26 9.399001e-03     222.31981
##                             Gal3Ko_rep2.x Gal3Ko_rep3.x Gal3Ko_rep4.x
## ENSMUSG00000088025_Rprl3        722.68505    1060.17546    1344.78288
## ENSMUSG00000097431_Gm26782       28.03393      41.12563      52.16594
## ENSMUSG00000087775_Rprl2         50.74544      74.44332      94.42786
## ENSMUSG00000021908_Gm6768        68.81040     100.94453     128.04340
## ENSMUSG00000071470_Ccnb1ip1      17.39227      25.51437      32.36378
## ENSMUSG00000022193_Psmb5        138.29281     202.87488     257.33728
##                             Gal3Ko_rep5.x Gal3Ko_rep6.x Gal3Ko_rep7.x
## ENSMUSG00000088025_Rprl3        949.62323    1123.82738    1089.44575
## ENSMUSG00000097431_Gm26782       36.83716      43.59478      42.26107
## ENSMUSG00000087775_Rprl2         66.68057      78.91282      76.49861
## ENSMUSG00000021908_Gm6768        90.41830     107.00514     103.73149
## ENSMUSG00000071470_Ccnb1ip1      22.85380      27.04623      26.21879
## ENSMUSG00000022193_Psmb5        181.71964     215.05530     208.47604
##                             Gal3Ko_rep8.x   wt_rep1.x   wt_rep2.x   wt_rep3.x
## ENSMUSG00000088025_Rprl3       1164.84862   0.8287214   0.7721829   0.7913688
## ENSMUSG00000097431_Gm26782       45.18605 277.3421045 258.4207690 264.8416002
## ENSMUSG00000087775_Rprl2         81.79325   0.4978984   0.4639299   0.4754569
## ENSMUSG00000021908_Gm6768       110.91097   2.6589084   2.4775075   2.5390647
## ENSMUSG00000071470_Ccnb1ip1      28.03345   0.0000000   0.0000000   0.0000000
## ENSMUSG00000022193_Psmb5        222.90511 403.5946096 376.0598470 385.4035883
##                               wt_rep4.x   wt_rep5.x   wt_rep6.x Gal3Ko_rep1.y
## ENSMUSG00000088025_Rprl3      0.7437782   0.8391747   1.0189975           925
## ENSMUSG00000097431_Gm26782  248.9148053 280.8404436 341.0204235            47
## ENSMUSG00000087775_Rprl2      0.4468643   0.5041788   0.6122169            80
## ENSMUSG00000021908_Gm6768     2.3863728   2.6924473   3.2693992           151
## ENSMUSG00000071470_Ccnb1ip1   0.0000000   0.0000000   0.0000000            18
## ENSMUSG00000022193_Psmb5    362.2265500 408.6854732 496.2607641           186
##                             Gal3Ko_rep2.y Gal3Ko_rep3.y Gal3Ko_rep4.y
## ENSMUSG00000088025_Rprl3              667          1056          1828
## ENSMUSG00000097431_Gm26782             21            32            53
## ENSMUSG00000087775_Rprl2               51            63           134
## ENSMUSG00000021908_Gm6768              38            61           164
## ENSMUSG00000071470_Ccnb1ip1            16            37            37
## ENSMUSG00000022193_Psmb5              128           206           308
##                             Gal3Ko_rep5.y Gal3Ko_rep6.y Gal3Ko_rep7.y
## ENSMUSG00000088025_Rprl3              806           997          1505
## ENSMUSG00000097431_Gm26782             41            42            58
## ENSMUSG00000087775_Rprl2               40            76            73
## ENSMUSG00000021908_Gm6768              91           109           118
## ENSMUSG00000071470_Ccnb1ip1            25            21            14
## ENSMUSG00000022193_Psmb5              183           206           218
##                             Gal3Ko_rep8.y wt_rep1.y wt_rep2.y wt_rep3.y
## ENSMUSG00000088025_Rprl3              939         0         1         1
## ENSMUSG00000097431_Gm26782             41       285       208       279
## ENSMUSG00000087775_Rprl2               98         0         0         0
## ENSMUSG00000021908_Gm6768             111         3         4         3
## ENSMUSG00000071470_Ccnb1ip1            40         0         0         0
## ENSMUSG00000022193_Psmb5              222       385       436       412
##                             wt_rep4.y wt_rep5.y wt_rep6.y
## ENSMUSG00000088025_Rprl3            1         0         2
## ENSMUSG00000097431_Gm26782        284       265       351
## ENSMUSG00000087775_Rprl2            2         0         1
## ENSMUSG00000021908_Gm6768           0         4         2
## ENSMUSG00000071470_Ccnb1ip1         0         0         0
## ENSMUSG00000022193_Psmb5          372       325       496
m_wt_v_gal3ko <- mitch_import(x=wt_v_gal3ko,DEtype="edger",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 15249
## Note: no. genes in output = 15245
## Note: estimated proportion of input genes in output = 1
dim(m_wt_v_gal3ko)
## [1] 15245     1
tail(m_wt_v_gal3ko)
##                 x
## Zxdb   -0.1616329
## Zxdc    0.1539530
## Zyg11b -0.4278787
## Zyx    -0.7270816
## Zzef1   0.1674099
## Zzz3    0.5227042

mitch with mito genes - no change.

mt_wt_v_gal3ko <- mitch_calc(x=m_wt_v_gal3ko,genesets=mtgenelist,priority="effect",cores=4,minsetsize=3)
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mt_wt_v_gal3ko$enrichment_result
##       set setSize      pANOVA     s.dist p.adjustANOVA
## 3 mt mRNA       9 0.001499638  0.6111111   0.004498915
## 2 mt tRNA       7 0.013236250 -0.5407159   0.019854376
## 1 mtgenes      16 0.457909209  0.1072050   0.457909209

Mitch with reactome. Noticed big change in electron transport but not much with other mito pathways.

mr_wt_v_gal3ko <- mitch_calc(x=m_wt_v_gal3ko,genesets=reactome,priority="effect",cores=4,minsetsize=3)
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
head(mr_wt_v_gal3ko$enrichment_result)
##                                                                           set
## 183                REACTOME_CLASSICAL_ANTIBODY_MEDIATED_COMPLEMENT_ACTIVATION
## 484                    REACTOME_INCRETIN_SYNTHESIS_SECRETION_AND_INACTIVATION
## 304                                       REACTOME_ENDOSOMAL_VACUOLAR_PATHWAY
## 1254                 REACTOME_ZINC_INFLUX_INTO_CELLS_BY_THE_SLC39_GENE_FAMILY
## 220  REACTOME_CROSS_PRESENTATION_OF_PARTICULATE_EXOGENOUS_ANTIGENS_PHAGOSOMES
## 737                                                   REACTOME_PD_1_SIGNALING
##      setSize       pANOVA     s.dist p.adjustANOVA
## 183        5 0.0042555280 -0.7381627   0.033589230
## 484        3 0.0325424822 -0.7126361   0.141288012
## 304       10 0.0001741564 -0.6854742   0.002512256
## 1254       7 0.0018913255 -0.6780605   0.017200098
## 220        7 0.0019697498 -0.6754355   0.017657400
## 737        9 0.0005546690 -0.6646247   0.006386327
#  some subtle changes in electron transport
mr2_wt_v_gal3ko <- mr_wt_v_gal3ko$enrichment_result
head(mr2_wt_v_gal3ko[grep("ELECTRON",mr2_wt_v_gal3ko$set),])
##                                                                 set setSize
## 915                         REACTOME_RESPIRATORY_ELECTRON_TRANSPORT     124
## 46  REACTOME_AEROBIC_RESPIRATION_AND_RESPIRATORY_ELECTRON_TRANSPORT     202
##           pANOVA    s.dist p.adjustANOVA
## 915 7.707120e-05 0.2057734  0.0014018023
## 46  1.652967e-05 0.1761018  0.0004714713
mr2_wt_v_gal3ko_mito <- mr2_wt_v_gal3ko[grep("MITOC",mr2_wt_v_gal3ko$set),]
subset(mr2_wt_v_gal3ko_mito, p.adjustANOVA < 0.05)
## [1] set           setSize       pANOVA        s.dist        p.adjustANOVA
## <0 rows> (or 0-length row.names)

Comparison 2 TG VERSUS TG GAL3 KO

First set up the analysis.

tg_v_tggal3ko <- read.table("MST1TGvsMST1TGGAL3KO.tsv",row.names=1,header=TRUE)
head(tg_v_tggal3ko)
##                                 logFC    logCPM       LR        PValue
## ENSMUSG00000050335_Lgals3   -2.702830 5.2244881 818.9174 4.160516e-180
## ENSMUSG00000021908_Gm6768    4.551871 0.9754383 655.4656 1.446964e-144
## ENSMUSG00000063506_Arhgap22 -1.815747 3.7621134 423.9686  3.339128e-94
## ENSMUSG00000088025_Rprl3     7.010163 4.5693474 332.9309  2.210212e-74
## ENSMUSG00000021913_Ogdhl    -3.051331 3.0467219 317.0852  6.249057e-71
## ENSMUSG00000107470_Gm3375    5.156573 1.2163947 311.9248  8.316352e-70
##                                       FDR  dispersion Mst1Gal3_rep1.x
## ENSMUSG00000050335_Lgals3   6.344372e-176 0.003211607        99.47726
## ENSMUSG00000021908_Gm6768   1.103237e-140 0.001782366       104.59775
## ENSMUSG00000063506_Arhgap22  1.697279e-90 0.033966698        80.35369
## ENSMUSG00000088025_Rprl3     8.425881e-71 0.007818055      1316.05343
## ENSMUSG00000021913_Ogdhl     1.905837e-67 0.006602482        15.51841
## ENSMUSG00000107470_Gm3375    2.113601e-66 0.042465258       125.70615
##                             Mst1Gal3_rep2.x Mst1Gal3_rep3.x Mst1Gal3_rep4.x
## ENSMUSG00000050335_Lgals3          96.45176       103.27405        93.01363
## ENSMUSG00000021908_Gm6768         101.41651       108.58997        97.80141
## ENSMUSG00000063506_Arhgap22        77.90982        83.42058        75.13264
## ENSMUSG00000088025_Rprl3         1276.02700      1366.28375      1230.54164
## ENSMUSG00000021913_Ogdhl           15.04643        16.11071        14.51009
## ENSMUSG00000107470_Gm3375         121.88292       130.50402       117.53827
##                             Mst1Gal3_rep5.x MstTg_rep1.x MstTg_rep2.x
## ENSMUSG00000050335_Lgals3         108.26685 1206.1553481 1322.9870992
## ENSMUSG00000021908_Gm6768         113.83978    0.9308369    1.0210005
## ENSMUSG00000063506_Arhgap22        87.45357  408.4030962  447.9622202
## ENSMUSG00000088025_Rprl3         1432.33702    1.0632147    1.1662008
## ENSMUSG00000021913_Ogdhl           16.88958  266.4454734  292.2541649
## ENSMUSG00000107470_Gm3375         136.81326    0.5832351    0.6397289
##                             MstTg_rep3.x MstTg_rep4.x MstTg_rep5.x MstTg_rep6.x
## ENSMUSG00000050335_Lgals3   1430.1985892 1593.3183547  1815.727468 1351.1534419
## ENSMUSG00000021908_Gm6768      1.1037398    1.2296256     1.401267    1.0427375
## ENSMUSG00000063506_Arhgap22  484.2639325  539.4961357   614.803658  457.4993180
## ENSMUSG00000088025_Rprl3       1.2607067    1.4044953     1.600547    1.1910292
## ENSMUSG00000021913_Ogdhl     315.9376947  351.9716295   401.102864  298.4762444
## ENSMUSG00000107470_Gm3375      0.6915709    0.7704473     0.877993    0.6533487
##                             MstTg_rep7.x Mst1Gal3_rep1.y Mst1Gal3_rep2.y
## ENSMUSG00000050335_Lgals3   1653.2130010              64              87
## ENSMUSG00000021908_Gm6768      1.2758486              84             103
## ENSMUSG00000063506_Arhgap22  559.7764081              75              68
## ENSMUSG00000088025_Rprl3       1.4572919             660             922
## ENSMUSG00000021913_Ogdhl     365.2026428              13              16
## ENSMUSG00000107470_Gm3375      0.7994093             115              90
##                             Mst1Gal3_rep3.y Mst1Gal3_rep4.y Mst1Gal3_rep5.y
## ENSMUSG00000050335_Lgals3               109              92             151
## ENSMUSG00000021908_Gm6768               122             107             110
## ENSMUSG00000063506_Arhgap22              76              79             107
## ENSMUSG00000088025_Rprl3               2369            1487            1194
## ENSMUSG00000021913_Ogdhl                 11              18              20
## ENSMUSG00000107470_Gm3375               101             186             136
##                             MstTg_rep1.y MstTg_rep2.y MstTg_rep3.y MstTg_rep4.y
## ENSMUSG00000050335_Lgals3           1126         1438         1344         1679
## ENSMUSG00000021908_Gm6768              0            2            1            1
## ENSMUSG00000063506_Arhgap22          353          535          520          505
## ENSMUSG00000088025_Rprl3               1            1            3            1
## ENSMUSG00000021913_Ogdhl             166          323          345          433
## ENSMUSG00000107470_Gm3375              0            1            1            0
##                             MstTg_rep5.y MstTg_rep6.y MstTg_rep7.y
## ENSMUSG00000050335_Lgals3           1791         1399         1594
## ENSMUSG00000021908_Gm6768              0            3            1
## ENSMUSG00000063506_Arhgap22          640          485          466
## ENSMUSG00000088025_Rprl3               0            3            0
## ENSMUSG00000021913_Ogdhl             410          227          423
## ENSMUSG00000107470_Gm3375              0            2            1
m_tg_v_tggal3ko <- mitch_import(x=tg_v_tggal3ko,DEtype="edger",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 15249
## Note: no. genes in output = 15245
## Note: estimated proportion of input genes in output = 1
dim(m_tg_v_tggal3ko)
## [1] 15245     1
tail(m_tg_v_tggal3ko)
##                  x
## Zxdb    0.01695960
## Zxdc   -0.50202819
## Zyg11b  0.15306581
## Zyx     0.11491587
## Zzef1  -0.09661108
## Zzz3   -0.47507801

Mitch with mito genes - big increase.

mt_tg_v_tggal3ko <- mitch_calc(x=m_tg_v_tggal3ko,genesets=mtgenelist,priority="effect",cores=4,minsetsize=3)
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mt_tg_v_tggal3ko$enrichment_result
##       set setSize       pANOVA    s.dist p.adjustANOVA
## 2 mt tRNA       7 2.006395e-04 0.8114488  3.009592e-04
## 1 mtgenes      16 2.070088e-06 0.6852551  6.210264e-06
## 3 mt mRNA       9 2.313995e-03 0.5864619  2.313995e-03

Mitch with reactome.

mr_tg_v_tggal3ko <- mitch_calc(x=m_tg_v_tggal3ko,genesets=reactome,priority="effect",cores=4,minsetsize=3)
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
head(mr_tg_v_tggal3ko$enrichment_result)
##                                                                            set
## 110                 REACTOME_BETA_OXIDATION_OF_LAUROYL_COA_TO_DECANOYL_COA_COA
## 620  REACTOME_MITOCHONDRIAL_FATTY_ACID_BETA_OXIDATION_OF_SATURATED_FATTY_ACIDS
## 108                REACTOME_BETA_OXIDATION_OF_DECANOYL_COA_TO_OCTANOYL_COA_COA
## 111                    REACTOME_BETA_OXIDATION_OF_OCTANOYL_COA_TO_HEXANOYL_COA
## 109                    REACTOME_BETA_OXIDATION_OF_HEXANOYL_COA_TO_BUTANOYL_COA
## 1229                                     REACTOME_UTILIZATION_OF_KETONE_BODIES
##      setSize       pANOVA    s.dist p.adjustANOVA
## 110        5 3.437378e-04 0.9243570  4.493656e-03
## 620        9 2.026991e-06 0.9142820  5.915986e-05
## 108        6 1.194476e-04 0.9068399  1.921881e-03
## 111        5 4.696032e-04 0.9030971  5.893520e-03
## 109        5 4.802775e-04 0.9015486  5.967805e-03
## 1229       3 9.534769e-03 0.8641473  5.439152e-02
#  some subtle changes in electron transport
mr2_tg_v_tggal3ko <- mr_tg_v_tggal3ko$enrichment_result
head(mr2_tg_v_tggal3ko[grep("MITOC",mr2_tg_v_tggal3ko$set),])
##                                                                           set
## 620 REACTOME_MITOCHONDRIAL_FATTY_ACID_BETA_OXIDATION_OF_SATURATED_FATTY_ACIDS
## 621                     REACTOME_MITOCHONDRIAL_IRON_SULFUR_CLUSTER_BIOGENESIS
## 619                          REACTOME_MITOCHONDRIAL_FATTY_ACID_BETA_OXIDATION
## 624                                        REACTOME_MITOCHONDRIAL_TRANSLATION
## 622                                REACTOME_MITOCHONDRIAL_PROTEIN_DEGRADATION
## 623                                     REACTOME_MITOCHONDRIAL_PROTEIN_IMPORT
##     setSize       pANOVA    s.dist p.adjustANOVA
## 620       9 2.026991e-06 0.9142820  5.915986e-05
## 621      10 3.062275e-05 0.7612077  6.004931e-04
## 619      33 2.009804e-13 0.7387230  2.101920e-11
## 624      87 2.882071e-27 0.6701988  9.042497e-25
## 622      70 9.865125e-20 0.6279445  1.768676e-17
## 623       7 4.624990e-03 0.6181164  3.129309e-02
head(mr2_tg_v_tggal3ko[grep("ELECTRON",mr2_tg_v_tggal3ko$set),])
##                                                                 set setSize
## 915                         REACTOME_RESPIRATORY_ELECTRON_TRANSPORT     124
## 46  REACTOME_AEROBIC_RESPIRATION_AND_RESPIRATORY_ELECTRON_TRANSPORT     202
##           pANOVA    s.dist p.adjustANOVA
## 915 2.202680e-45 0.7336944  9.214544e-43
## 46  8.163806e-58 0.6527460  5.122788e-55