Source: https://github.com/markziemann/emily_cas13_rnaseq
Here we analyse the effect of various CRISPR Cas13 constructs.
There are two different Cas13 sequences used, the normal RfxCas13d (WT) and the high-fidelity HfCas13d.
Sample | Cas13 type | Sample type |
---|---|---|
S1 | Rfx | DsRed gRNA |
S2 | Rfx | DsRed gRNA |
S3 | Rfx | DsRed gRNA |
S4 | Rfx | Non-targeting gRNA |
S5 | Rfx | Non-targeting gRNA |
S6 | Rfx | Non-targeting gRNA |
S7 | Rfx | Transfection control |
S8 | Rfx | Transfection control |
S9 | Rfx | Transfection control |
S10 | Rfx | Non-transfected control |
S11 | Rfx | Non-transfected control |
S12 | Rfx | Non-transfected control |
S13 | Hf | DsRed gRNA |
S14 | Hf | DsRed gRNA |
S15 | Hf | DsRed gRNA |
S16 | Hf | Non-targeting gRNA |
S17 | Hf | Non-targeting gRNA |
S18 | Hf | Non-targeting gRNA |
S19 | Hf | Transfection control |
S20 | Hf | Transfection control |
S21 | Hf | Transfection control |
S22 | Hf | Non-transfected control |
S23 | Hf | Non-transfected control |
S24 | Hf | Non-transfected control |
They are similar except for a few bp. The divergent bp were replaced with N for mapping with kallisto.
The goal is to understand the performance of each Cas, in terms of degree of knock-down and the degree of off-target degradation.
Reads were mapped to chicken transcripts from ensembl version 113.
Genes with mean counts > 10 are classified as detected.
Differential expression is conducted with DESeq2.
Pathway enrichment analysis is conducted with mitch.
suppressPackageStartupMessages({
library("zoo")
library("dplyr")
library("reshape2")
library("DESeq2")
library("gplots")
library("MASS")
library("mitch")
library("eulerr")
library("kableExtra")
library("beeswarm")
library("UpSetR")
})
ss <- read.table("samplesheet.tsv")
ss <- ss[order(rownames(ss)),]
ss
## SampleGroup SampleLabel
## S1 Rfx_DsRed_gRNA Rfx_DsRed_gRNA_1
## S10 Rfx_NTfx_ctl Rfx_NTfx_ctl_1
## S11 Rfx_NTfx_ctl Rfx_NTfx_ctl_2
## S12 Rfx_NTfx_ctl Rfx_NTfx_ctl_3
## S13 Hf_DsRed_gRNA Hf_DsRed_gRNA_1
## S14 Hf_DsRed_gRNA Hf_DsRed_gRNA_2
## S15 Hf_DsRed_gRNA Hf_DsRed_gRNA_3
## S16 Hf_NTC_gRNA Hf_NTC_gRNA_1
## S17 Hf_NTC_gRNA Hf_NTC_gRNA_2
## S18 Hf_NTC_gRNA Hf_NTC_gRNA_3
## S19 Hf_Tfx_ctl Hf_Tfx_ctl_1
## S2 Rfx_DsRed_gRNA Rfx_DsRed_gRNA_2
## S20 Hf_Tfx_ctl Hf_Tfx_ctl_2
## S21 Hf_Tfx_ctl Hf_Tfx_ctl_3
## S22 Hf_NTfx_ctl Hf_NTfx_ctl_1
## S23 Hf_NTfx_ctl Hf_NTfx_ctl_2
## S24 Hf_NTfx_ctl Hf_NTfx_ctl_3
## S3 Rfx_DsRed_gRNA Rfx_DsRed_gRNA_3
## S4 Rfx_NTC_gRNA Rfx_NTC_gRNA_1
## S5 Rfx_NTC_gRNA Rfx_NTC_gRNA_2
## S6 Rfx_NTC_gRNA Rfx_NTC_gRNA_3
## S7 Rfx_Tfx_ctl Rfx_Tfx_ctl_1
## S8 Rfx_Tfx_ctl Rfx_Tfx_ctl_2
## S9 Rfx_Tfx_ctl Rfx_Tfx_ctl_3
go <- gmt_import("chicken_go_2024-11.gmt")
gt <- read.table("ref/Gallus_gallus.bGalGal1.mat.broiler.GRCg7b.113.tx2gene.tsv")
head(gt)
## V1 V2 V3
## 1 ENSGALT00010001513 ENSGALG00010000711 SPRY2
## 2 ENSGALT00010001514 ENSGALG00010000711 SPRY2
## 3 ENSGALT00010001515 ENSGALG00010000711 SPRY2
## 4 ENSGALT00010001516 ENSGALG00010000711 SPRY2
## 5 ENSGALT00010001518 ENSGALG00010000711 SPRY2
## 6 ENSGALT00010001519 ENSGALG00010000711 SPRY2
rownames(gt) <- gt$V1
gt$gene <- paste(gt$V2,gt$V3)
gt$V1 = gt$V2 = gt$V3 = NULL
head(gt)
## gene
## ENSGALT00010001513 ENSGALG00010000711 SPRY2
## ENSGALT00010001514 ENSGALG00010000711 SPRY2
## ENSGALT00010001515 ENSGALG00010000711 SPRY2
## ENSGALT00010001516 ENSGALG00010000711 SPRY2
## ENSGALT00010001518 ENSGALG00010000711 SPRY2
## ENSGALT00010001519 ENSGALG00010000711 SPRY2
# add cas13d and DsRed
add <- data.frame(c("cas13d cas13d","DsRed DsRed","Fbxw11-GFP Fbxw11-GFP"))
rownames(add) <- c("cas13d","DsRed","Fbxw11-GFP")
colnames(add) <- "gene"
gt2 <- as.data.frame(rbind(add,gt))
head(gt2)
## gene
## cas13d cas13d cas13d
## DsRed DsRed DsRed
## Fbxw11-GFP Fbxw11-GFP Fbxw11-GFP
## ENSGALT00010001513 ENSGALG00010000711 SPRY2
## ENSGALT00010001514 ENSGALG00010000711 SPRY2
## ENSGALT00010001515 ENSGALG00010000711 SPRY2
tmp <- read.table("AGRF_CAGRF24100018-1_22VGYMLT3/3col.tsv.gz",header=F)
tmp$V1 <- sapply(strsplit(tmp$V1,"_"),"[[",1)
x <- as.matrix(acast(tmp, V2~V1, value.var="V3", fun.aggregate = sum))
rownames(x) <- sapply(strsplit( rownames(x) , "\\."),"[[",1)
xm <- merge(x,gt2,by=0)
rownames(xm) <- xm$Row.names
xm$Row.names = NULL
xmg <- aggregate(. ~ gene,xm,sum)
rownames(xmg) <- xmg$gene
rownames(xmg) <- xmg$gene
xmg$gene = NULL
xx <- round(xmg)
head(xx)
## S1 S10 S11 S12 S13 S14 S15
## cas13d cas13d 44039 37370 36900 40161 53106 48224 49161
## DsRed DsRed 2095 0 0 0 3951 3910 3807
## ENSGALG00010000002 ENSGALG00010000002 17 7 9 16 15 17 17
## ENSGALG00010000003 ENSGALG00010000003 22387 19716 22466 19877 26183 25305 28846
## ENSGALG00010000004 ENSGALG00010000004 1 0 0 0 1 0 0
## ENSGALG00010000005 ENSGALG00010000005 18511 15071 19554 14291 16848 18041 20056
## S16 S17 S18 S19 S2 S20 S21
## cas13d cas13d 48976 44541 39904 46972 39665 44028 43130
## DsRed DsRed 12568 10316 9196 10529 1855 10205 11838
## ENSGALG00010000002 ENSGALG00010000002 19 12 14 11 14 11 14
## ENSGALG00010000003 ENSGALG00010000003 28620 25906 21255 27990 17621 22773 23329
## ENSGALG00010000004 ENSGALG00010000004 1 1 0 0 0 2 0
## ENSGALG00010000005 ENSGALG00010000005 26851 23440 13559 19179 13201 17624 15785
## S22 S23 S24 S3 S4 S5 S6
## cas13d cas13d 38244 44665 39134 47778 43790 44436 39163
## DsRed DsRed 0 0 0 2588 17544 15247 13850
## ENSGALG00010000002 ENSGALG00010000002 13 12 11 23 15 8 22
## ENSGALG00010000003 ENSGALG00010000003 24799 26109 26392 26643 25925 21893 23132
## ENSGALG00010000004 ENSGALG00010000004 0 0 1 1 1 0 0
## ENSGALG00010000005 ENSGALG00010000005 16355 17065 19702 20134 23215 19749 19385
## S7 S8 S9
## cas13d cas13d 47522 41347 46306
## DsRed DsRed 19799 13067 18064
## ENSGALG00010000002 ENSGALG00010000002 20 9 13
## ENSGALG00010000003 ENSGALG00010000003 24793 21402 25391
## ENSGALG00010000004 ENSGALG00010000004 0 0 0
## ENSGALG00010000005 ENSGALG00010000005 16816 18267 15378
tail(xx)
## S1 S10 S11 S12 S13 S14 S15 S16 S17 S18
## ENSGALG00010030105 RAB40B 49 47 44 56 59 39 51 39 36 34
## ENSGALG00010030106 GPRC5C 0 1 4 1 5 2 4 2 1 4
## ENSGALG00010030107 RPTOR 1583 1434 1343 1352 1629 1415 1489 1619 1492 1381
## ENSGALG00010030108 LLGL2 996 1058 992 1030 1278 1291 1374 1383 1217 1038
## ENSGALG00010030109 FBF1 830 734 607 729 786 688 650 703 733 649
## Fbxw11-GFP Fbxw11-GFP 6811 307 308 303 6969 6301 6405 19976 15379 14478
## S19 S2 S20 S21 S22 S23 S24 S3 S4
## ENSGALG00010030105 RAB40B 49 36 43 45 42 52 33 52 53
## ENSGALG00010030106 GPRC5C 1 2 0 1 0 0 0 2 0
## ENSGALG00010030107 RPTOR 1462 1366 1432 1387 1207 1453 1260 1768 1756
## ENSGALG00010030108 LLGL2 1308 1036 1181 1210 1279 1456 1278 1253 1162
## ENSGALG00010030109 FBF1 773 741 682 626 617 726 575 853 879
## Fbxw11-GFP Fbxw11-GFP 10927 5319 10100 11594 311 306 309 7476 26922
## S5 S6 S7 S8 S9
## ENSGALG00010030105 RAB40B 46 42 55 51 40
## ENSGALG00010030106 GPRC5C 4 2 0 1 5
## ENSGALG00010030107 RPTOR 1609 1270 1697 1355 1586
## ENSGALG00010030108 LLGL2 1084 948 1100 1045 1242
## ENSGALG00010030109 FBF1 756 683 825 729 804
## Fbxw11-GFP Fbxw11-GFP 22776 20700 18592 12719 16902
# reordering the columns
rownames(ss) == colnames(xx)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
colnames(xx) <- ss$SampleLabel
xx <- xx[,order(colnames(xx))]
ss <- ss[order(ss$SampleLabel),]
# write counts
write.table(xx,"emily_counts.tsv",sep="\t",quote=FALSE)
# add colour and shape info to ss
ss$col <- c(rep("orange",12),rep("gray",12))
ss$shape <- rep(c(rep(17,3),rep(15,3),rep(18,3),rep(19,3)),2)
Here I’ll look at a few different quality control measures.
par(mar=c(5,10,3,1))
barplot(rev(colSums(xx)),horiz=TRUE,las=1,xlab="num reads")
colSums(xx)
## Hf_DsRed_gRNA_1 Hf_DsRed_gRNA_2 Hf_DsRed_gRNA_3 Hf_NTC_gRNA_1
## 36069938 33437002 35100639 35955443
## Hf_NTC_gRNA_2 Hf_NTC_gRNA_3 Hf_NTfx_ctl_1 Hf_NTfx_ctl_2
## 33725699 29406778 29817493 34580661
## Hf_NTfx_ctl_3 Hf_Tfx_ctl_1 Hf_Tfx_ctl_2 Hf_Tfx_ctl_3
## 30138577 32824476 31168254 30781130
## Rfx_DsRed_gRNA_1 Rfx_DsRed_gRNA_2 Rfx_DsRed_gRNA_3 Rfx_NTC_gRNA_1
## 33290779 30357975 36657286 35649182
## Rfx_NTC_gRNA_2 Rfx_NTC_gRNA_3 Rfx_NTfx_ctl_1 Rfx_NTfx_ctl_2
## 35294526 30300316 31195104 30097571
## Rfx_NTfx_ctl_3 Rfx_Tfx_ctl_1 Rfx_Tfx_ctl_2 Rfx_Tfx_ctl_3
## 31087737 37246761 31051428 36167680
par(mar = c(5.1, 4.1, 4.1, 2.1) )
Now check MDS clustering.
mymds <- cmdscale(dist(t(xx)))
XMIN=min(mymds[,1])*1.3
XMAX=max(mymds[,1])*1.5
plot(mymds, xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",bty="n",pch=ss$shape, cex=4, col=ss$col,
xlim=c(XMIN,XMAX), main = "MDS plot")
text(cmdscale(dist(t(xx))), labels=colnames(xx) )
legend("topleft", inset=.02, title="Cas13 type",
c("Hf","Rfx"), fill=c("orange","gray"), horiz=TRUE, cex=1)
legend("topright", inset=.02, title="Sample group",
c("DsRed_gRNA","NTC_gRNA","NTfx_ctl", "Tfx_ctl"),
pch=c(17,15,18,19) , col="black", horiz=FALSE, cex=1)
It looks like there is clustering in terms of the Cas construct used but not the sample groups.
Let’s take a closer look at the different Cas types.
xrf <- xx[,grep("Rfx",colnames(xx))]
xhf <- xx[,grep("Hf",colnames(xx))]
srf <- ss[grep("Rfx",ss$SampleGroup),]
shf <- ss[grep("Hf",ss$SampleGroup),]
# Rfx Cas13d
mymds <- cmdscale(dist(t(xrf)))
XMIN=min(mymds[,1])*1.3
XMAX=max(mymds[,1])*1.5
plot(mymds, xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",bty="n",pch=srf$shape, cex=4, col=srf$col,
xlim=c(XMIN,XMAX), main = "MDS plot: Rfx")
text(cmdscale(dist(t(xrf))), labels=colnames(xrf) )
legend("topleft", inset=.02, title="Sample group",
c("DsRed_gRNA","NTC_gRNA","NTfx_ctl", "Tfx_ctl"),
pch=c(17,15,18,19) , col="gray", horiz=FALSE, cex=1)
# Hf Cas13d
mymds <- cmdscale(dist(t(xhf)))
XMIN=min(mymds[,1])*1.3
XMAX=max(mymds[,1])*1.5
plot(mymds, xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",bty="n",pch=shf$shape, cex=4, col=shf$col,
xlim=c(XMIN,XMAX), main = "MDS plot: Hf")
text(cmdscale(dist(t(xhf))), labels=colnames(xhf) )
legend("right", inset=.02, title="Sample group",
c("DsRed_gRNA","NTC_gRNA","NTfx_ctl", "Tfx_ctl"),
pch=c(17,15,18,19) , col="orange", horiz=FALSE, cex=1)
In the Hf experiment, non-transfected controls were clustered separately from the other samples. This was observed to a lesser extent in the Rfx samples. No other notable clustering was observed.
mycor <- cor(xx)
mycor[mycor == 1] <- NA
heatmap.2(mycor,trace="n",main="Pearson correlation heatmap",mar=c(9,9))
mycor %>% kbl(caption = "Pearson correlation coefficients") %>% kable_paper("hover", full_width = F)
Hf_DsRed_gRNA_1 | Hf_DsRed_gRNA_2 | Hf_DsRed_gRNA_3 | Hf_NTC_gRNA_1 | Hf_NTC_gRNA_2 | Hf_NTC_gRNA_3 | Hf_NTfx_ctl_1 | Hf_NTfx_ctl_2 | Hf_NTfx_ctl_3 | Hf_Tfx_ctl_1 | Hf_Tfx_ctl_2 | Hf_Tfx_ctl_3 | Rfx_DsRed_gRNA_1 | Rfx_DsRed_gRNA_2 | Rfx_DsRed_gRNA_3 | Rfx_NTC_gRNA_1 | Rfx_NTC_gRNA_2 | Rfx_NTC_gRNA_3 | Rfx_NTfx_ctl_1 | Rfx_NTfx_ctl_2 | Rfx_NTfx_ctl_3 | Rfx_Tfx_ctl_1 | Rfx_Tfx_ctl_2 | Rfx_Tfx_ctl_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hf_DsRed_gRNA_1 | NA | 0.9959796 | 0.9974034 | 0.9974165 | 0.9971398 | 0.9992745 | 0.9910852 | 0.9926766 | 0.9915194 | 0.9972227 | 0.9992909 | 0.9988950 | 0.9621010 | 0.9702130 | 0.9721555 | 0.9677693 | 0.9780049 | 0.9804914 | 0.9741073 | 0.9842743 | 0.9919543 | 0.9718543 | 0.9655399 | 0.9739115 |
Hf_DsRed_gRNA_2 | 0.9959796 | NA | 0.9989044 | 0.9930099 | 0.9982336 | 0.9965715 | 0.9948011 | 0.9953406 | 0.9957425 | 0.9989539 | 0.9964215 | 0.9957073 | 0.9434608 | 0.9542662 | 0.9549634 | 0.9530961 | 0.9626486 | 0.9693555 | 0.9597702 | 0.9769123 | 0.9825133 | 0.9561091 | 0.9498399 | 0.9595844 |
Hf_DsRed_gRNA_3 | 0.9974034 | 0.9989044 | NA | 0.9953891 | 0.9981515 | 0.9977535 | 0.9946609 | 0.9951077 | 0.9954056 | 0.9984339 | 0.9979725 | 0.9980730 | 0.9516428 | 0.9612926 | 0.9626762 | 0.9598735 | 0.9694568 | 0.9748110 | 0.9663345 | 0.9803817 | 0.9872154 | 0.9634640 | 0.9571040 | 0.9664875 |
Hf_NTC_gRNA_1 | 0.9974165 | 0.9930099 | 0.9953891 | NA | 0.9970908 | 0.9964691 | 0.9918128 | 0.9919882 | 0.9925493 | 0.9955035 | 0.9980350 | 0.9982397 | 0.9717448 | 0.9774876 | 0.9795271 | 0.9776647 | 0.9855782 | 0.9874559 | 0.9822617 | 0.9902062 | 0.9948006 | 0.9797484 | 0.9750126 | 0.9814711 |
Hf_NTC_gRNA_2 | 0.9971398 | 0.9982336 | 0.9981515 | 0.9970908 | NA | 0.9977274 | 0.9936839 | 0.9938413 | 0.9950531 | 0.9984874 | 0.9979693 | 0.9976965 | 0.9535992 | 0.9615955 | 0.9634180 | 0.9618815 | 0.9715831 | 0.9756109 | 0.9676774 | 0.9815698 | 0.9870500 | 0.9640808 | 0.9582332 | 0.9668464 |
Hf_NTC_gRNA_3 | 0.9992745 | 0.9965715 | 0.9977535 | 0.9964691 | 0.9977274 | NA | 0.9904103 | 0.9921692 | 0.9913427 | 0.9972773 | 0.9992909 | 0.9990666 | 0.9551461 | 0.9637210 | 0.9662539 | 0.9615645 | 0.9731976 | 0.9755989 | 0.9688494 | 0.9802242 | 0.9893228 | 0.9661077 | 0.9591316 | 0.9682763 |
Hf_NTfx_ctl_1 | 0.9910852 | 0.9948011 | 0.9946609 | 0.9918128 | 0.9936839 | 0.9904103 | NA | 0.9994242 | 0.9994985 | 0.9966429 | 0.9932834 | 0.9919778 | 0.9540719 | 0.9656453 | 0.9631534 | 0.9653816 | 0.9685619 | 0.9783961 | 0.9714295 | 0.9870410 | 0.9862911 | 0.9663478 | 0.9633857 | 0.9699769 |
Hf_NTfx_ctl_2 | 0.9926766 | 0.9953406 | 0.9951077 | 0.9919882 | 0.9938413 | 0.9921692 | 0.9994242 | NA | 0.9988137 | 0.9972577 | 0.9946409 | 0.9929909 | 0.9533450 | 0.9655920 | 0.9632437 | 0.9642140 | 0.9683798 | 0.9777484 | 0.9711220 | 0.9864766 | 0.9869968 | 0.9661606 | 0.9627263 | 0.9695830 |
Hf_NTfx_ctl_3 | 0.9915194 | 0.9957425 | 0.9954056 | 0.9925493 | 0.9950531 | 0.9913427 | 0.9994985 | 0.9988137 | NA | 0.9971487 | 0.9937722 | 0.9928073 | 0.9521592 | 0.9631497 | 0.9614631 | 0.9634359 | 0.9674701 | 0.9768346 | 0.9696447 | 0.9856247 | 0.9856144 | 0.9643072 | 0.9610845 | 0.9679984 |
Hf_Tfx_ctl_1 | 0.9972227 | 0.9989539 | 0.9984339 | 0.9955035 | 0.9984874 | 0.9972773 | 0.9966429 | 0.9972577 | 0.9971487 | NA | 0.9980671 | 0.9969898 | 0.9519753 | 0.9624284 | 0.9627117 | 0.9614057 | 0.9692855 | 0.9759783 | 0.9676205 | 0.9830046 | 0.9868791 | 0.9639302 | 0.9587466 | 0.9671196 |
Hf_Tfx_ctl_2 | 0.9992909 | 0.9964215 | 0.9979725 | 0.9980350 | 0.9979693 | 0.9992909 | 0.9932834 | 0.9946409 | 0.9937722 | 0.9980671 | NA | 0.9994164 | 0.9611362 | 0.9697521 | 0.9715769 | 0.9680148 | 0.9775598 | 0.9807668 | 0.9746758 | 0.9854452 | 0.9921599 | 0.9717292 | 0.9659574 | 0.9738680 |
Hf_Tfx_ctl_3 | 0.9988950 | 0.9957073 | 0.9980730 | 0.9982397 | 0.9976965 | 0.9990666 | 0.9919778 | 0.9929909 | 0.9928073 | 0.9969898 | 0.9994164 | NA | 0.9620190 | 0.9695946 | 0.9718051 | 0.9682352 | 0.9783244 | 0.9808679 | 0.9747173 | 0.9844215 | 0.9923434 | 0.9722322 | 0.9660124 | 0.9743267 |
Rfx_DsRed_gRNA_1 | 0.9621010 | 0.9434608 | 0.9516428 | 0.9717448 | 0.9535992 | 0.9551461 | 0.9540719 | 0.9533450 | 0.9521592 | 0.9519753 | 0.9611362 | 0.9620190 | NA | 0.9980555 | 0.9977787 | 0.9981284 | 0.9967016 | 0.9945627 | 0.9964082 | 0.9877442 | 0.9855619 | 0.9982592 | 0.9980322 | 0.9975290 |
Rfx_DsRed_gRNA_2 | 0.9702130 | 0.9542662 | 0.9612926 | 0.9774876 | 0.9615955 | 0.9637210 | 0.9656453 | 0.9655920 | 0.9631497 | 0.9624284 | 0.9697521 | 0.9695946 | 0.9980555 | NA | 0.9984265 | 0.9987679 | 0.9969579 | 0.9976436 | 0.9985534 | 0.9933774 | 0.9906351 | 0.9993970 | 0.9992563 | 0.9992905 |
Rfx_DsRed_gRNA_3 | 0.9721555 | 0.9549634 | 0.9626762 | 0.9795271 | 0.9634180 | 0.9662539 | 0.9631534 | 0.9632437 | 0.9614631 | 0.9627117 | 0.9715769 | 0.9718051 | 0.9977787 | 0.9984265 | NA | 0.9973730 | 0.9982602 | 0.9966610 | 0.9974699 | 0.9915804 | 0.9912411 | 0.9986829 | 0.9975959 | 0.9981605 |
Rfx_NTC_gRNA_1 | 0.9677693 | 0.9530961 | 0.9598735 | 0.9776647 | 0.9618815 | 0.9615645 | 0.9653816 | 0.9642140 | 0.9634359 | 0.9614057 | 0.9680148 | 0.9682352 | 0.9981284 | 0.9987679 | 0.9973730 | NA | 0.9971273 | 0.9978486 | 0.9985110 | 0.9935351 | 0.9891824 | 0.9989989 | 0.9993494 | 0.9989266 |
Rfx_NTC_gRNA_2 | 0.9780049 | 0.9626486 | 0.9694568 | 0.9855782 | 0.9715831 | 0.9731976 | 0.9685619 | 0.9683798 | 0.9674701 | 0.9692855 | 0.9775598 | 0.9783244 | 0.9967016 | 0.9969579 | 0.9982602 | 0.9971273 | NA | 0.9973448 | 0.9976182 | 0.9928745 | 0.9941695 | 0.9981635 | 0.9960024 | 0.9976632 |
Rfx_NTC_gRNA_3 | 0.9804914 | 0.9693555 | 0.9748110 | 0.9874559 | 0.9756109 | 0.9755989 | 0.9783961 | 0.9777484 | 0.9768346 | 0.9759783 | 0.9807668 | 0.9808679 | 0.9945627 | 0.9976436 | 0.9966610 | 0.9978486 | 0.9973448 | NA | 0.9981605 | 0.9978130 | 0.9954610 | 0.9982267 | 0.9972683 | 0.9989806 |
Rfx_NTfx_ctl_1 | 0.9741073 | 0.9597702 | 0.9663345 | 0.9822617 | 0.9676774 | 0.9688494 | 0.9714295 | 0.9711220 | 0.9696447 | 0.9676205 | 0.9746758 | 0.9747173 | 0.9964082 | 0.9985534 | 0.9974699 | 0.9985110 | 0.9976182 | 0.9981605 | NA | 0.9959400 | 0.9937477 | 0.9988922 | 0.9985741 | 0.9987924 |
Rfx_NTfx_ctl_2 | 0.9842743 | 0.9769123 | 0.9803817 | 0.9902062 | 0.9815698 | 0.9802242 | 0.9870410 | 0.9864766 | 0.9856247 | 0.9830046 | 0.9854452 | 0.9844215 | 0.9877442 | 0.9933774 | 0.9915804 | 0.9935351 | 0.9928745 | 0.9978130 | 0.9959400 | NA | 0.9961729 | 0.9935238 | 0.9929670 | 0.9949066 |
Rfx_NTfx_ctl_3 | 0.9919543 | 0.9825133 | 0.9872154 | 0.9948006 | 0.9870500 | 0.9893228 | 0.9862911 | 0.9869968 | 0.9856144 | 0.9868791 | 0.9921599 | 0.9923434 | 0.9855619 | 0.9906351 | 0.9912411 | 0.9891824 | 0.9941695 | 0.9954610 | 0.9937477 | 0.9961729 | NA | 0.9919964 | 0.9884013 | 0.9928792 |
Rfx_Tfx_ctl_1 | 0.9718543 | 0.9561091 | 0.9634640 | 0.9797484 | 0.9640808 | 0.9661077 | 0.9663478 | 0.9661606 | 0.9643072 | 0.9639302 | 0.9717292 | 0.9722322 | 0.9982592 | 0.9993970 | 0.9986829 | 0.9989989 | 0.9981635 | 0.9982267 | 0.9988922 | 0.9935238 | 0.9919964 | NA | 0.9991751 | 0.9997176 |
Rfx_Tfx_ctl_2 | 0.9655399 | 0.9498399 | 0.9571040 | 0.9750126 | 0.9582332 | 0.9591316 | 0.9633857 | 0.9627263 | 0.9610845 | 0.9587466 | 0.9659574 | 0.9660124 | 0.9980322 | 0.9992563 | 0.9975959 | 0.9993494 | 0.9960024 | 0.9972683 | 0.9985741 | 0.9929670 | 0.9884013 | 0.9991751 | NA | 0.9990639 |
Rfx_Tfx_ctl_3 | 0.9739115 | 0.9595844 | 0.9664875 | 0.9814711 | 0.9668464 | 0.9682763 | 0.9699769 | 0.9695830 | 0.9679984 | 0.9671196 | 0.9738680 | 0.9743267 | 0.9975290 | 0.9992905 | 0.9981605 | 0.9989266 | 0.9976632 | 0.9989806 | 0.9987924 | 0.9949066 | 0.9928792 | 0.9997176 | 0.9990639 | NA |
mycor <- cor(xx,method="spearman")
mycor[mycor == 1] <- NA
heatmap.2(mycor,trace="n",main="Spearman correlation heatmap",mar=c(9,9))
mycor %>% kbl(caption = "Spearman correlation coefficients") %>% kable_paper("hover", full_width = F)
Hf_DsRed_gRNA_1 | Hf_DsRed_gRNA_2 | Hf_DsRed_gRNA_3 | Hf_NTC_gRNA_1 | Hf_NTC_gRNA_2 | Hf_NTC_gRNA_3 | Hf_NTfx_ctl_1 | Hf_NTfx_ctl_2 | Hf_NTfx_ctl_3 | Hf_Tfx_ctl_1 | Hf_Tfx_ctl_2 | Hf_Tfx_ctl_3 | Rfx_DsRed_gRNA_1 | Rfx_DsRed_gRNA_2 | Rfx_DsRed_gRNA_3 | Rfx_NTC_gRNA_1 | Rfx_NTC_gRNA_2 | Rfx_NTC_gRNA_3 | Rfx_NTfx_ctl_1 | Rfx_NTfx_ctl_2 | Rfx_NTfx_ctl_3 | Rfx_Tfx_ctl_1 | Rfx_Tfx_ctl_2 | Rfx_Tfx_ctl_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hf_DsRed_gRNA_1 | NA | 0.9599488 | 0.9593786 | 0.9602960 | 0.9592729 | 0.9584685 | 0.9579201 | 0.9601236 | 0.9577979 | 0.9601253 | 0.9596824 | 0.9588043 | 0.9524232 | 0.9537345 | 0.9536157 | 0.9549469 | 0.9536715 | 0.9525762 | 0.9520901 | 0.9510956 | 0.9521125 | 0.9537846 | 0.9531629 | 0.9542380 |
Hf_DsRed_gRNA_2 | 0.9599488 | NA | 0.9599999 | 0.9603373 | 0.9594227 | 0.9583982 | 0.9576127 | 0.9593367 | 0.9579286 | 0.9600871 | 0.9591133 | 0.9585310 | 0.9516034 | 0.9535027 | 0.9534788 | 0.9538586 | 0.9528460 | 0.9513969 | 0.9517635 | 0.9505957 | 0.9517369 | 0.9531870 | 0.9522520 | 0.9525369 |
Hf_DsRed_gRNA_3 | 0.9593786 | 0.9599999 | NA | 0.9603922 | 0.9596324 | 0.9591342 | 0.9582642 | 0.9591225 | 0.9582413 | 0.9599239 | 0.9597260 | 0.9595662 | 0.9526525 | 0.9540027 | 0.9531987 | 0.9545339 | 0.9535056 | 0.9520840 | 0.9528068 | 0.9520807 | 0.9518048 | 0.9531060 | 0.9514795 | 0.9535028 |
Hf_NTC_gRNA_1 | 0.9602960 | 0.9603373 | 0.9603922 | NA | 0.9614023 | 0.9589670 | 0.9574613 | 0.9596119 | 0.9594718 | 0.9608933 | 0.9603629 | 0.9603872 | 0.9534564 | 0.9529810 | 0.9533007 | 0.9562377 | 0.9554936 | 0.9523943 | 0.9526207 | 0.9513095 | 0.9520189 | 0.9542246 | 0.9537407 | 0.9541197 |
Hf_NTC_gRNA_2 | 0.9592729 | 0.9594227 | 0.9596324 | 0.9614023 | NA | 0.9577475 | 0.9576146 | 0.9586665 | 0.9579804 | 0.9588384 | 0.9589719 | 0.9591492 | 0.9527730 | 0.9529903 | 0.9533203 | 0.9550464 | 0.9544127 | 0.9520973 | 0.9527873 | 0.9511442 | 0.9518258 | 0.9541108 | 0.9522946 | 0.9531277 |
Hf_NTC_gRNA_3 | 0.9584685 | 0.9583982 | 0.9591342 | 0.9589670 | 0.9577475 | NA | 0.9564750 | 0.9585778 | 0.9572894 | 0.9585848 | 0.9576951 | 0.9586439 | 0.9506883 | 0.9513823 | 0.9517152 | 0.9529882 | 0.9528932 | 0.9513653 | 0.9511396 | 0.9499968 | 0.9505315 | 0.9515986 | 0.9519701 | 0.9518965 |
Hf_NTfx_ctl_1 | 0.9579201 | 0.9576127 | 0.9582642 | 0.9574613 | 0.9576146 | 0.9564750 | NA | 0.9580466 | 0.9578096 | 0.9579749 | 0.9572939 | 0.9575349 | 0.9494938 | 0.9506774 | 0.9507288 | 0.9525334 | 0.9505435 | 0.9495149 | 0.9513824 | 0.9496961 | 0.9503651 | 0.9517540 | 0.9503461 | 0.9518573 |
Hf_NTfx_ctl_2 | 0.9601236 | 0.9593367 | 0.9591225 | 0.9596119 | 0.9586665 | 0.9585778 | 0.9580466 | NA | 0.9591172 | 0.9602015 | 0.9588828 | 0.9585599 | 0.9507619 | 0.9523281 | 0.9511893 | 0.9535314 | 0.9525084 | 0.9504720 | 0.9519595 | 0.9508424 | 0.9514829 | 0.9517321 | 0.9516028 | 0.9520844 |
Hf_NTfx_ctl_3 | 0.9577979 | 0.9579286 | 0.9582413 | 0.9594718 | 0.9579804 | 0.9572894 | 0.9578096 | 0.9591172 | NA | 0.9581197 | 0.9575512 | 0.9578390 | 0.9502895 | 0.9516688 | 0.9512851 | 0.9535278 | 0.9515358 | 0.9499636 | 0.9517999 | 0.9509422 | 0.9509854 | 0.9510846 | 0.9510679 | 0.9519187 |
Hf_Tfx_ctl_1 | 0.9601253 | 0.9600871 | 0.9599239 | 0.9608933 | 0.9588384 | 0.9585848 | 0.9579749 | 0.9602015 | 0.9581197 | NA | 0.9599586 | 0.9593630 | 0.9524224 | 0.9532343 | 0.9534931 | 0.9547496 | 0.9537808 | 0.9520568 | 0.9520132 | 0.9512615 | 0.9522524 | 0.9535123 | 0.9527909 | 0.9533878 |
Hf_Tfx_ctl_2 | 0.9596824 | 0.9591133 | 0.9597260 | 0.9603629 | 0.9589719 | 0.9576951 | 0.9572939 | 0.9588828 | 0.9575512 | 0.9599586 | NA | 0.9593885 | 0.9527672 | 0.9530480 | 0.9530098 | 0.9542506 | 0.9530847 | 0.9516721 | 0.9524944 | 0.9511770 | 0.9519473 | 0.9534200 | 0.9519186 | 0.9529571 |
Hf_Tfx_ctl_3 | 0.9588043 | 0.9585310 | 0.9595662 | 0.9603872 | 0.9591492 | 0.9586439 | 0.9575349 | 0.9585599 | 0.9578390 | 0.9593630 | 0.9593885 | NA | 0.9526415 | 0.9529181 | 0.9527533 | 0.9543007 | 0.9530015 | 0.9513276 | 0.9525610 | 0.9502190 | 0.9513122 | 0.9533165 | 0.9515892 | 0.9531111 |
Rfx_DsRed_gRNA_1 | 0.9524232 | 0.9516034 | 0.9526525 | 0.9534564 | 0.9527730 | 0.9506883 | 0.9494938 | 0.9507619 | 0.9502895 | 0.9524224 | 0.9527672 | 0.9526415 | NA | 0.9568038 | 0.9573636 | 0.9597848 | 0.9588997 | 0.9555633 | 0.9562825 | 0.9544710 | 0.9549874 | 0.9585131 | 0.9568284 | 0.9585649 |
Rfx_DsRed_gRNA_2 | 0.9537345 | 0.9535027 | 0.9540027 | 0.9529810 | 0.9529903 | 0.9513823 | 0.9506774 | 0.9523281 | 0.9516688 | 0.9532343 | 0.9530480 | 0.9529181 | 0.9568038 | NA | 0.9577065 | 0.9593260 | 0.9580147 | 0.9557793 | 0.9562904 | 0.9551574 | 0.9563274 | 0.9577477 | 0.9561335 | 0.9577431 |
Rfx_DsRed_gRNA_3 | 0.9536157 | 0.9534788 | 0.9531987 | 0.9533007 | 0.9533203 | 0.9517152 | 0.9507288 | 0.9511893 | 0.9512851 | 0.9534931 | 0.9530098 | 0.9527533 | 0.9573636 | 0.9577065 | NA | 0.9591033 | 0.9575030 | 0.9562844 | 0.9566999 | 0.9555239 | 0.9555075 | 0.9583868 | 0.9563563 | 0.9579214 |
Rfx_NTC_gRNA_1 | 0.9549469 | 0.9538586 | 0.9545339 | 0.9562377 | 0.9550464 | 0.9529882 | 0.9525334 | 0.9535314 | 0.9535278 | 0.9547496 | 0.9542506 | 0.9543007 | 0.9597848 | 0.9593260 | 0.9591033 | NA | 0.9604467 | 0.9583005 | 0.9588380 | 0.9571838 | 0.9580201 | 0.9599535 | 0.9586112 | 0.9607349 |
Rfx_NTC_gRNA_2 | 0.9536715 | 0.9528460 | 0.9535056 | 0.9554936 | 0.9544127 | 0.9528932 | 0.9505435 | 0.9525084 | 0.9515358 | 0.9537808 | 0.9530847 | 0.9530015 | 0.9588997 | 0.9580147 | 0.9575030 | 0.9604467 | NA | 0.9561806 | 0.9576308 | 0.9557753 | 0.9568854 | 0.9589981 | 0.9578323 | 0.9590635 |
Rfx_NTC_gRNA_3 | 0.9525762 | 0.9513969 | 0.9520840 | 0.9523943 | 0.9520973 | 0.9513653 | 0.9495149 | 0.9504720 | 0.9499636 | 0.9520568 | 0.9516721 | 0.9513276 | 0.9555633 | 0.9557793 | 0.9562844 | 0.9583005 | 0.9561806 | NA | 0.9558707 | 0.9542115 | 0.9543574 | 0.9573377 | 0.9558973 | 0.9580704 |
Rfx_NTfx_ctl_1 | 0.9520901 | 0.9517635 | 0.9528068 | 0.9526207 | 0.9527873 | 0.9511396 | 0.9513824 | 0.9519595 | 0.9517999 | 0.9520132 | 0.9524944 | 0.9525610 | 0.9562825 | 0.9562904 | 0.9566999 | 0.9588380 | 0.9576308 | 0.9558707 | NA | 0.9554050 | 0.9567137 | 0.9570112 | 0.9564397 | 0.9572513 |
Rfx_NTfx_ctl_2 | 0.9510956 | 0.9505957 | 0.9520807 | 0.9513095 | 0.9511442 | 0.9499968 | 0.9496961 | 0.9508424 | 0.9509422 | 0.9512615 | 0.9511770 | 0.9502190 | 0.9544710 | 0.9551574 | 0.9555239 | 0.9571838 | 0.9557753 | 0.9542115 | 0.9554050 | NA | 0.9551307 | 0.9562743 | 0.9550974 | 0.9552916 |
Rfx_NTfx_ctl_3 | 0.9521125 | 0.9517369 | 0.9518048 | 0.9520189 | 0.9518258 | 0.9505315 | 0.9503651 | 0.9514829 | 0.9509854 | 0.9522524 | 0.9519473 | 0.9513122 | 0.9549874 | 0.9563274 | 0.9555075 | 0.9580201 | 0.9568854 | 0.9543574 | 0.9567137 | 0.9551307 | NA | 0.9583450 | 0.9554528 | 0.9567224 |
Rfx_Tfx_ctl_1 | 0.9537846 | 0.9531870 | 0.9531060 | 0.9542246 | 0.9541108 | 0.9515986 | 0.9517540 | 0.9517321 | 0.9510846 | 0.9535123 | 0.9534200 | 0.9533165 | 0.9585131 | 0.9577477 | 0.9583868 | 0.9599535 | 0.9589981 | 0.9573377 | 0.9570112 | 0.9562743 | 0.9583450 | NA | 0.9584630 | 0.9592594 |
Rfx_Tfx_ctl_2 | 0.9531629 | 0.9522520 | 0.9514795 | 0.9537407 | 0.9522946 | 0.9519701 | 0.9503461 | 0.9516028 | 0.9510679 | 0.9527909 | 0.9519186 | 0.9515892 | 0.9568284 | 0.9561335 | 0.9563563 | 0.9586112 | 0.9578323 | 0.9558973 | 0.9564397 | 0.9550974 | 0.9554528 | 0.9584630 | NA | 0.9577830 |
Rfx_Tfx_ctl_3 | 0.9542380 | 0.9525369 | 0.9535028 | 0.9541197 | 0.9531277 | 0.9518965 | 0.9518573 | 0.9520844 | 0.9519187 | 0.9533878 | 0.9529571 | 0.9531111 | 0.9585649 | 0.9577431 | 0.9579214 | 0.9607349 | 0.9590635 | 0.9580704 | 0.9572513 | 0.9552916 | 0.9567224 | 0.9592594 | 0.9577830 | NA |
# Rfx
mycor <- cor(xrf)
mycor[mycor == 1] <- NA
heatmap.2(mycor,trace="n",main="Rfx Pearson Cor",mar=c(11,11))
mycor <- cor(xrf,method="spearman")
mycor[mycor == 1] <- NA
heatmap.2(mycor,trace="n",main="Rfx Spearman Cor",mar=c(11,11))
# Hf
mycor <- cor(xhf)
mycor[mycor == 1] <- NA
heatmap.2(mycor,trace="n",main="Hf Pearson Cor",mar=c(11,11))
mycor <- cor(xhf,method="spearman")
mycor[mycor == 1] <- NA
heatmap.2(mycor,trace="n",main="Hf Spearman Cor",mar=c(11,11))
rpm <- apply(xx,2, function(x) {x / sum(x) * 1e6 } )
cas13 <- unlist(rpm[1,,drop=TRUE])
dsred <- unlist(rpm[2,,drop=TRUE])
fbox <- rpm[nrow(rpm),,drop=TRUE]
par(mar=c(5,10,3,1))
barplot(cas13,horiz=TRUE,las=1,xlab="Reads per million",main="Cas13d")
barplot(dsred,horiz=TRUE,las=1,xlab="Reads per million",main="DsRed")
barplot(fbox,horiz=TRUE,las=1,xlab="Reads per million",main="Fbxw11-GFP")
par(mar = c(5.1, 4.1, 4.1, 2.1) )
There is a >1200 RPM for Cas13 in all these samples. DsRed was absent in NTfx samples. There was much less DsRed in targeting gDNA samples as compared to non-targeting controls and transfection controls. Fbxw11-GFP expression tracked DsRed.
## HF
ds <- dsred[grep("Hf",names(dsred))]
targeting_gRNA <- ds[grep("DsRed_gRNA",names(ds))]
nontargeting_gRNA <- ds[grep("NTC_gRNA",names(ds))]
dat <- list("Non-targeting gRNA"=nontargeting_gRNA,
"Targeting gRNA"=targeting_gRNA)
MAX=max(unlist(lapply(dat,max)))
boxplot(dat,ylab="Reads per million",ylim=c(0,MAX),
main="DsRed expresssion (Hf)", col="white",frame=FALSE)
beeswarm(dat,add=TRUE,col="red",cex=2,pch=19)
dmean <- unlist(lapply(dat,mean))
reduction <- as.character(signif(unname(1-dmean[2]/dmean[1]),3)*100)
mtext(paste("Reduction:",reduction,"%"))
## RFX
ds <- dsred[grep("Rfx",names(dsred))]
targeting_gRNA <- ds[grep("DsRed_gRNA",names(ds))]
nontargeting_gRNA <- ds[grep("NTC_gRNA",names(ds))]
dat <- list("Non-targeting gRNA"=nontargeting_gRNA,
"Targeting gRNA"=targeting_gRNA)
MAX=max(unlist(lapply(dat,max)))
boxplot(dat,ylab="Reads per million",ylim=c(0,MAX),
main="DsRed expresssion (Rfx)", col="white",frame=FALSE)
beeswarm(dat,add=TRUE,col="red",cex=2,pch=19)
dmean <- unlist(lapply(dat,mean))
reduction <- as.character(signif(unname(1-dmean[2]/dmean[1]),3)*100)
mtext(paste("Reduction:",reduction,"%"))
## HF
ds <- fbox[grep("Hf",names(fbox))]
targeting_gRNA <- ds[grep("DsRed_gRNA",names(ds))]
nontargeting_gRNA <- ds[grep("NTC_gRNA",names(ds))]
dat <- list("Non-targeting gRNA"=nontargeting_gRNA,
"Targeting gRNA"=targeting_gRNA)
MAX=max(unlist(lapply(dat,max)))
boxplot(dat,ylab="Reads per million",ylim=c(0,MAX),
main="Fbxw11-GFP expresssion (Hf)", col="white",frame=FALSE)
beeswarm(dat,add=TRUE,col="red",cex=2,pch=19)
dmean <- unlist(lapply(dat,mean))
reduction <- as.character(signif(unname(1-dmean[2]/dmean[1]),3)*100)
mtext(paste("Reduction:",reduction,"%"))
## RFX
ds <- fbox[grep("Rfx",names(fbox))]
targeting_gRNA <- ds[grep("DsRed_gRNA",names(ds))]
nontargeting_gRNA <- ds[grep("NTC_gRNA",names(ds))]
dat <- list("Non-targeting gRNA"=nontargeting_gRNA,
"Targeting gRNA"=targeting_gRNA)
MAX=max(unlist(lapply(dat,max)))
boxplot(dat,ylab="Reads per million",ylim=c(0,MAX),
main="Fbxw11-GFP expresssion (Rfx)", col="white",frame=FALSE)
beeswarm(dat,add=TRUE,col="red",cex=2,pch=19)
dmean <- unlist(lapply(dat,mean))
reduction <- as.character(signif(unname(1-dmean[2]/dmean[1]),3)*100)
mtext(paste("Reduction:",reduction,"%"))
I will be looking at the following comparisons (control vs case).
Rfx_NTC_gRNA versus Rfx_DsRed_gRNA
Rfx_Tfx_ctl versus Rfx_NTC_gRNA
Rfx_NTfc_ctl versus Rfx_Tfx_ctl
Hf_NTC_gRNA versus Hf_DsRed_gRNA
Hf_Tfx_ctl versus Hf_NTC_gRNA
Hf_NTfx_ctl versus Hf_Tfx_ctl
Rfx_DsRed_gRNA versus Hf_DsRed_gRNA
Rfx_NTC_gRNA versus Hf_NTC_gRNA
Rfx_Tfx_ctl versus Hf_Tfx_ctl
Rfx_NTfx_ctl versus Hf_NTfx_ctl
maplot <- function(de,contrast_name) {
sig <-subset(de, padj < 0.05 )
up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
GENESUP <- length(up)
GENESDN <- length(dn)
DET=nrow(de)
SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down", DET, "detected")
ns <-subset(de, padj > 0.05 )
plot(log10(de$baseMean),de$log2FoldChange,
xlab="log10 basemean", ylab="log2 foldchange",
pch=19, cex=0.5, col="dark gray",
main=contrast_name, cex.main=1)
points(log10(sig$baseMean),sig$log2FoldChange,
pch=19, cex=0.5, col="darkorange")
mtext(SUBHEADER,cex = 1)
gfprow <- grep("Fbxw11-GFP",rownames(de))
points(log10(de$baseMean[gfprow]),de$log2FoldChange[gfprow],pch=19, cex=0.9, col="darkgreen")
redrow <- grep("DsRed",rownames(de))
points(log10(de$baseMean[redrow]),de$log2FoldChange[redrow],pch=19, cex=0.9, col="red")
}
make_volcano <- function(de,name) {
sig <- subset(de,padj<0.05)
N_SIG=nrow(sig)
N_UP=nrow(subset(sig,log2FoldChange>0))
N_DN=nrow(subset(sig,log2FoldChange<0))
DET=nrow(de)
HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn", DET, "detected")
plot(de$log2FoldChange,-log10(de$pval),cex=0.5,pch=19,col="darkgray",
main=name, xlab="log2 FC", ylab="-log10 pval", xlim=c(-6,6))
mtext(HEADER)
grid()
points(sig$log2FoldChange,-log10(sig$pval),cex=0.5,pch=19,col="darkorange")
gfprow <- grep("Fbxw11-GFP",rownames(de))
points(de$log2FoldChange[gfprow], -log10(de$pval)[gfprow],pch=19, cex=0.9, col="darkgreen")
redrow <- grep("DsRed",rownames(de))
points(de$log2FoldChange[redrow], -log10(de$pval)[redrow], pch=19, cex=0.9, col="red")
}
make_heatmap <- function(de,name,myss,mx,n=30){
colfunc <- colorRampPalette(c("blue", "white", "red"))
values <- myss$quickdash
f <- colorRamp(c("yellow", "orange"))
rr <- range(values)
svals <- (values-rr[1])/diff(rr)
colcols <- rgb(f(svals)/255)
mxn <- mx/rowSums(mx)*1000000
x <- mxn[which(rownames(mxn) %in% rownames(head(de,n))),]
heatmap.2(as.matrix(x),trace="none",col=colfunc(25),scale="row",
margins = c(7,20), cexRow=0.8, cexCol=0.8,
main=paste("Top ranked",n,"genes in",name) )
}
ss1 <- subset(ss,SampleGroup=="Rfx_NTC_gRNA" | SampleGroup=="Rfx_DsRed_gRNA")
ss1$trt <- factor(grepl("DsRed",ss1$SampleGroup))
rownames(ss1) <- ss1$SampleLabel
xx1 <- xx[,colnames(xx) %in% ss1$SampleLabel]
xx1f <- xx1[rowMeans(xx1)>=10,]
dim(xx1)
## [1] 30111 6
dim(xx1f)
## [1] 14562 6
dds <- DESeqDataSetFromMatrix(countData = xx1f , colData = ss1, design = ~ trt )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes caused by DsRed targeting in Rfx") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Rfx_DsRed_gRNA_1 | Rfx_DsRed_gRNA_2 | Rfx_DsRed_gRNA_3 | Rfx_NTC_gRNA_1 | Rfx_NTC_gRNA_2 | Rfx_NTC_gRNA_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DsRed DsRed | 8779.4963 | -2.8242664 | 0.0588480 | -47.992526 | 0.0e+00 | 0.0000000 | 11.596088 | 11.553157 | 11.717575 | 14.095807 | 13.917811 | 13.997669 |
Fbxw11-GFP Fbxw11-GFP | 14863.0158 | -1.8337024 | 0.1030112 | -17.801005 | 0.0e+00 | 0.0000000 | 12.948984 | 12.739591 | 12.948702 | 14.683145 | 14.464181 | 14.546489 |
ENSGALG00010023206 HSPB9 | 320.1663 | -1.5530514 | 0.1390853 | -11.166177 | 0.0e+00 | 0.0000000 | 9.855633 | 9.858837 | 9.856153 | 10.503028 | 10.297007 | 10.346312 |
ENSGALG00010005131 IL8L2 | 532.7586 | 0.7476336 | 0.1009870 | 7.403265 | 0.0e+00 | 0.0000000 | 10.611339 | 10.533044 | 10.669148 | 10.286743 | 10.235363 | 10.311760 |
ENSGALG00010016470 TNIP1 | 6411.7124 | 0.3313912 | 0.0467236 | 7.092582 | 0.0e+00 | 0.0000000 | 13.011005 | 13.006664 | 12.979349 | 12.767606 | 12.633823 | 12.733295 |
ENSGALG00010006134 K123 | 894.9555 | 0.4299283 | 0.0725414 | 5.926665 | 0.0e+00 | 0.0000055 | 10.953930 | 10.908059 | 10.939287 | 10.693424 | 10.714320 | 10.698324 |
ENSGALG00010025320 JAM3 | 5037.3056 | -0.2966828 | 0.0535941 | -5.535741 | 0.0e+00 | 0.0000470 | 12.348382 | 12.524727 | 12.434045 | 12.694746 | 12.716556 | 12.643131 |
ENSGALG00010019621 ENSGALG00010019621 | 13358.2914 | 0.2232910 | 0.0409066 | 5.458555 | 0.0e+00 | 0.0000636 | 13.928204 | 13.853888 | 13.961122 | 13.733939 | 13.676732 | 13.713168 |
ENSGALG00010001230 PTX3 | 1844.2211 | 0.3064948 | 0.0592945 | 5.169028 | 2.0e-07 | 0.0002773 | 11.530068 | 11.547733 | 11.602225 | 11.370614 | 11.304686 | 11.383077 |
ENSGALG00010015706 ENSGALG00010015706 | 2265.0717 | 0.2696937 | 0.0525580 | 5.131352 | 3.0e-07 | 0.0002984 | 11.740315 | 11.761993 | 11.778766 | 11.561940 | 11.541583 | 11.600211 |
ENSGALG00010025318 NUAK2 | 2131.7627 | 0.3066354 | 0.0599179 | 5.117593 | 3.0e-07 | 0.0002984 | 11.787872 | 11.676725 | 11.659855 | 11.496139 | 11.516273 | 11.466256 |
ENSGALG00010025057 SCP2 | 10658.6467 | -0.2096236 | 0.0415755 | -5.042001 | 5.0e-07 | 0.0004072 | 13.348541 | 13.453850 | 13.445804 | 13.618029 | 13.589614 | 13.616202 |
ENSGALG00010001754 APCDD1 | 13637.6828 | -0.2158251 | 0.0433538 | -4.978229 | 6.0e-07 | 0.0005236 | 13.653383 | 13.786873 | 13.774085 | 13.946430 | 13.951739 | 13.921061 |
ENSGALG00010029945 CCL4 | 18385.8762 | 0.2550680 | 0.0518998 | 4.914623 | 9.0e-07 | 0.0006740 | 14.313709 | 14.305542 | 14.463645 | 14.101595 | 14.049862 | 14.209415 |
ENSGALG00010022322 ENSGALG00010022322 | 3591.8592 | 0.3367394 | 0.0704462 | 4.780092 | 1.8e-06 | 0.0012390 | 12.171063 | 12.276865 | 12.427262 | 12.002925 | 11.963923 | 12.120157 |
ENSGALG00010019277 IGFBP5 | 16022.8418 | 0.1989457 | 0.0425197 | 4.678907 | 2.9e-06 | 0.0017365 | 14.128220 | 14.091270 | 14.228639 | 13.978997 | 13.943354 | 13.969404 |
ENSGALG00010020013 ADAM8 | 5047.5451 | 0.2162526 | 0.0462572 | 4.675008 | 2.9e-06 | 0.0017365 | 12.668944 | 12.597713 | 12.700948 | 12.447013 | 12.478143 | 12.502689 |
ENSGALG00010002340 RAB23 | 9745.1303 | -0.1905774 | 0.0407697 | -4.674489 | 2.9e-06 | 0.0017365 | 13.286394 | 13.359703 | 13.281169 | 13.478945 | 13.513220 | 13.452068 |
ENSGALG00010009432 BOP1 | 6378.4297 | 0.2138124 | 0.0462606 | 4.621912 | 3.8e-06 | 0.0021226 | 12.957643 | 12.929301 | 12.950216 | 12.685267 | 12.777846 | 12.817868 |
ENSGALG00010024658 CSF3 | 115.3912 | 0.8991719 | 0.1971158 | 4.561642 | 5.1e-06 | 0.0026918 | 9.824107 | 9.774722 | 9.875324 | 9.611872 | 9.604169 | 9.667846 |
dge1 <- dge
write.table(dge1,file="dge1.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge1,"Rfx: NTC gRNA vs DsRed gRNA")
make_volcano(dge1,"Rfx: NTC gRNA vs DsRed gRNA")
make_heatmap(dge1,"Rfx: NTC gRNA vs DsRed gRNA",ss1,xx1,n=30)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge1$gene <- sapply(strsplit(rownames(dge1)," "),"[[",2)
m1 <- aggregate(stat ~ gene,dge1,mean)
rownames(m1) <- m1$gene ; m1$gene <- NULL
mres1 <- mitch_calc(m1, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres1$enrichment_result,20) %>%
kbl(caption = "Top GO in Rfx: NTC gRNA vs DsRed gRNA") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
779 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | -0.6387612 | 0.0000000 |
937 | GO:0031663 lipopolysaccharide-mediated signaling pathway | 10 | 0.0013138 | -0.5867493 | 0.0603783 |
615 | GO:0009378 four-way junction helicase activity | 13 | 0.0002707 | 0.5833426 | 0.0266915 |
435 | GO:0006695 cholesterol biosynthetic process | 16 | 0.0000586 | 0.5801984 | 0.0074325 |
1050 | GO:0035145 exon-exon junction complex | 10 | 0.0019511 | 0.5656887 | 0.0706760 |
1534 | GO:0070182 DNA polymerase binding | 13 | 0.0004891 | 0.5584911 | 0.0319696 |
1518 | GO:0061749 forked DNA-dependent helicase activity | 10 | 0.0024969 | 0.5522039 | 0.0777536 |
56 | GO:0000793 condensed chromosome | 13 | 0.0009537 | 0.5292204 | 0.0470477 |
1524 | GO:0070034 telomerase RNA binding | 12 | 0.0018880 | 0.5180580 | 0.0698152 |
135 | GO:0001965 G-protein alpha-subunit binding | 10 | 0.0046959 | -0.5163223 | 0.1068619 |
166 | GO:0003688 DNA replication origin binding | 12 | 0.0020299 | 0.5144763 | 0.0720613 |
1724 | GO:1902774 late endosome to lysosome transport | 10 | 0.0059156 | -0.5026722 | 0.1220952 |
805 | GO:0030140 trans-Golgi network transport vesicle | 11 | 0.0040195 | -0.5009173 | 0.0967671 |
1086 | GO:0036121 double-stranded DNA helicase activity | 11 | 0.0040342 | 0.5007169 | 0.0967671 |
943 | GO:0031929 TOR signaling | 13 | 0.0018861 | -0.4977983 | 0.0698152 |
781 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000172 | -0.4966481 | 0.0038906 |
190 | GO:0003899 DNA-directed 5’-3’ RNA polymerase activity | 10 | 0.0072028 | 0.4907851 | 0.1404947 |
374 | GO:0006120 mitochondrial electron transport, NADH to ubiquinone | 19 | 0.0003277 | -0.4760708 | 0.0276946 |
377 | GO:0006268 DNA unwinding involved in DNA replication | 14 | 0.0021458 | 0.4737925 | 0.0732445 |
1597 | GO:0071806 protein transmembrane transport | 12 | 0.0047896 | -0.4703127 | 0.1076143 |
write.table(mres1$enrichment_result,file="mitch1.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres1$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 36
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Rfx: NTC gRNA vs DsRed gRNA",xlab="ES")
grid()
if ( ! file.exists("mitch1.html") ) {
mitch_report(res=mres1,outfile="mitch1.html")
}
o <- dge1[order(dge1$baseMean),]
NBINS=20
brks <- quantile(o$baseMean, probs = c(seq(0,1,1/NBINS) ) )
o$quant <- cut(o$baseMean, breaks = brks, labels = 1:NBINS, include.lowest = TRUE)
z <- lapply(unique(o$quant) , function(i) { y <- subset(o,quant==i) ; y$log2FoldChange } )
names(z) <- 1:NBINS
XLAB=paste("Expression bin,",round(nrow(o)/NBINS),"genes each")
par(mar = c(5.1, 4.1, 4.1, 2.1) )
boxplot(z,ylim=c(-0.5,0.5),xlab=XLAB,ylab="Fold change",
main="Rfx: NTC gRNA vs DsRed gRNA")
abline(h=0,col="red",lty=2,lwd=2)
There are some off target effects caused by the DsRed targeting gRNA.
Now examining the effect of adding the NTC gRNA.
ss2 <- subset(ss,SampleGroup=="Rfx_Tfx_ctl" | SampleGroup=="Rfx_NTC_gRNA")
ss2$trt <- factor(grepl("NTC",ss2$SampleGroup))
rownames(ss2) <- ss2$SampleLabel
xx2 <- xx[,colnames(xx) %in% ss2$SampleLabel]
xx2f <- xx2[rowMeans(xx2)>=10,]
dim(xx2)
## [1] 30111 6
dim(xx2f)
## [1] 14612 6
dds <- DESeqDataSetFromMatrix(countData = xx2f , colData = ss2, design = ~ trt )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes caused by NTC gRNA compared to transfection control") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Rfx_NTC_gRNA_1 | Rfx_NTC_gRNA_2 | Rfx_NTC_gRNA_3 | Rfx_Tfx_ctl_1 | Rfx_Tfx_ctl_2 | Rfx_Tfx_ctl_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSGALG00010006303 ENSGALG00010006303 | 22.70974 | -4.1955810 | 0.6651838 | -6.307401 | 0.0000000 | 0.0000041 | 10.70987 | 10.79478 | 10.74731 | 10.92072 | 10.93430 | 10.96586 |
Fbxw11-GFP Fbxw11-GFP | 19697.81377 | 0.5986278 | 0.1074391 | 5.571785 | 0.0000000 | 0.0001842 | 14.82634 | 14.62508 | 14.69901 | 14.30901 | 14.06570 | 14.22592 |
ENSGALG00010015565 ENSGALG00010015565 | 321.62945 | 0.5782863 | 0.1101357 | 5.250671 | 0.0000002 | 0.0007380 | 11.40690 | 11.38742 | 11.39188 | 11.27770 | 11.25566 | 11.28333 |
ENSGALG00010029439 ENSGALG00010029439 | 53.41059 | -1.7167580 | 0.3318039 | -5.174014 | 0.0000002 | 0.0008369 | 10.86412 | 10.93960 | 10.83401 | 11.01158 | 11.02694 | 11.04646 |
ENSGALG00010003609 ENSGALG00010003609 | 36.41332 | 1.6392185 | 0.3366935 | 4.868578 | 0.0000011 | 0.0032845 | 10.97456 | 10.96195 | 10.97688 | 10.85318 | 10.86208 | 10.85911 |
ENSGALG00010003545 ENSGALG00010003545 | 95.83669 | 1.0013060 | 0.2110708 | 4.743935 | 0.0000021 | 0.0046463 | 11.12821 | 11.11434 | 11.07764 | 11.00780 | 10.96274 | 11.00003 |
ENSGALG00010002373 POSTN | 802.41475 | 0.4451845 | 0.0940849 | 4.731730 | 0.0000022 | 0.0046463 | 11.81707 | 11.69428 | 11.76187 | 11.61190 | 11.56352 | 11.66250 |
ENSGALG00010029479 ENSGALG00010029479 | 261.08343 | 0.5720726 | 0.1476259 | 3.875150 | 0.0001066 | 0.1670489 | 11.31782 | 11.26440 | 11.39484 | 11.19380 | 11.23448 | 11.22435 |
ENSGALG00010001609 ENSGALG00010001609 | 26.22936 | -1.7170029 | 0.4438484 | -3.868444 | 0.0001095 | 0.1670489 | 10.85621 | 10.84849 | 10.77472 | 10.92072 | 10.96005 | 10.91804 |
ENSGALG00010029468 ENSGALG00010029468 | 181.93398 | 1.2692646 | 0.3289992 | 3.857957 | 0.0001143 | 0.1670489 | 11.29650 | 11.34034 | 11.16198 | 11.10131 | 11.03328 | 11.08093 |
ENSGALG00010006565 ENSGALG00010006565 | 41.09502 | 1.3857372 | 0.3641313 | 3.805597 | 0.0001415 | 0.1878878 | 11.03473 | 10.96896 | 10.92799 | 10.84071 | 10.89806 | 10.89100 |
ENSGALG00010020995 ENSGALG00010020995 | 343.96907 | 0.4933009 | 0.1336160 | 3.691931 | 0.0002226 | 0.2679354 | 11.44676 | 11.41175 | 11.36764 | 11.32465 | 11.34235 | 11.23320 |
ENSGALG00010029501 ENSGALG00010029501 | 518.42604 | 0.4036486 | 0.1098543 | 3.674400 | 0.0002384 | 0.2679354 | 11.63096 | 11.51184 | 11.51375 | 11.47446 | 11.43979 | 11.42509 |
ENSGALG00010029462 ENSGALG00010029462 | 652.53692 | -0.3228801 | 0.0932792 | -3.461436 | 0.0005373 | 0.5607120 | 11.57527 | 11.53428 | 11.52933 | 11.57856 | 11.66660 | 11.68065 |
ENSGALG00010027753 ENSGALG00010027753 | 98.05600 | 0.7126180 | 0.2075726 | 3.433103 | 0.0005967 | 0.5812003 | 11.11393 | 11.11140 | 11.06614 | 11.04025 | 10.99310 | 11.00402 |
ENSGALG00010020993 ENSGALG00010020993 | 986.64075 | -0.2416690 | 0.0719765 | -3.357611 | 0.0007862 | 0.7178901 | 11.71375 | 11.74960 | 11.77821 | 11.79901 | 11.83880 | 11.86210 |
ENSGALG00010001531 ENSGALG00010001531 | 32.12185 | -1.2296378 | 0.3697602 | -3.325501 | 0.0008826 | 0.7585151 | 10.83425 | 10.86092 | 10.89318 | 10.93381 | 10.96805 | 10.93426 |
ENSGALG00010005536 TAF4B | 155.89248 | -0.5028528 | 0.1544522 | -3.255718 | 0.0011311 | 0.9180434 | 11.11393 | 11.11140 | 11.10137 | 11.19148 | 11.17789 | 11.18360 |
ENSGALG00010019735 ENSGALG00010019735 | 426.47265 | 0.3593377 | 0.1116545 | 3.218299 | 0.0012895 | 0.9641510 | 11.51595 | 11.49308 | 11.40268 | 11.38217 | 11.39342 | 11.38111 |
ENSGALG00010008274 NFAT5 | 2116.12718 | 0.1561503 | 0.0486949 | 3.206710 | 0.0013426 | 0.9641510 | 12.31037 | 12.30360 | 12.26699 | 12.23259 | 12.21689 | 12.20334 |
dge2 <- dge
write.table(dge2,file="dge2.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge2,"Rfx: Tfx ctl vs NTC gRNA")
make_volcano(dge2,"Rfx: Tfx ctl vs NTC gRNA")
make_heatmap(dge2,"Rfx: Tfx ctl vs NTC gRNA",ss2,xx2,n=30)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge2$gene <- sapply(strsplit(rownames(dge2)," "),"[[",2)
m2 <- aggregate(stat ~ gene,dge2,mean)
rownames(m2) <- m2$gene ; m2$gene <- NULL
mres2 <- mitch_calc(m2, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres2$enrichment_result,20) %>%
kbl(caption = "Top GO in Rfx: Tfx ctl vs NTC gRNA") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
1691 | GO:0140662 ATP-dependent protein folding chaperone | 23 | 0.0000003 | -0.6192405 | 0.0002419 |
1427 | GO:0051315 attachment of mitotic spindle microtubules to kinetochore | 10 | 0.0008472 | -0.6093741 | 0.0328092 |
1625 | GO:0090201 negative regulation of release of cytochrome c from mitochondria | 11 | 0.0017417 | -0.5452112 | 0.0514869 |
135 | GO:0001965 G-protein alpha-subunit binding | 10 | 0.0042201 | 0.5225364 | 0.0849583 |
36 | GO:0000400 four-way junction DNA binding | 14 | 0.0010045 | -0.5077371 | 0.0356802 |
1110 | GO:0042026 protein refolding | 12 | 0.0023389 | -0.5074125 | 0.0592357 |
958 | GO:0032212 positive regulation of telomere maintenance via telomerase | 17 | 0.0003508 | -0.5007694 | 0.0228228 |
531 | GO:0007339 binding of sperm to zona pellucida | 11 | 0.0047070 | -0.4921794 | 0.0905972 |
163 | GO:0003678 DNA helicase activity | 20 | 0.0001481 | -0.4900838 | 0.0209802 |
118 | GO:0001782 B cell homeostasis | 12 | 0.0049993 | 0.4680165 | 0.0939853 |
473 | GO:0007017 microtubule-based process | 11 | 0.0077957 | -0.4633425 | 0.1281966 |
1572 | GO:0071233 cellular response to L-leucine | 10 | 0.0116846 | 0.4605133 | 0.1704084 |
458 | GO:0006913 nucleocytoplasmic transport | 18 | 0.0007285 | -0.4600079 | 0.0303438 |
154 | GO:0003007 heart morphogenesis | 16 | 0.0016006 | 0.4557102 | 0.0481822 |
833 | GO:0030282 bone mineralization | 24 | 0.0001259 | 0.4521741 | 0.0203305 |
1745 | GO:1990166 protein localization to site of double-strand break | 10 | 0.0146151 | -0.4459511 | 0.1911528 |
1610 | GO:0072542 protein phosphatase activator activity | 10 | 0.0154031 | -0.4424787 | 0.1977730 |
744 | GO:0017116 single-stranded DNA helicase activity | 16 | 0.0026153 | -0.4346166 | 0.0615232 |
56 | GO:0000793 condensed chromosome | 13 | 0.0069061 | -0.4327365 | 0.1179343 |
882 | GO:0030863 cortical cytoskeleton | 11 | 0.0129742 | -0.4326464 | 0.1807799 |
write.table(mres2$enrichment_result,file="mitch2.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres2$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 59
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Rfx: Tfx ctl vs NTC gRNA",xlab="ES")
grid()
if ( ! file.exists("mitch2.html") ) {
mitch_report(res=mres2,outfile="mitch2.html")
}
Could FBXW11 be a gene that is activated downstream of DsRed.
ss3 <- subset(ss,SampleGroup=="Rfx_NTfx_ctl" | SampleGroup=="Rfx_Tfx_ctl")
ss3$trt <- factor(grepl("_Tfx",ss3$SampleGroup))
rownames(ss3) <- ss3$SampleLabel
xx3 <- xx[,colnames(xx) %in% ss3$SampleLabel]
xx3f <- xx3[rowMeans(xx3)>=10,]
dim(xx3)
## [1] 30111 6
dim(xx3f)
## [1] 14410 6
dds <- DESeqDataSetFromMatrix(countData = xx3f , colData = ss3, design = ~ trt )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes caused by transfection in Rfx") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Rfx_NTfx_ctl_1 | Rfx_NTfx_ctl_2 | Rfx_NTfx_ctl_3 | Rfx_Tfx_ctl_1 | Rfx_Tfx_ctl_2 | Rfx_Tfx_ctl_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fbxw11-GFP Fbxw11-GFP | 7663.1003 | 5.5328329 | 0.1064623 | 51.96987 | 0 | 0 | 11.07823 | 11.09253 | 11.07122 | 14.20839 | 13.95698 | 14.12272 |
ENSGALG00010006156 NFKBIZ | 1377.9635 | 1.2274515 | 0.0586090 | 20.94304 | 0 | 0 | 11.48858 | 11.50677 | 11.45761 | 12.00869 | 12.02327 | 12.03853 |
ENSGALG00010022322 ENSGALG00010022322 | 2457.3842 | 0.9616168 | 0.0470333 | 20.44547 | 0 | 0 | 11.92477 | 11.89402 | 11.93224 | 12.42722 | 12.43647 | 12.47989 |
ENSGALG00010004483 STEAP4 | 1843.8349 | 0.9888966 | 0.0516806 | 19.13477 | 0 | 0 | 11.74661 | 11.68852 | 11.71688 | 12.21621 | 12.19929 | 12.21261 |
ENSGALG00010007787 C1orf198 | 19973.8427 | -0.5029082 | 0.0302729 | -16.61248 | 0 | 0 | 14.68887 | 14.65572 | 14.65494 | 14.19804 | 14.26734 | 14.19567 |
ENSGALG00010006816 ENSGALG00010006816 | 1017.1971 | 1.0143213 | 0.0655501 | 15.47398 | 0 | 0 | 11.38974 | 11.36635 | 11.38988 | 11.77225 | 11.75968 | 11.80539 |
ENSGALG00010025320 JAM3 | 6764.6010 | -0.6325673 | 0.0439978 | -14.37726 | 0 | 0 | 13.44786 | 13.36628 | 13.34556 | 12.91204 | 12.97579 | 12.86082 |
ENSGALG00010029178 NOTUM | 1491.2883 | -0.9612881 | 0.0693497 | -13.86145 | 0 | 0 | 12.08913 | 12.03072 | 11.99314 | 11.58920 | 11.66044 | 11.54114 |
DsRed DsRed | 7914.1464 | 16.3103829 | 1.1867882 | 13.74330 | 0 | 0 | 10.37505 | 10.37505 | 10.37505 | 14.28754 | 13.98998 | 14.20570 |
ENSGALG00010001230 PTX3 | 1296.6557 | 0.9377445 | 0.0687286 | 13.64416 | 0 | 0 | 11.48523 | 11.53166 | 11.55784 | 11.95844 | 11.86688 | 11.96865 |
ENSGALG00010005131 IL8L2 | 238.8007 | 2.1761892 | 0.1619716 | 13.43562 | 0 | 0 | 10.74986 | 10.68356 | 10.78549 | 11.13902 | 11.10426 | 11.19960 |
ENSGALG00010020187 MMP23B | 2271.1355 | 0.7138761 | 0.0540994 | 13.19565 | 0 | 0 | 11.99605 | 11.90524 | 11.91430 | 12.35210 | 12.33732 | 12.28780 |
ENSGALG00010005086 ENSGALG00010005086 | 536.0812 | 1.1612824 | 0.0889803 | 13.05100 | 0 | 0 | 11.11110 | 11.07753 | 11.07571 | 11.45295 | 11.42726 | 11.40629 |
ENSGALG00010013207 C1QTNF3 | 4866.5343 | -0.4797374 | 0.0399997 | -11.99353 | 0 | 0 | 13.01473 | 12.99205 | 12.94659 | 12.61706 | 12.68564 | 12.66041 |
ENSGALG00010019277 IGFBP5 | 13152.1325 | 0.4175479 | 0.0353896 | 11.79859 | 0 | 0 | 13.76146 | 13.68912 | 13.80118 | 14.09885 | 14.08051 | 14.12961 |
ENSGALG00010018756 EML4 | 2064.6832 | 0.5676725 | 0.0490660 | 11.56957 | 0 | 0 | 11.88215 | 11.92095 | 11.94262 | 12.20283 | 12.21874 | 12.22004 |
ENSGALG00010005429 ZDHHC20 | 6047.6937 | 0.3952383 | 0.0348611 | 11.33751 | 0 | 0 | 12.89217 | 12.91233 | 12.89941 | 13.17498 | 13.16679 | 13.22402 |
ENSGALG00010015706 ENSGALG00010015706 | 1713.2009 | 0.6759317 | 0.0597946 | 11.30422 | 0 | 0 | 11.72360 | 11.76989 | 11.78342 | 12.05291 | 12.06468 | 12.14897 |
ENSGALG00010024266 ENSGALG00010024266 | 2123.2612 | -0.6090502 | 0.0551053 | -11.05249 | 0 | 0 | 12.25182 | 12.28288 | 12.20225 | 11.95629 | 11.93927 | 11.87221 |
ENSGALG00010025057 SCP2 | 12327.1468 | -0.3086666 | 0.0282262 | -10.93545 | 0 | 0 | 13.99725 | 13.97687 | 13.97376 | 13.74223 | 13.71670 | 13.71535 |
dge3 <- dge
write.table(dge3,file="dge3.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge3,"Rfx: NTfc ctl vs Tfx ctl")
make_volcano(dge3,"Rfx: NTfc ctl vs Tfx ctl")
make_heatmap(dge3,"Rfx: NTfc ctl vs Tfx ctl",ss3,xx3,n=30)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge3$gene <- sapply(strsplit(rownames(dge3)," "),"[[",2)
m3 <- aggregate(stat ~ gene,dge3,mean)
rownames(m3) <- m3$gene ; m3$gene <- NULL
mres3 <- mitch_calc(m3, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres3$enrichment_result,20) %>%
kbl(caption = "Top GO in Rfx: NTfc ctl vs Tfx ctl") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
1282 | GO:0045943 positive regulation of transcription by RNA polymerase I | 11 | 0.0000008 | 0.8611405 | 0.0000535 |
250 | GO:0005049 nuclear export signal receptor activity | 10 | 0.0000112 | 0.8021294 | 0.0005213 |
1686 | GO:0140662 ATP-dependent protein folding chaperone | 23 | 0.0000000 | 0.7504626 | 0.0000001 |
779 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | -0.7359248 | 0.0000000 |
777 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | -0.7211890 | 0.0000000 |
1047 | GO:0035145 exon-exon junction complex | 10 | 0.0000785 | 0.7210995 | 0.0025755 |
1520 | GO:0070034 telomerase RNA binding | 12 | 0.0000243 | 0.7037050 | 0.0008963 |
24 | GO:0000228 nuclear chromosome | 13 | 0.0000162 | 0.6904873 | 0.0006852 |
163 | GO:0003678 DNA helicase activity | 20 | 0.0000001 | 0.6889345 | 0.0000074 |
1083 | GO:0036121 double-stranded DNA helicase activity | 11 | 0.0000829 | 0.6852821 | 0.0026232 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | -0.6802217 | 0.0000001 |
1746 | GO:1990518 single-stranded 3’-5’ DNA helicase activity | 11 | 0.0001110 | 0.6729702 | 0.0033925 |
26 | GO:0000245 spliceosomal complex assembly | 10 | 0.0005515 | 0.6308281 | 0.0120652 |
1197 | GO:0043627 response to estrogen | 10 | 0.0006530 | 0.6224635 | 0.0137127 |
148 | GO:0002230 positive regulation of defense response to virus by host | 11 | 0.0004561 | 0.6103480 | 0.0102730 |
1514 | GO:0061749 forked DNA-dependent helicase activity | 10 | 0.0009414 | 0.6040084 | 0.0179427 |
954 | GO:0032212 positive regulation of telomere maintenance via telomerase | 17 | 0.0000172 | 0.6020740 | 0.0006947 |
56 | GO:0000793 condensed chromosome | 13 | 0.0001952 | 0.5966719 | 0.0054055 |
741 | GO:0017056 structural constituent of nuclear pore | 19 | 0.0000102 | 0.5847965 | 0.0004875 |
515 | GO:0007249 canonical NF-kappaB signal transduction | 18 | 0.0000214 | 0.5785019 | 0.0008103 |
write.table(mres3$enrichment_result,file="mitch3.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres3$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 144
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Rfx: NTfc ctl vs Tfx ctl",xlab="ES")
grid()
if ( ! file.exists("mitch3.html") ) {
mitch_report(res=mres3,outfile="mitch3.html")
}
ss4 <- subset(ss,SampleGroup=="Hf_NTC_gRNA" | SampleGroup=="Hf_DsRed_gRNA")
ss4$trt <- factor(grepl("DsRed",ss4$SampleGroup))
rownames(ss4) <- ss4$SampleLabel
xx4 <- xx[,colnames(xx) %in% ss4$SampleLabel]
xx4f <- xx4[rowMeans(xx4)>=10,]
dim(xx4)
## [1] 30111 6
dim(xx4f)
## [1] 14412 6
dds <- DESeqDataSetFromMatrix(countData = xx4f , colData = ss4, design = ~ trt )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes caused by DsRed targeting in Hf") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Hf_DsRed_gRNA_1 | Hf_DsRed_gRNA_2 | Hf_DsRed_gRNA_3 | Hf_NTC_gRNA_1 | Hf_NTC_gRNA_2 | Hf_NTC_gRNA_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DsRed DsRed | 7352.08543 | -1.5278017 | 0.0545477 | -28.008533 | 0 | 0.00e+00 | 12.304430 | 12.370374 | 12.292786 | 13.691844 | 13.520683 | 13.544964 |
Fbxw11-GFP Fbxw11-GFP | 11668.72067 | -1.4106970 | 0.0593248 | -23.779219 | 0 | 0.00e+00 | 12.954770 | 12.918903 | 12.885270 | 14.303645 | 14.040457 | 14.138172 |
ENSGALG00010022322 ENSGALG00010022322 | 4495.62483 | 0.4402307 | 0.0439428 | 10.018268 | 0 | 0.00e+00 | 12.672143 | 12.679444 | 12.670138 | 12.352458 | 12.303991 | 12.335896 |
ENSGALG00010029945 CCL4 | 15140.89019 | 0.3971388 | 0.0551046 | 7.206992 | 0 | 0.00e+00 | 14.208537 | 14.089540 | 14.250945 | 13.847704 | 13.717597 | 13.892109 |
ENSGALG00010023206 HSPB9 | 260.75145 | -0.8762077 | 0.1257649 | -6.967030 | 0 | 0.00e+00 | 10.221969 | 10.234786 | 10.176926 | 10.458962 | 10.477272 | 10.441877 |
ENSGALG00010003545 ENSGALG00010003545 | 163.69670 | 1.2874066 | 0.1893633 | 6.798608 | 0 | 0.00e+00 | 10.229069 | 10.358763 | 10.301900 | 9.933674 | 10.073530 | 10.017911 |
ENSGALG00010012473 ENSGALG00010012473 | 320.82157 | -0.9071409 | 0.1340674 | -6.766306 | 0 | 0.00e+00 | 10.271866 | 10.285532 | 10.293674 | 10.668527 | 10.537800 | 10.476878 |
ENSGALG00010014984 LPP | 1844.74856 | -0.5102287 | 0.0774070 | -6.591509 | 0 | 1.00e-07 | 11.517626 | 11.378005 | 11.412693 | 11.839862 | 11.772716 | 11.643400 |
ENSGALG00010013146 TNRC6B | 1947.42852 | -0.4049586 | 0.0627990 | -6.448490 | 0 | 2.00e-07 | 11.559842 | 11.453182 | 11.545751 | 11.813786 | 11.786905 | 11.728374 |
ENSGALG00010022979 LAMA5 | 22283.56060 | -0.3796638 | 0.0612877 | -6.194777 | 0 | 7.00e-07 | 14.447199 | 14.258862 | 14.316458 | 14.818472 | 14.701789 | 14.568998 |
ENSGALG00010017057 NDUFAB1 | 2228.60631 | 0.3320152 | 0.0537368 | 6.178542 | 0 | 7.00e-07 | 11.853570 | 11.905614 | 11.898420 | 11.683380 | 11.640990 | 11.676247 |
ENSGALG00010025430 IRX5 | 1405.05185 | 0.5244179 | 0.0851349 | 6.159846 | 0 | 7.00e-07 | 11.590502 | 11.451509 | 11.485386 | 11.250507 | 11.094237 | 11.283739 |
ENSGALG00010024763 HOXD9 | 51.85914 | 1.9788799 | 0.3287829 | 6.018804 | 0 | 1.60e-06 | 9.995812 | 9.949732 | 9.983386 | 9.797615 | 9.650956 | 9.733606 |
ENSGALG00010006816 ENSGALG00010006816 | 1410.23510 | 0.3839373 | 0.0639937 | 5.999609 | 0 | 1.70e-06 | 11.522058 | 11.440866 | 11.470757 | 11.283642 | 11.235488 | 11.256630 |
ENSGALG00010024658 CSF3 | 137.23432 | 1.1157308 | 0.1863643 | 5.986827 | 0 | 1.70e-06 | 10.268536 | 10.188088 | 10.196254 | 10.006081 | 9.925697 | 10.027054 |
ENSGALG00010018888 ENSGALG00010018888 | 357.89695 | -0.6430967 | 0.1083589 | -5.934879 | 0 | 2.20e-06 | 10.403943 | 10.347576 | 10.372141 | 10.591928 | 10.607549 | 10.560079 |
ENSGALG00010015483 SGCD | 1516.44549 | -0.3459928 | 0.0601453 | -5.752621 | 0 | 6.30e-06 | 11.359137 | 11.323602 | 11.302905 | 11.535146 | 11.545843 | 11.513301 |
ENSGALG00010018696 ENSGALG00010018696 | 879.22865 | -0.4662691 | 0.0841336 | -5.542007 | 0 | 2.02e-05 | 10.949169 | 10.842171 | 10.892515 | 11.170983 | 11.132963 | 11.051819 |
ENSGALG00010005913 NFKBIA | 4135.89957 | 0.2560690 | 0.0465375 | 5.502424 | 0 | 2.40e-05 | 12.524904 | 12.514048 | 12.504439 | 12.347418 | 12.273541 | 12.331970 |
ENSGALG00010001704 ENSGALG00010001704 | 17388.94702 | -0.3176630 | 0.0581646 | -5.461451 | 0 | 2.87e-05 | 14.171830 | 13.927080 | 14.021872 | 14.398770 | 14.339768 | 14.272391 |
dge4 <- dge
write.table(dge4,file="dge4.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge4,"Hf: NTC gRNA vs DsRed gRNA")
make_volcano(dge4,"Hf: NTC gRNA vs DsRed gRNA")
make_heatmap(dge4,"Hf: NTC gRNA vs DsRed gRNA",ss4,xx4,n=30)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge4$gene <- sapply(strsplit(rownames(dge4)," "),"[[",2)
m4 <- aggregate(stat ~ gene,dge4,mean)
rownames(m4) <- m4$gene ; m4$gene <- NULL
mres4 <- mitch_calc(m4, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres4$enrichment_result,20) %>%
kbl(caption = "Top GO in Hf: NTC gRNA vs DsRed gRNA") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | 0.9176542 | 0.0000000 |
778 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | 0.8789953 | 0.0000000 |
780 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | 0.8238239 | 0.0000000 |
110 | GO:0001732 formation of cytoplasmic translation initiation complex | 12 | 0.0000010 | 0.8139527 | 0.0000658 |
347 | GO:0005852 eukaryotic translation initiation factor 3 complex | 10 | 0.0000159 | 0.7880601 | 0.0007383 |
180 | GO:0003735 structural constituent of ribosome | 118 | 0.0000000 | 0.7673033 | 0.0000000 |
409 | GO:0006412 translation | 96 | 0.0000000 | 0.6903554 | 0.0000000 |
700 | GO:0016282 eukaryotic 43S preinitiation complex | 14 | 0.0000127 | 0.6737194 | 0.0006060 |
345 | GO:0005840 ribosome | 43 | 0.0000000 | 0.6682555 | 0.0000000 |
1002 | GO:0033290 eukaryotic 48S preinitiation complex | 13 | 0.0000316 | 0.6664936 | 0.0012991 |
315 | GO:0005762 mitochondrial large ribosomal subunit | 38 | 0.0000000 | 0.6650277 | 0.0000000 |
438 | GO:0006695 cholesterol biosynthetic process | 16 | 0.0000060 | 0.6536179 | 0.0002932 |
184 | GO:0003774 cytoskeletal motor activity | 12 | 0.0001145 | -0.6430759 | 0.0037858 |
266 | GO:0005201 extracellular matrix structural constituent | 12 | 0.0001158 | -0.6426235 | 0.0037858 |
994 | GO:0032981 mitochondrial respiratory chain complex I assembly | 38 | 0.0000000 | 0.6261081 | 0.0000000 |
1680 | GO:0140658 ATP-dependent chromatin remodeler activity | 11 | 0.0003707 | -0.6198911 | 0.0093467 |
758 | GO:0019843 rRNA binding | 22 | 0.0000006 | 0.6166561 | 0.0000374 |
1650 | GO:0098761 cellular response to interleukin-7 | 10 | 0.0007681 | 0.6143334 | 0.0152325 |
597 | GO:0008320 protein transmembrane transporter activity | 11 | 0.0004901 | 0.6070116 | 0.0112339 |
1232 | GO:0045271 respiratory chain complex I | 31 | 0.0000000 | 0.6032018 | 0.0000006 |
write.table(mres4$enrichment_result,file="mitch4.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres4$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 134
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Hf: NTC gRNA vs DsRed gRNA",xlab="ES")
grid()
if ( ! file.exists("mitch4.html") ) {
mitch_report(res=mres4,outfile="mitch4.html")
}
o <- dge4[order(dge4$baseMean),]
NBINS=20
brks <- quantile(o$baseMean, probs = c(seq(0,1,1/NBINS) ) )
o$quant <- cut(o$baseMean, breaks = brks, labels = 1:NBINS, include.lowest = TRUE)
z <- lapply(unique(o$quant) , function(i) { y <- subset(o,quant==i) ; y$log2FoldChange } )
names(z) <- 1:NBINS
XLAB=paste("Expression bin,",round(nrow(o)/NBINS),"genes each")
par(mar = c(5.1, 4.1, 4.1, 2.1) )
boxplot(z,ylim=c(-0.5,0.5),xlab=XLAB,ylab="Fold change",
main="Hf: NTC gRNA vs DsRed gRNA")
abline(h=0,col="red",lty=2,lwd=2)
Now examining the effect of adding the NTC gRNA.
ss5 <- subset(ss,SampleGroup=="Hf_Tfx_ctl" | SampleGroup=="Hf_NTC_gRNA")
ss5$trt <- factor(grepl("NTC",ss5$SampleGroup))
rownames(ss5) <- ss5$SampleLabel
xx5 <- xx[,colnames(xx) %in% ss5$SampleLabel]
xx5f <- xx5[rowMeans(xx5)>=10,]
dim(xx5)
## [1] 30111 6
dim(xx5f)
## [1] 14357 6
dds <- DESeqDataSetFromMatrix(countData = xx5f , colData = ss5, design = ~ trt )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes caused by NTC gRNA compared to transfection control") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Hf_NTC_gRNA_1 | Hf_NTC_gRNA_2 | Hf_NTC_gRNA_3 | Hf_Tfx_ctl_1 | Hf_Tfx_ctl_2 | Hf_Tfx_ctl_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSGALG00010006303 ENSGALG00010006303 | 17.99008 | -3.7098356 | 0.6683447 | -5.550782 | 0.0000000 | 0.0004082 | 10.47085 | 10.41023 | 10.37142 | 10.60294 | 10.58012 | 10.61780 |
Fbxw11-GFP Fbxw11-GFP | 13631.83580 | 0.5497622 | 0.1094397 | 5.023427 | 0.0000005 | 0.0036424 | 14.32532 | 14.07783 | 14.17050 | 13.68715 | 13.65521 | 13.84013 |
ENSGALG00010003545 ENSGALG00010003545 | 126.52418 | -0.8367108 | 0.2120322 | -3.946150 | 0.0000794 | 0.3799351 | 10.69192 | 10.79330 | 10.75310 | 10.90411 | 10.90173 | 10.80841 |
ENSGALG00010009114 SETD7 | 5938.92628 | 0.1358263 | 0.0358463 | 3.789127 | 0.0001512 | 0.5317574 | 13.08626 | 13.07643 | 13.08018 | 12.97351 | 12.95992 | 13.01302 |
ENSGALG00010019257 SLC1A4 | 5563.70273 | 0.1558961 | 0.0417022 | 3.738318 | 0.0001853 | 0.5317574 | 13.07137 | 12.99554 | 12.98867 | 12.88727 | 12.89179 | 12.94400 |
ENSGALG00010010914 ENSGALG00010010914 | 20.67785 | 1.6274111 | 0.4571709 | 3.559743 | 0.0003712 | 0.8879518 | 10.62045 | 10.58024 | 10.57466 | 10.50708 | 10.50469 | 10.47869 |
ENSGALG00010016508 CREBBP | 2655.82671 | 0.1798783 | 0.0524290 | 3.430897 | 0.0006016 | 0.9998869 | 12.35346 | 12.33876 | 12.27839 | 12.17325 | 12.22361 | 12.26377 |
ENSGALG00010020691 ENSGALG00010020691 | 831.78306 | -0.2484451 | 0.0738304 | -3.365079 | 0.0007652 | 0.9998869 | 11.47163 | 11.42157 | 11.42498 | 11.55611 | 11.52101 | 11.51650 |
ENSGALG00010010496 MRPL17 | 1724.33797 | -0.1797901 | 0.0538396 | -3.339363 | 0.0008397 | 0.9998869 | 11.92661 | 11.87809 | 11.87526 | 11.99322 | 11.98201 | 11.97362 |
ENSGALG00010019068 SNRPA1 | 3875.88248 | -0.1401798 | 0.0422012 | -3.321706 | 0.0008947 | 0.9998869 | 12.56024 | 12.58803 | 12.53698 | 12.68566 | 12.62671 | 12.64628 |
ENSGALG00010019231 ENSGALG00010019231 | 790.13465 | 0.2950281 | 0.0889440 | 3.317008 | 0.0009099 | 0.9998869 | 11.46636 | 11.58294 | 11.47954 | 11.39378 | 11.37366 | 11.44658 |
ENSGALG00010005913 NFKBIA | 3786.02649 | -0.1415096 | 0.0437258 | -3.236293 | 0.0012109 | 0.9998869 | 12.56474 | 12.50213 | 12.55230 | 12.66476 | 12.62376 | 12.60428 |
ENSGALG00010009392 MAPRE3 | 1810.30339 | -0.1750275 | 0.0542114 | -3.228610 | 0.0012439 | 0.9998869 | 11.91448 | 11.92532 | 11.94839 | 12.04316 | 11.97790 | 12.02994 |
ENSGALG00010017157 ENSGALG00010017157 | 12.90598 | -2.2013829 | 0.6833555 | -3.221431 | 0.0012755 | 0.9998869 | 10.47085 | 10.37142 | 10.48124 | 10.58220 | 10.57225 | 10.49304 |
ENSGALG00010015892 UBE2C | 5334.69523 | -0.1159327 | 0.0360174 | -3.218795 | 0.0012873 | 0.9998869 | 12.88370 | 12.87372 | 12.88197 | 12.96990 | 12.97743 | 12.93787 |
ENSGALG00010021087 THBS1 | 68518.08634 | 0.0866757 | 0.0270778 | 3.200995 | 0.0013695 | 0.9998869 | 16.14315 | 16.15807 | 16.17732 | 16.04513 | 16.08494 | 16.09761 |
ENSGALG00010028900 TNC | 20571.05631 | 0.1380925 | 0.0433031 | 3.188976 | 0.0014278 | 0.9998869 | 14.59575 | 14.55086 | 14.52822 | 14.32595 | 14.47739 | 14.49736 |
ENSGALG00010017057 NDUFAB1 | 2014.91869 | -0.1872812 | 0.0587989 | -3.185113 | 0.0014470 | 0.9998869 | 12.01684 | 11.98261 | 12.01161 | 12.17225 | 12.06066 | 12.06902 |
ENSGALG00010026886 JUN | 3840.33281 | -0.1291057 | 0.0411985 | -3.133748 | 0.0017259 | 0.9998869 | 12.57349 | 12.55922 | 12.53838 | 12.67289 | 12.62229 | 12.62695 |
ENSGALG00010024763 HOXD9 | 34.62589 | -1.3015227 | 0.4205421 | -3.094869 | 0.0019690 | 0.9998869 | 10.59358 | 10.48782 | 10.54746 | 10.71438 | 10.59858 | 10.62110 |
dge5 <- dge
write.table(dge5,file="dge2.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge5,"Hf: Tfx ctl vs NTC gRNA")
make_volcano(dge5,"Hf: Tfx ctl vs NTC gRNA")
make_heatmap(dge5,"Hf: Tfx ctl vs NTC gRNA",ss5,xx5,n=30)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge5$gene <- sapply(strsplit(rownames(dge5)," "),"[[",2)
m5 <- aggregate(stat ~ gene,dge5,mean)
rownames(m5) <- m5$gene ; m5$gene <- NULL
mres5 <- mitch_calc(m5, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres5$enrichment_result,20) %>%
kbl(caption = "Top GO in Hf: Tfx ctl vs NTC gRNA") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
1122 | GO:0042474 middle ear morphogenesis | 10 | 0.0008817 | -0.6073479 | 0.0851343 |
26 | GO:0000245 spliceosomal complex assembly | 10 | 0.0021049 | -0.5615702 | 0.1234197 |
775 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | -0.5543046 | 0.0000008 |
777 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000101 | -0.5102279 | 0.0025269 |
781 | GO:0030016 myofibril | 13 | 0.0023614 | 0.4870648 | 0.1298008 |
1731 | GO:1990391 DNA repair complex | 10 | 0.0082282 | 0.4826151 | 0.2378757 |
1727 | GO:1990023 mitotic spindle midzone | 10 | 0.0083479 | -0.4817210 | 0.2378757 |
683 | GO:0015813 L-glutamate transmembrane transport | 11 | 0.0060594 | 0.4779268 | 0.1937918 |
99 | GO:0001671 ATPase activator activity | 18 | 0.0004729 | -0.4759398 | 0.0669946 |
1646 | GO:0098761 cellular response to interleukin-7 | 10 | 0.0095869 | -0.4730879 | 0.2430366 |
144 | GO:0002181 cytoplasmic translation | 27 | 0.0000215 | -0.4724372 | 0.0047235 |
436 | GO:0006730 one-carbon metabolic process | 13 | 0.0036063 | 0.4662676 | 0.1475211 |
805 | GO:0030155 regulation of cell adhesion | 19 | 0.0004951 | 0.4616335 | 0.0669946 |
158 | GO:0003333 amino acid transmembrane transport | 10 | 0.0124130 | 0.4566180 | 0.2726603 |
1031 | GO:0035025 positive regulation of Rho protein signal transduction | 10 | 0.0126236 | 0.4555284 | 0.2726603 |
134 | GO:0001965 G-protein alpha-subunit binding | 10 | 0.0131981 | 0.4526367 | 0.2726603 |
313 | GO:0005762 mitochondrial large ribosomal subunit | 38 | 0.0000015 | -0.4516761 | 0.0006038 |
1532 | GO:0070412 R-SMAD binding | 13 | 0.0048403 | -0.4513387 | 0.1742071 |
1237 | GO:0045505 dynein intermediate chain binding | 18 | 0.0009780 | 0.4488706 | 0.0851343 |
1414 | GO:0051382 kinetochore assembly | 11 | 0.0106381 | -0.4448170 | 0.2563354 |
write.table(mres5$enrichment_result,file="mitch5.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres5$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 9
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Hf: Tfx ctl vs NTC gRNA",xlab="ES")
grid()
if ( ! file.exists("mitch5.html") ) {
mitch_report(res=mres5,outfile="mitch5.html")
}
ss6 <- subset(ss,SampleGroup=="Hf_NTfx_ctl" | SampleGroup=="Hf_Tfx_ctl")
ss6$trt <- factor(grepl("_Tfx",ss6$SampleGroup))
rownames(ss6) <- ss6$SampleLabel
xx6 <- xx[,colnames(xx) %in% ss6$SampleLabel]
xx6f <- xx6[rowMeans(xx6)>=10,]
dim(xx6)
## [1] 30111 6
dim(xx6f)
## [1] 14256 6
dds <- DESeqDataSetFromMatrix(countData = xx6f , colData = ss6, design = ~ trt )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes caused by transfection in Hf") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Hf_NTfx_ctl_1 | Hf_NTfx_ctl_2 | Hf_NTfx_ctl_3 | Hf_Tfx_ctl_1 | Hf_Tfx_ctl_2 | Hf_Tfx_ctl_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fbxw11-GFP Fbxw11-GFP | 5562.3847 | 5.1247670 | 0.1016093 | 50.43599 | 0 | 0 | 10.491681 | 10.414559 | 10.482699 | 13.53642 | 13.49822 | 13.70475 |
ENSGALG00010006156 NFKBIZ | 1367.0066 | 1.4866924 | 0.0612919 | 24.25593 | 0 | 0 | 10.904194 | 10.900830 | 10.931792 | 11.72612 | 11.67492 | 11.72378 |
ENSGALG00010022322 ENSGALG00010022322 | 2739.2450 | 1.1082722 | 0.0478461 | 23.16328 | 0 | 0 | 11.558490 | 11.584260 | 11.582534 | 12.30698 | 12.30108 | 12.36787 |
ENSGALG00010004483 STEAP4 | 1517.0361 | 1.1008179 | 0.0605650 | 18.17580 | 0 | 0 | 11.059705 | 11.111586 | 11.156249 | 11.71324 | 11.73911 | 11.74660 |
ENSGALG00010025320 JAM3 | 5686.3159 | -0.6266981 | 0.0370779 | -16.90218 | 0 | 0 | 13.031027 | 13.028330 | 13.015446 | 12.53639 | 12.52881 | 12.49503 |
ENSGALG00010020187 MMP23B | 1771.8426 | 0.8953471 | 0.0533494 | 16.78270 | 0 | 0 | 11.286628 | 11.290545 | 11.312623 | 11.85778 | 11.83214 | 11.81102 |
ENSGALG00010001230 PTX3 | 1050.4939 | 1.0418355 | 0.0689284 | 15.11476 | 0 | 0 | 10.870595 | 10.857983 | 10.921752 | 11.44021 | 11.37314 | 11.39107 |
ENSGALG00010007787 C1orf198 | 19044.0873 | -0.4707627 | 0.0318848 | -14.76450 | 0 | 0 | 14.513356 | 14.515700 | 14.550119 | 14.07114 | 14.07581 | 14.12087 |
ENSGALG00010006816 ENSGALG00010006816 | 914.0890 | 1.1176593 | 0.0797470 | 14.01506 | 0 | 0 | 10.820634 | 10.706765 | 10.806531 | 11.32138 | 11.25897 | 11.32980 |
ENSGALG00010019277 IGFBP5 | 11189.2227 | 0.4678286 | 0.0345033 | 13.55895 | 0 | 0 | 13.396896 | 13.379511 | 13.434935 | 13.80395 | 13.80327 | 13.84813 |
DsRed DsRed | 5403.0502 | 15.8377798 | 1.1845114 | 13.37073 | 0 | 0 | 9.550636 | 9.550636 | 9.550636 | 13.48935 | 13.51133 | 13.73163 |
ENSGALG00010021087 THBS1 | 56029.8205 | 0.4628356 | 0.0358267 | 12.91875 | 0 | 0 | 15.585215 | 15.500877 | 15.618115 | 15.98807 | 16.02434 | 16.04573 |
ENSGALG00010017751 ST3GAL5 | 3061.3187 | -0.5440060 | 0.0447750 | -12.14978 | 0 | 0 | 12.330073 | 12.276981 | 12.272544 | 11.91086 | 11.91790 | 11.89650 |
ENSGALG00010029178 NOTUM | 2075.3883 | -0.6040073 | 0.0498738 | -12.11072 | 0 | 0 | 11.892080 | 11.939610 | 11.908106 | 11.53241 | 11.53767 | 11.51985 |
ENSGALG00010005495 TXN | 17201.8015 | -0.3827643 | 0.0324677 | -11.78909 | 0 | 0 | 14.391651 | 14.332222 | 14.338159 | 14.01775 | 13.98735 | 13.99845 |
ENSGALG00010013207 C1QTNF3 | 5734.9218 | -0.4273741 | 0.0364043 | -11.73967 | 0 | 0 | 12.956719 | 12.963672 | 12.981135 | 12.61916 | 12.63506 | 12.61060 |
ENSGALG00010018756 EML4 | 1934.5497 | 0.6277787 | 0.0548149 | 11.45270 | 0 | 0 | 11.483140 | 11.417190 | 11.484963 | 11.84222 | 11.82384 | 11.88839 |
ENSGALG00010005131 IL8L2 | 158.2816 | 2.0421669 | 0.1813879 | 11.25856 | 0 | NA | 9.973319 | 9.907713 | 10.006519 | 10.35711 | 10.35211 | 10.42679 |
ENSGALG00010016647 EGR1 | 2991.8776 | -0.5471527 | 0.0500784 | -10.92593 | 0 | 0 | 12.209319 | 12.306032 | 12.292123 | 11.92380 | 11.87731 | 11.85340 |
ENSGALG00010005086 ENSGALG00010005086 | 363.2340 | 1.1336860 | 0.1061348 | 10.68157 | 0 | 0 | 10.353130 | 10.333592 | 10.319582 | 10.72597 | 10.69374 | 10.67046 |
dge6 <- dge
write.table(dge6,file="dge6.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge6,"Hf: NTfc ctl vs Tfx ctl")
make_volcano(dge6,"Hf: NTfc ctl vs Tfx ctl")
make_heatmap(dge6,"Hf: NTfc ctl vs Tfx ctl",ss6,xx6,n=30)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge6$gene <- sapply(strsplit(rownames(dge6)," "),"[[",2)
m6 <- aggregate(stat ~ gene,dge6,mean)
rownames(m6) <- m6$gene ; m6$gene <- NULL
mres6 <- mitch_calc(m6, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres6$enrichment_result,20) %>%
kbl(caption = "Top GO in Hf: NTfc ctl vs Tfx ctl") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
775 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | -0.8945404 | 0.0000000 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | -0.8378811 | 0.0000000 |
1215 | GO:0045116 protein neddylation | 10 | 0.0000125 | -0.7977631 | 0.0004218 |
777 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | -0.7877051 | 0.0000000 |
483 | GO:0007076 mitotic chromosome condensation | 10 | 0.0000224 | 0.7741277 | 0.0006562 |
1076 | GO:0036121 double-stranded DNA helicase activity | 11 | 0.0000237 | 0.7359895 | 0.0006707 |
1041 | GO:0035145 exon-exon junction complex | 10 | 0.0000588 | 0.7336522 | 0.0013075 |
179 | GO:0003735 structural constituent of ribosome | 118 | 0.0000000 | -0.7117635 | 0.0000000 |
771 | GO:0021915 neural tube development | 15 | 0.0000032 | 0.6942087 | 0.0001455 |
1708 | GO:1902774 late endosome to lysosome transport | 10 | 0.0001443 | -0.6940208 | 0.0027582 |
24 | GO:0000228 nuclear chromosome | 13 | 0.0000326 | 0.6654525 | 0.0008178 |
1510 | GO:0070034 telomerase RNA binding | 12 | 0.0000835 | 0.6558440 | 0.0017686 |
249 | GO:0005049 nuclear export signal receptor activity | 10 | 0.0003750 | 0.6495779 | 0.0054931 |
1733 | GO:1990518 single-stranded 3’-5’ DNA helicase activity | 11 | 0.0001981 | 0.6479775 | 0.0034473 |
56 | GO:0000793 condensed chromosome | 13 | 0.0000550 | 0.6459904 | 0.0012564 |
1749 | GO:2000737 negative regulation of stem cell differentiation | 12 | 0.0001122 | 0.6439309 | 0.0022409 |
1675 | GO:0140658 ATP-dependent chromatin remodeler activity | 11 | 0.0002321 | 0.6409682 | 0.0039239 |
1504 | GO:0061749 forked DNA-dependent helicase activity | 10 | 0.0004562 | 0.6401097 | 0.0062655 |
1726 | GO:1990023 mitotic spindle midzone | 10 | 0.0006895 | 0.6197524 | 0.0085363 |
740 | GO:0017056 structural constituent of nuclear pore | 19 | 0.0000052 | 0.6036202 | 0.0002137 |
write.table(mres6$enrichment_result,file="mitch6.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres6$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 295
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Hf: NTfc ctl vs Tfx ctl",xlab="ES")
grid()
if ( ! file.exists("mitch6.html") ) {
mitch_report(res=mres6,outfile="mitch6.html")
}
ss7 <- subset(ss,SampleGroup=="Rfx_DsRed_gRNA" | SampleGroup=="Hf_DsRed_gRNA")
ss7$trt <- factor(grepl("Hf",ss7$SampleGroup))
rownames(ss7) <- ss7$SampleLabel
xx7 <- xx[,colnames(xx) %in% ss7$SampleLabel]
xx7f <- xx7[rowMeans(xx7)>=10,]
dim(xx7)
## [1] 30111 6
dim(xx7f)
## [1] 14466 6
dds <- DESeqDataSetFromMatrix(countData = xx7f , colData = ss7, design = ~ trt )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes in Hf as compared to Rfx (DsRed gDNA)") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Hf_DsRed_gRNA_1 | Hf_DsRed_gRNA_2 | Hf_DsRed_gRNA_3 | Rfx_DsRed_gRNA_1 | Rfx_DsRed_gRNA_2 | Rfx_DsRed_gRNA_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSGALG00010005474 COL8A1 | 5181.22579 | 1.4072932 | 0.0528465 | 26.62982 | 0 | 0 | 13.114134 | 13.042797 | 13.023945 | 11.907948 | 11.844188 | 11.938588 |
ENSGALG00010009793 TNFAIP6 | 4990.91092 | 1.1189490 | 0.0597584 | 18.72456 | 0 | 0 | 12.897318 | 12.927321 | 12.989725 | 11.909130 | 12.048842 | 12.073183 |
ENSGALG00010024266 ENSGALG00010024266 | 1306.26597 | -1.3025659 | 0.0739627 | -17.61113 | 0 | 0 | 10.691750 | 10.676942 | 10.657510 | 11.516537 | 11.479617 | 11.371810 |
ENSGALG00010005417 LOXL3 | 724.79066 | 1.5672084 | 0.0936381 | 16.73687 | 0 | 0 | 11.036075 | 10.942040 | 10.909233 | 10.187861 | 10.173152 | 10.260810 |
ENSGALG00010002949 ENSGALG00010002949 | 549403.78936 | -0.7207412 | 0.0462421 | -15.58625 | 0 | 0 | 18.734264 | 18.624489 | 18.637435 | 19.443675 | 19.370993 | 19.339998 |
ENSGALG00010016647 EGR1 | 3974.38230 | -0.9745205 | 0.0626304 | -15.55987 | 0 | 0 | 11.883861 | 11.885484 | 11.733738 | 12.551294 | 12.665595 | 12.626883 |
ENSGALG00010023078 TAGLN | 4192.37168 | -0.7629777 | 0.0500159 | -15.25470 | 0 | 0 | 12.036081 | 11.974738 | 11.984511 | 12.648647 | 12.591584 | 12.610870 |
ENSGALG00010009067 ENSGALG00010009067 | 215523.51739 | -0.7116253 | 0.0469641 | -15.15255 | 0 | 0 | 17.409784 | 17.279862 | 17.289064 | 18.076927 | 18.032847 | 17.995610 |
ENSGALG00010007873 ENSGALG00010007873 | 460982.64947 | -0.7402256 | 0.0489905 | -15.10958 | 0 | 0 | 18.470030 | 18.353147 | 18.379165 | 19.214851 | 19.128931 | 19.073059 |
ENSGALG00010018616 ENSGALG00010018616 | 554903.05730 | -0.7118731 | 0.0477575 | -14.90601 | 0 | 0 | 18.740584 | 18.641571 | 18.674272 | 19.476403 | 19.371140 | 19.338455 |
ENSGALG00010001707 ENSGALG00010001707 | 180.88805 | -6.5241663 | 0.4402708 | -14.81853 | 0 | 0 | 9.174015 | 9.164188 | 9.144721 | 10.264639 | 10.109445 | 10.209583 |
ENSGALG00010013345 DCN | 5137.39991 | 0.8515898 | 0.0581524 | 14.64411 | 0 | 0 | 12.862560 | 12.896837 | 12.929911 | 12.079362 | 12.234455 | 12.234527 |
ENSGALG00010024254 ENSGALG00010024254 | 316.79494 | -1.9081965 | 0.1317474 | -14.48376 | 0 | 0 | 9.769946 | 9.763161 | 9.736435 | 10.481080 | 10.342392 | 10.354795 |
ENSGALG00010018583 PPL | 185.06075 | 2.5111425 | 0.1801697 | 13.93765 | 0 | 0 | 10.128891 | 10.154916 | 10.098050 | 9.549723 | 9.528337 | 9.426412 |
ENSGALG00010027337 AQP1 | 22210.83490 | 0.5544383 | 0.0403725 | 13.73307 | 0 | 0 | 14.718231 | 14.736076 | 14.781359 | 14.212548 | 14.211652 | 14.223964 |
ENSGALG00010007529 CDH13 | 17412.86597 | 0.5791960 | 0.0435489 | 13.29989 | 0 | 0 | 14.466430 | 14.409019 | 14.379171 | 13.842298 | 13.886576 | 13.887645 |
ENSGALG00010001347 MYOM1 | 520.80020 | 1.2918543 | 0.0996893 | 12.95881 | 0 | 0 | 10.625047 | 10.629195 | 10.727835 | 10.107849 | 10.124398 | 10.088422 |
ENSGALG00010022843 ENSGALG00010022843 | 87.34403 | -4.8555794 | 0.3879446 | -12.51617 | 0 | 0 | 9.220588 | 9.147228 | 9.189085 | 9.884512 | 9.844146 | 9.803835 |
ENSGALG00010023113 MYZAP | 89.62103 | 4.0473234 | 0.3234829 | 12.51171 | 0 | 0 | 9.892770 | 9.773686 | 9.863557 | 9.249155 | 9.236873 | 9.230026 |
ENSGALG00010005836 NEBL | 93.25190 | 3.7843647 | 0.3033558 | 12.47500 | 0 | 0 | 9.793911 | 9.871053 | 9.900015 | 9.193890 | 9.294744 | 9.280911 |
dge7 <- dge
write.table(dge7,file="dge7.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge7,"Rfx DsRed gRNA vs Hf DsRed gRNA")
make_volcano(dge7,"Rfx DsRed gRNA vs Hf DsRed gRNA")
make_heatmap(dge7,"Rfx DsRed gRNA vs Hf DsRed gRNA",ss7,xx7,n=30)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge7$gene <- sapply(strsplit(rownames(dge7)," "),"[[",2)
m7 <- aggregate(stat ~ gene,dge7,mean)
rownames(m7) <- m7$gene ; m7$gene <- NULL
mres7 <- mitch_calc(m7, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres7$enrichment_result,20) %>%
kbl(caption = "Top GO in Rfx DsRed gRNA vs Hf DsRed gRNA") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
778 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | 0.8398847 | 0.0000000 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | 0.8156863 | 0.0000000 |
780 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | 0.8008800 | 0.0000000 |
1047 | GO:0035145 exon-exon junction complex | 10 | 0.0000317 | -0.7598170 | 0.0017526 |
1686 | GO:0140658 ATP-dependent chromatin remodeler activity | 11 | 0.0000348 | -0.7206734 | 0.0018312 |
180 | GO:0003735 structural constituent of ribosome | 118 | 0.0000000 | 0.6850152 | 0.0000000 |
572 | GO:0008137 NADH dehydrogenase (ubiquinone) activity | 10 | 0.0002977 | 0.6605657 | 0.0105434 |
1237 | GO:0045271 respiratory chain complex I | 31 | 0.0000000 | 0.6574504 | 0.0000000 |
377 | GO:0006120 mitochondrial electron transport, NADH to ubiquinone | 19 | 0.0000008 | 0.6540957 | 0.0000741 |
440 | GO:0006749 glutathione metabolic process | 15 | 0.0000138 | 0.6482604 | 0.0008411 |
209 | GO:0004602 glutathione peroxidase activity | 12 | 0.0001049 | 0.6466394 | 0.0045325 |
200 | GO:0004364 glutathione transferase activity | 10 | 0.0005088 | 0.6347892 | 0.0166852 |
409 | GO:0006412 translation | 96 | 0.0000000 | 0.5956258 | 0.0000000 |
26 | GO:0000245 spliceosomal complex assembly | 10 | 0.0014952 | -0.5799362 | 0.0351385 |
1719 | GO:1902774 late endosome to lysosome transport | 10 | 0.0015372 | 0.5784664 | 0.0351385 |
1742 | GO:1990391 DNA repair complex | 10 | 0.0017168 | -0.5725735 | 0.0380066 |
995 | GO:0032981 mitochondrial respiratory chain complex I assembly | 38 | 0.0000000 | 0.5611098 | 0.0000004 |
482 | GO:0007042 lysosomal lumen acidification | 10 | 0.0023029 | 0.5566556 | 0.0463468 |
1225 | GO:0045116 protein neddylation | 10 | 0.0024540 | 0.5531614 | 0.0475309 |
1660 | GO:0098869 cellular oxidant detoxification | 28 | 0.0000006 | 0.5461365 | 0.0000557 |
write.table(mres7$enrichment_result,file="mitch7.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres7$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 92
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Rfx DsRed gRNA vs Hf DsRed gRNA",xlab="ES")
grid()
if ( ! file.exists("mitch7.html") ) {
mitch_report(res=mres7,outfile="mitch7.html")
}
ss8 <- subset(ss,SampleGroup=="Rfx_NTC_gRNA" | SampleGroup=="Hf_NTC_gRNA")
ss8$trt <- factor(grepl("Hf",ss8$SampleGroup))
rownames(ss8) <- ss8$SampleLabel
xx8 <- xx[,colnames(xx) %in% ss8$SampleLabel]
xx8f <- xx8[rowMeans(xx8)>=10,]
dim(xx8)
## [1] 30111 6
dim(xx8f)
## [1] 14531 6
dds <- DESeqDataSetFromMatrix(countData = xx8f , colData = ss8, design = ~ trt )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes in Hf as compared to Rfx (NTC gDNA)") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Hf_NTC_gRNA_1 | Hf_NTC_gRNA_2 | Hf_NTC_gRNA_3 | Rfx_NTC_gRNA_1 | Rfx_NTC_gRNA_2 | Rfx_NTC_gRNA_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSGALG00010005474 COL8A1 | 4887.28026 | 1.4000111 | 0.0407401 | 34.36442 | 0 | 0 | 13.033606 | 13.030229 | 13.074111 | 11.936452 | 11.955421 | 11.993068 |
ENSGALG00010009793 TNFAIP6 | 4332.14842 | 0.9624357 | 0.0473261 | 20.33624 | 0 | 0 | 12.810498 | 12.752565 | 12.806856 | 12.069158 | 11.983858 | 12.103671 |
ENSGALG00010005417 LOXL3 | 733.65009 | 1.6386027 | 0.0851521 | 19.24325 | 0 | 0 | 11.158177 | 11.184751 | 11.198123 | 10.520789 | 10.433491 | 10.486890 |
ENSGALG00010016647 EGR1 | 3703.09860 | -0.9145679 | 0.0514414 | -17.77882 | 0 | 0 | 11.976831 | 11.893629 | 11.875465 | 12.653501 | 12.535289 | 12.594580 |
ENSGALG00010027337 AQP1 | 20305.86910 | 0.5719634 | 0.0322798 | 17.71892 | 0 | 0 | 14.617402 | 14.668769 | 14.659928 | 14.085251 | 14.105541 | 14.151400 |
ENSGALG00010007529 CDH13 | 17521.62235 | 0.5279203 | 0.0317741 | 16.61480 | 0 | 0 | 14.439400 | 14.417375 | 14.438277 | 13.903476 | 13.972360 | 13.952394 |
ENSGALG00010024266 ENSGALG00010024266 | 1335.25142 | -1.1921850 | 0.0729832 | -16.33506 | 0 | 0 | 10.907831 | 10.994855 | 10.964448 | 11.623680 | 11.674189 | 11.524813 |
ENSGALG00010001707 ENSGALG00010001707 | 177.23524 | -5.9380826 | 0.3765330 | -15.77042 | 0 | 0 | 9.585784 | 9.575079 | 9.663097 | 10.417210 | 10.499499 | 10.491322 |
ENSGALG00010013345 DCN | 5257.02603 | 0.6339014 | 0.0411284 | 15.41273 | 0 | 0 | 12.939730 | 12.895469 | 12.928771 | 12.437493 | 12.362882 | 12.440636 |
ENSGALG00010001966 ARHGAP6 | 374.36645 | 1.5853355 | 0.1097062 | 14.45074 | 0 | 0 | 10.717642 | 10.710802 | 10.737895 | 10.194791 | 10.216143 | 10.227198 |
ENSGALG00010018583 PPL | 193.48107 | 2.2727200 | 0.1611930 | 14.09937 | 0 | 0 | 10.424759 | 10.437238 | 10.431573 | 9.941605 | 9.897293 | 9.920485 |
ENSGALG00010023078 TAGLN | 3886.16447 | -0.6328938 | 0.0461591 | -13.71115 | 0 | 0 | 12.034835 | 12.147572 | 12.086509 | 12.551823 | 12.583169 | 12.568158 |
ENSGALG00010022071 ACTA2 | 44250.86967 | -0.3876839 | 0.0282967 | -13.70065 | 0 | 0 | 15.269904 | 15.286664 | 15.280297 | 15.622160 | 15.672283 | 15.668759 |
ENSGALG00010006546 SMOC2 | 8454.33630 | 0.5122392 | 0.0387624 | 13.21485 | 0 | 0 | 13.465919 | 13.465196 | 13.470103 | 13.021671 | 12.968935 | 13.084408 |
ENSGALG00010024570 TPM1 | 45795.87484 | -0.3664513 | 0.0285959 | -12.81483 | 0 | 0 | 15.336329 | 15.369464 | 15.308541 | 15.685148 | 15.702617 | 15.693540 |
ENSGALG00010004981 ENSGALG00010004981 | 12008.18379 | 0.3869920 | 0.0316129 | 12.24160 | 0 | 0 | 13.868992 | 13.882645 | 13.868176 | 13.520056 | 13.551422 | 13.505426 |
ENSGALG00010022843 ENSGALG00010022843 | 84.40964 | -5.1420390 | 0.4299877 | -11.95857 | 0 | 0 | 9.628519 | 9.575079 | 9.581480 | 10.158912 | 10.181125 | 10.162026 |
ENSGALG00010025025 ENSGALG00010025025 | 130.72224 | -2.4785877 | 0.2073377 | -11.95435 | 0 | 0 | 9.816418 | 9.802509 | 9.847407 | 10.234036 | 10.327206 | 10.261521 |
ENSGALG00010009749 NDRG1 | 3131.46592 | 0.5252286 | 0.0442918 | 11.85837 | 0 | 0 | 12.295811 | 12.288884 | 12.298751 | 11.917419 | 11.885895 | 11.946596 |
ENSGALG00010005533 OPN4-1 | 79.28905 | 4.7699728 | 0.4142018 | 11.51606 | 0 | 0 | 10.232911 | 10.109868 | 10.077548 | 9.610357 | 9.599753 | 9.621508 |
dge8 <- dge
write.table(dge8,file="dge8.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge8,"Rfx NTC gRNA vs Hf NTC gRNA")
make_volcano(dge8,"Rfx NTC gRNA vs Hf NTC gRNA")
make_heatmap(dge8,"Rfx NTC gRNA vs Hf NTC gRNA",ss8,xx8,n=30)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge8$gene <- sapply(strsplit(rownames(dge8)," "),"[[",2)
m8 <- aggregate(stat ~ gene,dge8,mean)
rownames(m8) <- m8$gene ; m8$gene <- NULL
mres8 <- mitch_calc(m8, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres8$enrichment_result,20) %>%
kbl(caption = "Top GO in Rfx NTC gRNA vs Hf NTC gRNA") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
26 | GO:0000245 spliceosomal complex assembly | 10 | 0.0000652 | -0.7291836 | 0.0086225 |
779 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | 0.6493016 | 0.0000000 |
1047 | GO:0035145 exon-exon junction complex | 10 | 0.0004119 | -0.6450487 | 0.0331612 |
781 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000005 | 0.5808455 | 0.0002931 |
799 | GO:0030127 COPII vesicle coat | 10 | 0.0020106 | 0.5640605 | 0.0890191 |
1737 | GO:1905564 positive regulation of vascular endothelial cell proliferation | 10 | 0.0021784 | 0.5596991 | 0.0899115 |
1771 | GO:2001244 positive regulation of intrinsic apoptotic signaling pathway | 11 | 0.0016124 | 0.5491436 | 0.0793190 |
1723 | GO:1903076 regulation of protein localization to plasma membrane | 18 | 0.0000663 | 0.5430965 | 0.0086225 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000017 | 0.5323057 | 0.0006312 |
1724 | GO:1903077 negative regulation of protein localization to plasma membrane | 13 | 0.0010190 | 0.5262392 | 0.0622315 |
200 | GO:0004364 glutathione transferase activity | 10 | 0.0057273 | 0.5046029 | 0.1410611 |
209 | GO:0004602 glutathione peroxidase activity | 12 | 0.0025299 | 0.5034624 | 0.0974022 |
1577 | GO:0071353 cellular response to interleukin-4 | 10 | 0.0059226 | 0.5026016 | 0.1410611 |
217 | GO:0004683 calcium/calmodulin-dependent protein kinase activity | 11 | 0.0055974 | 0.4824393 | 0.1410611 |
1213 | GO:0044322 endoplasmic reticulum quality control compartment | 11 | 0.0058386 | 0.4800427 | 0.1410611 |
1443 | GO:0051642 centrosome localization | 14 | 0.0019056 | 0.4792375 | 0.0865340 |
474 | GO:0007017 microtubule-based process | 11 | 0.0059738 | 0.4787377 | 0.1410611 |
788 | GO:0030020 extracellular matrix structural constituent conferring tensile strength | 16 | 0.0009995 | 0.4751812 | 0.0622315 |
798 | GO:0030100 regulation of endocytosis | 12 | 0.0047672 | 0.4705639 | 0.1321895 |
609 | GO:0008593 regulation of Notch signaling pathway | 10 | 0.0117287 | 0.4602719 | 0.1790655 |
write.table(mres8$enrichment_result,file="mitch8.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres8$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 26
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Rfx NTC gRNA vs Hf NTC gRNA",xlab="ES")
grid()
if ( ! file.exists("mitch8.html") ) {
mitch_report(res=mres8,outfile="mitch8.html")
}
ss9 <- subset(ss,SampleGroup=="Rfx_Tfx_ctl" | SampleGroup=="Hf_Tfx_ctl")
ss9$trt <- factor(grepl("Hf",ss9$SampleGroup))
rownames(ss9) <- ss9$SampleLabel
xx9 <- xx[,colnames(xx) %in% ss9$SampleLabel]
xx9f <- xx9[rowMeans(xx9)>=10,]
dim(xx9)
## [1] 30111 6
dim(xx9f)
## [1] 14432 6
dds <- DESeqDataSetFromMatrix(countData = xx9f , colData = ss9, design = ~ trt )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes in Hf as compared to Rfx (Tfx ctl)") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Hf_Tfx_ctl_1 | Hf_Tfx_ctl_2 | Hf_Tfx_ctl_3 | Rfx_Tfx_ctl_1 | Rfx_Tfx_ctl_2 | Rfx_Tfx_ctl_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSGALG00010005474 COL8A1 | 5058.9658 | 1.3742414 | 0.0342368 | 40.13926 | 0 | 0 | 13.39912 | 13.38567 | 13.37769 | 12.54041 | 12.54280 | 12.54890 |
ENSGALG00010007873 ENSGALG00010007873 | 448243.5748 | -0.6993259 | 0.0274983 | -25.43159 | 0 | 0 | 18.38479 | 18.39765 | 18.41131 | 19.06767 | 19.15229 | 19.05193 |
ENSGALG00010002949 ENSGALG00010002949 | 534836.9775 | -0.6803653 | 0.0267654 | -25.41954 | 0 | 0 | 18.66023 | 18.66924 | 18.65606 | 19.31972 | 19.39478 | 19.29568 |
ENSGALG00010009067 ENSGALG00010009067 | 203805.0933 | -0.6980345 | 0.0278322 | -25.08013 | 0 | 0 | 17.30344 | 17.30927 | 17.22611 | 17.96055 | 17.99866 | 17.93573 |
ENSGALG00010018616 ENSGALG00010018616 | 544278.5844 | -0.6720191 | 0.0288915 | -23.26007 | 0 | 0 | 18.65787 | 18.71084 | 18.70660 | 19.34623 | 19.41905 | 19.31035 |
ENSGALG00010009793 TNFAIP6 | 4464.2580 | 0.9719472 | 0.0456664 | 21.28363 | 0 | 0 | 13.16411 | 13.15566 | 13.21884 | 12.59233 | 12.54394 | 12.64832 |
ENSGALG00010022071 ACTA2 | 43846.8244 | -0.4723792 | 0.0230126 | -20.52696 | 0 | 0 | 15.28501 | 15.32576 | 15.29375 | 15.73850 | 15.73571 | 15.73870 |
ENSGALG00010016647 EGR1 | 3657.9302 | -0.9109528 | 0.0457658 | -19.90467 | 0 | 0 | 12.49625 | 12.46253 | 12.44206 | 12.95232 | 13.03656 | 12.95284 |
ENSGALG00010013345 DCN | 5179.6563 | 0.6776020 | 0.0342031 | 19.81110 | 0 | 0 | 13.24818 | 13.23261 | 13.27551 | 12.82257 | 12.82740 | 12.81751 |
ENSGALG00010027337 AQP1 | 20799.0852 | 0.5037333 | 0.0257757 | 19.54293 | 0 | 0 | 14.75603 | 14.78298 | 14.78199 | 14.33215 | 14.32762 | 14.36792 |
ENSGALG00010005417 LOXL3 | 771.1802 | 1.5398981 | 0.0788635 | 19.52611 | 0 | 0 | 11.97615 | 11.98615 | 11.95391 | 11.53834 | 11.54718 | 11.49336 |
ENSGALG00010024570 TPM1 | 45467.9084 | -0.4386000 | 0.0225627 | -19.43914 | 0 | 0 | 15.35302 | 15.37821 | 15.37045 | 15.76927 | 15.78830 | 15.76219 |
ENSGALG00010023078 TAGLN | 3845.3403 | -0.7620142 | 0.0399556 | -19.07152 | 0 | 0 | 12.56167 | 12.57109 | 12.52818 | 13.00323 | 12.96238 | 13.01143 |
ENSGALG00010007529 CDH13 | 17234.2465 | 0.5250673 | 0.0276973 | 18.95732 | 0 | 0 | 14.52554 | 14.55656 | 14.55737 | 14.10517 | 14.13993 | 14.08305 |
ENSGALG00010024266 ENSGALG00010024266 | 1239.9974 | -1.1639972 | 0.0685222 | -16.98716 | 0 | 0 | 11.79915 | 11.79426 | 11.73573 | 12.23202 | 12.21638 | 12.15865 |
ENSGALG00010018583 PPL | 190.1852 | 3.0313472 | 0.1817951 | 16.67453 | 0 | 0 | 11.46364 | 11.44805 | 11.52280 | 11.08591 | 11.07339 | 11.09124 |
ENSGALG00010006546 SMOC2 | 8575.7594 | 0.5070699 | 0.0359863 | 14.09065 | 0 | 0 | 13.70860 | 13.69746 | 13.77144 | 13.34728 | 13.32509 | 13.39715 |
ENSGALG00010017983 SLC4A11 | 1553.3044 | -0.7385209 | 0.0526192 | -14.03521 | 0 | 0 | 11.96701 | 11.99134 | 11.98150 | 12.28009 | 12.27571 | 12.29094 |
ENSGALG00010024254 ENSGALG00010024254 | 315.3533 | -1.8665545 | 0.1333077 | -14.00185 | 0 | 0 | 11.24508 | 11.29439 | 11.22861 | 11.64451 | 11.56554 | 11.59804 |
ENSGALG00010001966 ARHGAP6 | 375.6951 | 1.5312095 | 0.1105491 | 13.85094 | 0 | 0 | 11.65129 | 11.65890 | 11.63328 | 11.34965 | 11.34659 | 11.29544 |
dge9 <- dge
write.table(dge9,file="dge9.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge9,"Rfx Tfx ctl vs Hf Tfx ctl")
make_volcano(dge9,"Rfx Tfx ctl vs Hf Tfx ctl")
make_heatmap(dge9,"Rfx Tfx ctl vs Hf Tfx ctl",ss9,xx9,n=30)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge9$gene <- sapply(strsplit(rownames(dge9)," "),"[[",2)
m9 <- aggregate(stat ~ gene,dge9,mean)
rownames(m9) <- m9$gene ; m9$gene <- NULL
mres9 <- mitch_calc(m9, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres9$enrichment_result,20) %>%
kbl(caption = "Top GO in Rfx Tfx ctl vs Hf Tfx ctl") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
777 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | 0.7836617 | 0.0000000 |
1046 | GO:0035145 exon-exon junction complex | 10 | 0.0000517 | -0.7391745 | 0.0060881 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | 0.7375536 | 0.0000000 |
779 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | 0.7212603 | 0.0000002 |
1733 | GO:1905564 positive regulation of vascular endothelial cell proliferation | 10 | 0.0004731 | 0.6383407 | 0.0298708 |
1082 | GO:0036121 double-stranded DNA helicase activity | 11 | 0.0003015 | -0.6292759 | 0.0231733 |
217 | GO:0004683 calcium/calmodulin-dependent protein kinase activity | 11 | 0.0006656 | 0.5926115 | 0.0346096 |
209 | GO:0004602 glutathione peroxidase activity | 12 | 0.0006052 | 0.5717165 | 0.0328475 |
1739 | GO:1990391 DNA repair complex | 10 | 0.0035511 | -0.5324486 | 0.0910422 |
1684 | GO:0140662 ATP-dependent protein folding chaperone | 23 | 0.0000117 | -0.5278440 | 0.0020712 |
429 | GO:0006623 protein targeting to vacuole | 11 | 0.0027829 | -0.5207864 | 0.0793580 |
1076 | GO:0035925 mRNA 3’-UTR AU-rich region binding | 13 | 0.0014093 | 0.5114323 | 0.0534179 |
180 | GO:0003735 structural constituent of ribosome | 118 | 0.0000000 | 0.5093871 | 0.0000000 |
1758 | GO:2000648 positive regulation of stem cell proliferation | 12 | 0.0024527 | 0.5050266 | 0.0737111 |
798 | GO:0030127 COPII vesicle coat | 10 | 0.0058750 | 0.5030850 | 0.1180342 |
615 | GO:0009378 four-way junction helicase activity | 13 | 0.0018124 | -0.4996819 | 0.0582618 |
175 | GO:0003724 RNA helicase activity | 37 | 0.0000002 | -0.4918166 | 0.0000583 |
608 | GO:0008593 regulation of Notch signaling pathway | 10 | 0.0072324 | 0.4905364 | 0.1291627 |
1742 | GO:1990518 single-stranded 3’-5’ DNA helicase activity | 11 | 0.0053756 | -0.4847285 | 0.1138289 |
1696 | GO:0140861 DNA repair-dependent chromatin remodeling | 14 | 0.0017337 | -0.4835379 | 0.0568600 |
write.table(mres9$enrichment_result,file="mitch9.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres9$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 40
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Rfx Tfx ctl vs Hf Tfx ctl",xlab="ES")
grid()
if ( ! file.exists("mitch9.html") ) {
mitch_report(res=mres9,outfile="mitch9.html")
}
ss10 <- subset(ss,SampleGroup=="Rfx_NTfx_ctl" | SampleGroup=="Hf_NTfx_ctl")
ss10$trt <- factor(grepl("Hf",ss10$SampleGroup))
rownames(ss10) <- ss10$SampleLabel
xx10 <- xx[,colnames(xx) %in% ss10$SampleLabel]
xx10f <- xx10[rowMeans(xx10)>=10,]
dim(xx10)
## [1] 30111 6
dim(xx10f)
## [1] 14237 6
dds <- DESeqDataSetFromMatrix(countData = xx10f , colData = ss10, design = ~ trt )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes in Hf as compared to Rfx (NTfx ctl)") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Hf_NTfx_ctl_1 | Hf_NTfx_ctl_2 | Hf_NTfx_ctl_3 | Rfx_NTfx_ctl_1 | Rfx_NTfx_ctl_2 | Rfx_NTfx_ctl_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSGALG00010005474 COL8A1 | 4913.2772 | 1.2209302 | 0.0402450 | 30.33741 | 0 | 0 | 13.10232 | 13.12808 | 13.08417 | 12.20203 | 12.25901 | 12.21044 |
ENSGALG00010009793 TNFAIP6 | 3492.1439 | 1.1160675 | 0.0515550 | 21.64810 | 0 | 0 | 12.72016 | 12.69834 | 12.69551 | 11.92403 | 11.92121 | 12.04246 |
ENSGALG00010013345 DCN | 6085.8214 | 0.7182705 | 0.0379330 | 18.93525 | 0 | 0 | 13.22778 | 13.17361 | 13.24523 | 12.67281 | 12.65105 | 12.66953 |
ENSGALG00010022071 ACTA2 | 38383.0388 | -0.5404750 | 0.0291876 | -18.51727 | 0 | 0 | 15.00890 | 15.04445 | 15.01582 | 15.50711 | 15.56130 | 15.54005 |
ENSGALG00010024266 ENSGALG00010024266 | 1777.1059 | -1.1510012 | 0.0630063 | -18.26804 | 0 | 0 | 11.46499 | 11.47697 | 11.37332 | 12.06177 | 12.09515 | 12.00912 |
ENSGALG00010023078 TAGLN | 3380.0513 | -0.8167866 | 0.0447485 | -18.25284 | 0 | 0 | 12.06826 | 12.05156 | 12.04397 | 12.55389 | 12.63734 | 12.59883 |
ENSGALG00010027337 AQP1 | 21189.7609 | 0.5811939 | 0.0333915 | 17.40543 | 0 | 0 | 14.74510 | 14.72609 | 14.75695 | 14.15978 | 14.25249 | 14.22204 |
ENSGALG00010005417 LOXL3 | 709.4946 | 1.3398635 | 0.0797463 | 16.80157 | 0 | 0 | 11.37818 | 11.38317 | 11.39803 | 10.85610 | 10.91211 | 10.90847 |
ENSGALG00010000588 ENSGALG00010000588 | 20314.0353 | 0.7127700 | 0.0429404 | 16.59906 | 0 | 0 | 14.63852 | 14.78564 | 14.77269 | 14.06399 | 14.14292 | 14.04919 |
ENSGALG00010024254 ENSGALG00010024254 | 344.6289 | -2.0923129 | 0.1273135 | -16.43434 | 0 | 0 | 10.53561 | 10.53628 | 10.47439 | 10.97980 | 11.07570 | 11.07734 |
ENSGALG00010001707 ENSGALG00010001707 | 172.7742 | -5.9309245 | 0.3714765 | -15.96581 | 0 | 0 | 10.11689 | 10.07775 | 10.13334 | 10.82744 | 10.81121 | 10.83053 |
ENSGALG00010006546 SMOC2 | 10127.1906 | 0.6035196 | 0.0385533 | 15.65414 | 0 | 0 | 13.82491 | 13.73471 | 13.81814 | 13.25254 | 13.28246 | 13.32158 |
ENSGALG00010004783 ENSGALG00010004783 | 3764.9784 | 0.6258509 | 0.0410313 | 15.25301 | 0 | 0 | 12.64119 | 12.66616 | 12.66422 | 12.25132 | 12.22757 | 12.20279 |
ENSGALG00010018583 PPL | 148.1320 | 2.9775210 | 0.2033634 | 14.64138 | 0 | 0 | 10.74340 | 10.72310 | 10.71310 | 10.30926 | 10.24258 | 10.23297 |
ENSGALG00010011313 RASSF9 | 2586.0599 | 0.7225685 | 0.0496568 | 14.55124 | 0 | 0 | 12.30650 | 12.26242 | 12.35030 | 11.84396 | 11.85453 | 11.88642 |
ENSGALG00010001966 ARHGAP6 | 346.0891 | 1.5194017 | 0.1107348 | 13.72109 | 0 | 0 | 11.00521 | 11.00006 | 11.00677 | 10.58600 | 10.58652 | 10.63268 |
ENSGALG00010002566 TMSB4X | 27168.3486 | 0.3973974 | 0.0298101 | 13.33099 | 0 | 0 | 15.02359 | 14.98211 | 15.01263 | 14.62974 | 14.61464 | 14.66332 |
ENSGALG00010018867 RPS2 | 52755.4226 | 0.4178890 | 0.0316454 | 13.20536 | 0 | 0 | 15.97908 | 15.89776 | 15.90823 | 15.50210 | 15.54748 | 15.52946 |
ENSGALG00010007529 CDH13 | 18511.8221 | 0.4107463 | 0.0317293 | 12.94534 | 0 | 0 | 14.49735 | 14.46503 | 14.53089 | 14.14369 | 14.13130 | 14.10502 |
ENSGALG00010025318 NUAK2 | 1241.2072 | -0.8088486 | 0.0625057 | -12.94040 | 0 | 0 | 11.31167 | 11.30671 | 11.31519 | 11.66072 | 11.74002 | 11.68401 |
dge10 <- dge
write.table(dge10,file="dge10.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge10,"Rfx NTfx ctl vs Hf NTfx ctl")
make_volcano(dge10,"Rfx NTfx ctl vs Hf NTfx ctl")
make_heatmap(dge10,"Rfx NTfx ctl vs Hf NTfx ctl",ss10,xx10,n=30)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge10$gene <- sapply(strsplit(rownames(dge10)," "),"[[",2)
m10 <- aggregate(stat ~ gene,dge10,mean)
rownames(m10) <- m10$gene ; m10$gene <- NULL
mres10 <- mitch_calc(m10, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres10$enrichment_result,20) %>%
kbl(caption = "Top GO in Rfx NTfx ctl vs Hf NTfx ctl") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
778 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | 0.8670008 | 0.0000000 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | 0.7528653 | 0.0000000 |
1222 | GO:0045116 protein neddylation | 10 | 0.0000560 | 0.7356906 | 0.0024108 |
780 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | 0.7293922 | 0.0000001 |
1046 | GO:0035145 exon-exon junction complex | 10 | 0.0001121 | -0.7053744 | 0.0039546 |
1422 | GO:0051393 alpha-actinin binding | 10 | 0.0001289 | -0.6991054 | 0.0044601 |
1320 | GO:0048041 focal adhesion assembly | 14 | 0.0000252 | -0.6502703 | 0.0012205 |
1082 | GO:0036121 double-stranded DNA helicase activity | 11 | 0.0003045 | -0.6288199 | 0.0082647 |
180 | GO:0003735 structural constituent of ribosome | 118 | 0.0000000 | 0.6260841 | 0.0000000 |
973 | GO:0032585 multivesicular body membrane | 12 | 0.0002988 | 0.6028883 | 0.0082364 |
390 | GO:0006337 nucleosome disassembly | 10 | 0.0009718 | -0.6023808 | 0.0200929 |
893 | GO:0030992 intraciliary transport particle B | 15 | 0.0000999 | 0.5802048 | 0.0036723 |
32 | GO:0000380 alternative mRNA splicing, via spliceosome | 16 | 0.0000890 | -0.5658604 | 0.0034112 |
1682 | GO:0140658 ATP-dependent chromatin remodeler activity | 11 | 0.0014852 | -0.5533057 | 0.0256858 |
1487 | GO:0060395 SMAD protein signal transduction | 14 | 0.0003811 | -0.5484092 | 0.0097434 |
1107 | GO:0042073 intraciliary transport | 16 | 0.0001646 | 0.5440684 | 0.0054792 |
155 | GO:0003148 outflow tract septum morphogenesis | 12 | 0.0013319 | -0.5350123 | 0.0237320 |
375 | GO:0006120 mitochondrial electron transport, NADH to ubiquinone | 19 | 0.0000727 | 0.5257519 | 0.0029804 |
56 | GO:0000793 condensed chromosome | 13 | 0.0010318 | -0.5256826 | 0.0202529 |
1537 | GO:0070411 I-SMAD binding | 11 | 0.0026225 | -0.5239376 | 0.0392035 |
write.table(mres10$enrichment_result,file="mitch10.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres10$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 131
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Rfx NTfx ctl vs Hf NTfx ctl",xlab="ES")
grid()
par(mar = c(5.1, 4.1, 4.1, 2.1) )
if ( ! file.exists("mitch10.html") ) {
mitch_report(res=mres10,outfile="mitch10.html")
}
ss11 <- subset(ss,SampleGroup=="Rfx_NTC_gRNA" | SampleGroup=="Rfx_DsRed_gRNA" | SampleGroup=="Hf_NTC_gRNA" | SampleGroup=="Hf_DsRed_gRNA")
ss11$tgt <- factor(grepl("DsRed",ss11$SampleGroup))
ss11$hf <- factor(grepl("Hf",ss11$SampleGroup))
rownames(ss11) <- ss11$SampleLabel
xx11 <- xx[,colnames(xx) %in% ss11$SampleLabel]
xx11f <- xx11[rowMeans(xx11)>=10,]
dim(xx11)
## [1] 30111 12
dim(xx11f)
## [1] 14471 12
dds <- DESeqDataSetFromMatrix(countData = xx11f , colData = ss11, design = ~ tgt * hf )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression changes caused by interaction of DsRed targeting and Rfx vs Hf") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Hf_DsRed_gRNA_1 | Hf_DsRed_gRNA_2 | Hf_DsRed_gRNA_3 | Hf_NTC_gRNA_1 | Hf_NTC_gRNA_2 | Hf_NTC_gRNA_3 | Rfx_DsRed_gRNA_1 | Rfx_DsRed_gRNA_2 | Rfx_DsRed_gRNA_3 | Rfx_NTC_gRNA_1 | Rfx_NTC_gRNA_2 | Rfx_NTC_gRNA_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DsRed DsRed | 8066.52333 | 1.3020176 | 0.0869722 | 14.970495 | 0.0000000 | 0.0000000 | 12.197207 | 12.270675 | 12.187288 | 13.632701 | 13.460708 | 13.487294 | 11.606560 | 11.567849 | 11.731227 | 14.109481 | 13.933426 | 14.015058 |
ENSGALG00010017057 NDUFAB1 | 1951.86547 | 0.4325047 | 0.0922153 | 4.690164 | 0.0000027 | 0.0116847 | 11.717552 | 11.776832 | 11.767789 | 11.530794 | 11.487702 | 11.527004 | 11.249755 | 11.376986 | 11.424503 | 11.360960 | 11.387851 | 11.497924 |
ENSGALG00010020691 ENSGALG00010020691 | 817.01552 | 0.5469877 | 0.1168280 | 4.681992 | 0.0000028 | 0.0116847 | 10.832841 | 10.873360 | 10.982117 | 10.770724 | 10.700098 | 10.705296 | 10.556225 | 10.669116 | 10.675794 | 10.719825 | 10.752426 | 10.780337 |
ENSGALG00010023749 RPP25 | 91.34135 | 1.5552370 | 0.3371352 | 4.613096 | 0.0000040 | 0.0116847 | 9.845658 | 9.801078 | 9.792541 | 9.703250 | 9.522536 | 9.632288 | 9.483165 | 9.564841 | 9.558902 | 9.574391 | 9.653987 | 9.739156 |
ENSGALG00010024763 HOXD9 | 32.18087 | 3.0220335 | 0.6556184 | 4.609440 | 0.0000040 | 0.0116847 | 9.658433 | 9.606746 | 9.644846 | 9.431427 | 9.264160 | 9.358889 | 9.232229 | 9.192004 | 9.325291 | 9.238688 | 9.363163 | 9.393097 |
ENSGALG00010017499 SNRPD1 | 3744.21816 | 0.3055852 | 0.0680723 | 4.489125 | 0.0000072 | 0.0167117 | 12.308570 | 12.385796 | 12.337484 | 12.206192 | 12.190173 | 12.202358 | 12.056307 | 12.132723 | 12.137909 | 12.138153 | 12.217252 | 12.268531 |
ENSGALG00010003570 ENSGALG00010003570 | 669.33628 | -6.7238577 | 1.5065997 | -4.462936 | 0.0000081 | 0.0167117 | 9.416812 | 9.406989 | 9.399598 | 9.933820 | 11.417810 | 9.846013 | 11.800665 | 11.280347 | 10.567840 | 10.617005 | 10.279986 | 9.482196 |
ENSGALG00010027900 REN | 876.48513 | -0.4530758 | 0.1084750 | -4.176776 | 0.0000296 | 0.0534792 | 10.723937 | 10.643288 | 10.661910 | 10.917137 | 10.815309 | 10.818966 | 10.908402 | 10.853193 | 10.888229 | 10.765858 | 10.889729 | 10.794441 |
ENSGALG00010009059 MED29 | 667.25990 | 0.4635630 | 0.1125726 | 4.117903 | 0.0000382 | 0.0614711 | 10.699818 | 10.733586 | 10.792496 | 10.604665 | 10.570080 | 10.578123 | 10.471373 | 10.495802 | 10.567840 | 10.557231 | 10.562018 | 10.629159 |
ENSGALG00010001531 ENSGALG00010001531 | 38.84716 | -2.1118212 | 0.5215305 | -4.049277 | 0.0000514 | 0.0743414 | 9.411516 | 9.489638 | 9.387984 | 9.524114 | 9.559058 | 9.366532 | 9.561388 | 9.474553 | 9.614114 | 9.296499 | 9.343141 | 9.399824 |
ENSGALG00010019231 ENSGALG00010019231 | 860.66187 | -0.4775430 | 0.1250308 | -3.819402 | 0.0001338 | 0.1548681 | 10.737999 | 10.640221 | 10.634727 | 10.763085 | 10.933171 | 10.784660 | 10.810046 | 10.872829 | 10.962899 | 10.765858 | 10.781344 | 10.818239 |
ENSGALG00010023836 NDUFS3 | 2082.62673 | 0.2826528 | 0.0741048 | 3.814233 | 0.0001366 | 0.1548681 | 11.645296 | 11.736136 | 11.733682 | 11.551201 | 11.579437 | 11.573240 | 11.464507 | 11.525416 | 11.494658 | 11.563816 | 11.507895 | 11.596568 |
ENSGALG00010021073 NDUFB8 | 2906.00702 | 0.3462428 | 0.0913499 | 3.790293 | 0.0001505 | 0.1548681 | 11.972696 | 12.120472 | 12.111108 | 11.936143 | 11.854028 | 11.944728 | 11.706600 | 11.878073 | 11.864494 | 11.905521 | 11.884076 | 11.980338 |
ENSGALG00010020607 ENSGALG00010020607 | 2050.30660 | 0.3133224 | 0.0828182 | 3.783256 | 0.0001548 | 0.1548681 | 11.766191 | 11.738308 | 11.736176 | 11.568125 | 11.484085 | 11.617413 | 11.379977 | 11.471153 | 11.518040 | 11.467223 | 11.487623 | 11.514587 |
ENSGALG00010023206 HSPB9 | 290.56821 | 0.6822730 | 0.1807743 | 3.774171 | 0.0001605 | 0.1548681 | 9.915701 | 9.931631 | 9.865365 | 10.181759 | 10.203777 | 10.164554 | 9.863152 | 9.867996 | 9.864787 | 10.512639 | 10.306989 | 10.357217 |
ENSGALG00010020624 MINOS1 | 1460.06212 | 0.3039089 | 0.0815506 | 3.726631 | 0.0001941 | 0.1677978 | 11.268463 | 11.352899 | 11.331250 | 11.245348 | 11.238210 | 11.198956 | 11.112868 | 11.209838 | 11.143517 | 11.278166 | 11.240361 | 11.256464 |
ENSGALG00010007964 RECQL4 | 1055.76080 | -0.4017280 | 0.1079143 | -3.722658 | 0.0001971 | 0.1677978 | 10.862338 | 10.798819 | 10.857670 | 10.949696 | 10.950461 | 10.963268 | 11.168024 | 11.045682 | 11.000023 | 11.036413 | 10.917126 | 10.913564 |
ENSGALG00010025365 SIKE1 | 3887.99423 | 0.2847988 | 0.0780400 | 3.649393 | 0.0002629 | 0.2113110 | 12.250367 | 12.345370 | 12.425101 | 12.183367 | 12.142894 | 12.220531 | 12.189145 | 12.222402 | 12.257848 | 12.258585 | 12.250038 | 12.366356 |
ENSGALG00010003549 ENSGALG00010003549 | 1027.11817 | 1.9886030 | 0.5502423 | 3.614050 | 0.0003015 | 0.2295790 | 11.350463 | 11.548611 | 11.597743 | 10.958430 | 10.600865 | 10.180898 | 10.696008 | 10.611555 | 10.353940 | 10.824314 | 10.569321 | 11.006260 |
ENSGALG00010023617 ENSGALG00010023617 | 186.29156 | 0.9762562 | 0.2719689 | 3.589588 | 0.0003312 | 0.2396242 | 10.035607 | 10.012714 | 10.059341 | 9.935786 | 9.757533 | 10.017433 | 9.702894 | 9.759882 | 9.840549 | 9.819975 | 9.974632 | 9.941505 |
dge11 <- dge
write.table(dge11,file="dge11.tsv",quote=FALSE,sep='\t')
# plots
par(mar = c(5.1, 4.1, 4.1, 2.1) )
maplot(dge11,"gRNA target * Rfx/HF interaction")
make_volcano(dge11,"gRNA target * Rfx/HF interaction")
make_heatmap(dge11,"gRNA target * Rfx/HF interaction",ss11,xx11,n=20)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning
## Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
# pathway
dge11$gene <- sapply(strsplit(rownames(dge11)," "),"[[",2)
m11 <- aggregate(stat ~ gene,dge11,mean)
rownames(m11) <- m11$gene ; m11$gene <- NULL
mres11 <- mitch_calc(m11, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres11$enrichment_result,20) %>%
kbl(caption = "Top GO in gRNA target * Rfx/Hf interaction") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
778 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | 0.8982640 | 0.0000000 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | 0.8508806 | 0.0000000 |
780 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | 0.8118646 | 0.0000000 |
180 | GO:0003735 structural constituent of ribosome | 118 | 0.0000000 | 0.7504334 | 0.0000000 |
1237 | GO:0045271 respiratory chain complex I | 31 | 0.0000000 | 0.6687426 | 0.0000000 |
408 | GO:0006412 translation | 96 | 0.0000000 | 0.6627106 | 0.0000000 |
440 | GO:0006749 glutathione metabolic process | 15 | 0.0000114 | 0.6544757 | 0.0006710 |
994 | GO:0032981 mitochondrial respiratory chain complex I assembly | 38 | 0.0000000 | 0.6445550 | 0.0000000 |
376 | GO:0006120 mitochondrial electron transport, NADH to ubiquinone | 19 | 0.0000015 | 0.6368706 | 0.0001181 |
315 | GO:0005762 mitochondrial large ribosomal subunit | 38 | 0.0000000 | 0.6263827 | 0.0000000 |
1130 | GO:0042474 middle ear morphogenesis | 10 | 0.0008469 | 0.6093964 | 0.0220313 |
110 | GO:0001732 formation of cytoplasmic translation initiation complex | 12 | 0.0002570 | 0.6093631 | 0.0089141 |
1018 | GO:0034314 Arp2/3 complex-mediated actin nucleation | 11 | 0.0005318 | 0.6032004 | 0.0156783 |
1527 | GO:0070131 positive regulation of mitochondrial translation | 10 | 0.0013457 | 0.5854896 | 0.0313989 |
1685 | GO:0140658 ATP-dependent chromatin remodeler activity | 11 | 0.0007949 | -0.5841114 | 0.0214273 |
1741 | GO:1990391 DNA repair complex | 10 | 0.0015341 | -0.5785739 | 0.0343517 |
572 | GO:0008137 NADH dehydrogenase (ubiquinone) activity | 10 | 0.0017401 | 0.5718523 | 0.0370233 |
347 | GO:0005852 eukaryotic translation initiation factor 3 complex | 10 | 0.0020126 | 0.5640080 | 0.0395580 |
806 | GO:0030150 protein import into mitochondrial matrix | 12 | 0.0007243 | 0.5635410 | 0.0200197 |
200 | GO:0004364 glutathione transferase activity | 10 | 0.0020656 | 0.5625944 | 0.0398510 |
write.table(mres11$enrichment_result,file="mitch11.tsv",quote=FALSE,sep='\t')
par(mar=c(5,25,3,3))
top <- mres11$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 110
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,
main="Top GO in gRNA target * Rfx/Hf interaction",xlab="ES")
grid()
par(mar = c(5.1, 4.1, 4.1, 2.1) )
if ( ! file.exists("mitch11.html") ) {
mitch_report(res=mres11,outfile="mitch11.html")
}
Make a Euler diagram of the differentially expressed genes.
Specifically compare contrast 1 and 4.
up1 <- unique(sapply(strsplit(rownames(subset(dge1,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
dn1 <- unique(sapply(strsplit(rownames(subset(dge1,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
up4 <- unique(sapply(strsplit(rownames(subset(dge4,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
dn4 <- unique(sapply(strsplit(rownames(subset(dge4,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
v1 <- list("Rfx up"=up1,"Rfx dn"=dn1,
"Hf up"=up4,"Hf dn"=dn4)
plot(euler(v1), quantities = TRUE, main="NTC vs DsRed gRNA")
message("Common up genes")
## Common up genes
intersect(up1,up4)
## [1] "IL8L2" "TNIP1" "K123"
## [4] "PTX3" "ENSGALG00010015706" "CCL4"
## [7] "ENSGALG00010022322" "IGFBP5" "CSF3"
## [10] "ENSGALG00010022313" "TNFSF15" "MYC"
message("Common down genes")
## Common down genes
intersect(dn1,dn4)
## [1] "DsRed" "Fbxw11-GFP" "HSPB9" "JAM3" "WNT9A"
message("Up genes specific to Rfx")
## Up genes specific to Rfx
setdiff(up1,up4)
## [1] "ENSGALG00010019621" "NUAK2" "ADAM8"
## [4] "BOP1" "SQSTM1" "TMEM63B"
## [7] "PPRC1" "NFKB2" "PHF19"
## [10] "PIEZO1" "UTP4" "ENSGALG00010029462"
## [13] "NOP56" "ENSGALG00010012858" "ENSGALG00010000177"
## [16] "SLC8A1" "ENSGALG00010027165" "BRD2"
## [19] "TNFRSF10B"
message("Up genes specific to Hf")
## Up genes specific to Hf
setdiff(up4,up1)
## [1] "ENSGALG00010003545" "NDUFAB1" "IRX5"
## [4] "HOXD9" "ENSGALG00010006816" "NFKBIA"
## [7] "ENSGALG00010025570" "RRS1" "TNFAIP6"
## [10] "ENSGALG00010020607" "AVD" "EIF1"
## [13] "AVPI1" "TNFRSF11B" "JUND"
## [16] "MRPL17" "CX3CL1" "RPP25"
## [19] "ENSGALG00010024292" "MED29" "MRPS15"
## [22] "ENSGALG00010020691" "SNRPD1" "ENSGALG00010000278"
## [25] "MRPS28" "FAM43A" "ENSGALG00010009123"
## [28] "WBP1" "DTX2" "FABP7"
## [31] "RPS28" "GATAD1" "EXOSC6"
## [34] "ENSGALG00010028461" "SIKE1" "FAM212A"
## [37] "NDUFS3" "SLC35B1" "JAC1"
## [40] "NDUFB8" "ID4" "DIO3"
message("Down genes specific to Rfx")
## Down genes specific to Rfx
setdiff(dn1,dn4)
## [1] "SCP2" "APCDD1" "RAB23"
## [4] "C1orf198" "TGFBR3" "CPED1"
## [7] "C1QTNF3" "SASH1" "WBP1L"
## [10] "ENSGALG00010028177" "MXRA8" "TRANK1"
## [13] "PTBP3"
message("Down genes specific to Hf")
## Down genes specific to Hf
setdiff(dn4,dn1)
## [1] "ENSGALG00010012473" "LPP" "TNRC6B"
## [4] "LAMA5" "ENSGALG00010018888" "SGCD"
## [7] "ENSGALG00010018696" "ENSGALG00010001704" "TCF4"
## [10] "ENSGALG00010012687" "ENSGALG00010016594" "ENSGALG00010012677"
## [13] "GLI2" "ASH1L" "ENSGALG00010018886"
## [16] "SH3PXD2A" "TTC28" "MGA"
## [19] "ZBTB20" "SPEN" "GOLGB1"
## [22] "CDC42BPA" "KMT2D" "EP300"
## [25] "CEP350" "AKAP13" "ENSGALG00010001318"
## [28] "FASN" "PRRC2B" "COL6A3"
## [31] "ENSGALG00010004063" "MYO9A" "ENSGALG00010000697"
## [34] "PCNT" "FBN1" "PRRC2C"
## [37] "ZNF469" "PLEKHG4" "ENSGALG00010009160"
## [40] "FLNB" "ADAMTS9" "ENSGALG00010020265"
## [43] "EP400" "NAV2" "SPTAN1"
## [46] "ARHGAP31" "MYH11" "NOTCH2"
## [49] "ANKRD17" "CHD6" "ENSGALG00010007190"
## [52] "IGF1R" "FRYL" "ENSGALG00010008225"
## [55] "REN" "FBN2" "ENSGALG00010013957"
## [58] "NOTUM" "ASPM" "ENSGALG00010012478"
## [61] "AGO2" "KIF1B" "ARHGEF12"
## [64] "MYO5A" "NOTCH1" "ENSGALG00010023327"
## [67] "TNC" "USP34" "HOOK3"
## [70] "NCOR1" "NBEAL1" "ENSGALG00010004662"
## [73] "ENSGALG00010025824" "ENSGALG00010010289" "CEP250"
## [76] "TNRC18" "CHD7" "PEAK1"
## [79] "ENSGALG00010028926" "ABCA5" "AXIN2"
## [82] "ENSGALG00010019437" "BOD1L1" "SLK"
## [85] "CHD9" "ENSGALG00010013747" "ENSGALG00010018018"
## [88] "COL5A1" "NF1" "ENSGALG00010012044"
## [91] "RC3H1" "ENSGALG00010008220" "POU2F1"
## [94] "TANC2" "ZZEF1" "ENSGALG00010026717"
## [97] "TNS1" "DOT1L" "GAS7"
## [100] "MYH10" "ENSGALG00010024799" "ENSGALG00010009880"
## [103] "N4BP2" "MED13" "ENSGALG00010002289"
## [106] "CENPF" "COL6A1" "AKAP11"
## [109] "ENSGALG00010007324" "DGKH" "CCDC88A"
## [112] "RALGAPB" "CREBBP" "SYNE2"
## [115] "XRN1" "CKAP5" "NAV3"
## [118] "VPS13A" "PLCE1" "SPTBN1"
## [121] "ENSGALG00010013811" "SETD1A" "DNAJC13"
## [124] "BMPR2" "ENSGALG00010019440" "ENSGALG00010010124"
## [127] "ENSGALG00010019735" "OIP5-AS1" "NCOA3"
## [130] "MDN1" "MACF1" "ENSGALG00010023657"
## [133] "EIF4EBP3" "PHIP" "BRWD3"
## [136] "SYNM" "KMT2C" "APC"
## [139] "DNAH10" "UBR4"
up1 <- unique(sapply(strsplit(rownames(subset(dge1,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
up2 <- unique(sapply(strsplit(rownames(subset(dge2,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
up3 <- unique(sapply(strsplit(rownames(subset(dge3,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
up4 <- unique(sapply(strsplit(rownames(subset(dge4,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
up5 <- unique(sapply(strsplit(rownames(subset(dge5,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
up6 <- unique(sapply(strsplit(rownames(subset(dge6,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
up7 <- unique(sapply(strsplit(rownames(subset(dge7,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
up8 <- unique(sapply(strsplit(rownames(subset(dge8,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
up9 <- unique(sapply(strsplit(rownames(subset(dge9,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
up10 <- unique(sapply(strsplit(rownames(subset(dge10,padj < 0.05 & log2FoldChange > 0))," "),"[[",2))
dn1 <- unique(sapply(strsplit(rownames(subset(dge1,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
dn2 <- unique(sapply(strsplit(rownames(subset(dge2,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
dn3 <- unique(sapply(strsplit(rownames(subset(dge3,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
dn4 <- unique(sapply(strsplit(rownames(subset(dge4,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
dn5 <- unique(sapply(strsplit(rownames(subset(dge5,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
dn6 <- unique(sapply(strsplit(rownames(subset(dge6,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
dn7 <- unique(sapply(strsplit(rownames(subset(dge7,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
dn8 <- unique(sapply(strsplit(rownames(subset(dge8,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
dn9 <- unique(sapply(strsplit(rownames(subset(dge9,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
dn10 <- unique(sapply(strsplit(rownames(subset(dge10,padj < 0.05 & log2FoldChange < 0))," "),"[[",2))
v1 <- list("Up1"=up1,"Up2"=up2,"Up3"=up3,
"Dn1"=dn1,"Dn2"=dn2,"Dn3"=dn3)
plot(euler(v1), quantities = TRUE, main="Rfx gene overlap")
v1 <- list("Up4"=up4,"Up5"=up5,"Up6"=up6,
"Dn4"=dn4,"Dn5"=dn5,"Dn6"=dn6)
plot(euler(v1), quantities = TRUE, main="Hf gene overlap")
v1 <- list("Up7"=up7,"Up8"=up8,"Up9"=up9,"Up10"=up10,
"Dn7"=dn7,"Dn8"=dn8,"Dn9"=dn9,"Dn10"=dn10)
plot(euler(v1), quantities = TRUE, main="Rfx-Hf comparison gene overlap")
v1 <- list("Up1"=up1,"Up2"=up2,"Up3"=up3, "Up4"=up4,"Up5"=up5,"Up6"=up6,"Up7"=up7,"Up8"=up8,"Up9"=up9,"Up10"=up10,
"Dn1"=dn1,"Dn2"=dn2,"Dn3"=dn3,"Dn4"=dn4,"Dn5"=dn5,"Dn6"=dn6,"Dn7"=dn7,"Dn8"=dn8,"Dn9"=dn9,"Dn10"=dn10)
upset(fromList(v1), order.by = "freq")
l <- list("Rfx"=m1, "Hf"=m4)
m <- mitch_import(l, DEtype="prescored")
## Note: Mean no. genes in input = 14456
## Note: no. genes in output = 14101
## Note: estimated proportion of input genes in output = 0.975
head(m)
## Rfx Hf
## 5_8S_rRNA 1.8503649 -0.01023976
## A4GALT -1.8915624 0.23351781
## AAAS 2.1906313 0.21120150
## AACS 1.1170591 0.57504626
## AADAC 0.7635603 -0.09350280
## AADAT -0.2696192 -1.21123488
plot(m,ylim=c(-50,10),xlim=c(-50,10),main="Test stat")
abline(1,1,col="red",lty=2,lwd=2)
sig <- subset(m,Rfx < -10)
points(sig,pch=19)
text(sig$Rfx,sig$Hf-2,labels=rownames(sig))
sig
## Rfx Hf
## DsRed -47.99253 -28.00853
## Fbxw11-GFP -17.80101 -23.77922
## HSPB9 -11.16618 -6.96703
plot(m,ylim=c(-11,10),xlim=c(-11,10),main="Test stat")
abline(1,1,col="red",lty=2,lwd=2)
sig <- subset(m,Hf > 5 | Rfx > 5 | Hf < -5 | Rfx < -5)
points(sig,pch=19)
text(sig$Rfx,sig$Hf+0.5,labels=rownames(sig),cex=0.7)
plot(m,ylim=c(-2,11),xlim=c(-2,11),main="Test stat")
abline(1,1,col="red",lty=2,lwd=2)
sig <- subset(m,Hf > 5 | Rfx > 5)
points(sig,pch=19)
text(sig$Rfx,sig$Hf+0.5,labels=rownames(sig),cex=0.7)
sig
## Rfx Hf
## CCL4 4.9146227 7.2069917
## CSF3 4.5616423 5.9868265
## ENSGALG00010003545 -0.7941936 6.7986079
## ENSGALG00010006816 2.8476270 5.9996088
## ENSGALG00010015706 5.1313522 3.6962549
## ENSGALG00010019621 5.4585553 0.7078594
## ENSGALG00010022322 4.7800917 10.0182679
## ENSGALG00010025570 1.1389740 5.2588473
## HOXD9 -1.6078076 6.0188043
## IL8L2 7.4032653 5.2112555
## IRX5 0.9078357 6.1598455
## K123 5.9266651 4.3901759
## NDUFAB1 -1.2928359 6.1785418
## NFKBIA 2.7841672 5.5024241
## NUAK2 5.1175934 1.1493253
## PTX3 5.1690275 4.3454939
## TNIP1 7.0925819 4.9665784
plot(m,ylim=c(-11,0),xlim=c(-11,0),main="Test stat")
abline(1,1,col="red",lty=2,lwd=2)
sig <- subset(m,Hf < -5 | Rfx < -5)
points(sig,pch=19)
text(sig$Rfx,sig$Hf-0.5,labels=rownames(sig),cex=0.7)
sig
## Rfx Hf
## ASH1L -0.31840850 -5.263332
## DsRed -47.99252613 -28.008533
## ENSGALG00010001704 -0.50218477 -5.461451
## ENSGALG00010012473 0.07297691 -6.766306
## ENSGALG00010012677 -0.61319658 -5.375869
## ENSGALG00010012687 -0.61848790 -5.418866
## ENSGALG00010016594 -0.81309349 -5.397298
## ENSGALG00010018696 -0.57295985 -5.542007
## ENSGALG00010018886 -0.45556734 -5.262599
## ENSGALG00010018888 -0.57261510 -5.934879
## Fbxw11-GFP -17.80100530 -23.779219
## GLI2 -1.61966555 -5.286938
## GOLGB1 -0.50227317 -5.061648
## HSPB9 -11.16617730 -6.967030
## JAM3 -5.53574121 -4.449473
## LAMA5 -0.64694229 -6.194777
## LPP -0.84694703 -6.591509
## MGA -0.50704251 -5.197213
## SCP2 -5.04200145 -1.220863
## SGCD -2.63371796 -5.752621
## SH3PXD2A -1.64903446 -5.241714
## SPEN -0.01313174 -5.111272
## TCF4 -0.39153844 -5.419533
## TNRC6B -0.13518674 -6.448490
## TTC28 -1.35069465 -5.217414
## ZBTB20 -1.15314382 -5.161435
This is a unique feature of mitch package that allows us to look at enrichment in two or more contrasts.
First look at NTC vs DsRed gRNA in both Rfx and HF.
m0 <- mitch_calc(m, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(m0$enrichment_result,20) %>%
kbl(caption = "Top pathways for gRNA in Rfx & Hf") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.Rfx | s.Hf | p.Rfx | p.Hf | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
772 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | -0.6379063 | 0.8780030 | 0.0000000 | 0.0000000 | 1.0852712 | 1.0719097 | 0.0000000 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | -0.3703914 | 0.9165417 | 0.0008663 | 0.0000000 | 0.9885537 | 0.9099991 | 0.0000000 |
774 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | -0.4967036 | 0.8227678 | 0.0000172 | 0.0000000 | 0.9610730 | 0.9330072 | 0.0000000 |
180 | GO:0003735 structural constituent of ribosome | 118 | 0.0000000 | -0.4185603 | 0.7655773 | 0.0000000 | 0.0000000 | 0.8725259 | 0.8373118 | 0.0000000 |
434 | GO:0006695 cholesterol biosynthetic process | 16 | 0.0000000 | 0.5782570 | 0.6513578 | 0.0000621 | 0.0000064 | 0.8710041 | 0.0516901 | 0.0000022 |
110 | GO:0001732 formation of cytoplasmic translation initiation complex | 12 | 0.0000072 | 0.0428467 | 0.8112949 | 0.7972188 | 0.0000011 | 0.8124255 | 0.5433749 | 0.0003137 |
345 | GO:0005852 eukaryotic translation initiation factor 3 complex | 10 | 0.0000960 | 0.0647505 | 0.7850117 | 0.7229665 | 0.0000171 | 0.7876776 | 0.5093016 | 0.0029063 |
406 | GO:0006412 translation | 96 | 0.0000000 | -0.3422498 | 0.6883464 | 0.0000000 | 0.0000000 | 0.7687364 | 0.7287416 | 0.0000000 |
1223 | GO:0045271 respiratory chain complex I | 31 | 0.0000000 | -0.4369672 | 0.6004677 | 0.0000255 | 0.0000000 | 0.7426317 | 0.7335773 | 0.0000000 |
374 | GO:0006120 mitochondrial electron transport, NADH to ubiquinone | 19 | 0.0000002 | -0.4761883 | 0.5361978 | 0.0003266 | 0.0000520 | 0.7171216 | 0.7158651 | 0.0000131 |
988 | GO:0032981 mitochondrial respiratory chain complex I assembly | 38 | 0.0000000 | -0.3500900 | 0.6231320 | 0.0001888 | 0.0000000 | 0.7147423 | 0.6881719 | 0.0000000 |
314 | GO:0005762 mitochondrial large ribosomal subunit | 38 | 0.0000000 | -0.2319974 | 0.6620995 | 0.0133698 | 0.0000000 | 0.7015686 | 0.6322220 | 0.0000000 |
437 | GO:0006749 glutathione metabolic process | 15 | 0.0000116 | -0.4675375 | 0.5116002 | 0.0017189 | 0.0006025 | 0.6930556 | 0.6923549 | 0.0004717 |
343 | GO:0005840 ribosome | 43 | 0.0000000 | -0.1888191 | 0.6661340 | 0.0322511 | 0.0000000 | 0.6923779 | 0.6045431 | 0.0000000 |
1093 | GO:0042026 protein refolding | 12 | 0.0003047 | 0.3522488 | 0.5876925 | 0.0346373 | 0.0004233 | 0.6851728 | 0.1664839 | 0.0074024 |
694 | GO:0016282 eukaryotic 43S preinitiation complex | 14 | 0.0000655 | 0.1250494 | 0.6712065 | 0.4179700 | 0.0000137 | 0.6827558 | 0.3861913 | 0.0022925 |
996 | GO:0033290 eukaryotic 48S preinitiation complex | 13 | 0.0001751 | 0.0892413 | 0.6638274 | 0.5775218 | 0.0000340 | 0.6697991 | 0.4062937 | 0.0046392 |
1011 | GO:0034314 Arp2/3 complex-mediated actin nucleation | 11 | 0.0005276 | -0.4657333 | 0.4668688 | 0.0074842 | 0.0073399 | 0.6594498 | 0.6594493 | 0.0109864 |
184 | GO:0003774 cytoskeletal motor activity | 12 | 0.0005764 | -0.0552559 | -0.6434689 | 0.7403685 | 0.0001135 | 0.6458370 | 0.4159294 | 0.0115275 |
266 | GO:0005201 extracellular matrix structural constituent | 12 | 0.0005891 | -0.0379137 | -0.6429247 | 0.8201394 | 0.0001150 | 0.6440417 | 0.4278074 | 0.0115275 |
top <- head(subset(m0$enrichment_result,p.adjustMANOVA<0.05),30)
mycols <- grep("^s\\.",colnames(top))
mycols <- mycols[1:length(mycols)-1]
mx <- as.matrix(top[,mycols])
rownames(mx) <- top$set
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(mx,trace="none",col=colfunc(25),scale="none",
margins = c(7,25), cexRow=0.8, cexCol=0.8,
main="Top pathways for gRNA in Rfx & Hf" )
par(mar = c(5.1, 4.1, 4.1, 2.1) )
plot(m0$enrichment_result$s.Rfx,m0$enrichment_result$s.Hf,
col=alpha("darkgray", 0.6), pch=19,
main="Enrichment score" , xlab="Rfx", ylab="Hf")
sig <- subset(m0$enrichment_result,p.adjustMANOVA<0.05)
points(sig$s.Rfx,sig$s.Hf, col="darkorange", pch=19 )
abline(v=0,h=0,col="blue",lwd=2,lty=2)
if ( ! file.exists("mitch0.html") ) {
mitch_report(res=m0,outfile="mitch0.html")
}
# SD=discordant
m0 <- mitch_calc(m, go, priority="SD",cores=8)
## Note: Prioritisation by SD after selecting sets with
## p.adjustMANOVA<=0.05.
head(m0$enrichment_result,20) %>%
kbl(caption = "Discordant pathways for gRNA in Rfx & Hf") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.Rfx | s.Hf | p.Rfx | p.Hf | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
772 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | -0.6379063 | 0.8780030 | 0.0000000 | 0.0000000 | 1.0852712 | 1.0719097 | 0.0000000 |
774 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | -0.4967036 | 0.8227678 | 0.0000172 | 0.0000000 | 0.9610730 | 0.9330072 | 0.0000000 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | -0.3703914 | 0.9165417 | 0.0008663 | 0.0000000 | 0.9885537 | 0.9099991 | 0.0000000 |
180 | GO:0003735 structural constituent of ribosome | 118 | 0.0000000 | -0.4185603 | 0.7655773 | 0.0000000 | 0.0000000 | 0.8725259 | 0.8373118 | 0.0000000 |
1223 | GO:0045271 respiratory chain complex I | 31 | 0.0000000 | -0.4369672 | 0.6004677 | 0.0000255 | 0.0000000 | 0.7426317 | 0.7335773 | 0.0000000 |
406 | GO:0006412 translation | 96 | 0.0000000 | -0.3422498 | 0.6883464 | 0.0000000 | 0.0000000 | 0.7687364 | 0.7287416 | 0.0000000 |
374 | GO:0006120 mitochondrial electron transport, NADH to ubiquinone | 19 | 0.0000002 | -0.4761883 | 0.5361978 | 0.0003266 | 0.0000520 | 0.7171216 | 0.7158651 | 0.0000131 |
437 | GO:0006749 glutathione metabolic process | 15 | 0.0000116 | -0.4675375 | 0.5116002 | 0.0017189 | 0.0006025 | 0.6930556 | 0.6923549 | 0.0004717 |
988 | GO:0032981 mitochondrial respiratory chain complex I assembly | 38 | 0.0000000 | -0.3500900 | 0.6231320 | 0.0001888 | 0.0000000 | 0.7147423 | 0.6881719 | 0.0000000 |
1011 | GO:0034314 Arp2/3 complex-mediated actin nucleation | 11 | 0.0005276 | -0.4657333 | 0.4668688 | 0.0074842 | 0.0073399 | 0.6594498 | 0.6594493 | 0.0109864 |
569 | GO:0008137 NADH dehydrogenase (ubiquinone) activity | 10 | 0.0014909 | -0.3658363 | 0.5291037 | 0.0451749 | 0.0037655 | 0.6432627 | 0.6328182 | 0.0230760 |
314 | GO:0005762 mitochondrial large ribosomal subunit | 38 | 0.0000000 | -0.2319974 | 0.6620995 | 0.0133698 | 0.0000000 | 0.7015686 | 0.6322220 | 0.0000000 |
343 | GO:0005840 ribosome | 43 | 0.0000000 | -0.1888191 | 0.6661340 | 0.0322511 | 0.0000000 | 0.6923779 | 0.6045431 | 0.0000000 |
1721 | GO:1990391 DNA repair complex | 10 | 0.0033375 | 0.4307998 | -0.4193883 | 0.0183354 | 0.0216598 | 0.6012279 | 0.6011737 | 0.0399814 |
1451 | GO:0060047 heart contraction | 10 | 0.0038236 | -0.4609751 | 0.3751047 | 0.0116018 | 0.0399974 | 0.5943076 | 0.5911977 | 0.0429174 |
1422 | GO:0051603 proteolysis involved in protein catabolic process | 22 | 0.0000064 | -0.4001511 | 0.4299246 | 0.0011596 | 0.0004822 | 0.5873296 | 0.5869522 | 0.0002850 |
1433 | GO:0051881 regulation of mitochondrial membrane potential | 14 | 0.0005492 | -0.3412366 | 0.4736383 | 0.0270800 | 0.0021532 | 0.5837599 | 0.5762036 | 0.0113010 |
200 | GO:0004364 glutathione transferase activity | 10 | 0.0034686 | -0.2750976 | 0.5353062 | 0.1320250 | 0.0033772 | 0.6018567 | 0.5730420 | 0.0405111 |
1665 | GO:0140658 ATP-dependent chromatin remodeler activity | 11 | 0.0010111 | 0.1510678 | -0.6205045 | 0.3857149 | 0.0003658 | 0.6386293 | 0.5455840 | 0.0178627 |
110 | GO:0001732 formation of cytoplasmic translation initiation complex | 12 | 0.0000072 | 0.0428467 | 0.8112949 | 0.7972188 | 0.0000011 | 0.8124255 | 0.5433749 | 0.0003137 |
top <- head(subset(m0$enrichment_result,p.adjustMANOVA<0.05),30)
mycols <- grep("^s\\.",colnames(top))
mycols <- mycols[1:length(mycols)-1]
mx <- as.matrix(top[,mycols])
rownames(mx) <- top$set
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(mx,trace="none",col=colfunc(25),scale="none",
margins = c(7,25), cexRow=0.8, cexCol=0.8,
main="Discordant pathways for gRNA in Rfx & Hf" )
Next look at Rfx.
l <- list("NTC v DsRed gRNA"=m1,
"Tfx v NTC"=m2,
"NTfc v Tfx"=m3)
mm <- mitch_import(l, DEtype="prescored")
## Note: Mean no. genes in input = 14497.3333333333
## Note: no. genes in output = 14182
## Note: estimated proportion of input genes in output = 0.978
head(mm)
## NTC v DsRed gRNA Tfx v NTC NTfc v Tfx
## 5_8S_rRNA 1.8503649 0.5180755 -1.41779880
## A4GALT -1.8915624 -0.4952824 -1.93247212
## AAAS 2.1906313 -1.7533504 0.03040747
## AACS 1.1170591 0.8714301 4.57047093
## AADAC 0.7635603 -0.4594811 1.06088899
## AADAT -0.2696192 -0.0656957 0.66719319
mmres_rfx <- mitch_calc(mm, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mmres_rfx$enrichment_result,20) %>%
kbl(caption = "Top pathways for Rfx contrasts") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.NTC.v.DsRed.gR | s.Tfx.v.NTC | s.NTfc.v.Tfx | p.NTC.v.DsRed.gR | p.Tfx.v.NTC | p.NTfc.v.Tfx | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1681 | GO:0140662 ATP-dependent protein folding chaperone | 23 | 0.0000000 | 0.4263351 | -0.6169897 | 0.7485145 | 0.0004016 | 0.0000003 | 0.0000000 | 1.0595810 | 0.7137843 | 0.0000000 |
774 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | -0.6377351 | 0.3625760 | -0.7202517 | 0.0000000 | 0.0000728 | 0.0000000 | 1.0280710 | 0.6027641 | 0.0000000 |
776 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | -0.4962944 | 0.3652158 | -0.7353620 | 0.0000174 | 0.0015758 | 0.0000000 | 0.9593998 | 0.5788818 | 0.0000001 |
1043 | GO:0035145 exon-exon junction complex | 10 | 0.0003118 | 0.5649591 | -0.2761784 | 0.7184025 | 0.0019777 | 0.1305121 | 0.0000835 | 0.9547541 | 0.5354512 | 0.0057320 |
1277 | GO:0045943 positive regulation of transcription by RNA polymerase I | 11 | 0.0000100 | 0.3806814 | -0.1145425 | 0.8594826 | 0.0288162 | 0.5107384 | 0.0000008 | 0.9469681 | 0.4870356 | 0.0005219 |
1515 | GO:0070034 telomerase RNA binding | 12 | 0.0001324 | 0.5173489 | -0.3461656 | 0.7019642 | 0.0019155 | 0.0378857 | 0.0000254 | 0.9382080 | 0.5595111 | 0.0031581 |
163 | GO:0003678 DNA helicase activity | 20 | 0.0000003 | 0.3801017 | -0.4870004 | 0.6868804 | 0.0032571 | 0.0001631 | 0.0000001 | 0.9238243 | 0.6088206 | 0.0000220 |
250 | GO:0005049 nuclear export signal receptor activity | 10 | 0.0001316 | 0.4144087 | -0.1476997 | 0.7999718 | 0.0232674 | 0.4187238 | 0.0000118 | 0.9129647 | 0.4765686 | 0.0031581 |
1079 | GO:0036121 double-stranded DNA helicase activity | 11 | 0.0005080 | 0.4988870 | -0.3191473 | 0.6830146 | 0.0041709 | 0.0668625 | 0.0000875 | 0.9040200 | 0.5334497 | 0.0084584 |
56 | GO:0000793 condensed chromosome | 13 | 0.0002928 | 0.5272670 | -0.4293935 | 0.5953137 | 0.0009962 | 0.0073526 | 0.0002019 | 0.9037631 | 0.5729826 | 0.0054402 |
1509 | GO:0061749 forked DNA-dependent helicase activity | 10 | 0.0021201 | 0.5500706 | -0.3583686 | 0.6025120 | 0.0025952 | 0.0497469 | 0.0009694 | 0.8910816 | 0.5402628 | 0.0247893 |
1740 | GO:1990518 single-stranded 3’-5’ DNA helicase activity | 11 | 0.0011133 | 0.3863524 | -0.3684798 | 0.6710696 | 0.0265166 | 0.0343521 | 0.0001161 | 0.8575430 | 0.5371993 | 0.0159749 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | -0.3697607 | 0.3619320 | -0.6798985 | 0.0008841 | 0.0011355 | 0.0000000 | 0.8543885 | 0.5349409 | 0.0000014 |
951 | GO:0032212 positive regulation of telomere maintenance via telomerase | 17 | 0.0000287 | 0.3447727 | -0.4976101 | 0.5998505 | 0.0138651 | 0.0003823 | 0.0000185 | 0.8522351 | 0.5743247 | 0.0010771 |
612 | GO:0009378 four-way junction helicase activity | 13 | 0.0003258 | 0.5814155 | -0.2706070 | 0.5597757 | 0.0002836 | 0.0912000 | 0.0004747 | 0.8512467 | 0.4857891 | 0.0058678 |
1100 | GO:0042026 protein refolding | 12 | 0.0013426 | 0.3536815 | -0.5044225 | 0.5612679 | 0.0339073 | 0.0024824 | 0.0007611 | 0.8333993 | 0.5649676 | 0.0177244 |
1525 | GO:0070182 DNA polymerase binding | 13 | 0.0012004 | 0.5580493 | -0.3493488 | 0.4892208 | 0.0004942 | 0.0292076 | 0.0022580 | 0.8202442 | 0.5051910 | 0.0162710 |
529 | GO:0007339 binding of sperm to zona pellucida | 11 | 0.0082636 | 0.4048152 | -0.4887382 | 0.4557900 | 0.0200933 | 0.0050061 | 0.0088607 | 0.7813353 | 0.5312202 | 0.0672135 |
135 | GO:0001965 G-protein alpha-subunit binding | 10 | 0.0100828 | -0.5155095 | 0.5269404 | -0.2350974 | 0.0047619 | 0.0039101 | 0.1980415 | 0.7737487 | 0.5394495 | 0.0760518 |
1714 | GO:1902774 late endosome to lysosome transport | 10 | 0.0000241 | -0.5016653 | -0.3184166 | -0.4826559 | 0.0060164 | 0.0812700 | 0.0082229 | 0.7655155 | 0.1007604 | 0.0009437 |
top <- head(subset(mmres_rfx$enrichment_result,p.adjustMANOVA<0.05),30)
mycols <- grep("^s\\.",colnames(top))
mycols <- mycols[1:length(mycols)-1]
mx <- as.matrix(top[,mycols])
rownames(mx) <- top$set
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(mx,trace="none",col=colfunc(25),scale="none",
margins = c(7,25), cexRow=0.8, cexCol=0.8,
main="Top pathways for Rfx contrasts" )
Now Hf.
l <- list("NTC v DsRed gRNA"=m4,
"Tfx v NTC"=m5,
"NTfc v Tfx"=m6)
mm <- mitch_import(l, DEtype="prescored")
## Note: Mean no. genes in input = 14311.6666666667
## Note: no. genes in output = 14014
## Note: estimated proportion of input genes in output = 0.979
head(mm)
## NTC v DsRed gRNA Tfx v NTC NTfc v Tfx
## 5_8S_rRNA -0.01023976 0.05721893 1.0783442
## A4GALT 0.23351781 -0.27502670 -2.3287576
## AAAS 0.21120150 -0.44096365 0.4658765
## AACS 0.57504626 0.38006625 2.9719878
## AADAT -1.21123488 1.31421790 -1.1764787
## AAGAB 1.19842357 -0.60759817 1.0624617
mmres_hf <- mitch_calc(mm, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mmres_hf$enrichment_result,20) %>%
kbl(caption = "Top pathways for Hf contrasts") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.NTC.v.DsRed.gR | s.Tfx.v.NTC | s.NTfc.v.Tfx | p.NTC.v.DsRed.gR | p.Tfx.v.NTC | p.NTfc.v.Tfx | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
771 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | 0.8779054 | -0.5519715 | -0.8940282 | 0.0000000 | 0.0000000 | 0.0000000 | 1.3691884 | 0.9399734 | 0.0000000 |
144 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | 0.9164727 | -0.4698569 | -0.8367532 | 0.0000000 | 0.0000238 | 0.0000000 | 1.3269678 | 0.9246913 | 0.0000000 |
773 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | 0.8227236 | -0.5079791 | -0.7868211 | 0.0000000 | 0.0000110 | 0.0000000 | 1.2465971 | 0.8601508 | 0.0000000 |
178 | GO:0003735 structural constituent of ribosome | 118 | 0.0000000 | 0.7655465 | -0.4359150 | -0.7111667 | 0.0000000 | 0.0000000 | 0.0000000 | 1.1321844 | 0.7852765 | 0.0000000 |
404 | GO:0006412 translation | 96 | 0.0000000 | 0.6883861 | -0.4251404 | -0.5986343 | 0.0000000 | 0.0000000 | 0.0000000 | 1.0064705 | 0.6983866 | 0.0000000 |
1209 | GO:0045116 protein neddylation | 10 | 0.0000725 | 0.4485433 | -0.2016281 | -0.7960154 | 0.0140516 | 0.2696391 | 0.0000130 | 0.9356738 | 0.6224877 | 0.0012660 |
1666 | GO:0140658 ATP-dependent chromatin remodeler activity | 11 | 0.0000609 | -0.6199126 | 0.2469666 | 0.6390384 | 0.0003705 | 0.1561667 | 0.0002424 | 0.9239341 | 0.6442253 | 0.0011334 |
341 | GO:0005840 ribosome | 43 | 0.0000000 | 0.6661623 | -0.3070097 | -0.5223728 | 0.0000000 | 0.0004976 | 0.0000000 | 0.9005001 | 0.6332536 | 0.0000000 |
311 | GO:0005762 mitochondrial large ribosomal subunit | 38 | 0.0000000 | 0.6620786 | -0.4492438 | -0.4088927 | 0.0000000 | 0.0000017 | 0.0000130 | 0.8985329 | 0.6302969 | 0.0000000 |
343 | GO:0005852 eukaryotic translation initiation factor 3 complex | 10 | 0.0001820 | 0.7851328 | -0.3171094 | -0.2812625 | 0.0000171 | 0.0825288 | 0.1235808 | 0.8922446 | 0.6262883 | 0.0026523 |
109 | GO:0001732 formation of cytoplasmic translation initiation complex | 12 | 0.0000036 | 0.8113722 | -0.2041732 | -0.2501428 | 0.0000011 | 0.2207870 | 0.1335780 | 0.8732600 | 0.6000361 | 0.0001030 |
1221 | GO:0045271 respiratory chain complex I | 31 | 0.0000000 | 0.6003673 | -0.3177476 | -0.5289487 | 0.0000000 | 0.0022053 | 0.0000003 | 0.8609246 | 0.6004020 | 0.0000000 |
481 | GO:0007076 mitotic chromosome condensation | 10 | 0.0000731 | 0.0334761 | -0.3628820 | 0.7712796 | 0.8545824 | 0.0469401 | 0.0000240 | 0.8530394 | 0.5755833 | 0.0012660 |
1721 | GO:1990391 DNA repair complex | 10 | 0.0012493 | -0.4190803 | 0.4868466 | 0.5346758 | 0.0217567 | 0.0076824 | 0.0034150 | 0.8357787 | 0.5373766 | 0.0114081 |
1070 | GO:0036121 double-stranded DNA helicase activity | 11 | 0.0000028 | -0.0533717 | 0.3924808 | 0.7341089 | 0.7592622 | 0.0242120 | 0.0000248 | 0.8341497 | 0.3948882 | 0.0000831 |
985 | GO:0032981 mitochondrial respiratory chain complex I assembly | 38 | 0.0000000 | 0.6230945 | -0.2928027 | -0.4701292 | 0.0000000 | 0.0017944 | 0.0000005 | 0.8336676 | 0.5867212 | 0.0000000 |
372 | GO:0006120 mitochondrial electron transport, NADH to ubiquinone | 19 | 0.0000009 | 0.5359546 | -0.2071680 | -0.5948403 | 0.0000524 | 0.1180639 | 0.0000072 | 0.8270434 | 0.5746329 | 0.0000298 |
198 | GO:0004364 glutathione transferase activity | 10 | 0.0009257 | 0.5352614 | -0.1882034 | -0.5965153 | 0.0033799 | 0.3028260 | 0.0010892 | 0.8232592 | 0.5731547 | 0.0093053 |
1506 | GO:0070064 proline-rich region binding | 10 | 0.0006947 | -0.5391745 | 0.1453585 | 0.6003428 | 0.0031539 | 0.4261396 | 0.0010112 | 0.8199083 | 0.5735991 | 0.0072757 |
433 | GO:0006695 cholesterol biosynthetic process | 16 | 0.0000004 | 0.6513698 | -0.3477193 | 0.3529076 | 0.0000064 | 0.0160521 | 0.0145391 | 0.8183735 | 0.5128575 | 0.0000164 |
top <- head(subset(mmres_hf$enrichment_result,p.adjustMANOVA<0.05),30)
mycols <- grep("^s\\.",colnames(top))
mycols <- mycols[1:length(mycols)-1]
mx <- as.matrix(top[,mycols])
rownames(mx) <- top$set
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(mx,trace="none",col=colfunc(25),scale="none",
margins = c(7,25), cexRow=0.8, cexCol=0.8,
main="Top pathways for Hf contrasts" )
Now some Rfx vs Hf.
l <- list("Rfx C v gRNA"=m1,
"Hf C v gRNA"=m4)
mm <- mitch_import(l, DEtype="prescored")
## Note: Mean no. genes in input = 14456
## Note: no. genes in output = 14101
## Note: estimated proportion of input genes in output = 0.975
head(mm)
## Rfx C v gRNA Hf C v gRNA
## 5_8S_rRNA 1.8503649 -0.01023976
## A4GALT -1.8915624 0.23351781
## AAAS 2.1906313 0.21120150
## AACS 1.1170591 0.57504626
## AADAC 0.7635603 -0.09350280
## AADAT -0.2696192 -1.21123488
mmres_vs1 <- mitch_calc(mm, go, priority="effect",cores=8)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mmres_vs1$enrichment_result,20) %>%
kbl(caption = "Top pathways for NTC vs gRNA in Rfx and Hf") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.Rfx.C.v.gRNA | s.Hf.C.v.gRNA | p.Rfx.C.v.gRNA | p.Hf.C.v.gRNA | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
772 | GO:0022625 cytosolic large ribosomal subunit | 40 | 0.0000000 | -0.6379063 | 0.8780030 | 0.0000000 | 0.0000000 | 1.0852712 | 1.0719097 | 0.0000000 |
145 | GO:0002181 cytoplasmic translation | 27 | 0.0000000 | -0.3703914 | 0.9165417 | 0.0008663 | 0.0000000 | 0.9885537 | 0.9099991 | 0.0000000 |
774 | GO:0022627 cytosolic small ribosomal subunit | 25 | 0.0000000 | -0.4967036 | 0.8227678 | 0.0000172 | 0.0000000 | 0.9610730 | 0.9330072 | 0.0000000 |
180 | GO:0003735 structural constituent of ribosome | 118 | 0.0000000 | -0.4185603 | 0.7655773 | 0.0000000 | 0.0000000 | 0.8725259 | 0.8373118 | 0.0000000 |
434 | GO:0006695 cholesterol biosynthetic process | 16 | 0.0000000 | 0.5782570 | 0.6513578 | 0.0000621 | 0.0000064 | 0.8710041 | 0.0516901 | 0.0000022 |
110 | GO:0001732 formation of cytoplasmic translation initiation complex | 12 | 0.0000072 | 0.0428467 | 0.8112949 | 0.7972188 | 0.0000011 | 0.8124255 | 0.5433749 | 0.0003137 |
345 | GO:0005852 eukaryotic translation initiation factor 3 complex | 10 | 0.0000960 | 0.0647505 | 0.7850117 | 0.7229665 | 0.0000171 | 0.7876776 | 0.5093016 | 0.0029063 |
406 | GO:0006412 translation | 96 | 0.0000000 | -0.3422498 | 0.6883464 | 0.0000000 | 0.0000000 | 0.7687364 | 0.7287416 | 0.0000000 |
1223 | GO:0045271 respiratory chain complex I | 31 | 0.0000000 | -0.4369672 | 0.6004677 | 0.0000255 | 0.0000000 | 0.7426317 | 0.7335773 | 0.0000000 |
374 | GO:0006120 mitochondrial electron transport, NADH to ubiquinone | 19 | 0.0000002 | -0.4761883 | 0.5361978 | 0.0003266 | 0.0000520 | 0.7171216 | 0.7158651 | 0.0000131 |
988 | GO:0032981 mitochondrial respiratory chain complex I assembly | 38 | 0.0000000 | -0.3500900 | 0.6231320 | 0.0001888 | 0.0000000 | 0.7147423 | 0.6881719 | 0.0000000 |
314 | GO:0005762 mitochondrial large ribosomal subunit | 38 | 0.0000000 | -0.2319974 | 0.6620995 | 0.0133698 | 0.0000000 | 0.7015686 | 0.6322220 | 0.0000000 |
437 | GO:0006749 glutathione metabolic process | 15 | 0.0000116 | -0.4675375 | 0.5116002 | 0.0017189 | 0.0006025 | 0.6930556 | 0.6923549 | 0.0004717 |
343 | GO:0005840 ribosome | 43 | 0.0000000 | -0.1888191 | 0.6661340 | 0.0322511 | 0.0000000 | 0.6923779 | 0.6045431 | 0.0000000 |
1093 | GO:0042026 protein refolding | 12 | 0.0003047 | 0.3522488 | 0.5876925 | 0.0346373 | 0.0004233 | 0.6851728 | 0.1664839 | 0.0074024 |
694 | GO:0016282 eukaryotic 43S preinitiation complex | 14 | 0.0000655 | 0.1250494 | 0.6712065 | 0.4179700 | 0.0000137 | 0.6827558 | 0.3861913 | 0.0022925 |
996 | GO:0033290 eukaryotic 48S preinitiation complex | 13 | 0.0001751 | 0.0892413 | 0.6638274 | 0.5775218 | 0.0000340 | 0.6697991 | 0.4062937 | 0.0046392 |
1011 | GO:0034314 Arp2/3 complex-mediated actin nucleation | 11 | 0.0005276 | -0.4657333 | 0.4668688 | 0.0074842 | 0.0073399 | 0.6594498 | 0.6594493 | 0.0109864 |
184 | GO:0003774 cytoskeletal motor activity | 12 | 0.0005764 | -0.0552559 | -0.6434689 | 0.7403685 | 0.0001135 | 0.6458370 | 0.4159294 | 0.0115275 |
266 | GO:0005201 extracellular matrix structural constituent | 12 | 0.0005891 | -0.0379137 | -0.6429247 | 0.8201394 | 0.0001150 | 0.6440417 | 0.4278074 | 0.0115275 |
top <- head(subset(mmres_vs1$enrichment_result,p.adjustMANOVA<0.05),30)
mycols <- grep("^s\\.",colnames(top))
mycols <- mycols[1:length(mycols)-1]
mx <- as.matrix(top[,mycols])
rownames(mx) <- top$set
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(mx,trace="none",col=colfunc(25),scale="none",
margins = c(7,25), cexRow=0.8, cexCol=0.8,
main="Top pathways for NTC vs gRNA in Rfx and Hf" )
sessionInfo()
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.12.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] pkgload_1.4.0 GGally_2.2.1
## [3] ggplot2_3.5.1 gtools_3.9.5
## [5] tibble_3.2.1 echarts4r_0.4.5
## [7] UpSetR_1.4.0 beeswarm_0.4.0
## [9] kableExtra_1.4.0 eulerr_7.0.2
## [11] mitch_1.19.2 MASS_7.3-61
## [13] gplots_3.2.0 DESeq2_1.44.0
## [15] SummarizedExperiment_1.34.0 Biobase_2.64.0
## [17] MatrixGenerics_1.16.0 matrixStats_1.4.1
## [19] GenomicRanges_1.56.1 GenomeInfoDb_1.40.1
## [21] IRanges_2.38.1 S4Vectors_0.42.1
## [23] BiocGenerics_0.50.0 reshape2_1.4.4
## [25] dplyr_1.1.4 zoo_1.8-12
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 viridisLite_0.4.2 farver_2.1.2
## [4] bitops_1.0-9 fastmap_1.2.0 promises_1.3.2
## [7] digest_0.6.37 mime_0.12 lifecycle_1.0.4
## [10] polylabelr_0.3.0 magrittr_2.0.3 compiler_4.4.2
## [13] rlang_1.1.4 sass_0.4.9 tools_4.4.2
## [16] yaml_2.3.10 knitr_1.49 labeling_0.4.3
## [19] S4Arrays_1.4.1 htmlwidgets_1.6.4 DelayedArray_0.30.1
## [22] xml2_1.3.6 plyr_1.8.9 RColorBrewer_1.1-3
## [25] abind_1.4-8 BiocParallel_1.38.0 KernSmooth_2.23-24
## [28] withr_3.0.2 purrr_1.0.2 polyclip_1.10-7
## [31] grid_4.4.2 caTools_1.18.3 xtable_1.8-4
## [34] colorspace_2.1-1 scales_1.3.0 cli_3.6.3
## [37] rmarkdown_2.29 crayon_1.5.3 generics_0.1.3
## [40] rstudioapi_0.17.1 httr_1.4.7 cachem_1.1.0
## [43] stringr_1.5.1 zlibbioc_1.50.0 parallel_4.4.2
## [46] XVector_0.44.0 vctrs_0.6.5 Matrix_1.7-1
## [49] jsonlite_1.8.9 systemfonts_1.1.0 locfit_1.5-9.10
## [52] jquerylib_0.1.4 tidyr_1.3.1 glue_1.8.0
## [55] ggstats_0.7.0 codetools_0.2-20 stringi_1.8.4
## [58] gtable_0.3.6 later_1.4.1 UCSC.utils_1.0.0
## [61] munsell_0.5.1 pillar_1.10.0 htmltools_0.5.8.1
## [64] GenomeInfoDbData_1.2.12 R6_2.5.1 evaluate_1.0.1
## [67] shiny_1.10.0 lattice_0.22-6 httpuv_1.6.15
## [70] bslib_0.8.0 Rcpp_1.0.13-1 svglite_2.1.3
## [73] gridExtra_2.3 SparseArray_1.4.8 xfun_0.49
## [76] pkgconfig_2.0.3