Introduction
suppressPackageStartupMessages({
library("RhpcBLASctl")
library("reshape2")
library("DESeq2")
library("gplots")
library("mitch")
library("eulerr")
library("limma")
library("topconfects")
library("beeswarm")
library("kableExtra")
})
RhpcBLASctl::blas_set_num_threads(1)
Import and analyse read positions
Firstly for H3K9ac.
myfiles <- list.files("raw_data/h3k9ac/",pattern="*pos2",full.names=TRUE)
res <- sapply(myfiles,function(f) {
x <- read.table(f,header=FALSE)
x <- x[grep("chr",x$V1),]
x <- subset(x, V8 < 5000 & V8 > -5000 )
xh <- hist(x$V8,breaks=200)
xh$counts
} )
inputs <- res[,grep("SRR",colnames(res))]
res <- res[,grep("SRR",colnames(res),invert=TRUE)]
# normalise
y <- apply(res , 2, function(x) { x/sum(x)*100 } )
# plot all
plot(-100:99*50,res[,1]/sum(res[,1])*100,type="p",cex=0,ylim=c(0,3),
xlab="Distance to TSS", ylab="read density")
lapply(1:ncol(res) , function(i) {
y <- res[,i]/sum(res[,i])*100
points(-100:99*50,y,type="l",col=i%%2+1)
} )
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
##
## [[9]]
## NULL
##
## [[10]]
## NULL
##
## [[11]]
## NULL
##
## [[12]]
## NULL
lapply(1:ncol(inputs) , function(i) {
y <- inputs[,i]/sum(inputs[,i])*100
points(-100:99*50,y,type="l",col="blue")
} )
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
# plot each
par(mfrow=c(3,2))
plot(-100:99*50,y[,2],type="l",cex=1,ylim=c(0,3), main="P1",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*50,y[,1],type="l",col=2)
plot(-100:99*50,y[,4],type="l",cex=1,ylim=c(0,3), main="P2",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*50,y[,3],type="l",col=2)
plot(-100:99*50,y[,6],type="l",cex=1,ylim=c(0,3), main="P3",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*50,y[,5],type="l",col=2)
plot(-100:99*50,y[,8],type="l",cex=1,ylim=c(0,3), main="P4",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*50,y[,7],type="l",col=2)
plot(-100:99*50,y[,10],type="l",cex=1,ylim=c(0,3), main="P5",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*50,y[,9],type="l",col=2)
plot(-100:99*50,y[,12],type="l",cex=1,ylim=c(0,3), main="P6",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*50,y[,11],type="l",col=2)
par(mfrow=c(1,1))
k9pre <- rowMeans(y[,seq(2,12,2)])
k9pos <- rowMeans(y[,seq(1,12,2)])
Now for H3K36ac.
myfiles <- list.files("raw_data/h3k36ac/",pattern="*pos2",full.names=TRUE)
res <- sapply(myfiles,function(f) {
x <- read.table(f,header=FALSE)
x <- x[grep("chr",x$V1),]
x <- subset(x, V8 < 5000 & V8 > -5000 )
xh <- hist(x$V8,breaks=200)
xh$counts
} )
# normalise
y <- apply(res , 2, function(x) { x/sum(x)*100 } )
# plot all
plot(-100:99*50,res[,1]/sum(res[,1])*100,type="p",cex=0,ylim=c(0.3,1.7),
xlab="Distance to TSS", ylab="read density")
lapply(1:ncol(res) , function(i) {
y <- res[,i]/sum(res[,i])*100
points(-100:99*50,y,type="l",col=i%%2+1)
} )
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
##
## [[9]]
## NULL
##
## [[10]]
## NULL
##
## [[11]]
## NULL
##
## [[12]]
## NULL
# plot each
par(mfrow=c(3,2))
plot(-100:99*10,y[,2],type="l",cex=1,ylim=c(0.3,1.7), main="P1",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*10,y[,1],type="l",col=2)
plot(-100:99*10,y[,4],type="l",cex=1,ylim=c(0.3,1.7), main="P2",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*10,y[,3],type="l",col=2)
plot(-100:99*10,y[,6],type="l",cex=1,ylim=c(0.3,1.7), main="P3",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*10,y[,5],type="l",col=2)
plot(-100:99*10,y[,8],type="l",cex=1,ylim=c(0.3,1.7), main="P4",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*10,y[,7],type="l",col=2)
plot(-100:99*10,y[,10],type="l",cex=1,ylim=c(0.3,1.7), main="P5",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*10,y[,9],type="l",col=2)
plot(-100:99*10,y[,12],type="l",cex=1,ylim=c(0.3,1.7), main="P6",
xlab="Distance to TSS", ylab="read density",col=4)
points(-100:99*10,y[,11],type="l",col=2)
k36pre <- rowMeans(y[,seq(2,12,2)])
k36pos <- rowMeans(y[,seq(1,12,2)])
par(mfrow=c(1,1))
Now plot mean pre for both k9 and k36.
par(mfrow=c(2,1))
plot(-100:99*50,k9pre,type="l",cex=1,ylim=c(0.3,2.2),bty="n",lwd=2,
xlab="Distance to TSS", ylab="read density",col=4)
mtext("H3K9ac")
points(-100:99*50,k9pos,type="l",col=2,lwd=2)
legend("topright", legend=c("Post", "Pre"),
col=c(2,4), lty=1, cex=0.9, lwd=2)
plot(-100:99*50,k36pre,type="l",cex=1,ylim=c(0.3,1.5),bty="n",lwd=2,
xlab="Distance to TSS", ylab="read density",col=4)
mtext("H3K36ac")
points(-100:99*50,k36pos,type="l",col=2,lwd=2)
legend("topright", legend=c("Post", "Pre"),
col=c(2,4), lty=1, cex=0.9, lwd=2)
par(mfrow=c(1,1))
pdf("chip_tss_mds.pdf",width=5,height=5)
par(mfrow=c(2,1))
plot(-100:99*50,k9pre,type="l",cex=1,ylim=c(0.3,2.2),bty="n",lwd=2,
xlab="Distance to TSS", ylab="read density",col=4)
mtext("H3K9ac")
points(-100:99*50,k9pos,type="l",col=2,lwd=2)
legend("topright", legend=c("Post", "Pre"),
col=c(2,4), lty=1, cex=0.9, lwd=2)
plot(-100:99*50,k36pre,type="l",cex=1,ylim=c(0.3,1.5),bty="n",lwd=2,
xlab="Distance to TSS", ylab="read density",col=4)
mtext("H3K36ac")
points(-100:99*50,k36pos,type="l",col=2,lwd=2)
legend("topright", legend=c("Post", "Pre"),
col=c(2,4), lty=1, cex=0.9, lwd=2)
par(mfrow=c(1,1))
dev.off()
## png
## 2
Import read counts
Rename samples. Don’t use initials.
Get the proportion of reads that are within 2kbp of TSSs.
k9s <- read.table("raw_data/h3k9ac/h3k9_counts.tsv.summary",header=TRUE,row.names=1)
inputs <- k9s[,grep("SRR",colnames(k9s))]
k9s <- k9s[,grep("SRR",colnames(k9s),invert=TRUE)]
colnames(k9s) <- c("pos1","pre1","pos2","pre2","pos3","pre3","pos4","pre4","pos5","pre5","pos6","pre6")
colnames(inputs) <- c("input1","input2","input3","input4")
inputs
## input1 input2 input3 input4
## Assigned 3888522 4025908 2245486 2159094
## Unassigned_Unmapped 253745 222771 452959 2863289
## Unassigned_Read_Type 0 0 0 0
## Unassigned_Singleton 0 0 0 0
## Unassigned_MappingQuality 2879803 2551110 1894829 1564142
## Unassigned_Chimera 0 0 0 0
## Unassigned_FragmentLength 0 0 0 0
## Unassigned_Duplicate 0 0 0 0
## Unassigned_MultiMapping 0 0 0 0
## Unassigned_Secondary 0 0 0 0
## Unassigned_NonSplit 0 0 0 0
## Unassigned_NoFeatures 21620001 21494794 12686447 12199144
## Unassigned_Overlapping_Length 0 0 0 0
## Unassigned_Ambiguity 0 0 0 0
barplot(as.matrix(inputs))
inputsn <- apply(inputs,2,function(x) {x/sum(x)} )
inputsn
## input1 input2 input3 input4
## Assigned 0.135762599 0.142285469 0.12994920 0.11493304
## Unassigned_Unmapped 0.008859171 0.007873274 0.02621333 0.15241879
## Unassigned_Read_Type 0.000000000 0.000000000 0.00000000 0.00000000
## Unassigned_Singleton 0.000000000 0.000000000 0.00000000 0.00000000
## Unassigned_MappingQuality 0.100544510 0.090162488 0.10965623 0.08326251
## Unassigned_Chimera 0.000000000 0.000000000 0.00000000 0.00000000
## Unassigned_FragmentLength 0.000000000 0.000000000 0.00000000 0.00000000
## Unassigned_Duplicate 0.000000000 0.000000000 0.00000000 0.00000000
## Unassigned_MultiMapping 0.000000000 0.000000000 0.00000000 0.00000000
## Unassigned_Secondary 0.000000000 0.000000000 0.00000000 0.00000000
## Unassigned_NonSplit 0.000000000 0.000000000 0.00000000 0.00000000
## Unassigned_NoFeatures 0.754833720 0.759678770 0.73418124 0.64938566
## Unassigned_Overlapping_Length 0.000000000 0.000000000 0.00000000 0.00000000
## Unassigned_Ambiguity 0.000000000 0.000000000 0.00000000 0.00000000
barplot(as.matrix(inputsn))
k9s
## pos1 pre1 pos2 pre2 pos3
## Assigned 7756749 6430759 13082082 4953269 7726068
## Unassigned_Unmapped 385052 557590 751361 585880 412283
## Unassigned_Read_Type 0 0 0 0 0
## Unassigned_Singleton 0 0 0 0 0
## Unassigned_MappingQuality 5725774 7754993 11636911 6738231 6988437
## Unassigned_Chimera 0 0 0 0 0
## Unassigned_FragmentLength 0 0 0 0 0
## Unassigned_Duplicate 0 0 0 0 0
## Unassigned_MultiMapping 0 0 0 0 0
## Unassigned_Secondary 0 0 0 0 0
## Unassigned_NonSplit 0 0 0 0 0
## Unassigned_NoFeatures 29812445 38616775 58178138 30628975 34489472
## Unassigned_Overlapping_Length 0 0 0 0 0
## Unassigned_Ambiguity 0 0 0 0 0
## pre3 pos4 pre4 pos5 pre5
## Assigned 5400705 7540527 11724157 6200147 6033734
## Unassigned_Unmapped 572918 390416 977005 496997 1138925
## Unassigned_Read_Type 0 0 0 0 0
## Unassigned_Singleton 0 0 0 0 0
## Unassigned_MappingQuality 6378033 6532301 13351773 7041413 6293562
## Unassigned_Chimera 0 0 0 0 0
## Unassigned_FragmentLength 0 0 0 0 0
## Unassigned_Duplicate 0 0 0 0 0
## Unassigned_MultiMapping 0 0 0 0 0
## Unassigned_Secondary 0 0 0 0 0
## Unassigned_NonSplit 0 0 0 0 0
## Unassigned_NoFeatures 31630276 33917230 61155197 35344376 30857841
## Unassigned_Overlapping_Length 0 0 0 0 0
## Unassigned_Ambiguity 0 0 0 0 0
## pos6 pre6
## Assigned 8137338 15668690
## Unassigned_Unmapped 747681 1918477
## Unassigned_Read_Type 0 0
## Unassigned_Singleton 0 0
## Unassigned_MappingQuality 7006344 16463353
## Unassigned_Chimera 0 0
## Unassigned_FragmentLength 0 0
## Unassigned_Duplicate 0 0
## Unassigned_MultiMapping 0 0
## Unassigned_Secondary 0 0
## Unassigned_NonSplit 0 0
## Unassigned_NoFeatures 34904688 73176720
## Unassigned_Overlapping_Length 0 0
## Unassigned_Ambiguity 0 0
barplot(as.matrix(k9s))
k9sn <- apply(k9s,2,function(x) {x/sum(x)} )
k9sn
## pos1 pre1 pos2 pre2
## Assigned 0.177581169 0.12051621 0.156393519 0.11544371
## Unassigned_Unmapped 0.008815289 0.01044956 0.008982362 0.01365485
## Unassigned_Read_Type 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_Singleton 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_MappingQuality 0.131084510 0.14533313 0.139116806 0.15704506
## Unassigned_Chimera 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_FragmentLength 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_Duplicate 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_MultiMapping 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_Secondary 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_NonSplit 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_NoFeatures 0.682519033 0.72370109 0.695507314 0.71385637
## Unassigned_Overlapping_Length 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_Ambiguity 0.000000000 0.00000000 0.000000000 0.00000000
## pos3 pre3 pos4 pre4
## Assigned 0.155716453 0.12279372 0.155858891 0.13443880
## Unassigned_Unmapped 0.008309433 0.01302621 0.008069702 0.01120314
## Unassigned_Read_Type 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_Singleton 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_MappingQuality 0.140849734 0.14501484 0.135019368 0.15310238
## Unassigned_Chimera 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_FragmentLength 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_Duplicate 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_MultiMapping 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_Secondary 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_NonSplit 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_NoFeatures 0.695124381 0.71916522 0.701052040 0.70125567
## Unassigned_Overlapping_Length 0.000000000 0.00000000 0.000000000 0.00000000
## Unassigned_Ambiguity 0.000000000 0.00000000 0.000000000 0.00000000
## pos5 pre5 pos6 pre6
## Assigned 0.12631981 0.13612773 0.16019627 0.14612602
## Unassigned_Unmapped 0.01012566 0.02569541 0.01471927 0.01789169
## Unassigned_Read_Type 0.00000000 0.00000000 0.00000000 0.00000000
## Unassigned_Singleton 0.00000000 0.00000000 0.00000000 0.00000000
## Unassigned_MappingQuality 0.14345950 0.14198974 0.13793088 0.15353704
## Unassigned_Chimera 0.00000000 0.00000000 0.00000000 0.00000000
## Unassigned_FragmentLength 0.00000000 0.00000000 0.00000000 0.00000000
## Unassigned_Duplicate 0.00000000 0.00000000 0.00000000 0.00000000
## Unassigned_MultiMapping 0.00000000 0.00000000 0.00000000 0.00000000
## Unassigned_Secondary 0.00000000 0.00000000 0.00000000 0.00000000
## Unassigned_NonSplit 0.00000000 0.00000000 0.00000000 0.00000000
## Unassigned_NoFeatures 0.72009503 0.69618712 0.68715357 0.68244524
## Unassigned_Overlapping_Length 0.00000000 0.00000000 0.00000000 0.00000000
## Unassigned_Ambiguity 0.00000000 0.00000000 0.00000000 0.00000000
barplot(as.matrix(k9sn))
k36s <- read.table("raw_data/h3k36ac/h3k36_counts.tsv.summary",header=TRUE,row.names=1)
colnames(k36s) <- c("pos1","pre1","pos2","pre2","pos3","pre3","pos4","pre4","pos5","pre5","pos6","pre6")
k36s
## pos1 pre1 pos2 pre2 pos3
## Assigned 6195544 6294768 5618086 5303142 5733831
## Unassigned_Unmapped 1473465 1111917 700103 841680 1774859
## Unassigned_Read_Type 0 0 0 0 0
## Unassigned_Singleton 0 0 0 0 0
## Unassigned_MappingQuality 9524597 9590123 9109908 8233487 8441755
## Unassigned_Chimera 0 0 0 0 0
## Unassigned_FragmentLength 0 0 0 0 0
## Unassigned_Duplicate 0 0 0 0 0
## Unassigned_MultiMapping 0 0 0 0 0
## Unassigned_Secondary 0 0 0 0 0
## Unassigned_NonSplit 0 0 0 0 0
## Unassigned_NoFeatures 42129671 40474063 40097125 35343506 36537911
## Unassigned_Overlapping_Length 0 0 0 0 0
## Unassigned_Ambiguity 0 0 0 0 0
## pre3 pos4 pre4 pos5 pre5
## Assigned 6664455 6926829 8821544 6137079 6696549
## Unassigned_Unmapped 1556532 2016880 935526 918295 744888
## Unassigned_Read_Type 0 0 0 0 0
## Unassigned_Singleton 0 0 0 0 0
## Unassigned_MappingQuality 10367327 10774766 12242494 9369415 8997966
## Unassigned_Chimera 0 0 0 0 0
## Unassigned_FragmentLength 0 0 0 0 0
## Unassigned_Duplicate 0 0 0 0 0
## Unassigned_MultiMapping 0 0 0 0 0
## Unassigned_Secondary 0 0 0 0 0
## Unassigned_NonSplit 0 0 0 0 0
## Unassigned_NoFeatures 43655931 48270207 46488183 41198373 33778390
## Unassigned_Overlapping_Length 0 0 0 0 0
## Unassigned_Ambiguity 0 0 0 0 0
## pos6 pre6
## Assigned 5823145 6565429
## Unassigned_Unmapped 912349 1071548
## Unassigned_Read_Type 0 0
## Unassigned_Singleton 0 0
## Unassigned_MappingQuality 8906465 8984204
## Unassigned_Chimera 0 0
## Unassigned_FragmentLength 0 0
## Unassigned_Duplicate 0 0
## Unassigned_MultiMapping 0 0
## Unassigned_Secondary 0 0
## Unassigned_NonSplit 0 0
## Unassigned_NoFeatures 38244027 34112607
## Unassigned_Overlapping_Length 0 0
## Unassigned_Ambiguity 0 0
barplot(as.matrix(k36s))
k36sn <- apply(k36s,2,function(x) {x/sum(x)} )
barplot(as.matrix(k36sn))
all <- cbind(inputs,k9s,k36s)
all
## input1 input2 input3 input4 pos1
## Assigned 3888522 4025908 2245486 2159094 7756749
## Unassigned_Unmapped 253745 222771 452959 2863289 385052
## Unassigned_Read_Type 0 0 0 0 0
## Unassigned_Singleton 0 0 0 0 0
## Unassigned_MappingQuality 2879803 2551110 1894829 1564142 5725774
## Unassigned_Chimera 0 0 0 0 0
## Unassigned_FragmentLength 0 0 0 0 0
## Unassigned_Duplicate 0 0 0 0 0
## Unassigned_MultiMapping 0 0 0 0 0
## Unassigned_Secondary 0 0 0 0 0
## Unassigned_NonSplit 0 0 0 0 0
## Unassigned_NoFeatures 21620001 21494794 12686447 12199144 29812445
## Unassigned_Overlapping_Length 0 0 0 0 0
## Unassigned_Ambiguity 0 0 0 0 0
## pre1 pos2 pre2 pos3 pre3
## Assigned 6430759 13082082 4953269 7726068 5400705
## Unassigned_Unmapped 557590 751361 585880 412283 572918
## Unassigned_Read_Type 0 0 0 0 0
## Unassigned_Singleton 0 0 0 0 0
## Unassigned_MappingQuality 7754993 11636911 6738231 6988437 6378033
## Unassigned_Chimera 0 0 0 0 0
## Unassigned_FragmentLength 0 0 0 0 0
## Unassigned_Duplicate 0 0 0 0 0
## Unassigned_MultiMapping 0 0 0 0 0
## Unassigned_Secondary 0 0 0 0 0
## Unassigned_NonSplit 0 0 0 0 0
## Unassigned_NoFeatures 38616775 58178138 30628975 34489472 31630276
## Unassigned_Overlapping_Length 0 0 0 0 0
## Unassigned_Ambiguity 0 0 0 0 0
## pos4 pre4 pos5 pre5 pos6
## Assigned 7540527 11724157 6200147 6033734 8137338
## Unassigned_Unmapped 390416 977005 496997 1138925 747681
## Unassigned_Read_Type 0 0 0 0 0
## Unassigned_Singleton 0 0 0 0 0
## Unassigned_MappingQuality 6532301 13351773 7041413 6293562 7006344
## Unassigned_Chimera 0 0 0 0 0
## Unassigned_FragmentLength 0 0 0 0 0
## Unassigned_Duplicate 0 0 0 0 0
## Unassigned_MultiMapping 0 0 0 0 0
## Unassigned_Secondary 0 0 0 0 0
## Unassigned_NonSplit 0 0 0 0 0
## Unassigned_NoFeatures 33917230 61155197 35344376 30857841 34904688
## Unassigned_Overlapping_Length 0 0 0 0 0
## Unassigned_Ambiguity 0 0 0 0 0
## pre6 pos1 pre1 pos2 pre2
## Assigned 15668690 6195544 6294768 5618086 5303142
## Unassigned_Unmapped 1918477 1473465 1111917 700103 841680
## Unassigned_Read_Type 0 0 0 0 0
## Unassigned_Singleton 0 0 0 0 0
## Unassigned_MappingQuality 16463353 9524597 9590123 9109908 8233487
## Unassigned_Chimera 0 0 0 0 0
## Unassigned_FragmentLength 0 0 0 0 0
## Unassigned_Duplicate 0 0 0 0 0
## Unassigned_MultiMapping 0 0 0 0 0
## Unassigned_Secondary 0 0 0 0 0
## Unassigned_NonSplit 0 0 0 0 0
## Unassigned_NoFeatures 73176720 42129671 40474063 40097125 35343506
## Unassigned_Overlapping_Length 0 0 0 0 0
## Unassigned_Ambiguity 0 0 0 0 0
## pos3 pre3 pos4 pre4 pos5
## Assigned 5733831 6664455 6926829 8821544 6137079
## Unassigned_Unmapped 1774859 1556532 2016880 935526 918295
## Unassigned_Read_Type 0 0 0 0 0
## Unassigned_Singleton 0 0 0 0 0
## Unassigned_MappingQuality 8441755 10367327 10774766 12242494 9369415
## Unassigned_Chimera 0 0 0 0 0
## Unassigned_FragmentLength 0 0 0 0 0
## Unassigned_Duplicate 0 0 0 0 0
## Unassigned_MultiMapping 0 0 0 0 0
## Unassigned_Secondary 0 0 0 0 0
## Unassigned_NonSplit 0 0 0 0 0
## Unassigned_NoFeatures 36537911 43655931 48270207 46488183 41198373
## Unassigned_Overlapping_Length 0 0 0 0 0
## Unassigned_Ambiguity 0 0 0 0 0
## pre5 pos6 pre6
## Assigned 6696549 5823145 6565429
## Unassigned_Unmapped 744888 912349 1071548
## Unassigned_Read_Type 0 0 0
## Unassigned_Singleton 0 0 0
## Unassigned_MappingQuality 8997966 8906465 8984204
## Unassigned_Chimera 0 0 0
## Unassigned_FragmentLength 0 0 0
## Unassigned_Duplicate 0 0 0
## Unassigned_MultiMapping 0 0 0
## Unassigned_Secondary 0 0 0
## Unassigned_NonSplit 0 0 0
## Unassigned_NoFeatures 33778390 38244027 34112607
## Unassigned_Overlapping_Length 0 0 0
## Unassigned_Ambiguity 0 0 0
allsn <- apply(all,2,function(x) {x/sum(x)} )
barplot(as.matrix(allsn),ylab="proportion of reads",las=2)
k9tss <- k9sn[1,] / (k9sn[1,] + k9sn[12,] )
inputtss <- unlist(as.vector(inputs[1,] / ( inputs[1,] + inputs[12,] )))
k36tss <- k36sn[1,] / (k36sn[1,] + k36sn[12,] )
k9tss_pre <- k9tss[grep("pre",names(k9tss))]
k9tss_post <- k9tss[grep("pos",names(k9tss))]
k36tss_pre <- k36tss[grep("pre",names(k36tss))]
k36tss_post <- k36tss[grep("pos",names(k36tss))]
xl <- list("Input"=inputtss,"K9ac pre"=k9tss_pre, "K9ac post"=k9tss_post,
"K36ac pre"=k36tss_pre, "K36ac post"=k36tss_post)
boxplot(xl,cex=0,ylab="Proportion",main="TSS read fraction",col="white")
beeswarm(xl,add=TRUE,pch=19,cex=1.5,col="darkgray")
pdf("chip_boxplot_mds.pdf",width=5,height=5)
boxplot(xl,cex=0,ylab="Proportion",main="TSS read fraction",col="white")
beeswarm(xl,add=TRUE,pch=19,cex=1.5,col="darkgray")
dev.off()
## png
## 2
Inport data.
gt <- read.table("gt.tsv")
gt$ens <- sapply(strsplit(gt[,1]," "),"[[",1)
dim(gt)
## [1] 63086 3
k9 <- read.table("raw_data/h3k9ac/h3k9_counts.tsv",header=TRUE)
dim(k9)
## [1] 95874 22
k9a <- merge(k9,gt,by.x="Geneid",by.y="ens",all.x=TRUE)
rownames(k9a) <- paste(k9a$Geneid,k9a$genesymbol,k9a$Chr,k9a$Start,k9a$End)
k9a <- k9a[,7:22]
colnames(k9a) <- c("pos1","pre1","pos2","pre2","pos3","pre3","pos4","pre4","pos5","pre5",
"input1","input2","input3","input4","pos6","pre6")
input <- k9a[,grep("input",colnames(k9a))]
k9a <- k9a[,grep("input",colnames(k9a),invert=TRUE)]
head(k9a) |>
kbl(caption = "H3K9ac TSS data") |>
kable_paper("hover", full_width = F)
H3K9ac TSS data
|
pos1
|
pre1
|
pos2
|
pre2
|
pos3
|
pre3
|
pos4
|
pre4
|
pos5
|
pre5
|
pos6
|
pre6
|
ENSG00000000003.16 TSPAN6 chrX 100634689 100641991
|
107
|
76
|
207
|
57
|
101
|
70
|
102
|
147
|
73
|
114
|
129
|
311
|
ENSG00000000005.6 TNMD chrX 100582936 100587019
|
32
|
37
|
71
|
34
|
43
|
40
|
39
|
74
|
52
|
41
|
33
|
102
|
ENSG00000000005.6 TNMD chrX 100591624 100595624
|
30
|
18
|
69
|
33
|
36
|
31
|
38
|
74
|
36
|
21
|
22
|
11
|
ENSG00000000419.14 DPM1 chr20 50940869 50951472
|
171
|
141
|
275
|
68
|
142
|
85
|
142
|
181
|
112
|
106
|
142
|
239
|
ENSG00000000419.14 DPM1 chr20 50955153 50961140
|
389
|
140
|
545
|
123
|
283
|
137
|
342
|
307
|
260
|
223
|
343
|
509
|
ENSG00000000457.14 SCYL3 chr1 169891896 169896267
|
281
|
158
|
444
|
113
|
293
|
146
|
251
|
349
|
149
|
153
|
330
|
368
|
head(input) |>
kbl(caption = "Input TSS data") |>
kable_paper("hover", full_width = F)
Input TSS data
|
input1
|
input2
|
input3
|
input4
|
ENSG00000000003.16 TSPAN6 chrX 100634689 100641991
|
74
|
81
|
22
|
30
|
ENSG00000000005.6 TNMD chrX 100582936 100587019
|
50
|
40
|
11
|
5
|
ENSG00000000005.6 TNMD chrX 100591624 100595624
|
25
|
25
|
8
|
0
|
ENSG00000000419.14 DPM1 chr20 50940869 50951472
|
138
|
121
|
72
|
81
|
ENSG00000000419.14 DPM1 chr20 50955153 50961140
|
97
|
93
|
31
|
62
|
ENSG00000000457.14 SCYL3 chr1 169891896 169896267
|
66
|
65
|
40
|
18
|
colSums(k9a)
## pos1 pre1 pos2 pre2 pos3 pre3 pos4 pre4
## 9922023 7718857 16458895 5881785 9807888 6507463 9553319 14483957
## pos5 pre5 pos6 pre6
## 7508858 7411365 10334114 19855186
k36 <- read.table("raw_data/h3k36ac/h3k36_counts.tsv",header=TRUE)
dim(k36)
## [1] 95874 18
k36a <- merge(k36,gt,by.x="Geneid",by.y="ens",all.x=TRUE)
rownames(k36a) <- paste(k36a$Geneid,k36a$genesymbol,k36a$Chr,k36a$Start,k36a$End)
k36a <- k36a[,7:18]
colnames(k36a) <- c("pos1","pre1","pos2","pre2","pos3","pre3","pos4","pre4","pos5","pre5","pos6","pre6")
head(k36a) |>
kbl(caption = "H3K36ac TSS data") |>
kable_paper("hover", full_width = F)
H3K36ac TSS data
|
pos1
|
pre1
|
pos2
|
pre2
|
pos3
|
pre3
|
pos4
|
pre4
|
pos5
|
pre5
|
pos6
|
pre6
|
ENSG00000000003.16 TSPAN6 chrX 100634689 100641991
|
10
|
69
|
119
|
3
|
44
|
48
|
91
|
126
|
61
|
83
|
73
|
25
|
ENSG00000000005.6 TNMD chrX 100582936 100587019
|
12
|
37
|
67
|
30
|
17
|
56
|
69
|
84
|
62
|
65
|
43
|
24
|
ENSG00000000005.6 TNMD chrX 100591624 100595624
|
39
|
32
|
40
|
54
|
30
|
46
|
36
|
34
|
34
|
42
|
27
|
18
|
ENSG00000000419.14 DPM1 chr20 50940869 50951472
|
131
|
160
|
80
|
70
|
50
|
160
|
138
|
222
|
118
|
85
|
100
|
76
|
ENSG00000000419.14 DPM1 chr20 50955153 50961140
|
40
|
40
|
64
|
9
|
78
|
45
|
170
|
173
|
103
|
170
|
107
|
89
|
ENSG00000000457.14 SCYL3 chr1 169891896 169896267
|
56
|
61
|
102
|
92
|
44
|
69
|
101
|
77
|
57
|
144
|
73
|
91
|
colSums(k36a)
## pos1 pre1 pos2 pre2 pos3 pre3 pos4 pre4
## 7230447 7422440 6514355 6192606 6754850 7790480 8050081 10962406
## pos5 pre5 pos6 pre6
## 7199883 8439267 6882750 8062324
rpm9 <- apply(k9a, 2 , function(x) { x / sum(x) } ) * 1000000
rpm9 <- rpm9[rowMeans(rpm9) > 1,]
rpm36 <- apply(k36a, 2 , function(x) { x / sum(x) } ) * 1000000
rpm36 <- rpm36[rowMeans(rpm36) > 1,]
MDS Plot
mds9 <- cmdscale(dist(t(k9a)))
cols=rep(c("pink","lightblue"),6)
XMIN=min(mds9[,1])*1.1
XMAX=max(mds9[,1])*1.1
plot(mds9, xlab="Coordinate 1", ylab="Coordinate 2", cex=2,col=cols,pch=19,main="H3K9ac",xlim=c(XMIN,XMAX),bty="n")
text(mds9, labels=colnames(k9a) ,cex=1.1)
pdf("k9a_mds.pdf",width=5,height=5)
plot(mds9, xlab="Coordinate 1", ylab="Coordinate 2", cex=2,col=cols,pch=19,main="H3K9ac",xlim=c(XMIN,XMAX),bty="n")
text(mds9, labels=colnames(k9a) ,cex=1.1)
dev.off()
## png
## 2
mds36 <- cmdscale(dist(t(k36a)))
cols=rep(c("pink","lightblue"),6)
XMIN=min(mds36[,1])*1.1
XMAX=max(mds36[,1])*1.1
plot(mds36, xlab="Coordinate 1", ylab="Coordinate 2", cex=2,col=cols,pch=19,main="H3K36ac",xlim=c(XMIN,XMAX),bty="n")
text(mds36, labels=colnames(k9a) ,cex=1.1)
pdf("k36a_mds.pdf",width=5,height=5)
plot(mds36, xlab="Coordinate 1", ylab="Coordinate 2", cex=2,col=cols,pch=19,main="H3K36ac",xlim=c(XMIN,XMAX),bty="n")
text(mds36, labels=colnames(k9a) ,cex=1.1)
dev.off()
## png
## 2
# include input sample
allac <- cbind(k9a,k36a)
mycolnames <- colnames(allac)
colnames(allac) <- paste(c(rep("k9",12),rep("k36",12)),mycolnames)
allac <- cbind(allac,input)
mdsa <- cmdscale(dist(t(allac)))
cols=c(rep(c("pink","lightblue"),12),rep("gray",4))
XMIN=min(mdsa[,1])*1.1
XMAX=max(mdsa[,1])*1.1
plot(mdsa, xlab="Coordinate 1", ylab="Coordinate 2", cex=2,col=cols,pch=19,main="ChIP",xlim=c(XMIN,XMAX),bty="n")
text(mdsa, labels=colnames(allac) ,cex=1.1)
# Remove input
allac <- cbind(k9a,k36a)
mycolnames <- colnames(allac)
colnames(allac) <- paste(c(rep("k9",12),rep("k36",12)),mycolnames)
mdsa <- cmdscale(dist(t(allac)))
cols=rep(c("pink","lightblue"),12)
XMIN=min(mdsa[,1])*1.1
XMAX=max(mdsa[,1])*1.1
plot(mdsa, xlab="Coordinate 1", ylab="Coordinate 2", cex=2,col=cols,pch=19,main="ChIP",xlim=c(XMIN,XMAX),bty="n")
text(mdsa, labels=colnames(allac) ,cex=1.1)
DESeq2
Sample sheet then differential analysis.
Remove genes with less than 10 reads per sample on average.
ss <- as.data.frame(colnames(k9a))
ss$pos <- factor(grepl("pos",ss[,1]))
ss$participant <- c("1","1","2","2","3","3","4","4","5","5","6","6")
dim(k9a)
## [1] 95874 12
k9a <- k9a[rowMeans(k9a)>=10,]
dim(k9a)
## [1] 92879 12
dds <- DESeqDataSetFromMatrix(countData = k9a , colData = ss, design = ~ participant + pos )
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dk9 <- as.data.frame(zz[order(zz$pvalue),])
write.table(dk9,file="k9a_deseq.tsv",quote=F,sep="\t")
head(subset(dk9,log2FoldChange > 0),20)[,c(1,2,6)] |>
kbl(caption = "Top increased genes in paired analysis for H3K9ac") |>
kable_paper("hover", full_width = F)
Top increased genes in paired analysis for H3K9ac
|
baseMean
|
log2FoldChange
|
padj
|
ENSG00000036672.16 USP2 chr11 119374356 119383711
|
524.6631
|
1.487334
|
0
|
ENSG00000109819.9 PPARGC1A chr4 23887945 23892077
|
381.7201
|
1.567396
|
0
|
ENSG00000173575.24 CHD2 chr15 92898189 92906908
|
484.2652
|
1.437051
|
0
|
ENSG00000273338.1 ENSG00000273338 chr1 78002554 78006554
|
251.1536
|
1.849550
|
0
|
ENSG00000101608.13 MYL12A chr18 3250218 3257524
|
268.4371
|
1.487999
|
0
|
ENSG00000162616.9 DNAJB4 chr1 78002935 78007111
|
280.7745
|
1.755524
|
0
|
ENSG00000100628.12 ASB2 chr14 93972083 93978739
|
421.3027
|
1.643101
|
0
|
ENSG00000112183.15 RBM24 chr6 17287855 17291969
|
226.5850
|
1.790212
|
0
|
ENSG00000150991.16 UBC chr12 124909716 124919368
|
485.9735
|
1.608265
|
0
|
ENSG00000255958.1 GABARAPL1-AS1 chr12 10212761 10216761
|
294.3751
|
1.404936
|
0
|
ENSG00000168386.19 FILIP1L chr3 100112264 100116513
|
200.6929
|
1.549050
|
0
|
ENSG00000122643.23 NT5C3A chr7 33038900 33042910
|
219.3906
|
1.734015
|
0
|
ENSG00000185437.16 SH3BGR chr21 39449970 39454123
|
218.1856
|
1.542191
|
0
|
ENSG00000284324.1 MIR3175 chr15 92902399 92906399
|
257.2706
|
1.543437
|
0
|
ENSG00000251562.11 MALAT1 chr11 65495640 65506702
|
954.1195
|
1.506696
|
0
|
ENSG00000170807.12 LMOD2 chr7 123653866 123657964
|
249.8334
|
1.472954
|
0
|
ENSG00000119508.18 NR4A3 chr9 99819855 99823885
|
378.4525
|
1.544204
|
0
|
ENSG00000113448.21 PDE4D chr5 59584375 59588499
|
309.6319
|
1.472067
|
0
|
ENSG00000265345.1 MIR5188 chr12 124913547 124917547
|
325.7779
|
1.653016
|
0
|
ENSG00000168575.11 SLC20A2 chr8 42499231 42504702
|
246.5869
|
1.358816
|
0
|
head(subset(dk9,log2FoldChange < 0),20)[,c(1,2,6)] |>
kbl(caption = "Top increased genes in paired analysis for H3K9ac") |>
kable_paper("hover", full_width = F)
Top increased genes in paired analysis for H3K9ac
|
baseMean
|
log2FoldChange
|
padj
|
ENSG00000224078.15 SNHG14 chr15 25204080 25210108
|
99.84421
|
-1.3083026
|
0.00e+00
|
ENSG00000199833.1 SNORD115-21 chr15 25206083 25210083
|
69.81318
|
-1.3420231
|
2.00e-07
|
ENSG00000258991.1 DUX4L19 chrY 11330329 11334329
|
251.75574
|
-1.0878236
|
7.00e-07
|
ENSG00000075043.21 KCNQ2 chr20 63406012 63415439
|
170.49865
|
-1.0313197
|
4.20e-06
|
ENSG00000200801.1 SNORD115-28 chr15 25220348 25224348
|
68.88609
|
-1.1700731
|
4.90e-06
|
ENSG00000259029.1 DUX4L18 chrY 11319557 11323557
|
238.54566
|
-0.9068931
|
6.60e-06
|
ENSG00000196557.14 CACNA1H chr16 1208608 1214925
|
100.74329
|
-1.1008554
|
8.80e-06
|
ENSG00000143494.16 VASH2 chr1 212959227 212963227
|
80.14866
|
-1.1582411
|
9.30e-06
|
ENSG00000199704.1 SNORD115-29 chr15 25221246 25225246
|
71.97597
|
-1.1749336
|
1.19e-05
|
ENSG00000101292.8 PROKR2 chr20 5314414 5318954
|
100.20647
|
-1.0905800
|
1.21e-05
|
ENSG00000202261.1 SNORD115-44 chr15 25248859 25252859
|
57.54762
|
-1.3339151
|
1.35e-05
|
ENSG00000201496.1 RN7SKP275 chr4 5456881 5460881
|
75.21991
|
-1.1833411
|
1.74e-05
|
ENSG00000169325.10 GUSBP12 chr7 57201597 57205597
|
63.37317
|
-1.1216681
|
1.90e-05
|
ENSG00000203805.11 PLPP4 chr10 120501579 120505579
|
85.86486
|
-1.0818387
|
2.05e-05
|
ENSG00000259282.5 SPATA8-AS1 chr15 96779654 96785312
|
122.58135
|
-0.9462947
|
2.09e-05
|
ENSG00000155066.16 PROM2 chr2 95272449 95281866
|
165.45028
|
-0.8805711
|
2.11e-05
|
ENSG00000201969.1 SNORD115-20 chr15 25204262 25208262
|
67.76409
|
-1.2025575
|
2.13e-05
|
ENSG00000260134.1 C1QL1P1 chr16 35572834 35576834
|
65.10995
|
-1.2059305
|
2.25e-05
|
ENSG00000265378.1 ENSG00000265378 chr18 78503165 78507165
|
60.87092
|
-1.1806800
|
2.25e-05
|
ENSG00000258567.1 DUX4L16 chrY 11304918 11308918
|
187.92800
|
-0.9672420
|
3.14e-05
|
nrow(subset(dk9,padj<0.05 & log2FoldChange > 0))
## [1] 12279
nrow(subset(dk9,padj<0.05 & log2FoldChange < 0))
## [1] 4395
dk9[grep("SLC2A4",rownames(dk9)),c(1,2,5,6)] |>
kbl(caption = "GLUT4 TSS H3K9ac)") |>
kable_paper("hover", full_width = F)
GLUT4 TSS H3K9ac)
|
baseMean
|
log2FoldChange
|
pvalue
|
padj
|
ENSG00000181856.15 SLC2A4 chr17 7279718 7284427
|
267.4548
|
0.8139358
|
0.0001994
|
0.0030238
|
ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528
|
233.0312
|
0.0703409
|
0.7450239
|
0.8602644
|
dk9[grep("SLC2A",rownames(dk9)),c(1,2,5,6)] |>
kbl(caption = "GLUT transporters TSS H3K9ac)") |>
kable_paper("hover", full_width = F)
GLUT transporters TSS H3K9ac)
|
baseMean
|
log2FoldChange
|
pvalue
|
padj
|
ENSG00000181856.15 SLC2A4 chr17 7279718 7284427
|
267.45485
|
0.8139358
|
0.0001994
|
0.0030238
|
ENSG00000142583.18 SLC2A5 chr1 9067536 9075122
|
172.73600
|
0.6381898
|
0.0002636
|
0.0037477
|
ENSG00000146411.6 SLC2A12 chr6 134050480 134054624
|
144.56711
|
0.7032469
|
0.0007043
|
0.0078798
|
ENSG00000133460.20 SLC2A11 chr22 23854703 23860136
|
212.78075
|
0.5438167
|
0.0044675
|
0.0305393
|
ENSG00000059804.17 SLC2A3 chr12 7934034 7938187
|
110.18393
|
0.5448942
|
0.0058367
|
0.0369365
|
ENSG00000117394.24 SLC2A1 chr1 42927499 42933769
|
122.39498
|
-0.4902829
|
0.0071624
|
0.0426871
|
ENSG00000059804.17 SLC2A3 chr12 7917750 7925289
|
99.74252
|
-0.4671657
|
0.0115570
|
0.0598594
|
ENSG00000173262.12 SLC2A14 chr12 7830735 7834816
|
64.48003
|
-0.5050898
|
0.0227083
|
0.0954830
|
ENSG00000109667.12 SLC2A9 chr4 10027300 10031300
|
66.96057
|
0.5004813
|
0.0340207
|
0.1260044
|
ENSG00000109667.12 SLC2A9 chr4 10017075 10023497
|
160.84233
|
0.4630155
|
0.0344426
|
0.1270098
|
ENSG00000173262.12 SLC2A14 chr12 7861455 7865455
|
64.04563
|
-0.4777673
|
0.0346338
|
0.1275215
|
ENSG00000173262.12 SLC2A14 chr12 7870380 7875484
|
77.94010
|
-0.4514423
|
0.0372788
|
0.1340464
|
ENSG00000142583.18 SLC2A5 chr1 9037895 9041895
|
74.98537
|
-0.4304027
|
0.0500987
|
0.1631869
|
ENSG00000163581.14 SLC2A2 chr3 171024670 171028743
|
85.22052
|
0.3657697
|
0.0717270
|
0.2074463
|
ENSG00000109667.12 SLC2A9 chr4 9885642 9889642
|
65.42534
|
-0.4175300
|
0.0807162
|
0.2240336
|
ENSG00000185031.6 SLC2A3P2 chr1 64984087 64988087
|
56.99060
|
-0.3928979
|
0.1096012
|
0.2737422
|
ENSG00000250413.1 SLC2A9-AS1 chr4 10004482 10008482
|
83.75998
|
0.3215309
|
0.1223829
|
0.2936262
|
ENSG00000117394.24 SLC2A1 chr1 42950016 42954016
|
79.60871
|
-0.3285558
|
0.1746223
|
0.3673722
|
ENSG00000173262.12 SLC2A14 chr12 7889127 7893148
|
61.39839
|
-0.2891091
|
0.2062892
|
0.4076756
|
ENSG00000059804.17 SLC2A3 chr12 8017004 8021007
|
94.42340
|
0.2422359
|
0.2215203
|
0.4254615
|
ENSG00000275768.1 SLC2AXP1 chr2 95195357 95199357
|
64.99273
|
-0.2757756
|
0.2333236
|
0.4394464
|
ENSG00000142583.18 SLC2A5 chr1 9086443 9090478
|
74.50608
|
-0.2334344
|
0.2819794
|
0.4927464
|
ENSG00000253861.1 SLC2A3P1 chr5 168551727 168555727
|
56.81002
|
-0.2683819
|
0.3063217
|
0.5186367
|
ENSG00000151229.13 SLC2A13 chr12 39869881 39873881
|
72.09885
|
-0.2349659
|
0.3117303
|
0.5239755
|
ENSG00000109667.12 SLC2A9 chr4 10052875 10056936
|
64.58814
|
-0.1974429
|
0.3790624
|
0.5883114
|
ENSG00000197496.6 SLC2A10 chr20 46707649 46711737
|
128.93541
|
-0.1505041
|
0.4649025
|
0.6625902
|
ENSG00000109667.12 SLC2A9 chr4 9824600 9828600
|
72.88661
|
-0.1660901
|
0.5028677
|
0.6936753
|
ENSG00000109667.12 SLC2A9 chr4 9906345 9910345
|
59.19697
|
-0.1432424
|
0.5522555
|
0.7308169
|
ENSG00000254954.1 SLC2A13P1 chr8 60139821 60143821
|
66.56583
|
0.1718459
|
0.5541247
|
0.7319301
|
ENSG00000254088.1 SLC2A3P4 chr8 86501591 86505591
|
55.65896
|
-0.1192612
|
0.6387493
|
0.7916942
|
ENSG00000163581.14 SLC2A2 chr3 171005470 171009470
|
73.36293
|
-0.1024520
|
0.6539062
|
0.8014747
|
ENSG00000151229.13 SLC2A13 chr12 40103808 40108089
|
189.60020
|
0.0797274
|
0.6709739
|
0.8128539
|
ENSG00000133460.20 SLC2A11 chr22 23873160 23884960
|
183.83832
|
0.0782214
|
0.6722285
|
0.8137517
|
ENSG00000117394.24 SLC2A1 chr1 42941238 42945238
|
90.92739
|
-0.0736564
|
0.7052536
|
0.8360689
|
ENSG00000117394.24 SLC2A1 chr1 42956651 42960893
|
144.13653
|
0.0730659
|
0.7345002
|
0.8540266
|
ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528
|
233.03122
|
0.0703409
|
0.7450239
|
0.8602644
|
ENSG00000227533.7 SLC2A1-DT chr1 42957049 42961100
|
142.57101
|
0.0716479
|
0.7469866
|
0.8612671
|
ENSG00000109667.12 SLC2A9 chr4 10038210 10042388
|
76.99335
|
0.0642317
|
0.7685924
|
0.8745123
|
ENSG00000197496.6 SLC2A10 chr20 46712467 46716467
|
74.35784
|
-0.0593869
|
0.7756693
|
0.8788244
|
ENSG00000151229.13 SLC2A13 chr12 39833760 39837760
|
52.07064
|
-0.0600615
|
0.8185127
|
0.9039442
|
ENSG00000160326.14 SLC2A6 chr9 133477059 133481127
|
106.87263
|
-0.0355185
|
0.8641603
|
0.9300374
|
ENSG00000136856.18 SLC2A8 chr9 127395138 127409404
|
413.73250
|
0.0220683
|
0.8966627
|
0.9474715
|
ENSG00000163581.14 SLC2A2 chr3 171016623 171020623
|
70.30672
|
0.0193509
|
0.9368715
|
0.9688972
|
ENSG00000197241.4 SLC2A7 chr1 9024345 9028423
|
62.10553
|
0.0108188
|
0.9616640
|
0.9814776
|
ENSG00000059804.17 SLC2A3 chr12 7928035 7932055
|
54.87079
|
0.0104012
|
0.9642192
|
0.9827446
|
Smear plot
sig9 <- subset(dk9,padj<0.05)
NSIG=nrow(sig9)
NDOWN=nrow(subset(sig9,log2FoldChange<0))
NUP=nrow(subset(sig9,log2FoldChange>0))
NTOT=nrow(dk9)
HEADER=paste(NTOT,"TSSs detected;",NSIG,"@5%FDR;",NUP,"up",NDOWN,"down")
plot(log10(dk9$baseMean),dk9$log2FoldChange,cex=0.5,pch=19,col="darkgray",bty="n",
xlab="log10 basemean",ylab="log2 fold change",main="H3K9ac")
points(log10(sig9$baseMean),sig9$log2FoldChange,cex=0.5,pch=19,col="black")
mtext(HEADER)
pdf("k9a_smear.pdf",width=5,height=5)
plot(log10(dk9$baseMean),dk9$log2FoldChange,cex=0.5,pch=19,col="darkgray",btn="n",
xlab="log10 basemean",ylab="log2 fold change",main="H3K9ac")
## Warning in plot.window(...): "btn" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "btn" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "btn" is not a
## graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "btn" is not a
## graphical parameter
## Warning in box(...): "btn" is not a graphical parameter
## Warning in title(...): "btn" is not a graphical parameter
points(log10(sig9$baseMean),sig9$log2FoldChange,cex=0.5,pch=19,col="black")
mtext(HEADER)
dev.off()
## png
## 2
subset(dk9,log10(baseMean)>3)[,c(1,2,5,6)]|>
kbl(caption = "TSS with high basemeans") |>
kable_paper("hover", full_width = F)
TSS with high basemeans
|
baseMean
|
log2FoldChange
|
pvalue
|
padj
|
ENSG00000211459.2 MT-RNR1 chrM 1 2648
|
1531.180
|
-0.6286146
|
0.1766221
|
0.3700204
|
ENSG00000210049.1 MT-TF chrM 1 2577
|
1483.360
|
-0.6233035
|
0.1826570
|
0.3777976
|
ENSG00000228253.1 MT-ATP8 chrM 6366 10570
|
1782.739
|
-0.6430670
|
0.1890921
|
0.3864007
|
ENSG00000210156.1 MT-TK chrM 6295 10295
|
1656.142
|
-0.6445407
|
0.1952980
|
0.3943193
|
ENSG00000198899.2 MT-ATP6 chrM 6527 11205
|
2060.259
|
-0.6400571
|
0.1958356
|
0.3950162
|
ENSG00000210077.1 MT-TV chrM 1 3602
|
2166.439
|
-0.6180571
|
0.1981148
|
0.3977412
|
ENSG00000198938.2 MT-CO3 chrM 7207 11207
|
1874.265
|
-0.6381460
|
0.2001226
|
0.4001461
|
ENSG00000210082.2 MT-RNR2 chrM 1 3671
|
2213.631
|
-0.6102104
|
0.2047901
|
0.4058425
|
ENSG00000210196.2 MT-TP chrM 14023 16568
|
1993.267
|
-0.6030131
|
0.2058250
|
0.4070699
|
ENSG00000198712.1 MT-CO2 chrM 5586 10267
|
1806.188
|
-0.6350773
|
0.2098888
|
0.4121003
|
ENSG00000198695.2 MT-ND6 chrM 12673 16568
|
2924.634
|
-0.6084969
|
0.2120392
|
0.4146772
|
ENSG00000210194.1 MT-TE chrM 12742 16568
|
2885.734
|
-0.6083971
|
0.2138021
|
0.4167588
|
ENSG00000198727.2 MT-CYB chrM 12747 16568
|
2882.337
|
-0.6081162
|
0.2138906
|
0.4168701
|
ENSG00000210164.1 MT-TG chrM 7991 11991
|
2107.927
|
-0.6270086
|
0.2157150
|
0.4189402
|
ENSG00000210195.2 MT-TT chrM 13888 16568
|
2093.509
|
-0.5854327
|
0.2171742
|
0.4207623
|
ENSG00000198840.2 MT-ND3 chrM 8059 12059
|
2128.446
|
-0.6197204
|
0.2213776
|
0.4253218
|
ENSG00000210154.1 MT-TD chrM 5518 9518
|
1357.741
|
-0.6282122
|
0.2223644
|
0.4264527
|
ENSG00000210151.2 MT-TS1 chrM 5514 9514
|
1357.739
|
-0.6273058
|
0.2233567
|
0.4277526
|
ENSG00000210174.1 MT-TR chrM 8405 12405
|
2234.079
|
-0.6066202
|
0.2321942
|
0.4381010
|
ENSG00000209082.1 MT-TL1 chrM 1230 5230
|
1815.209
|
-0.5913926
|
0.2365977
|
0.4432577
|
ENSG00000198888.2 MT-ND1 chrM 1307 5307
|
1818.061
|
-0.5875696
|
0.2380542
|
0.4450083
|
ENSG00000198886.2 MT-ND4 chrM 8760 12760
|
2334.944
|
-0.5902927
|
0.2465821
|
0.4545098
|
ENSG00000210176.1 MT-TH chrM 10138 14138
|
2700.257
|
-0.5865324
|
0.2490944
|
0.4570092
|
ENSG00000210184.1 MT-TS2 chrM 10207 14207
|
2681.210
|
-0.5846668
|
0.2499794
|
0.4580509
|
ENSG00000212907.2 MT-ND4L chrM 8470 12764
|
2456.237
|
-0.5761765
|
0.2535204
|
0.4622171
|
ENSG00000210191.1 MT-TL2 chrM 10266 14266
|
2665.280
|
-0.5803521
|
0.2542443
|
0.4629461
|
ENSG00000210140.1 MT-TC chrM 3826 7826
|
1272.745
|
-0.5695709
|
0.2677136
|
0.4779111
|
ENSG00000198804.2 MT-CO1 chrM 3904 7904
|
1307.687
|
-0.5677777
|
0.2686811
|
0.4789795
|
ENSG00000210144.1 MT-TY chrM 3891 7891
|
1309.665
|
-0.5665567
|
0.2691696
|
0.4795282
|
ENSG00000210100.1 MT-TI chrM 2263 6263
|
1753.693
|
-0.5664499
|
0.2795816
|
0.4902671
|
ENSG00000210117.1 MT-TW chrM 3512 7512
|
1374.602
|
-0.5587773
|
0.2806861
|
0.4914401
|
ENSG00000210112.1 MT-TM chrM 2402 6402
|
1752.737
|
-0.5674392
|
0.2822875
|
0.4930331
|
ENSG00000210107.1 MT-TQ chrM 2400 6400
|
1752.365
|
-0.5665396
|
0.2827170
|
0.4934226
|
ENSG00000210135.1 MT-TN chrM 3729 7729
|
1300.006
|
-0.5467415
|
0.2866848
|
0.4977334
|
ENSG00000198763.3 MT-ND2 chrM 2470 6470
|
1746.583
|
-0.5585899
|
0.2897799
|
0.5009393
|
ENSG00000198786.2 MT-ND5 chrM 10337 16146
|
3964.289
|
-0.5353781
|
0.2918433
|
0.5030967
|
ENSG00000210127.1 MT-TA chrM 3655 7655
|
1315.246
|
-0.5329101
|
0.3002276
|
0.5119965
|
Now for H3K36a
dim(k36a)
## [1] 95874 12
k36a <- k36a[rowMeans(k36a)>=10,]
dim(k36a)
## [1] 92792 12
dds <- DESeqDataSetFromMatrix(countData = k36a , colData = ss, design = ~ participant + pos )
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## -- note: fitType='parametric', but the dispersion trend was not well captured by the
## function: y = a/x + b, and a local regression fit was automatically substituted.
## specify fitType='local' or 'mean' to avoid this message next time.
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
## -- note: fitType='parametric', but the dispersion trend was not well captured by the
## function: y = a/x + b, and a local regression fit was automatically substituted.
## specify fitType='local' or 'mean' to avoid this message next time.
zz <- cbind(as.data.frame(z),assay(vsd))
dk36 <- as.data.frame(zz[order(zz$pvalue),])
write.table(dk36,file="k36a_deseq.tsv",quote=F,sep="\t")
head(subset(dk36,log2FoldChange > 0),20)[,c(1,2,6)] |>
kbl(caption = "Top increased genes in paired analysis for H3K36ac") |>
kable_paper("hover", full_width = F)
Top increased genes in paired analysis for H3K36ac
|
baseMean
|
log2FoldChange
|
padj
|
ENSG00000096060.15 FKBP5 chr6 35726583 35730583
|
226.4563
|
1.734588
|
0
|
ENSG00000072422.17 RHOBTB1 chr10 60942185 60946185
|
159.8681
|
1.924122
|
0
|
ENSG00000235831.8 BHLHE40-AS1 chr3 4977961 4982414
|
249.6403
|
1.801638
|
0
|
ENSG00000134107.5 BHLHE40 chr3 4977437 4982232
|
273.0280
|
1.775006
|
0
|
ENSG00000177354.12 C10orf71 chr10 49297170 49301274
|
182.2851
|
1.877299
|
0
|
ENSG00000289989.1 ENSG00000289989 chr10 60942378 60946378
|
162.3501
|
1.807843
|
0
|
ENSG00000150991.16 UBC chr12 124909716 124919368
|
277.3492
|
1.405234
|
0
|
ENSG00000290057.1 ENSG00000290057 chr11 65419448 65423448
|
199.8796
|
1.938683
|
0
|
ENSG00000154803.13 FLCN chr17 17235139 17239188
|
122.8297
|
1.896609
|
0
|
ENSG00000264187.1 ENSG00000264187 chr17 17235185 17239185
|
122.8297
|
1.896609
|
0
|
ENSG00000166272.18 WBP1L chr10 102774249 102778391
|
156.6354
|
2.207488
|
0
|
ENSG00000259164.1 ENSG00000259164 chr14 77096311 77100311
|
140.4952
|
2.185755
|
0
|
ENSG00000266498.1 ENSG00000266498 chr17 17234118 17238118
|
122.5840
|
1.729711
|
0
|
ENSG00000236208.3 C10orf71-AS1 chr10 49296775 49301018
|
182.3681
|
1.869396
|
0
|
ENSG00000198894.8 CIPC chr14 77096126 77101176
|
166.0308
|
2.116770
|
0
|
ENSG00000227630.4 LINC01132 chr1 234722042 234727398
|
152.0404
|
1.680520
|
0
|
ENSG00000167716.19 WDR81 chr17 1714523 1718601
|
175.3965
|
1.735130
|
0
|
ENSG00000248538.10 PPP1R3B-DT chr8 9149695 9157290
|
217.0624
|
1.594199
|
0
|
ENSG00000054523.20 KIF1B chr1 10208570 10213616
|
148.4638
|
1.621419
|
0
|
ENSG00000237461.3 ENSG00000237461 chr9 99817889 99821921
|
163.7983
|
1.882090
|
0
|
head(subset(dk36,log2FoldChange < 0),20)[,c(1,2,6)] |>
kbl(caption = "Top increased genes in paired analysis for H3K36ac") |>
kable_paper("hover", full_width = F)
Top increased genes in paired analysis for H3K36ac
|
baseMean
|
log2FoldChange
|
padj
|
ENSG00000267073.1 ENSG00000267073 chr19 1746056 1750160
|
86.43211
|
-2.415936
|
0
|
ENSG00000176884.17 GRIN1 chr9 137160706 137169923
|
215.89789
|
-2.151658
|
0
|
ENSG00000182871.16 COL18A1 chr21 45503358 45508019
|
107.17483
|
-1.812416
|
0
|
ENSG00000203900.2 ENSG00000203900 chr20 63357988 63361988
|
80.28738
|
-2.261360
|
0
|
ENSG00000174407.15 MIR1-1HG chr20 62568442 62572442
|
76.48334
|
-2.479432
|
0
|
ENSG00000261678.3 SCRT1 chr8 144334169 144338482
|
74.54850
|
-3.002328
|
0
|
ENSG00000141577.14 CEP131 chr17 81190376 81199019
|
216.21803
|
-1.328939
|
0
|
ENSG00000125503.13 PPP1R12C chr19 55090598 55099064
|
117.73322
|
-2.029696
|
0
|
ENSG00000261793.1 ENSG00000261793 chr9 137169984 137173984
|
71.86733
|
-2.223339
|
0
|
ENSG00000007516.15 BAIAP3 chr16 1339822 1349298
|
196.29268
|
-1.614631
|
0
|
ENSG00000188064.10 WNT7B chr22 45970237 45979162
|
187.13948
|
-1.481744
|
0
|
ENSG00000162004.19 CCDC78 chr16 722635 728954
|
141.26145
|
-1.860519
|
0
|
ENSG00000203485.14 INF2 chr14 104697368 104717725
|
428.49144
|
-1.352265
|
0
|
ENSG00000177106.17 EPS8L2 chr11 718606 728954
|
217.68061
|
-1.699419
|
0
|
ENSG00000099821.14 POLRMT chr19 615997 621226
|
63.51642
|
-2.389155
|
0
|
ENSG00000165716.11 DIPK1B chr9 136718885 136723984
|
121.69781
|
-1.877862
|
0
|
ENSG00000105298.14 CACTIN chr19 3609925 3623028
|
240.82412
|
-1.339066
|
0
|
ENSG00000127561.16 SYNGR3 chr16 1987660 1994463
|
134.80975
|
-1.396684
|
0
|
ENSG00000259803.8 SLC22A31 chr16 89196840 89203651
|
125.36478
|
-1.892523
|
0
|
ENSG00000174938.15 SEZ6L2 chr16 29895928 29901550
|
108.38265
|
-1.926817
|
0
|
nrow(subset(dk36,padj<0.05 & log2FoldChange > 0))
## [1] 2885
nrow(subset(dk36,padj<0.05 & log2FoldChange < 0))
## [1] 4230
dk36[grep("SLC2A4",rownames(dk36)),c(1,2,5,6)] |>
kbl(caption = "GLUT4 TSS H3K36ac)") |>
kable_paper("hover", full_width = F)
GLUT4 TSS H3K36ac)
|
baseMean
|
log2FoldChange
|
pvalue
|
padj
|
ENSG00000181856.15 SLC2A4 chr17 7279718 7284427
|
186.6098
|
1.3001087
|
0.0000000
|
0.0000003
|
ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528
|
135.0512
|
-0.4546132
|
0.0392601
|
0.2045954
|
dk36[grep("SLC2A",rownames(dk36)),c(1,2,5,6)] |>
kbl(caption = "GLUT transporters TSS H3K36ac)") |>
kable_paper("hover", full_width = F)
GLUT transporters TSS H3K36ac)
|
baseMean
|
log2FoldChange
|
pvalue
|
padj
|
ENSG00000181856.15 SLC2A4 chr17 7279718 7284427
|
186.60980
|
1.3001087
|
0.0000000
|
0.0000003
|
ENSG00000146411.6 SLC2A12 chr6 134050480 134054624
|
75.05498
|
1.1507533
|
0.0001220
|
0.0047234
|
ENSG00000142583.18 SLC2A5 chr1 9037895 9041895
|
85.52562
|
-1.1976609
|
0.0003074
|
0.0092344
|
ENSG00000254954.1 SLC2A13P1 chr8 60139821 60143821
|
62.95483
|
1.2452427
|
0.0003587
|
0.0102570
|
ENSG00000227533.7 SLC2A1-DT chr1 42957049 42961100
|
85.88964
|
-1.0391178
|
0.0007386
|
0.0168361
|
ENSG00000117394.24 SLC2A1 chr1 42956651 42960893
|
88.03535
|
-1.0263314
|
0.0008009
|
0.0177798
|
ENSG00000173262.12 SLC2A14 chr12 7870380 7875484
|
94.36016
|
-0.8382695
|
0.0043144
|
0.0539400
|
ENSG00000275768.1 SLC2AXP1 chr2 95195357 95199357
|
61.71953
|
1.1725857
|
0.0067826
|
0.0720183
|
ENSG00000136856.18 SLC2A8 chr9 127395138 127409404
|
263.42910
|
-0.6147938
|
0.0070274
|
0.0737636
|
ENSG00000142583.18 SLC2A5 chr1 9067536 9075122
|
186.21955
|
0.5119162
|
0.0118638
|
0.1017092
|
ENSG00000163581.14 SLC2A2 chr3 171005470 171009470
|
83.61251
|
0.5699882
|
0.0250311
|
0.1585450
|
ENSG00000160326.14 SLC2A6 chr9 133477059 133481127
|
63.26441
|
-0.8467236
|
0.0338489
|
0.1878643
|
ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528
|
135.05116
|
-0.4546132
|
0.0392601
|
0.2045954
|
ENSG00000151229.13 SLC2A13 chr12 40103808 40108089
|
72.00256
|
-0.6898400
|
0.0459551
|
0.2239637
|
ENSG00000185031.6 SLC2A3P2 chr1 64984087 64988087
|
70.08017
|
0.7549150
|
0.0504972
|
0.2362238
|
ENSG00000173262.12 SLC2A14 chr12 7861455 7865455
|
79.27207
|
-0.4934816
|
0.0603866
|
0.2609641
|
ENSG00000253861.1 SLC2A3P1 chr5 168551727 168555727
|
58.64129
|
0.5568002
|
0.0827752
|
0.3112368
|
ENSG00000250413.1 SLC2A9-AS1 chr4 10004482 10008482
|
74.65561
|
0.4746595
|
0.0988203
|
0.3430500
|
ENSG00000163581.14 SLC2A2 chr3 171016623 171020623
|
76.09859
|
0.4292654
|
0.1462781
|
0.4206863
|
ENSG00000133460.20 SLC2A11 chr22 23873160 23884960
|
188.19388
|
-0.3491312
|
0.1677292
|
0.4511284
|
ENSG00000117394.24 SLC2A1 chr1 42941238 42945238
|
85.58128
|
-0.3984973
|
0.2123230
|
0.5087292
|
ENSG00000151229.13 SLC2A13 chr12 39869881 39873881
|
56.53905
|
0.5333175
|
0.2136755
|
0.5103357
|
ENSG00000197241.4 SLC2A7 chr1 9024345 9028423
|
70.94595
|
-0.4711149
|
0.2203441
|
0.5185961
|
ENSG00000133460.20 SLC2A11 chr22 23854703 23860136
|
57.86951
|
-0.3740701
|
0.2796223
|
0.5794585
|
ENSG00000109667.12 SLC2A9 chr4 9824600 9828600
|
59.67080
|
0.3267420
|
0.3190199
|
0.6166880
|
ENSG00000197496.6 SLC2A10 chr20 46707649 46711737
|
84.94141
|
-0.2230179
|
0.3984021
|
0.6838454
|
ENSG00000109667.12 SLC2A9 chr4 10017075 10023497
|
135.99731
|
0.2143309
|
0.4142911
|
0.6965651
|
ENSG00000109667.12 SLC2A9 chr4 10027300 10031300
|
91.57337
|
-0.3141933
|
0.4243097
|
0.7043559
|
ENSG00000059804.17 SLC2A3 chr12 7917750 7925289
|
91.26654
|
-0.2104775
|
0.4397228
|
0.7156218
|
ENSG00000109667.12 SLC2A9 chr4 9906345 9910345
|
65.75939
|
-0.3412816
|
0.4455980
|
0.7198539
|
ENSG00000109667.12 SLC2A9 chr4 10038210 10042388
|
60.53255
|
-0.3370922
|
0.4691768
|
0.7362232
|
ENSG00000163581.14 SLC2A2 chr3 171024670 171028743
|
63.91328
|
-0.2226109
|
0.5262352
|
0.7746064
|
ENSG00000117394.24 SLC2A1 chr1 42950016 42954016
|
67.78232
|
-0.1772228
|
0.5342280
|
0.7798849
|
ENSG00000059804.17 SLC2A3 chr12 8017004 8021007
|
53.73041
|
0.1806048
|
0.6161042
|
0.8292756
|
ENSG00000059804.17 SLC2A3 chr12 7934034 7938187
|
66.10362
|
-0.1025274
|
0.7183913
|
0.8831709
|
ENSG00000109667.12 SLC2A9 chr4 10052875 10056936
|
63.69302
|
0.2513374
|
0.7589396
|
0.9034469
|
ENSG00000059804.17 SLC2A3 chr12 7928035 7932055
|
58.09286
|
-0.1137070
|
0.7710656
|
0.9088642
|
ENSG00000254088.1 SLC2A3P4 chr8 86501591 86505591
|
53.71431
|
0.0784831
|
0.8475069
|
0.9421950
|
ENSG00000109667.12 SLC2A9 chr4 9885642 9889642
|
83.21588
|
-0.0398711
|
0.8975956
|
0.9616858
|
ENSG00000151229.13 SLC2A13 chr12 39833760 39837760
|
34.50660
|
0.0617107
|
0.9119888
|
0.9676323
|
ENSG00000197496.6 SLC2A10 chr20 46712467 46716467
|
97.04291
|
0.0296196
|
0.9406155
|
0.9780218
|
ENSG00000142583.18 SLC2A5 chr1 9086443 9090478
|
59.87187
|
0.0314576
|
0.9431996
|
0.9791046
|
ENSG00000117394.24 SLC2A1 chr1 42927499 42933769
|
123.94251
|
-0.0045763
|
0.9827172
|
0.9940423
|
ENSG00000173262.12 SLC2A14 chr12 7889127 7893148
|
57.22430
|
-0.0062789
|
0.9848379
|
0.9948700
|
ENSG00000173262.12 SLC2A14 chr12 7830735 7834816
|
69.97344
|
-0.0026080
|
0.9929197
|
0.9976072
|
Smear plot
sig36 <- subset(dk36,padj<0.05)
NSIG=nrow(sig36)
NDOWN=nrow(subset(sig36,log2FoldChange<0))
NUP=nrow(subset(sig36,log2FoldChange>0))
NTOT=nrow(dk36)
HEADER=paste(NTOT,"TSSs detected;",NSIG,"@5%FDR;",NUP,"up",NDOWN,"down")
plot(log10(dk36$baseMean),dk36$log2FoldChange,cex=0.5,pch=19,col="darkgray",
xlab="log10 basemean",ylab="log2 fold change",main="H3K36ac")
points(log10(sig36$baseMean),sig36$log2FoldChange,cex=0.5,pch=19,col="black")
mtext(HEADER)
pdf("k36a_smear.pdf",width=5,height=5)
plot(log10(dk36$baseMean),dk36$log2FoldChange,cex=0.5,pch=19,col="darkgray",
xlab="log10 basemean",ylab="log2 fold change",main="H3K36ac")
points(log10(sig36$baseMean),sig36$log2FoldChange,cex=0.5,pch=19,col="black")
mtext(HEADER)
dev.off()
## png
## 2
subset(dk36,log10(baseMean)>3)[,c(1,2,5,6)] |>
kbl(caption = "TSS with high basemeans") |>
kable_paper("hover", full_width = F)
TSS with high basemeans
|
baseMean
|
log2FoldChange
|
pvalue
|
padj
|
ENSG00000210127.1 MT-TA chrM 3655 7655
|
2135.902
|
-2.343822
|
0.0000000
|
0.0000024
|
ENSG00000210135.1 MT-TN chrM 3729 7729
|
2076.698
|
-2.316781
|
0.0000000
|
0.0000029
|
ENSG00000210140.1 MT-TC chrM 3826 7826
|
2006.645
|
-2.339622
|
0.0000000
|
0.0000037
|
ENSG00000210144.1 MT-TY chrM 3891 7891
|
2047.510
|
-2.330088
|
0.0000000
|
0.0000040
|
ENSG00000198804.2 MT-CO1 chrM 3904 7904
|
2044.241
|
-2.307781
|
0.0000000
|
0.0000049
|
ENSG00000210151.2 MT-TS1 chrM 5514 9514
|
2129.082
|
-2.251115
|
0.0000000
|
0.0000061
|
ENSG00000210117.1 MT-TW chrM 3512 7512
|
2292.611
|
-2.308491
|
0.0000000
|
0.0000064
|
ENSG00000210154.1 MT-TD chrM 5518 9518
|
2122.247
|
-2.244491
|
0.0000000
|
0.0000066
|
ENSG00000210049.1 MT-TF chrM 1 2577
|
6434.538
|
-2.926481
|
0.0000007
|
0.0001111
|
ENSG00000198712.1 MT-CO2 chrM 5586 10267
|
2781.168
|
-2.171718
|
0.0000009
|
0.0001331
|
ENSG00000211459.2 MT-RNR1 chrM 1 2648
|
6516.761
|
-2.913611
|
0.0000009
|
0.0001394
|
ENSG00000210156.1 MT-TK chrM 6295 10295
|
2553.785
|
-2.150389
|
0.0000010
|
0.0001497
|
ENSG00000210196.2 MT-TP chrM 14023 16568
|
8364.401
|
-3.061226
|
0.0000013
|
0.0001838
|
ENSG00000228253.1 MT-ATP8 chrM 6366 10570
|
2750.381
|
-2.129767
|
0.0000016
|
0.0002134
|
ENSG00000210195.2 MT-TT chrM 13888 16568
|
8548.123
|
-3.018129
|
0.0000021
|
0.0002550
|
ENSG00000210100.1 MT-TI chrM 2263 6263
|
3030.833
|
-2.192392
|
0.0000025
|
0.0002916
|
ENSG00000210107.1 MT-TQ chrM 2400 6400
|
3065.603
|
-2.224794
|
0.0000025
|
0.0002956
|
ENSG00000210112.1 MT-TM chrM 2402 6402
|
3065.732
|
-2.224896
|
0.0000026
|
0.0002974
|
ENSG00000198763.3 MT-ND2 chrM 2470 6470
|
3072.559
|
-2.221097
|
0.0000032
|
0.0003525
|
ENSG00000209082.1 MT-TL1 chrM 1230 5230
|
3062.922
|
-2.189319
|
0.0000045
|
0.0004480
|
ENSG00000198888.2 MT-ND1 chrM 1307 5307
|
3082.437
|
-2.190628
|
0.0000047
|
0.0004673
|
ENSG00000198938.2 MT-CO3 chrM 7207 11207
|
2950.215
|
-2.035901
|
0.0000068
|
0.0006144
|
ENSG00000198899.2 MT-ATP6 chrM 6527 11205
|
3197.516
|
-2.065793
|
0.0000069
|
0.0006159
|
ENSG00000210077.1 MT-TV chrM 1 3602
|
7720.904
|
-2.764251
|
0.0000102
|
0.0008106
|
ENSG00000210082.2 MT-RNR2 chrM 1 3671
|
7824.990
|
-2.764046
|
0.0000110
|
0.0008579
|
ENSG00000210194.1 MT-TE chrM 12742 16568
|
9858.920
|
-2.914198
|
0.0000139
|
0.0010039
|
ENSG00000198727.2 MT-CYB chrM 12747 16568
|
9852.251
|
-2.912915
|
0.0000142
|
0.0010159
|
ENSG00000198695.2 MT-ND6 chrM 12673 16568
|
9927.329
|
-2.896127
|
0.0000163
|
0.0011187
|
ENSG00000210174.1 MT-TR chrM 8405 12405
|
3621.956
|
-2.033733
|
0.0000260
|
0.0015844
|
ENSG00000198840.2 MT-ND3 chrM 8059 12059
|
3430.192
|
-2.007427
|
0.0000352
|
0.0019477
|
ENSG00000210164.1 MT-TG chrM 7991 11991
|
3393.323
|
-1.996778
|
0.0000368
|
0.0020155
|
ENSG00000198886.2 MT-ND4 chrM 8760 12760
|
3744.990
|
-2.015837
|
0.0000462
|
0.0023618
|
ENSG00000212907.2 MT-ND4L chrM 8470 12764
|
3966.438
|
-2.008303
|
0.0000598
|
0.0028498
|
ENSG00000210191.1 MT-TL2 chrM 10266 14266
|
4327.533
|
-2.088604
|
0.0000914
|
0.0038490
|
ENSG00000210184.1 MT-TS2 chrM 10207 14207
|
4351.605
|
-2.091032
|
0.0000931
|
0.0038962
|
ENSG00000210176.1 MT-TH chrM 10138 14138
|
4390.066
|
-2.080087
|
0.0001088
|
0.0043462
|
ENSG00000198786.2 MT-ND5 chrM 10337 16146
|
7388.176
|
-2.265596
|
0.0001958
|
0.0066978
|
Mitch
H3K9ac
pw <- gmt_import("ref/c5.go.v2024.1.Hs.symbols.gmt")
names(pw) <- gsub("_", " ", names(pw))
gt2 <- as.data.frame(rownames(k9a))
gt2$gene <- sapply(strsplit(gt2[,1]," "),"[[",2)
m9 <- mitch_import(x=dk9,DEtype="deseq2",geneTable=gt2)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 92879
## Note: no. genes in output = 59180
## Note: estimated proportion of input genes in output = 0.637
head(m9)
## x
## 5_8S_rRNA -3.250775
## 5S_rRNA -1.211059
## 7SK 1.031242
## A1BG -2.304353
## A1BG-AS1 -1.932876
## A1CF -1.500519
mres9 <- mitch_calc(x=m9,genesets=pw,minsetsize=5,cores=8,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(mres9$enrichment_result,p.adjustANOVA<0.05 & s.dist>0),50) |>
kbl(caption = "Top upregulated GO terms based on effect size (FDR<0.05) for H3K9ac") |>
kable_paper("hover", full_width = F)
Top upregulated GO terms based on effect size (FDR
|
set
|
setSize
|
pANOVA
|
s.dist
|
p.adjustANOVA
|
8557
|
GOCC TRANSCRIPTION FACTOR AP 1 COMPLEX
|
5
|
0.0004106
|
0.9122738
|
0.0014200
|
9159
|
GOMF FATZ BINDING
|
5
|
0.0004607
|
0.9043853
|
0.0015704
|
2846
|
GOBP NEGATIVE REGULATION OF CALCIUM ION EXPORT ACROSS PLASMA MEMBRANE
|
5
|
0.0004748
|
0.9023033
|
0.0016149
|
8449
|
GOCC SARCOPLASMIC RETICULUM LUMEN
|
9
|
0.0000040
|
0.8871707
|
0.0000206
|
8108
|
GOCC MCRD MEDIATED MRNA STABILITY COMPLEX
|
5
|
0.0006419
|
0.8813080
|
0.0021177
|
7842
|
GOCC CYTOPLASMIC SIDE OF ROUGH ENDOPLASMIC RETICULUM MEMBRANE
|
5
|
0.0006770
|
0.8775564
|
0.0022147
|
4996
|
GOBP PROTEIN INSERTION INTO MEMBRANE FROM INNER SIDE
|
5
|
0.0007410
|
0.8711618
|
0.0023974
|
8095
|
GOCC LSM1 7 PAT1 COMPLEX
|
5
|
0.0007665
|
0.8687554
|
0.0024684
|
4998
|
GOBP PROTEIN INSERTION INTO MITOCHONDRIAL MEMBRANE
|
7
|
0.0000717
|
0.8664883
|
0.0002923
|
8596
|
GOCC U6 SNRNP
|
11
|
0.0000009
|
0.8540851
|
0.0000052
|
8096
|
GOCC LSM2 8 COMPLEX
|
7
|
0.0000928
|
0.8529783
|
0.0003716
|
10170
|
GOMF SMALL RIBOSOMAL SUBUNIT RRNA BINDING
|
8
|
0.0000295
|
0.8527217
|
0.0001287
|
8147
|
GOCC MITOCHONDRIAL INTERMEMBRANE SPACE PROTEIN TRANSPORTER COMPLEX
|
6
|
0.0003125
|
0.8496581
|
0.0011136
|
8813
|
GOMF ATP DEPENDENT PROTEIN BINDING
|
6
|
0.0003128
|
0.8496017
|
0.0011142
|
8351
|
GOCC PREFOLDIN COMPLEX
|
7
|
0.0000992
|
0.8494391
|
0.0003945
|
3648
|
GOBP NUCLEAR TRANSCRIBED MRNA CATABOLIC PROCESS DEADENYLATION
INDEPENDENT DECAY
|
7
|
0.0001124
|
0.8427806
|
0.0004420
|
5385
|
GOBP REGULATION OF CALCIUM ION EXPORT ACROSS PLASMA MEMBRANE
|
6
|
0.0003636
|
0.8403353
|
0.0012753
|
5597
|
GOBP REGULATION OF ELECTRON TRANSFER ACTIVITY
|
5
|
0.0011375
|
0.8402231
|
0.0035052
|
10199
|
GOMF SPLICING FACTOR BINDING
|
6
|
0.0003690
|
0.8394284
|
0.0012911
|
7887
|
GOCC EKC KEOPS COMPLEX
|
5
|
0.0011559
|
0.8390469
|
0.0035566
|
2997
|
GOBP NEGATIVE REGULATION OF EPITHELIAL CELL PROLIFERATION INVOLVED IN
PROSTATE GLAND DEVELOPMENT
|
6
|
0.0003951
|
0.8351866
|
0.0013752
|
10363
|
GOMF U6 SNRNA BINDING
|
16
|
0.0000000
|
0.8317537
|
0.0000001
|
7794
|
GOCC COMMITMENT COMPLEX
|
5
|
0.0013364
|
0.8283329
|
0.0040498
|
8404
|
GOCC RAGULATOR COMPLEX
|
6
|
0.0004567
|
0.8261342
|
0.0015590
|
7713
|
GOCC CCAAT BINDING FACTOR COMPLEX
|
5
|
0.0014027
|
0.8247300
|
0.0042311
|
7359
|
GOBP TRNA THREONYLCARBAMOYLADENOSINE MODIFICATION
|
5
|
0.0014594
|
0.8217693
|
0.0043820
|
1588
|
GOBP FORMATION OF QUADRUPLE SL U4 U5 U6 SNRNP
|
10
|
0.0000069
|
0.8212439
|
0.0000334
|
7580
|
GOBP WYBUTOSINE METABOLIC PROCESS
|
6
|
0.0005601
|
0.8132400
|
0.0018709
|
8582
|
GOCC TRNA METHYLTRANSFERASE COMPLEX
|
7
|
0.0001998
|
0.8116419
|
0.0007441
|
10370
|
GOMF UBIQUITIN LIGASE INHIBITOR ACTIVITY
|
9
|
0.0000326
|
0.7995227
|
0.0001411
|
9765
|
GOMF OXIDATIVE PHOSPHORYLATION UNCOUPLER ACTIVITY
|
5
|
0.0020127
|
0.7974280
|
0.0058076
|
9975
|
GOMF PROTEASOME ACTIVATING ACTIVITY
|
6
|
0.0007258
|
0.7966055
|
0.0023542
|
7926
|
GOCC EUKARYOTIC TRANSLATION INITIATION FACTOR 2B COMPLEX
|
5
|
0.0020439
|
0.7962450
|
0.0058863
|
9943
|
GOMF PORIN ACTIVITY
|
6
|
0.0007722
|
0.7925835
|
0.0024838
|
2569
|
GOBP MITOCHONDRIAL PROTON TRANSPORTING ATP SYNTHASE COMPLEX ASSEMBLY
|
8
|
0.0001038
|
0.7923258
|
0.0004108
|
7911
|
GOCC ENDOPLASMIC RETICULUM TUBULAR NETWORK MEMBRANE
|
5
|
0.0022035
|
0.7904520
|
0.0062732
|
2580
|
GOBP MITOCHONDRIAL TRANSLATIONAL ELONGATION
|
5
|
0.0023117
|
0.7867410
|
0.0065423
|
6553
|
GOBP RESPIRATORY CHAIN COMPLEX III ASSEMBLY
|
12
|
0.0000024
|
0.7861288
|
0.0000128
|
1214
|
GOBP DORSAL AORTA MORPHOGENESIS
|
8
|
0.0001266
|
0.7824224
|
0.0004931
|
8802
|
GOMF ATPASE INHIBITOR ACTIVITY
|
5
|
0.0024694
|
0.7816037
|
0.0069158
|
890
|
GOBP CILIARY NEUROTROPHIC FACTOR MEDIATED SIGNALING PATHWAY
|
5
|
0.0024974
|
0.7807250
|
0.0069877
|
5052
|
GOBP PROTEIN LOCALIZATION TO NUCLEAR BODY
|
12
|
0.0000031
|
0.7768304
|
0.0000165
|
5114
|
GOBP PROTEIN TO MEMBRANE DOCKING
|
5
|
0.0026270
|
0.7767638
|
0.0073014
|
7846
|
GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT
|
57
|
0.0000000
|
0.7765438
|
0.0000000
|
8105
|
GOCC MANNOSYLTRANSFERASE COMPLEX
|
5
|
0.0026413
|
0.7763380
|
0.0073386
|
4563
|
GOBP POSITIVE REGULATION OF NUCLEAR TRANSCRIBED MRNA CATABOLIC PROCESS
DEADENYLATION DEPENDENT DECAY
|
12
|
0.0000032
|
0.7760248
|
0.0000168
|
9970
|
GOMF PROMOTER ENHANCER LOOP ANCHORING ACTIVITY
|
6
|
0.0010602
|
0.7717184
|
0.0032924
|
8597
|
GOCC U7 SNRNP
|
7
|
0.0004097
|
0.7711505
|
0.0014179
|
8399
|
GOCC PYRUVATE DEHYDROGENASE COMPLEX
|
6
|
0.0010747
|
0.7708171
|
0.0033283
|
10048
|
GOMF PYRIMIDINE NUCLEOTIDE BINDING
|
5
|
0.0028463
|
0.7704504
|
0.0078317
|
head(subset(mres9$enrichment_result,p.adjustANOVA<0.05 & s.dist<0),50) |>
kbl(caption = "Top downregulated GO terms based on effect size (FDR<0.05) for H3K9ac") |>
kable_paper("hover", full_width = F)
Top downregulated GO terms based on effect size (FDR
|
set
|
setSize
|
pANOVA
|
s.dist
|
p.adjustANOVA
|
9376
|
GOMF INHIBITORY MHC CLASS I RECEPTOR ACTIVITY
|
8
|
0.0000039
|
-0.9423883
|
0.0000200
|
8036
|
GOCC IGG IMMUNOGLOBULIN COMPLEX
|
13
|
0.0000003
|
-0.8236985
|
0.0000016
|
1556
|
GOBP FLAVONOID GLUCURONIDATION
|
5
|
0.0032500
|
-0.7599121
|
0.0088030
|
1531
|
GOBP FC RECEPTOR MEDIATED INHIBITORY SIGNALING PATHWAY
|
5
|
0.0039843
|
-0.7434795
|
0.0105296
|
3837
|
GOBP PEPTIDOGLYCAN METABOLIC PROCESS
|
6
|
0.0024404
|
-0.7143509
|
0.0068467
|
82
|
GOBP ADENYLATE CYCLASE INHIBITING G PROTEIN COUPLED GLUTAMATE RECEPTOR
SIGNALING PATHWAY
|
9
|
0.0002185
|
-0.7114465
|
0.0008087
|
9267
|
GOMF G PROTEIN COUPLED GLUTAMATE RECEPTOR ACTIVITY
|
9
|
0.0002185
|
-0.7114465
|
0.0008087
|
8034
|
GOCC IGD IMMUNOGLOBULIN COMPLEX
|
6
|
0.0027810
|
-0.7049999
|
0.0076783
|
8035
|
GOCC IGE IMMUNOGLOBULIN COMPLEX
|
6
|
0.0027886
|
-0.7048028
|
0.0076953
|
9093
|
GOMF DOPAMINE BINDING
|
7
|
0.0013083
|
-0.7014130
|
0.0039751
|
8727
|
GOMF ALKANE 1 MONOOXYGENASE ACTIVITY
|
5
|
0.0073758
|
-0.6918361
|
0.0178385
|
8040
|
GOCC IMMUNOGLOBULIN COMPLEX CIRCULATING
|
12
|
0.0000540
|
-0.6729651
|
0.0002256
|
7583
|
GOBP XENOBIOTIC GLUCURONIDATION
|
7
|
0.0021922
|
-0.6684009
|
0.0062479
|
9737
|
GOMF N FORMYL PEPTIDE RECEPTOR ACTIVITY
|
5
|
0.0100157
|
-0.6649599
|
0.0232422
|
1555
|
GOBP FLAVONE METABOLIC PROCESS
|
6
|
0.0055756
|
-0.6533331
|
0.0140869
|
10150
|
GOMF SIALIC ACID BINDING
|
22
|
0.0000001
|
-0.6512329
|
0.0000008
|
10285
|
GOMF TRACE AMINE RECEPTOR ACTIVITY
|
7
|
0.0030493
|
-0.6465473
|
0.0083287
|
9572
|
GOMF MHC CLASS I RECEPTOR ACTIVITY
|
12
|
0.0001462
|
-0.6329548
|
0.0005607
|
9544
|
GOMF MELANOCORTIN RECEPTOR ACTIVITY
|
6
|
0.0073005
|
-0.6323723
|
0.0176973
|
8916
|
GOMF CCR1 CHEMOKINE RECEPTOR BINDING
|
5
|
0.0176196
|
-0.6128635
|
0.0372271
|
8649
|
GOMF 4 GALACTOSYL N ACETYLGLUCOSAMINIDE 3 ALPHA L FUCOSYLTRANSFERASE
ACTIVITY
|
6
|
0.0101310
|
-0.6060939
|
0.0234472
|
8072
|
GOCC KAINATE SELECTIVE GLUTAMATE RECEPTOR COMPLEX
|
5
|
0.0190455
|
-0.6054077
|
0.0397168
|
9437
|
GOMF KAINATE SELECTIVE GLUTAMATE RECEPTOR ACTIVITY
|
5
|
0.0190455
|
-0.6054077
|
0.0397168
|
8032
|
GOCC IGA IMMUNOGLOBULIN COMPLEX
|
10
|
0.0009712
|
-0.6022985
|
0.0030414
|
9216
|
GOMF GLUTAMATE GATED CALCIUM ION CHANNEL ACTIVITY
|
8
|
0.0048965
|
-0.5743891
|
0.0126227
|
8074
|
GOCC KERATIN FILAMENT
|
92
|
0.0000000
|
-0.5720903
|
0.0000000
|
10219
|
GOMF STRUCTURAL CONSTITUENT OF SKIN EPIDERMIS
|
37
|
0.0000000
|
-0.5664672
|
0.0000000
|
3945
|
GOBP PH REDUCTION
|
6
|
0.0173132
|
-0.5609953
|
0.0366838
|
3898
|
GOBP PHENYLPROPANOID METABOLIC PROCESS
|
7
|
0.0103938
|
-0.5592005
|
0.0239651
|
9218
|
GOMF GLUTAMATE RECEPTOR ACTIVITY
|
26
|
0.0000009
|
-0.5570584
|
0.0000049
|
2660
|
GOBP MONOTERPENOID METABOLIC PROCESS
|
6
|
0.0219683
|
-0.5400007
|
0.0448525
|
9791
|
GOMF OXIDOREDUCTASE ACTIVITY ACTING ON PAIRED DONORS WITH INCORPORATION
OR REDUCTION OF MOLECULAR OXYGEN REDUCED IRON SULFUR PROTEIN AS ONE
DONOR AND INCORPORATION OF ONE ATOM OF OXYGEN
|
9
|
0.0051732
|
-0.5381334
|
0.0132422
|
5793
|
GOBP REGULATION OF INTESTINAL LIPID ABSORPTION
|
10
|
0.0036150
|
-0.5313165
|
0.0096514
|
5726
|
GOBP REGULATION OF GUANYLATE CYCLASE ACTIVITY
|
7
|
0.0150480
|
-0.5305653
|
0.0325993
|
8873
|
GOMF CALCIUM SENSITIVE GUANYLATE CYCLASE ACTIVATOR ACTIVITY
|
6
|
0.0247486
|
-0.5292499
|
0.0497213
|
3569
|
GOBP NEUROTRANSMITTER LOADING INTO SYNAPTIC VESICLE
|
7
|
0.0157758
|
-0.5268209
|
0.0339153
|
5334
|
GOBP REGULATION OF ATRIAL CARDIAC MUSCLE CELL MEMBRANE REPOLARIZATION
|
8
|
0.0104272
|
-0.5228613
|
0.0240314
|
9254
|
GOMF GUANYLATE CYCLASE REGULATOR ACTIVITY
|
9
|
0.0078300
|
-0.5118198
|
0.0187413
|
8039
|
GOCC IMMUNOGLOBULIN COMPLEX
|
147
|
0.0000000
|
-0.5109430
|
0.0000000
|
2100
|
GOBP KERATINIZATION
|
83
|
0.0000000
|
-0.5071794
|
0.0000000
|
9691
|
GOMF NMDA GLUTAMATE RECEPTOR ACTIVITY
|
7
|
0.0204331
|
-0.5059233
|
0.0421138
|
9839
|
GOMF PEPTIDOGLYCAN MURALYTIC ACTIVITY
|
14
|
0.0010678
|
-0.5049304
|
0.0033111
|
8783
|
GOMF AROMATASE ACTIVITY
|
26
|
0.0000083
|
-0.5048413
|
0.0000398
|
4189
|
GOBP POSITIVE REGULATION OF COMPLEMENT ACTIVATION
|
7
|
0.0214896
|
-0.5017708
|
0.0439958
|
3926
|
GOBP PHOSPHOLIPASE C ACTIVATING G PROTEIN COUPLED ACETYLCHOLINE RECEPTOR
SIGNALING PATHWAY
|
8
|
0.0145273
|
-0.4989015
|
0.0316686
|
9217
|
GOMF GLUTAMATE GATED RECEPTOR ACTIVITY
|
16
|
0.0005878
|
-0.4961695
|
0.0019538
|
81
|
GOBP ADENYLATE CYCLASE INHIBITING G PROTEIN COUPLED ACETYLCHOLINE
RECEPTOR SIGNALING PATHWAY
|
8
|
0.0160029
|
-0.4917360
|
0.0343414
|
9284
|
GOMF HEMOGLOBIN BINDING
|
9
|
0.0112454
|
-0.4878910
|
0.0256116
|
9374
|
GOMF IMMUNOGLOBULIN RECEPTOR BINDING
|
19
|
0.0002582
|
-0.4840449
|
0.0009384
|
1396
|
GOBP EPOXYGENASE P450 PATHWAY
|
18
|
0.0003774
|
-0.4838842
|
0.0013180
|
par(mar=c(5,27,3,3))
top <- mres9$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 5193
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.65,main="H3K9ac",xlab="ES")
grid()
pdf("k9a_mitchbar.pdf",width=7,height=7)
par(mar=c(5,27,3,3))
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.65,main="H3K9ac",xlab="ES")
grid()
dev.off()
## png
## 2
par(mar=c(5.1, 4.1, 4.1, 2.1))
if (! file.exists("k9a_mitch.html") ) {
mitch_report(mres9,"k9a_mitch.html")
}
H3K36ac
m36 <- mitch_import(x=dk36,DEtype="deseq2",geneTable=gt2)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 92792
## Note: no. genes in output = 59007
## Note: estimated proportion of input genes in output = 0.636
head(m36)
## x
## 5_8S_rRNA -3.64204468
## 5S_rRNA -0.09835988
## 7SK 0.56711205
## A1BG -2.26646709
## A1BG-AS1 -2.44703622
## A1CF 1.69473867
mres36 <- mitch_calc(x=m36,genesets=pw,minsetsize=5,cores=8,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(mres36$enrichment_result,p.adjustANOVA<0.05 & s.dist>0),50) |>
kbl(caption = "Top upregulated GO terms based on effect size (FDR<0.05) for H3K36ac") |>
kable_paper("hover", full_width = F)
Top upregulated GO terms based on effect size (FDR
|
set
|
setSize
|
pANOVA
|
s.dist
|
p.adjustANOVA
|
8556
|
GOCC TRANSCRIPTION FACTOR AP 1 COMPLEX
|
5
|
0.0094192
|
0.6704247
|
0.0487910
|
1099
|
GOBP DETECTION OF MUSCLE STRETCH
|
7
|
0.0072701
|
0.5857724
|
0.0398632
|
10353
|
GOMF TYPE I INTERFERON RECEPTOR BINDING
|
17
|
0.0000393
|
0.5757965
|
0.0005356
|
9739
|
GOMF ODORANT BINDING
|
119
|
0.0000000
|
0.4304729
|
0.0000000
|
1805
|
GOBP HEART TRABECULA FORMATION
|
15
|
0.0047780
|
0.4206717
|
0.0289711
|
9741
|
GOMF OLFACTORY RECEPTOR ACTIVITY
|
411
|
0.0000000
|
0.3909698
|
0.0000000
|
6513
|
GOBP RELAXATION OF CARDIAC MUSCLE
|
17
|
0.0056782
|
0.3873418
|
0.0330828
|
559
|
GOBP CELLULAR GLUCURONIDATION
|
21
|
0.0031980
|
0.3714780
|
0.0210024
|
6949
|
GOBP SERINE PHOSPHORYLATION OF STAT PROTEIN
|
23
|
0.0022865
|
0.3672713
|
0.0162220
|
6930
|
GOBP SENSORY PERCEPTION OF SMELL
|
438
|
0.0000000
|
0.3462336
|
0.0000000
|
6706
|
GOBP RESPONSE TO MUSCLE STRETCH
|
25
|
0.0051636
|
0.3229935
|
0.0306845
|
5096
|
GOBP PROTEIN REFOLDING
|
26
|
0.0058039
|
0.3124220
|
0.0336085
|
8190
|
GOCC M BAND
|
28
|
0.0052040
|
0.3049330
|
0.0308718
|
6926
|
GOBP SENSORY PERCEPTION OF CHEMICAL STIMULUS
|
516
|
0.0000000
|
0.2775635
|
0.0000000
|
1102
|
GOBP DETECTION OF STIMULUS INVOLVED IN SENSORY PERCEPTION
|
533
|
0.0000000
|
0.2702239
|
0.0000000
|
7664
|
GOCC A BAND
|
40
|
0.0030974
|
0.2701053
|
0.0205745
|
8585
|
GOCC T CELL RECEPTOR COMPLEX
|
143
|
0.0000121
|
0.2115168
|
0.0001919
|
1101
|
GOBP DETECTION OF STIMULUS
|
654
|
0.0000000
|
0.2014026
|
0.0000000
|
8068
|
GOCC I BAND
|
143
|
0.0048174
|
0.1362660
|
0.0291419
|
9271
|
GOMF G PROTEIN COUPLED RECEPTOR ACTIVITY
|
847
|
0.0000001
|
0.1058868
|
0.0000029
|
7803
|
GOCC CONTRACTILE MUSCLE FIBER
|
248
|
0.0065231
|
0.0999387
|
0.0368125
|
6924
|
GOBP SENSORY PERCEPTION
|
965
|
0.0001135
|
0.0723280
|
0.0013496
|
head(subset(mres9$enrichment_result,p.adjustANOVA<0.05 & s.dist<0),50) |>
kbl(caption = "Top downregulated GO terms based on effect size (FDR<0.05) for H3K36ac") |>
kable_paper("hover", full_width = F)
Top downregulated GO terms based on effect size (FDR
|
set
|
setSize
|
pANOVA
|
s.dist
|
p.adjustANOVA
|
9376
|
GOMF INHIBITORY MHC CLASS I RECEPTOR ACTIVITY
|
8
|
0.0000039
|
-0.9423883
|
0.0000200
|
8036
|
GOCC IGG IMMUNOGLOBULIN COMPLEX
|
13
|
0.0000003
|
-0.8236985
|
0.0000016
|
1556
|
GOBP FLAVONOID GLUCURONIDATION
|
5
|
0.0032500
|
-0.7599121
|
0.0088030
|
1531
|
GOBP FC RECEPTOR MEDIATED INHIBITORY SIGNALING PATHWAY
|
5
|
0.0039843
|
-0.7434795
|
0.0105296
|
3837
|
GOBP PEPTIDOGLYCAN METABOLIC PROCESS
|
6
|
0.0024404
|
-0.7143509
|
0.0068467
|
82
|
GOBP ADENYLATE CYCLASE INHIBITING G PROTEIN COUPLED GLUTAMATE RECEPTOR
SIGNALING PATHWAY
|
9
|
0.0002185
|
-0.7114465
|
0.0008087
|
9267
|
GOMF G PROTEIN COUPLED GLUTAMATE RECEPTOR ACTIVITY
|
9
|
0.0002185
|
-0.7114465
|
0.0008087
|
8034
|
GOCC IGD IMMUNOGLOBULIN COMPLEX
|
6
|
0.0027810
|
-0.7049999
|
0.0076783
|
8035
|
GOCC IGE IMMUNOGLOBULIN COMPLEX
|
6
|
0.0027886
|
-0.7048028
|
0.0076953
|
9093
|
GOMF DOPAMINE BINDING
|
7
|
0.0013083
|
-0.7014130
|
0.0039751
|
8727
|
GOMF ALKANE 1 MONOOXYGENASE ACTIVITY
|
5
|
0.0073758
|
-0.6918361
|
0.0178385
|
8040
|
GOCC IMMUNOGLOBULIN COMPLEX CIRCULATING
|
12
|
0.0000540
|
-0.6729651
|
0.0002256
|
7583
|
GOBP XENOBIOTIC GLUCURONIDATION
|
7
|
0.0021922
|
-0.6684009
|
0.0062479
|
9737
|
GOMF N FORMYL PEPTIDE RECEPTOR ACTIVITY
|
5
|
0.0100157
|
-0.6649599
|
0.0232422
|
1555
|
GOBP FLAVONE METABOLIC PROCESS
|
6
|
0.0055756
|
-0.6533331
|
0.0140869
|
10150
|
GOMF SIALIC ACID BINDING
|
22
|
0.0000001
|
-0.6512329
|
0.0000008
|
10285
|
GOMF TRACE AMINE RECEPTOR ACTIVITY
|
7
|
0.0030493
|
-0.6465473
|
0.0083287
|
9572
|
GOMF MHC CLASS I RECEPTOR ACTIVITY
|
12
|
0.0001462
|
-0.6329548
|
0.0005607
|
9544
|
GOMF MELANOCORTIN RECEPTOR ACTIVITY
|
6
|
0.0073005
|
-0.6323723
|
0.0176973
|
8916
|
GOMF CCR1 CHEMOKINE RECEPTOR BINDING
|
5
|
0.0176196
|
-0.6128635
|
0.0372271
|
8649
|
GOMF 4 GALACTOSYL N ACETYLGLUCOSAMINIDE 3 ALPHA L FUCOSYLTRANSFERASE
ACTIVITY
|
6
|
0.0101310
|
-0.6060939
|
0.0234472
|
8072
|
GOCC KAINATE SELECTIVE GLUTAMATE RECEPTOR COMPLEX
|
5
|
0.0190455
|
-0.6054077
|
0.0397168
|
9437
|
GOMF KAINATE SELECTIVE GLUTAMATE RECEPTOR ACTIVITY
|
5
|
0.0190455
|
-0.6054077
|
0.0397168
|
8032
|
GOCC IGA IMMUNOGLOBULIN COMPLEX
|
10
|
0.0009712
|
-0.6022985
|
0.0030414
|
9216
|
GOMF GLUTAMATE GATED CALCIUM ION CHANNEL ACTIVITY
|
8
|
0.0048965
|
-0.5743891
|
0.0126227
|
8074
|
GOCC KERATIN FILAMENT
|
92
|
0.0000000
|
-0.5720903
|
0.0000000
|
10219
|
GOMF STRUCTURAL CONSTITUENT OF SKIN EPIDERMIS
|
37
|
0.0000000
|
-0.5664672
|
0.0000000
|
3945
|
GOBP PH REDUCTION
|
6
|
0.0173132
|
-0.5609953
|
0.0366838
|
3898
|
GOBP PHENYLPROPANOID METABOLIC PROCESS
|
7
|
0.0103938
|
-0.5592005
|
0.0239651
|
9218
|
GOMF GLUTAMATE RECEPTOR ACTIVITY
|
26
|
0.0000009
|
-0.5570584
|
0.0000049
|
2660
|
GOBP MONOTERPENOID METABOLIC PROCESS
|
6
|
0.0219683
|
-0.5400007
|
0.0448525
|
9791
|
GOMF OXIDOREDUCTASE ACTIVITY ACTING ON PAIRED DONORS WITH INCORPORATION
OR REDUCTION OF MOLECULAR OXYGEN REDUCED IRON SULFUR PROTEIN AS ONE
DONOR AND INCORPORATION OF ONE ATOM OF OXYGEN
|
9
|
0.0051732
|
-0.5381334
|
0.0132422
|
5793
|
GOBP REGULATION OF INTESTINAL LIPID ABSORPTION
|
10
|
0.0036150
|
-0.5313165
|
0.0096514
|
5726
|
GOBP REGULATION OF GUANYLATE CYCLASE ACTIVITY
|
7
|
0.0150480
|
-0.5305653
|
0.0325993
|
8873
|
GOMF CALCIUM SENSITIVE GUANYLATE CYCLASE ACTIVATOR ACTIVITY
|
6
|
0.0247486
|
-0.5292499
|
0.0497213
|
3569
|
GOBP NEUROTRANSMITTER LOADING INTO SYNAPTIC VESICLE
|
7
|
0.0157758
|
-0.5268209
|
0.0339153
|
5334
|
GOBP REGULATION OF ATRIAL CARDIAC MUSCLE CELL MEMBRANE REPOLARIZATION
|
8
|
0.0104272
|
-0.5228613
|
0.0240314
|
9254
|
GOMF GUANYLATE CYCLASE REGULATOR ACTIVITY
|
9
|
0.0078300
|
-0.5118198
|
0.0187413
|
8039
|
GOCC IMMUNOGLOBULIN COMPLEX
|
147
|
0.0000000
|
-0.5109430
|
0.0000000
|
2100
|
GOBP KERATINIZATION
|
83
|
0.0000000
|
-0.5071794
|
0.0000000
|
9691
|
GOMF NMDA GLUTAMATE RECEPTOR ACTIVITY
|
7
|
0.0204331
|
-0.5059233
|
0.0421138
|
9839
|
GOMF PEPTIDOGLYCAN MURALYTIC ACTIVITY
|
14
|
0.0010678
|
-0.5049304
|
0.0033111
|
8783
|
GOMF AROMATASE ACTIVITY
|
26
|
0.0000083
|
-0.5048413
|
0.0000398
|
4189
|
GOBP POSITIVE REGULATION OF COMPLEMENT ACTIVATION
|
7
|
0.0214896
|
-0.5017708
|
0.0439958
|
3926
|
GOBP PHOSPHOLIPASE C ACTIVATING G PROTEIN COUPLED ACETYLCHOLINE RECEPTOR
SIGNALING PATHWAY
|
8
|
0.0145273
|
-0.4989015
|
0.0316686
|
9217
|
GOMF GLUTAMATE GATED RECEPTOR ACTIVITY
|
16
|
0.0005878
|
-0.4961695
|
0.0019538
|
81
|
GOBP ADENYLATE CYCLASE INHIBITING G PROTEIN COUPLED ACETYLCHOLINE
RECEPTOR SIGNALING PATHWAY
|
8
|
0.0160029
|
-0.4917360
|
0.0343414
|
9284
|
GOMF HEMOGLOBIN BINDING
|
9
|
0.0112454
|
-0.4878910
|
0.0256116
|
9374
|
GOMF IMMUNOGLOBULIN RECEPTOR BINDING
|
19
|
0.0002582
|
-0.4840449
|
0.0009384
|
1396
|
GOBP EPOXYGENASE P450 PATHWAY
|
18
|
0.0003774
|
-0.4838842
|
0.0013180
|
par(mar=c(5,27,3,3))
top <- mres36$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 2041
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
names(vec) <- stringr::str_trunc(names(vec), 70)
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.65,main="H3K36ac",xlab="ES")
grid()
pdf("k36a_mitchbar.pdf",width=7,height=7)
par(mar=c(5,27,3,3))
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.65,main="H3K36ac",xlab="ES")
grid()
dev.off()
## png
## 2
par(mar=c(5.1, 4.1, 4.1, 2.1))
if (! file.exists("k36a_mitch.html") ) {
mitch_report(mres36,"k36a_mitch.html")
}
SLC
rpm9_SLC2A4 <- rpm9[grep("SLC2A4",rownames(rpm9)),]
rpm9_SLC2A4
## pos1 pre1 pos2
## ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528 26.70826 19.95114 26.00418
## ENSG00000181856.15 SLC2A4 chr17 7279718 7284427 37.49235 17.23053 33.11279
## pre2 pos3 pre3
## ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528 20.57199 27.83474 20.59174
## ENSG00000181856.15 SLC2A4 chr17 7279718 7284427 16.66161 39.55999 17.82569
## pos4 pre4 pos5
## ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528 19.57435 32.65682 14.91572
## ENSG00000181856.15 SLC2A4 chr17 7279718 7284427 36.32246 19.81503 18.37829
## pre5 pos6 pre6
## ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528 24.01717 25.25616 29.76552
## ENSG00000181856.15 SLC2A4 chr17 7279718 7284427 19.02484 33.77164 36.26257
rpm9_SLC2A4 <- colSums(rpm9_SLC2A4)
rpm9_SLC2A4 <- matrix(rpm9_SLC2A4,nrow=2)
colnames(rpm9_SLC2A4) <- 1:6
rownames(rpm9_SLC2A4) <- c("Post","Pre")
rpm9_SLC2A4 <- rpm9_SLC2A4[c(2,1),]
barplot(rpm9_SLC2A4,beside=TRUE,col=c("#0047AB", "#D2042D"),
main="SLC2A4 H3K9ac",ylab="Counts per million",
xlab="Participant",ylim=c(0,73))
legend(11.5,73, legend=c("Pre", "Post"), fill=c("#0047AB", "#D2042D"), cex=1)
pdf("k9a_SLC2A4.pdf",width=5,height=5)
barplot(rpm9_SLC2A4,beside=TRUE,col=c("#0047AB", "#D2042D"),
main="SLC2A4 H3K9ac",ylab="Counts per million",
xlab="Participant",ylim=c(0,73))
legend(11.5,73, legend=c("Pre", "Post"), fill=c("#0047AB", "#D2042D"), cex=1)
dev.off()
## png
## 2
rpm36_SLC2A4 <- rpm36[grep("SLC2A4",rownames(rpm36)),]
rpm36_SLC2A4
## pos1 pre1
## ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528 17.01140 17.783909
## ENSG00000181856.15 SLC2A4 chr17 7279718 7284427 32.22484 7.948869
## pos2 pre2
## ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528 9.363935 19.377948
## ENSG00000181856.15 SLC2A4 chr17 7279718 7284427 22.719057 9.527491
## pos3 pre3 pos4
## ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528 15.24830 19.12591 11.42846
## ENSG00000181856.15 SLC2A4 chr17 7279718 7284427 50.48225 19.25427 39.13004
## pre4 pos5 pre5
## ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528 20.06859 21.25035 24.76518
## ENSG00000181856.15 SLC2A4 chr17 7279718 7284427 17.42318 46.66743 14.45623
## pos6 pre6
## ENSG00000125520.14 SLC2A4RG chr20 63737776 63744528 25.28059 24.06254
## ENSG00000181856.15 SLC2A4 chr17 7279718 7284427 34.14333 20.83766
rpm36_SLC2A4 <- colSums(rpm36_SLC2A4)
rpm36_SLC2A4 <- matrix(rpm36_SLC2A4,nrow=2)
colnames(rpm36_SLC2A4) <- 1:6
rownames(rpm36_SLC2A4) <- c("Post","Pre")
rpm36_SLC2A4 <- rpm36_SLC2A4[c(2,1),]
barplot(rpm36_SLC2A4,beside=TRUE,col=c("#0047AB", "#D2042D"),
main="SLC2A4 H3K36ac",ylab="counts per million",
xlab="participant",ylim=c(0,70))
legend(3.5,70, legend=c("Pre", "Post"), fill=c("#0047AB","#D2042D"), cex=1)
pdf("k36a_SLC2A4.pdf",width=5,height=5)
barplot(rpm36_SLC2A4,beside=TRUE,col=c("#0047AB", "#D2042D"),
main="SLC2A4 H3K36ac",ylab="counts per million",
xlab="participant",ylim=c(0,70))
legend(3.5,70, legend=c("Pre", "Post"), fill=c("#0047AB","#D2042D"), cex=1)
dev.off()
## png
## 2
Session
sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] kableExtra_1.4.0 beeswarm_0.4.0
## [3] topconfects_1.20.0 limma_3.60.4
## [5] eulerr_7.0.2 mitch_1.16.0
## [7] gplots_3.1.3.1 DESeq2_1.44.0
## [9] SummarizedExperiment_1.34.0 Biobase_2.64.0
## [11] MatrixGenerics_1.16.0 matrixStats_1.3.0
## [13] GenomicRanges_1.56.1 GenomeInfoDb_1.40.1
## [15] IRanges_2.38.1 S4Vectors_0.42.1
## [17] BiocGenerics_0.50.0 reshape2_1.4.4
## [19] RhpcBLASctl_0.23-42
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 viridisLite_0.4.2 dplyr_1.1.4
## [4] bitops_1.0-8 fastmap_1.2.0 GGally_2.2.1
## [7] promises_1.3.0 digest_0.6.36 mime_0.12
## [10] lifecycle_1.0.4 statmod_1.5.0 magrittr_2.0.3
## [13] compiler_4.4.1 rlang_1.1.4 sass_0.4.9
## [16] tools_4.4.1 utf8_1.2.4 yaml_2.3.8
## [19] knitr_1.47 S4Arrays_1.4.1 htmlwidgets_1.6.4
## [22] DelayedArray_0.30.1 xml2_1.3.6 plyr_1.8.9
## [25] RColorBrewer_1.1-3 abind_1.4-5 BiocParallel_1.38.0
## [28] KernSmooth_2.23-24 purrr_1.0.2 grid_4.4.1
## [31] fansi_1.0.6 caTools_1.18.2 xtable_1.8-4
## [34] colorspace_2.1-1 ggplot2_3.5.1 MASS_7.3-61
## [37] scales_1.3.0 gtools_3.9.5 cli_3.6.3
## [40] rmarkdown_2.27 crayon_1.5.3 generics_0.1.3
## [43] rstudioapi_0.16.0 httr_1.4.7 cachem_1.1.0
## [46] stringr_1.5.1 zlibbioc_1.50.0 assertthat_0.2.1
## [49] parallel_4.4.1 XVector_0.44.0 vctrs_0.6.5
## [52] Matrix_1.7-0 jsonlite_1.8.8 echarts4r_0.4.5
## [55] systemfonts_1.1.0 locfit_1.5-9.10 jquerylib_0.1.4
## [58] tidyr_1.3.1 glue_1.7.0 ggstats_0.6.0
## [61] codetools_0.2-20 stringi_1.8.4 gtable_0.3.5
## [64] later_1.3.2 UCSC.utils_1.0.0 munsell_0.5.1
## [67] tibble_3.2.1 pillar_1.9.0 htmltools_0.5.8.1
## [70] GenomeInfoDbData_1.2.12 R6_2.5.1 evaluate_0.24.0
## [73] shiny_1.8.1.1 lattice_0.22-6 highr_0.11
## [76] httpuv_1.6.15 bslib_0.7.0 Rcpp_1.0.12
## [79] svglite_2.1.3 gridExtra_2.3 SparseArray_1.4.8
## [82] xfun_0.45 pkgconfig_2.0.3