suppressPackageStartupMessages({
library("reshape2")
library("DESeq2")
library("gplots")
library("mitch")
library("eulerr")
library("limma")
library("topconfects")
library("beeswarm")
library("kableExtra")
})
Rename samples. Don’t use initials.
tmp <- read.table("raw_data/rna/3col.tsv.gz",header=F)
x <- as.matrix(acast(tmp, V2~V1, value.var="V3", fun.aggregate = sum))
x <- as.data.frame(x)
accession <- sapply((strsplit(rownames(x),"\\|")),"[[",2)
symbol<-sapply((strsplit(rownames(x),"\\|")),"[[",6)
x$geneid <- paste(accession,symbol)
xx <- aggregate(. ~ geneid,x,sum)
rownames(xx) <- xx$geneid
colnames <- gsub("T0R","T0",colnames(xx))
xx$geneid = NULL
xx <- round(xx)
dim(xx)
## [1] 63086 12
colSums(xx)
## AD-pos_mRNA AD-pre_mRNA AKH-pos_mRNA AKH-pre_mRNA AY-pos_mRNA AY-pre_mRNA
## 28258815 20506773 22644894 19847636 17583098 11732777
## RH-pos_mRNA RH-pre_mRNA SB-pos_mRNA SB-pre_mRNA ST-pos_mRNA ST-pre_mRNA
## 12610349 11542857 14958605 7951981 24373462 20436123
colnames(xx) <- c("pos1","pre1","pos2","pre2","pos3","pre3","pos4","pre4","pos5","pre5","pos6","pre6")
rpm <- apply(xx, 2 , function(x) { x / sum(x) } ) * 1000000
rpm <- rpm[rowMeans(rpm) > 1,]
dim(rpm)
## [1] 14798 12
# gene table
gt <- as.data.frame(rownames(xx))
gt$genesymbol <- sapply(strsplit(gt[,1]," "),"[[",2)
write.table(x=gt,file="gt.tsv",sep="\t")
mds <- cmdscale(dist(t(xx)))
cols=rep(c("pink","lightblue"),6)
XMIN=min(mds[,1])*1.1
XMAX=max(mds[,1])*1.1
plot(mds, xlab="Coordinate 1", ylab="Coordinate 2", xlim=c(XMIN,XMAX), cex=2,col=cols,pch=19,main="RNA expression", bty="n")
text(mds, labels=colnames(xx) ,cex=1.1)
Sample sheet then differential analysis.
Remove genes with less than 10 reads per sample on average.
ss <- as.data.frame(colnames(xx))
ss$pos <- factor(grepl("pos",ss[,1]))
ss$participant <- c("1","1","2","2","3","3","4","4","5","5","6","6")
dim(xx)
## [1] 63086 12
xx <- xx[rowMeans(xx)>=10,]
dim(xx)
## [1] 16971 12
dds <- DESeqDataSetFromMatrix(countData = xx , colData = ss, design = ~ pos )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge_unpaired <- as.data.frame(zz[order(zz$pvalue),])
write.table(dge_unpaired,file="rna_deseq_unpaired.tsv",quote=F,sep="\t")
head(dge_unpaired) |>
kbl(caption = "Top significant genes in unpaired analysis)") |>
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | pos1 | pre1 | pos2 | pre2 | pos3 | pre3 | pos4 | pre4 | pos5 | pre5 | pos6 | pre6 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSG00000204389.10 HSPA1A | 9661.87862 | 3.220649 | 0.2248106 | 14.326056 | 0 | 0 | 14.509585 | 11.327110 | 14.313720 | 11.079875 | 13.372655 | 10.824905 | 14.662918 | 10.757834 | 13.943210 | 11.235981 | 13.276723 | 10.746699 |
ENSG00000204388.7 HSPA1B | 7740.52529 | 3.753745 | 0.3475392 | 10.800928 | 0 | 0 | 14.321364 | 10.730246 | 13.973664 | 9.713970 | 13.051475 | 10.168243 | 14.645100 | 10.065739 | 13.277423 | 10.578335 | 12.788593 | 10.318778 |
ENSG00000059804.17 SLC2A3 | 261.28959 | 2.981121 | 0.3029849 | 9.839175 | 0 | 0 | 9.977001 | 7.365156 | 9.070578 | 7.704917 | 9.109580 | 8.012778 | 9.432930 | 7.643719 | 9.172984 | 7.515668 | 9.038002 | 7.949452 |
ENSG00000132002.9 DNAJB1 | 2499.31810 | 1.947194 | 0.2314796 | 8.411945 | 0 | 0 | 12.667979 | 10.418841 | 12.286233 | 10.028874 | 11.334870 | 10.148086 | 12.380905 | 10.422020 | 11.657551 | 10.327622 | 11.200742 | 10.139620 |
ENSG00000108551.5 RASD1 | 76.23498 | 2.440256 | 0.3047561 | 8.007243 | 0 | 0 | 8.193445 | 7.193235 | 8.201182 | 7.517727 | 8.289186 | 7.171245 | 8.345547 | 7.141452 | 8.241378 | 7.515668 | 7.931817 | 7.407349 |
ENSG00000127528.6 KLF2 | 462.40541 | 1.654396 | 0.2102809 | 7.867552 | 0 | 0 | 9.863643 | 8.425862 | 9.585435 | 8.278253 | 9.855610 | 8.669730 | 9.882036 | 8.430016 | 9.838454 | 8.654425 | 9.756367 | 9.165704 |
nrow(subset(dge_unpaired,padj<0.05 & log2FoldChange > 0))
## [1] 129
nrow(subset(dge_unpaired,padj<0.05 & log2FoldChange < 0))
## [1] 28
dds <- DESeqDataSetFromMatrix(countData = xx , colData = ss, design = ~ participant + pos )
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
write.table(dge,file="rna_deseq.tsv",quote=F,sep="\t")
head(dge) |>
kbl(caption = "Top significant genes in paired analysis)") |>
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | pos1 | pre1 | pos2 | pre2 | pos3 | pre3 | pos4 | pre4 | pos5 | pre5 | pos6 | pre6 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSG00000204389.10 HSPA1A | 9661.8786 | 3.143099 | 0.2161454 | 14.54160 | 0 | 0 | 14.56451 | 11.730742 | 14.376338 | 11.542009 | 13.48906 | 11.353993 | 14.71246 | 11.305680 | 14.023319 | 11.660457 | 13.40058 | 11.297706 |
ENSG00000265142.9 MIR133A1HG | 2355.8815 | -1.028605 | 0.0795560 | -12.92933 | 0 | 0 | 11.18380 | 11.981908 | 11.604533 | 12.227695 | 11.18469 | 11.756484 | 11.02525 | 11.935191 | 11.225908 | 11.814978 | 11.57239 | 12.390697 |
ENSG00000119508.18 NR4A3 | 457.5074 | 4.072272 | 0.3594147 | 11.33029 | 0 | 0 | 11.75432 | 9.591278 | 9.796772 | 9.324578 | 10.82203 | 9.528772 | 10.56108 | 9.488176 | 9.973593 | 9.467974 | 10.96985 | 9.587088 |
ENSG00000127528.6 KLF2 | 462.4054 | 1.727463 | 0.1572805 | 10.98333 | 0 | 0 | 10.70828 | 9.918147 | 10.539975 | 9.846831 | 10.70331 | 10.039391 | 10.71969 | 9.920176 | 10.692706 | 10.031649 | 10.64242 | 10.300906 |
ENSG00000120694.20 HSPH1 | 890.8400 | 1.141477 | 0.1086403 | 10.50694 | 0 | 0 | 11.27003 | 10.500918 | 10.901201 | 10.418029 | 10.98860 | 10.410880 | 11.32874 | 10.914689 | 11.101868 | 10.339796 | 10.94273 | 10.435839 |
ENSG00000204388.7 HSPA1B | 7740.5253 | 3.635689 | 0.3595030 | 10.11310 | 0 | 0 | 14.38366 | 11.285948 | 14.052175 | 10.616727 | 13.19459 | 10.902000 | 14.69524 | 10.835690 | 13.401222 | 11.178769 | 12.95765 | 11.001460 |
nrow(subset(dge,padj<0.05 & log2FoldChange > 0))
## [1] 472
nrow(subset(dge,padj<0.05 & log2FoldChange < 0))
## [1] 165
Smear plot
sig <- subset(dge,padj<0.05)
NSIG=nrow(sig)
NDOWN=nrow(subset(sig,log2FoldChange<0))
NUP=nrow(subset(sig,log2FoldChange>0))
NTOT=nrow(dge)
HEADER=paste(NTOT,"genes detected;",NSIG,"@5%FDR;",NUP,"up",NDOWN,"down")
plot(log10(dge$baseMean),dge$log2FoldChange,cex=0.5,pch=19,col="darkgray",
xlab="log10 basemean",ylab="log2 fold change",main="RNA expression")
points(log10(sig$baseMean),sig$log2FoldChange,cex=0.5,pch=19,col="black")
mtext(HEADER)
pw <- gmt_import("ref/c5.go.v2024.1.Hs.symbols.gmt")
names(pw) <- gsub("_", " ", names(pw))
gt <- as.data.frame(rownames(dge))
gt$genesymbol <- sapply(strsplit(gt[,1]," "),"[[",2)
m <- mitch_import(x=dge,DEtype="deseq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 16971
## Note: no. genes in output = 16923
## Note: estimated proportion of input genes in output = 0.997
head(m)
## x
## 5_8S_rRNA 2.8723535
## 7SK 0.1300210
## A1BG 0.2484592
## A2M 3.4477904
## A2M-AS1 -0.5669178
## A4GALT 0.1378113
mres <- mitch_calc(x=m,genesets=pw,minsetsize=5,cores=8,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist>0),50) |>
kbl(caption = "Top upregulated GO terms based on effect size (FDR<0.05)") |>
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
1145 | GOBP ENDOCARDIUM MORPHOGENESIS | 5 | 0.0004658 | 0.9036529 | 0.0033947 |
8446 | GOMF NUCLEAR GLUCOCORTICOID RECEPTOR BINDING | 11 | 0.0000005 | 0.8776125 | 0.0000076 |
7757 | GOMF C3HC4 TYPE RING FINGER DOMAIN BINDING | 5 | 0.0009659 | 0.8521811 | 0.0061947 |
5126 | GOBP REGULATION OF LYMPHANGIOGENESIS | 5 | 0.0012409 | 0.8338574 | 0.0076217 |
5113 | GOBP REGULATION OF LIPOPHAGY | 5 | 0.0014736 | 0.8210900 | 0.0087528 |
6323 | GOBP TELOMERASE HOLOENZYME COMPLEX ASSEMBLY | 6 | 0.0005975 | 0.8091663 | 0.0041868 |
5284 | GOBP REGULATION OF NITRIC OXIDE MEDIATED SIGNAL TRANSDUCTION | 5 | 0.0020478 | 0.7961461 | 0.0115809 |
1967 | GOBP LUNG VASCULATURE DEVELOPMENT | 5 | 0.0022720 | 0.7881310 | 0.0126210 |
2618 | GOBP NEGATIVE REGULATION OF ENDOTHELIAL CELL DIFFERENTIATION | 7 | 0.0003462 | 0.7808668 | 0.0026570 |
4247 | GOBP POSITIVE REGULATION OF WOUND HEALING SPREADING OF EPIDERMAL CELLS | 5 | 0.0025669 | 0.7786263 | 0.0139188 |
5059 | GOBP REGULATION OF INNER EAR AUDITORY RECEPTOR CELL DIFFERENTIATION | 5 | 0.0025973 | 0.7777042 | 0.0140266 |
1708 | GOBP INHIBITION OF NEUROEPITHELIAL CELL DIFFERENTIATION | 6 | 0.0010019 | 0.7755315 | 0.0063894 |
4396 | GOBP PROTEIN LOCALIZATION TO BICELLULAR TIGHT JUNCTION | 5 | 0.0028110 | 0.7714860 | 0.0149656 |
7865 | GOMF CO SMAD BINDING | 8 | 0.0001663 | 0.7686964 | 0.0014160 |
3543 | GOBP POSITIVE REGULATION OF ARTERY MORPHOGENESIS | 6 | 0.0011556 | 0.7660145 | 0.0071835 |
4665 | GOBP REGULATION OF ARTERY MORPHOGENESIS | 6 | 0.0011556 | 0.7660145 | 0.0071835 |
1290 | GOBP ESTABLISHMENT OR MAINTENANCE OF CYTOSKELETON POLARITY | 5 | 0.0032951 | 0.7588604 | 0.0168899 |
5601 | GOBP REGULATION OF TERMINATION OF DNA TEMPLATED TRANSCRIPTION | 5 | 0.0034472 | 0.7552429 | 0.0175212 |
5698 | GOBP REGULATION OF WOUND HEALING SPREADING OF EPIDERMAL CELLS | 9 | 0.0000891 | 0.7541944 | 0.0008332 |
1076 | GOBP DORSAL AORTA DEVELOPMENT | 9 | 0.0000996 | 0.7490048 | 0.0009164 |
2952 | GOBP NEGATIVE REGULATION OF SPROUTING ANGIOGENESIS | 10 | 0.0000423 | 0.7476024 | 0.0004262 |
3013 | GOBP NEGATIVE REGULATION OF T HELPER 17 TYPE IMMUNE RESPONSE | 7 | 0.0006802 | 0.7414620 | 0.0046445 |
4393 | GOBP PROTEIN LOCALIZATION TO ADHERENS JUNCTION | 6 | 0.0016881 | 0.7402416 | 0.0098012 |
4253 | GOBP POSTSYNAPTIC CYTOSKELETON ORGANIZATION | 6 | 0.0017855 | 0.7363599 | 0.0102910 |
5660 | GOBP REGULATION OF T HELPER 17 CELL DIFFERENTIATION | 15 | 0.0000008 | 0.7359672 | 0.0000125 |
2634 | GOBP NEGATIVE REGULATION OF ESTABLISHMENT OF PROTEIN LOCALIZATION TO MITOCHONDRION | 5 | 0.0043778 | 0.7358317 | 0.0213899 |
3309 | GOBP OVULATION FROM OVARIAN FOLLICLE | 7 | 0.0007491 | 0.7356856 | 0.0050167 |
1077 | GOBP DORSAL AORTA MORPHOGENESIS | 8 | 0.0003255 | 0.7337275 | 0.0025264 |
2177 | GOBP METANEPHRIC NEPHRON TUBULE MORPHOGENESIS | 5 | 0.0045314 | 0.7329944 | 0.0220104 |
2674 | GOBP NEGATIVE REGULATION OF HEMATOPOIETIC STEM CELL DIFFERENTIATION | 5 | 0.0047915 | 0.7283840 | 0.0229548 |
2592 | GOBP NEGATIVE REGULATION OF DENDRITE MORPHOGENESIS | 5 | 0.0050050 | 0.7247665 | 0.0237893 |
8146 | GOMF HISTONE H4 DEMETHYLASE ACTIVITY | 5 | 0.0051506 | 0.7223785 | 0.0243034 |
1395 | GOBP FOREGUT MORPHOGENESIS | 7 | 0.0009540 | 0.7210249 | 0.0061356 |
3978 | GOBP POSITIVE REGULATION OF NUCLEAR TRANSCRIBED MRNA CATABOLIC PROCESS DEADENYLATION DEPENDENT DECAY | 12 | 0.0000159 | 0.7193740 | 0.0001827 |
6985 | GOCC FILTRATION DIAPHRAGM | 5 | 0.0056835 | 0.7141270 | 0.0261529 |
1191 | GOBP ENERGY COUPLED PROTON TRANSMEMBRANE TRANSPORT AGAINST ELECTROCHEMICAL GRADIENT | 5 | 0.0059558 | 0.7101785 | 0.0270359 |
6565 | GOBP VENTRICULAR CARDIAC MUSCLE CELL DEVELOPMENT | 6 | 0.0025976 | 0.7099565 | 0.0140266 |
796 | GOBP CITRATE METABOLIC PROCESS | 5 | 0.0059992 | 0.7095638 | 0.0272000 |
5119 | GOBP REGULATION OF LONG CHAIN FATTY ACID IMPORT ACROSS PLASMA MEMBRANE | 6 | 0.0027990 | 0.7045970 | 0.0149103 |
5548 | GOBP REGULATION OF SPONTANEOUS SYNAPTIC TRANSMISSION | 5 | 0.0065665 | 0.7018797 | 0.0291961 |
4911 | GOBP REGULATION OF ENDOPLASMIC RETICULUM TUBULAR NETWORK ORGANIZATION | 6 | 0.0029504 | 0.7007941 | 0.0155800 |
7726 | GOMF ATP DEPENDENT PROTEIN DISAGGREGASE ACTIVITY | 6 | 0.0029568 | 0.7006364 | 0.0156020 |
3896 | GOBP POSITIVE REGULATION OF MICROTUBULE NUCLEATION | 8 | 0.0006246 | 0.6983447 | 0.0043396 |
6561 | GOBP VENOUS BLOOD VESSEL MORPHOGENESIS | 7 | 0.0013805 | 0.6981049 | 0.0082919 |
8291 | GOMF L LEUCINE BINDING | 6 | 0.0030941 | 0.6973459 | 0.0161328 |
7126 | GOCC MICROTUBULE MINUS END | 5 | 0.0070431 | 0.6958742 | 0.0307580 |
3207 | GOBP NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN CONTAINING 1 SIGNALING PATHWAY | 7 | 0.0014464 | 0.6951660 | 0.0086208 |
74 | GOBP ADHESION OF SYMBIONT TO HOST CELL | 6 | 0.0032259 | 0.6943114 | 0.0166511 |
8438 | GOMF NITRIC OXIDE SYNTHASE REGULATOR ACTIVITY | 6 | 0.0033213 | 0.6921834 | 0.0169763 |
7509 | GOCC TRANSCRIPTION FACTOR AP 1 COMPLEX | 5 | 0.0075093 | 0.6903416 | 0.0322669 |
head(subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist<0),50) |>
kbl(caption = "Top downregulated GO terms based on effect size (FDR<0.05)") |>
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
6878 | GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT | 52 | 0.0000000 | -0.8679208 | 0.0000000 |
6874 | GOCC CYTOPLASMIC SIDE OF ROUGH ENDOPLASMIC RETICULUM MEMBRANE | 5 | 0.0023710 | -0.7848209 | 0.0130590 |
8240 | GOMF LARGE RIBOSOMAL SUBUNIT RRNA BINDING | 5 | 0.0030154 | -0.7659298 | 0.0158131 |
7766 | GOMF CALCIUM DEPENDENT PHOSPHOLIPASE A2 ACTIVITY | 5 | 0.0033264 | -0.7581038 | 0.0169928 |
6882 | GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT | 43 | 0.0000000 | -0.7231897 | 0.0000000 |
7608 | GOMF ACETYLCHOLINE BINDING | 5 | 0.0051258 | -0.7227805 | 0.0242494 |
7340 | GOCC PROTEASOME CORE COMPLEX BETA SUBUNIT COMPLEX | 10 | 0.0001129 | -0.7050435 | 0.0010177 |
8900 | GOMF STRUCTURAL CONSTITUENT OF RIBOSOME | 157 | 0.0000000 | -0.6711589 | 0.0000000 |
3017 | GOBP NEGATIVE REGULATION OF UBIQUITIN PROTEIN LIGASE ACTIVITY | 8 | 0.0010201 | -0.6706326 | 0.0064740 |
8212 | GOMF INTRAMOLECULAR OXIDOREDUCTASE ACTIVITY INTERCONVERTING ALDOSES AND KETOSES | 6 | 0.0044677 | -0.6702134 | 0.0217720 |
9035 | GOMF UBIQUITIN LIGASE INHIBITOR ACTIVITY | 9 | 0.0006626 | -0.6553283 | 0.0045594 |
6755 | GOCC CATSPER COMPLEX | 5 | 0.0114016 | -0.6533633 | 0.0449339 |
7338 | GOCC PROTEASOME CORE COMPLEX | 18 | 0.0000020 | -0.6472970 | 0.0000283 |
7079 | GOCC LARGE RIBOSOMAL SUBUNIT | 109 | 0.0000000 | -0.6392663 | 0.0000000 |
7609 | GOMF ACETYLCHOLINE GATED MONOATOMIC CATION SELECTIVE CHANNEL ACTIVITY | 8 | 0.0025591 | -0.6157996 | 0.0138851 |
7384 | GOCC RIBOSOMAL SUBUNIT | 181 | 0.0000000 | -0.6058974 | 0.0000000 |
6881 | GOCC CYTOSOLIC RIBOSOME | 113 | 0.0000000 | -0.6015235 | 0.0000000 |
8949 | GOMF THREONINE TYPE ENDOPEPTIDASE ACTIVITY | 7 | 0.0075206 | -0.5833699 | 0.0323001 |
8483 | GOMF ODORANT BINDING | 8 | 0.0048302 | -0.5753621 | 0.0230794 |
7610 | GOMF ACETYLCHOLINE RECEPTOR ACTIVITY | 8 | 0.0052371 | -0.5700414 | 0.0245968 |
7065 | GOCC IRON SULFUR CLUSTER ASSEMBLY COMPLEX | 12 | 0.0006726 | -0.5668993 | 0.0046062 |
6530 | GOBP UTP BIOSYNTHETIC PROCESS | 8 | 0.0058770 | -0.5623855 | 0.0267829 |
7339 | GOCC PROTEASOME CORE COMPLEX ALPHA SUBUNIT COMPLEX | 7 | 0.0101835 | -0.5608215 | 0.0413759 |
4538 | GOBP PURINE RIBONUCLEOTIDE SALVAGE | 8 | 0.0065033 | -0.5555868 | 0.0289433 |
7442 | GOCC SMALL RIBOSOMAL SUBUNIT | 75 | 0.0000000 | -0.5390298 | 0.0000000 |
8428 | GOMF NEUROTRANSMITTER RECEPTOR ACTIVITY INVOLVED IN REGULATION OF POSTSYNAPTIC MEMBRANE POTENTIAL | 17 | 0.0001200 | -0.5387645 | 0.0010732 |
8950 | GOMF THREONINE TYPE PEPTIDASE ACTIVITY | 12 | 0.0012457 | -0.5381803 | 0.0076372 |
8430 | GOMF NEUROTRANSMITTER TRANSMEMBRANE TRANSPORTER ACTIVITY | 10 | 0.0040017 | -0.5255839 | 0.0198078 |
1 | GOBP 2FE 2S CLUSTER ASSEMBLY | 11 | 0.0027881 | -0.5206631 | 0.0148611 |
8664 | GOMF POSTSYNAPTIC NEUROTRANSMITTER RECEPTOR ACTIVITY | 18 | 0.0001340 | -0.5198988 | 0.0011778 |
7143 | GOCC MITOCHONDRIAL PROTON TRANSPORTING ATP SYNTHASE COMPLEX COUPLING FACTOR F O | 10 | 0.0050768 | -0.5117247 | 0.0240585 |
7997 | GOMF EXCITATORY EXTRACELLULAR LIGAND GATED MONOATOMIC ION CHANNEL ACTIVITY | 17 | 0.0002678 | -0.5105392 | 0.0021425 |
7180 | GOCC NADPH OXIDASE COMPLEX | 8 | 0.0127535 | -0.5084984 | 0.0491695 |
1852 | GOBP KETONE CATABOLIC PROCESS | 11 | 0.0036348 | -0.5063967 | 0.0183415 |
4533 | GOBP PURINE NUCLEOTIDE SALVAGE | 11 | 0.0038372 | -0.5034403 | 0.0191395 |
9048 | GOMF UBIQUITIN PROTEIN TRANSFERASE INHIBITOR ACTIVITY | 12 | 0.0028508 | -0.4973784 | 0.0150979 |
1084 | GOBP DOUBLE STRAND BREAK REPAIR VIA BREAK INDUCED REPLICATION | 9 | 0.0097980 | -0.4971950 | 0.0401462 |
968 | GOBP DETECTION OF MECHANICAL STIMULUS INVOLVED IN SENSORY PERCEPTION OF SOUND | 9 | 0.0107584 | -0.4909542 | 0.0430333 |
8484 | GOMF OLFACTORY RECEPTOR ACTIVITY | 29 | 0.0000049 | -0.4902495 | 0.0000646 |
8003 | GOMF EXTRACELLULAR LIGAND GATED MONOATOMIC ION CHANNEL ACTIVITY | 27 | 0.0000203 | -0.4737479 | 0.0002271 |
7657 | GOMF ALCOHOL DEHYDROGENASE NADPPLUS ACTIVITY | 16 | 0.0013118 | -0.4639942 | 0.0079586 |
6028 | GOBP RRNA 3 END PROCESSING | 10 | 0.0124583 | -0.4563590 | 0.0482409 |
7540 | GOCC U1 SNRNP | 19 | 0.0006004 | -0.4547164 | 0.0041970 |
894 | GOBP CYTOPLASMIC TRANSLATION | 157 | 0.0000000 | -0.4498640 | 0.0000000 |
7097 | GOCC MANCHETTE | 13 | 0.0058490 | -0.4414866 | 0.0267113 |
7385 | GOCC RIBOSOME | 224 | 0.0000000 | -0.4399841 | 0.0000000 |
3211 | GOBP NUCLEOTIDE SALVAGE | 16 | 0.0025976 | -0.4348864 | 0.0140266 |
3162 | GOBP NUCLEAR MRNA SURVEILLANCE | 11 | 0.0130036 | -0.4324847 | 0.0498425 |
7352 | GOCC PROTON TRANSPORTING ATP SYNTHASE COMPLEX | 21 | 0.0006627 | -0.4291574 | 0.0045594 |
8427 | GOMF NEUROTRANSMITTER RECEPTOR ACTIVITY | 25 | 0.0002228 | -0.4265404 | 0.0018322 |
par(mar=c(5,27,3,3))
top <- mres$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 2373
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.65,main="Pre vs Post Exercise",xlab="ES")
grid()
par(mar=c(5.1, 4.1, 4.1, 2.1))
SLC2A4 <- rpm[grep("ENSG00000181856",rownames(rpm)),]
SLC2A4
## pos1 pre1 pos2 pre2 pos3 pre3 pos4 pre4
## 192.7894 211.7837 268.4932 290.2613 230.0505 250.5801 176.6010 200.4703
## pos5 pre5 pos6 pre6
## 180.0970 201.4592 192.6686 252.2494
SLC2A4 <- matrix(SLC2A4,nrow=2)
colnames(SLC2A4) <- 1:6
rownames(SLC2A4) <- c("Post","Pre")
SLC2A4 <- SLC2A4[c(2,1),]
barplot(SLC2A4,beside=TRUE,col=c("#0047AB", "#D2042D"),ylim=c(0,300),
main="SLC2A4 mRNA",ylab="counts per million",xlab="participant")
legend(11,300, legend=c("Pre", "Post"), fill=c("#0047AB","#D2042D"), cex=1)
tpm <- apply(x[,1:12], 2 , function(x) { x / sum(x) } ) * 1000000
tpm <- tpm[rowMeans(tpm) > 1,]
dim(tpm)
## [1] 36942 12
SLC2A4 <- tpm[grep("ENSG00000181856",rownames(tpm)),]
rownames(SLC2A4) <- sapply(strsplit(rownames(SLC2A4),"\\|"),"[[",1)
SLC2A4
## AD-pos_mRNA AD-pre_mRNA AKH-pos_mRNA AKH-pre_mRNA
## ENST00000317370.13 145.2675550 153.17734 175.516303 203.11333
## ENST00000424875.2 0.6459906 0.00000 1.173132 0.00000
## ENST00000572485.5 45.8908386 57.33124 91.091064 86.04494
## AY-pos_mRNA AY-pre_mRNA RH-pos_mRNA RH-pre_mRNA SB-pos_mRNA
## ENST00000317370.13 161.195089 189.143942 133.162401 116.59716 132.028166
## ENST00000424875.2 3.475109 1.603876 1.701429 0.00000 2.563606
## ENST00000572485.5 65.349422 59.305853 41.765433 83.17798 45.505262
## SB-pre_mRNA ST-pos_mRNA ST-pre_mRNA
## ENST00000317370.13 158.05147 136.457650 179.10165
## ENST00000424875.2 1.30145 1.856872 2.97331
## ENST00000572485.5 42.03799 54.349366 70.16995
sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] kableExtra_1.4.0 beeswarm_0.4.0
## [3] topconfects_1.20.0 limma_3.60.0
## [5] eulerr_7.0.2 mitch_1.16.0
## [7] gplots_3.1.3.1 DESeq2_1.44.0
## [9] SummarizedExperiment_1.34.0 Biobase_2.64.0
## [11] MatrixGenerics_1.16.0 matrixStats_1.3.0
## [13] GenomicRanges_1.56.0 GenomeInfoDb_1.40.0
## [15] IRanges_2.38.0 S4Vectors_0.42.0
## [17] BiocGenerics_0.50.0 reshape2_1.4.4
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 viridisLite_0.4.2 dplyr_1.1.4
## [4] bitops_1.0-7 fastmap_1.2.0 GGally_2.2.1
## [7] promises_1.3.0 digest_0.6.36 mime_0.12
## [10] lifecycle_1.0.4 statmod_1.5.0 magrittr_2.0.3
## [13] compiler_4.4.1 rlang_1.1.4 sass_0.4.9
## [16] tools_4.4.1 utf8_1.2.4 yaml_2.3.9
## [19] knitr_1.48 S4Arrays_1.4.0 htmlwidgets_1.6.4
## [22] DelayedArray_0.30.1 xml2_1.3.6 plyr_1.8.9
## [25] RColorBrewer_1.1-3 abind_1.4-5 BiocParallel_1.38.0
## [28] KernSmooth_2.23-24 purrr_1.0.2 grid_4.4.1
## [31] fansi_1.0.6 caTools_1.18.2 xtable_1.8-4
## [34] colorspace_2.1-0 ggplot2_3.5.1 MASS_7.3-61
## [37] scales_1.3.0 gtools_3.9.5 cli_3.6.3
## [40] rmarkdown_2.27 crayon_1.5.3 generics_0.1.3
## [43] rstudioapi_0.16.0 httr_1.4.7 cachem_1.1.0
## [46] stringr_1.5.1 zlibbioc_1.50.0 assertthat_0.2.1
## [49] parallel_4.4.1 XVector_0.44.0 vctrs_0.6.5
## [52] Matrix_1.7-0 jsonlite_1.8.8 echarts4r_0.4.5
## [55] systemfonts_1.1.0 locfit_1.5-9.10 jquerylib_0.1.4
## [58] tidyr_1.3.1 glue_1.7.0 ggstats_0.6.0
## [61] codetools_0.2-20 stringi_1.8.4 gtable_0.3.5
## [64] later_1.3.2 UCSC.utils_1.0.0 munsell_0.5.1
## [67] tibble_3.2.1 pillar_1.9.0 htmltools_0.5.8.1
## [70] GenomeInfoDbData_1.2.12 R6_2.5.1 evaluate_0.24.0
## [73] shiny_1.8.1.1 lattice_0.22-6 highr_0.11
## [76] httpuv_1.6.15 bslib_0.7.0 Rcpp_1.0.12
## [79] svglite_2.1.3 gridExtra_2.3 SparseArray_1.4.3
## [82] xfun_0.45 pkgconfig_2.0.3