Introduction
suppressPackageStartupMessages({
library("RhpcBLASctl")
library("reshape2")
library("DESeq2")
library("gplots")
library("mitch")
library("eulerr")
library("limma")
library("topconfects")
library("beeswarm")
library("kableExtra")
})
RhpcBLASctl::blas_set_num_threads(1)
Import read counts
Rename samples. Don’t use initials.
tmp <- read.table("raw_data/rna/3col.tsv.gz",header=F)
x <- as.matrix(acast(tmp, V2~V1, value.var="V3", fun.aggregate = sum))
x <- as.data.frame(x)
accession <- sapply((strsplit(rownames(x),"\\|")),"[[",2)
symbol<-sapply((strsplit(rownames(x),"\\|")),"[[",6)
x$geneid <- paste(accession,symbol)
xx <- aggregate(. ~ geneid,x,sum)
rownames(xx) <- xx$geneid
colnames <- gsub("T0R","T0",colnames(xx))
xx$geneid = NULL
xx <- round(xx)
dim(xx)
## [1] 63086 12
colSums(xx)
## AD-pos_mRNA AD-pre_mRNA AKH-pos_mRNA AKH-pre_mRNA AY-pos_mRNA AY-pre_mRNA
## 28258815 20506773 22644894 19847636 17583098 11732777
## RH-pos_mRNA RH-pre_mRNA SB-pos_mRNA SB-pre_mRNA ST-pos_mRNA ST-pre_mRNA
## 12610349 11542857 14958605 7951981 24373462 20436123
colnames(xx) <- c("pos1","pre1","pos2","pre2","pos3","pre3","pos4","pre4","pos5","pre5","pos6","pre6")
rpm <- apply(xx, 2 , function(x) { x / sum(x) } ) * 1000000
rpm <- rpm[rowMeans(rpm) > 1,]
dim(rpm)
## [1] 14798 12
# gene table
gt <- as.data.frame(rownames(xx))
gt$genesymbol <- sapply(strsplit(gt[,1]," "),"[[",2)
write.table(x=gt,file="gt.tsv",sep="\t")
MDS Plot
mds <- cmdscale(dist(t(xx)))
cols=rep(c("pink","lightblue"),6)
XMIN=min(mds[,1])*1.1
XMAX=max(mds[,1])*1.1
plot(mds, xlab="Coordinate 1", ylab="Coordinate 2", xlim=c(XMIN,XMAX), cex=2,col=cols,pch=19,main="RNA expression", bty="n")
text(mds, labels=colnames(xx) ,cex=1.1)

pdf("rna_mds.pdf",width=5,height=5)
plot(mds, xlab="Coordinate 1", ylab="Coordinate 2", xlim=c(XMIN,XMAX), cex=2,col=cols,pch=19,main="RNA expression", bty="n")
text(mds, labels=colnames(xx) ,cex=1.1)
dev.off()
## X11cairo
## 2
DESeq2
Sample sheet then differential analysis.
Remove genes with less than 10 reads per sample on average.
ss <- as.data.frame(colnames(xx))
ss$pos <- factor(grepl("pos",ss[,1]))
ss$participant <- c("1","1","2","2","3","3","4","4","5","5","6","6")
dim(xx)
## [1] 63086 12
xx <- xx[rowMeans(xx)>=10,]
dim(xx)
## [1] 16971 12
dds <- DESeqDataSetFromMatrix(countData = xx , colData = ss, design = ~ pos )
## converting counts to integer mode
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge_unpaired <- as.data.frame(zz[order(zz$pvalue),])
write.table(dge_unpaired,file="rna_deseq_unpaired.tsv",quote=F,sep="\t")
head(dge_unpaired) |>
kbl(caption = "Top significant genes in unpaired analysis)") |>
kable_paper("hover", full_width = F)
Top significant genes in unpaired analysis)
|
baseMean
|
log2FoldChange
|
lfcSE
|
stat
|
pvalue
|
padj
|
pos1
|
pre1
|
pos2
|
pre2
|
pos3
|
pre3
|
pos4
|
pre4
|
pos5
|
pre5
|
pos6
|
pre6
|
ENSG00000204389.10 HSPA1A
|
9661.87862
|
3.220649
|
0.2248106
|
14.326056
|
0
|
0
|
14.509585
|
11.327110
|
14.313720
|
11.079875
|
13.372655
|
10.824905
|
14.662918
|
10.757834
|
13.943210
|
11.235981
|
13.276723
|
10.746699
|
ENSG00000204388.7 HSPA1B
|
7740.52529
|
3.753745
|
0.3475392
|
10.800928
|
0
|
0
|
14.321364
|
10.730246
|
13.973664
|
9.713970
|
13.051475
|
10.168243
|
14.645100
|
10.065739
|
13.277423
|
10.578335
|
12.788593
|
10.318778
|
ENSG00000059804.17 SLC2A3
|
261.28959
|
2.981121
|
0.3029849
|
9.839175
|
0
|
0
|
9.977001
|
7.365156
|
9.070578
|
7.704917
|
9.109580
|
8.012778
|
9.432930
|
7.643719
|
9.172984
|
7.515668
|
9.038002
|
7.949452
|
ENSG00000132002.9 DNAJB1
|
2499.31810
|
1.947194
|
0.2314796
|
8.411945
|
0
|
0
|
12.667979
|
10.418841
|
12.286233
|
10.028874
|
11.334870
|
10.148086
|
12.380905
|
10.422020
|
11.657551
|
10.327622
|
11.200742
|
10.139620
|
ENSG00000108551.5 RASD1
|
76.23498
|
2.440256
|
0.3047561
|
8.007243
|
0
|
0
|
8.193445
|
7.193235
|
8.201182
|
7.517727
|
8.289186
|
7.171245
|
8.345547
|
7.141452
|
8.241378
|
7.515668
|
7.931817
|
7.407349
|
ENSG00000127528.6 KLF2
|
462.40541
|
1.654396
|
0.2102809
|
7.867552
|
0
|
0
|
9.863643
|
8.425862
|
9.585435
|
8.278253
|
9.855610
|
8.669730
|
9.882036
|
8.430016
|
9.838454
|
8.654425
|
9.756367
|
9.165704
|
nrow(subset(dge_unpaired,padj<0.05 & log2FoldChange > 0))
## [1] 129
nrow(subset(dge_unpaired,padj<0.05 & log2FoldChange < 0))
## [1] 28
dds <- DESeqDataSetFromMatrix(countData = xx , colData = ss, design = ~ participant + pos )
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
write.table(dge,file="rna_deseq.tsv",quote=F,sep="\t")
head(dge) |>
kbl(caption = "Top significant genes in paired analysis)") |>
kable_paper("hover", full_width = F)
Top significant genes in paired analysis)
|
baseMean
|
log2FoldChange
|
lfcSE
|
stat
|
pvalue
|
padj
|
pos1
|
pre1
|
pos2
|
pre2
|
pos3
|
pre3
|
pos4
|
pre4
|
pos5
|
pre5
|
pos6
|
pre6
|
ENSG00000204389.10 HSPA1A
|
9661.8786
|
3.143099
|
0.2161454
|
14.54160
|
0
|
0
|
14.56451
|
11.730742
|
14.376338
|
11.542009
|
13.48906
|
11.353993
|
14.71246
|
11.305680
|
14.023319
|
11.660457
|
13.40058
|
11.297706
|
ENSG00000265142.9 MIR133A1HG
|
2355.8815
|
-1.028605
|
0.0795560
|
-12.92933
|
0
|
0
|
11.18380
|
11.981908
|
11.604533
|
12.227695
|
11.18469
|
11.756484
|
11.02525
|
11.935191
|
11.225908
|
11.814978
|
11.57239
|
12.390697
|
ENSG00000119508.18 NR4A3
|
457.5074
|
4.072272
|
0.3594147
|
11.33029
|
0
|
0
|
11.75432
|
9.591278
|
9.796772
|
9.324578
|
10.82203
|
9.528772
|
10.56108
|
9.488176
|
9.973593
|
9.467974
|
10.96985
|
9.587088
|
ENSG00000127528.6 KLF2
|
462.4054
|
1.727463
|
0.1572805
|
10.98333
|
0
|
0
|
10.70828
|
9.918147
|
10.539975
|
9.846831
|
10.70331
|
10.039391
|
10.71969
|
9.920176
|
10.692706
|
10.031649
|
10.64242
|
10.300906
|
ENSG00000120694.20 HSPH1
|
890.8400
|
1.141477
|
0.1086403
|
10.50694
|
0
|
0
|
11.27003
|
10.500918
|
10.901201
|
10.418029
|
10.98860
|
10.410880
|
11.32874
|
10.914689
|
11.101868
|
10.339796
|
10.94273
|
10.435839
|
ENSG00000204388.7 HSPA1B
|
7740.5253
|
3.635689
|
0.3595030
|
10.11310
|
0
|
0
|
14.38366
|
11.285948
|
14.052175
|
10.616727
|
13.19459
|
10.902000
|
14.69524
|
10.835690
|
13.401222
|
11.178769
|
12.95765
|
11.001460
|
nrow(subset(dge,padj<0.05 & log2FoldChange > 0))
## [1] 472
nrow(subset(dge,padj<0.05 & log2FoldChange < 0))
## [1] 165
Smear plot
sig <- subset(dge,padj<0.05)
NSIG=nrow(sig)
NDOWN=nrow(subset(sig,log2FoldChange<0))
NUP=nrow(subset(sig,log2FoldChange>0))
NTOT=nrow(dge)
HEADER=paste(NTOT,"genes detected;",NSIG,"@5%FDR;",NUP,"up",NDOWN,"down")
plot(log10(dge$baseMean),dge$log2FoldChange,cex=0.5,pch=19,col="darkgray",
xlab="log10 basemean",ylab="log2 fold change",main="RNA expression")
points(log10(sig$baseMean),sig$log2FoldChange,cex=0.5,pch=19,col="black")
mtext(HEADER)

pdf("rna_smear.pdf",width=5,height=5)
plot(log10(dge$baseMean),dge$log2FoldChange,cex=0.5,pch=19,col="darkgray",
xlab="log10 basemean",ylab="log2 fold change",main="RNA expression")
points(log10(sig$baseMean),sig$log2FoldChange,cex=0.5,pch=19,col="black")
mtext(HEADER)
dev.off()
## X11cairo
## 2
Mitch
pw <- gmt_import("ref/c5.go.v2024.1.Hs.symbols.gmt")
names(pw) <- gsub("_", " ", names(pw))
gt <- as.data.frame(rownames(dge))
gt$genesymbol <- sapply(strsplit(gt[,1]," "),"[[",2)
m <- mitch_import(x=dge,DEtype="deseq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 16971
## Note: no. genes in output = 16923
## Note: estimated proportion of input genes in output = 0.997
head(m)
## x
## 5_8S_rRNA 2.8723535
## 7SK 0.1300210
## A1BG 0.2484592
## A2M 3.4477904
## A2M-AS1 -0.5669178
## A4GALT 0.1378113
mres <- mitch_calc(x=m,genesets=pw,minsetsize=5,cores=8,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist>0),50) |>
kbl(caption = "Top upregulated GO terms based on effect size (FDR<0.05)") |>
kable_paper("hover", full_width = F)
Top upregulated GO terms based on effect size (FDR
|
set
|
setSize
|
pANOVA
|
s.dist
|
p.adjustANOVA
|
1145
|
GOBP ENDOCARDIUM MORPHOGENESIS
|
5
|
0.0004658
|
0.9036529
|
0.0033947
|
8446
|
GOMF NUCLEAR GLUCOCORTICOID RECEPTOR BINDING
|
11
|
0.0000005
|
0.8776125
|
0.0000076
|
7757
|
GOMF C3HC4 TYPE RING FINGER DOMAIN BINDING
|
5
|
0.0009659
|
0.8521811
|
0.0061947
|
5126
|
GOBP REGULATION OF LYMPHANGIOGENESIS
|
5
|
0.0012409
|
0.8338574
|
0.0076217
|
5113
|
GOBP REGULATION OF LIPOPHAGY
|
5
|
0.0014736
|
0.8210900
|
0.0087528
|
6323
|
GOBP TELOMERASE HOLOENZYME COMPLEX ASSEMBLY
|
6
|
0.0005975
|
0.8091663
|
0.0041868
|
5284
|
GOBP REGULATION OF NITRIC OXIDE MEDIATED SIGNAL TRANSDUCTION
|
5
|
0.0020478
|
0.7961461
|
0.0115809
|
1967
|
GOBP LUNG VASCULATURE DEVELOPMENT
|
5
|
0.0022720
|
0.7881310
|
0.0126210
|
2618
|
GOBP NEGATIVE REGULATION OF ENDOTHELIAL CELL DIFFERENTIATION
|
7
|
0.0003462
|
0.7808668
|
0.0026570
|
4247
|
GOBP POSITIVE REGULATION OF WOUND HEALING SPREADING OF EPIDERMAL CELLS
|
5
|
0.0025669
|
0.7786263
|
0.0139188
|
5059
|
GOBP REGULATION OF INNER EAR AUDITORY RECEPTOR CELL DIFFERENTIATION
|
5
|
0.0025973
|
0.7777042
|
0.0140266
|
1708
|
GOBP INHIBITION OF NEUROEPITHELIAL CELL DIFFERENTIATION
|
6
|
0.0010019
|
0.7755315
|
0.0063894
|
4396
|
GOBP PROTEIN LOCALIZATION TO BICELLULAR TIGHT JUNCTION
|
5
|
0.0028110
|
0.7714860
|
0.0149656
|
7865
|
GOMF CO SMAD BINDING
|
8
|
0.0001663
|
0.7686964
|
0.0014160
|
3543
|
GOBP POSITIVE REGULATION OF ARTERY MORPHOGENESIS
|
6
|
0.0011556
|
0.7660145
|
0.0071835
|
4665
|
GOBP REGULATION OF ARTERY MORPHOGENESIS
|
6
|
0.0011556
|
0.7660145
|
0.0071835
|
1290
|
GOBP ESTABLISHMENT OR MAINTENANCE OF CYTOSKELETON POLARITY
|
5
|
0.0032951
|
0.7588604
|
0.0168899
|
5601
|
GOBP REGULATION OF TERMINATION OF DNA TEMPLATED TRANSCRIPTION
|
5
|
0.0034472
|
0.7552429
|
0.0175212
|
5698
|
GOBP REGULATION OF WOUND HEALING SPREADING OF EPIDERMAL CELLS
|
9
|
0.0000891
|
0.7541944
|
0.0008332
|
1076
|
GOBP DORSAL AORTA DEVELOPMENT
|
9
|
0.0000996
|
0.7490048
|
0.0009164
|
2952
|
GOBP NEGATIVE REGULATION OF SPROUTING ANGIOGENESIS
|
10
|
0.0000423
|
0.7476024
|
0.0004262
|
3013
|
GOBP NEGATIVE REGULATION OF T HELPER 17 TYPE IMMUNE RESPONSE
|
7
|
0.0006802
|
0.7414620
|
0.0046445
|
4393
|
GOBP PROTEIN LOCALIZATION TO ADHERENS JUNCTION
|
6
|
0.0016881
|
0.7402416
|
0.0098012
|
4253
|
GOBP POSTSYNAPTIC CYTOSKELETON ORGANIZATION
|
6
|
0.0017855
|
0.7363599
|
0.0102910
|
5660
|
GOBP REGULATION OF T HELPER 17 CELL DIFFERENTIATION
|
15
|
0.0000008
|
0.7359672
|
0.0000125
|
2634
|
GOBP NEGATIVE REGULATION OF ESTABLISHMENT OF PROTEIN LOCALIZATION TO MITOCHONDRION
|
5
|
0.0043778
|
0.7358317
|
0.0213899
|
3309
|
GOBP OVULATION FROM OVARIAN FOLLICLE
|
7
|
0.0007491
|
0.7356856
|
0.0050167
|
1077
|
GOBP DORSAL AORTA MORPHOGENESIS
|
8
|
0.0003255
|
0.7337275
|
0.0025264
|
2177
|
GOBP METANEPHRIC NEPHRON TUBULE MORPHOGENESIS
|
5
|
0.0045314
|
0.7329944
|
0.0220104
|
2674
|
GOBP NEGATIVE REGULATION OF HEMATOPOIETIC STEM CELL DIFFERENTIATION
|
5
|
0.0047915
|
0.7283840
|
0.0229548
|
2592
|
GOBP NEGATIVE REGULATION OF DENDRITE MORPHOGENESIS
|
5
|
0.0050050
|
0.7247665
|
0.0237893
|
8146
|
GOMF HISTONE H4 DEMETHYLASE ACTIVITY
|
5
|
0.0051506
|
0.7223785
|
0.0243034
|
1395
|
GOBP FOREGUT MORPHOGENESIS
|
7
|
0.0009540
|
0.7210249
|
0.0061356
|
3978
|
GOBP POSITIVE REGULATION OF NUCLEAR TRANSCRIBED MRNA CATABOLIC PROCESS DEADENYLATION DEPENDENT DECAY
|
12
|
0.0000159
|
0.7193740
|
0.0001827
|
6985
|
GOCC FILTRATION DIAPHRAGM
|
5
|
0.0056835
|
0.7141270
|
0.0261529
|
1191
|
GOBP ENERGY COUPLED PROTON TRANSMEMBRANE TRANSPORT AGAINST ELECTROCHEMICAL GRADIENT
|
5
|
0.0059558
|
0.7101785
|
0.0270359
|
6565
|
GOBP VENTRICULAR CARDIAC MUSCLE CELL DEVELOPMENT
|
6
|
0.0025976
|
0.7099565
|
0.0140266
|
796
|
GOBP CITRATE METABOLIC PROCESS
|
5
|
0.0059992
|
0.7095638
|
0.0272000
|
5119
|
GOBP REGULATION OF LONG CHAIN FATTY ACID IMPORT ACROSS PLASMA MEMBRANE
|
6
|
0.0027990
|
0.7045970
|
0.0149103
|
5548
|
GOBP REGULATION OF SPONTANEOUS SYNAPTIC TRANSMISSION
|
5
|
0.0065665
|
0.7018797
|
0.0291961
|
4911
|
GOBP REGULATION OF ENDOPLASMIC RETICULUM TUBULAR NETWORK ORGANIZATION
|
6
|
0.0029504
|
0.7007941
|
0.0155800
|
7726
|
GOMF ATP DEPENDENT PROTEIN DISAGGREGASE ACTIVITY
|
6
|
0.0029568
|
0.7006364
|
0.0156020
|
3896
|
GOBP POSITIVE REGULATION OF MICROTUBULE NUCLEATION
|
8
|
0.0006246
|
0.6983447
|
0.0043396
|
6561
|
GOBP VENOUS BLOOD VESSEL MORPHOGENESIS
|
7
|
0.0013805
|
0.6981049
|
0.0082919
|
8291
|
GOMF L LEUCINE BINDING
|
6
|
0.0030941
|
0.6973459
|
0.0161328
|
7126
|
GOCC MICROTUBULE MINUS END
|
5
|
0.0070431
|
0.6958742
|
0.0307580
|
3207
|
GOBP NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN CONTAINING 1 SIGNALING PATHWAY
|
7
|
0.0014464
|
0.6951660
|
0.0086208
|
74
|
GOBP ADHESION OF SYMBIONT TO HOST CELL
|
6
|
0.0032259
|
0.6943114
|
0.0166511
|
8438
|
GOMF NITRIC OXIDE SYNTHASE REGULATOR ACTIVITY
|
6
|
0.0033213
|
0.6921834
|
0.0169763
|
7509
|
GOCC TRANSCRIPTION FACTOR AP 1 COMPLEX
|
5
|
0.0075093
|
0.6903416
|
0.0322669
|
head(subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist<0),50) |>
kbl(caption = "Top downregulated GO terms based on effect size (FDR<0.05)") |>
kable_paper("hover", full_width = F)
Top downregulated GO terms based on effect size (FDR
|
set
|
setSize
|
pANOVA
|
s.dist
|
p.adjustANOVA
|
6878
|
GOCC CYTOSOLIC LARGE RIBOSOMAL SUBUNIT
|
52
|
0.0000000
|
-0.8679208
|
0.0000000
|
6874
|
GOCC CYTOPLASMIC SIDE OF ROUGH ENDOPLASMIC RETICULUM MEMBRANE
|
5
|
0.0023710
|
-0.7848209
|
0.0130590
|
8240
|
GOMF LARGE RIBOSOMAL SUBUNIT RRNA BINDING
|
5
|
0.0030154
|
-0.7659298
|
0.0158131
|
7766
|
GOMF CALCIUM DEPENDENT PHOSPHOLIPASE A2 ACTIVITY
|
5
|
0.0033264
|
-0.7581038
|
0.0169928
|
6882
|
GOCC CYTOSOLIC SMALL RIBOSOMAL SUBUNIT
|
43
|
0.0000000
|
-0.7231897
|
0.0000000
|
7608
|
GOMF ACETYLCHOLINE BINDING
|
5
|
0.0051258
|
-0.7227805
|
0.0242494
|
7340
|
GOCC PROTEASOME CORE COMPLEX BETA SUBUNIT COMPLEX
|
10
|
0.0001129
|
-0.7050435
|
0.0010177
|
8900
|
GOMF STRUCTURAL CONSTITUENT OF RIBOSOME
|
157
|
0.0000000
|
-0.6711589
|
0.0000000
|
3017
|
GOBP NEGATIVE REGULATION OF UBIQUITIN PROTEIN LIGASE ACTIVITY
|
8
|
0.0010201
|
-0.6706326
|
0.0064740
|
8212
|
GOMF INTRAMOLECULAR OXIDOREDUCTASE ACTIVITY INTERCONVERTING ALDOSES AND KETOSES
|
6
|
0.0044677
|
-0.6702134
|
0.0217720
|
9035
|
GOMF UBIQUITIN LIGASE INHIBITOR ACTIVITY
|
9
|
0.0006626
|
-0.6553283
|
0.0045594
|
6755
|
GOCC CATSPER COMPLEX
|
5
|
0.0114016
|
-0.6533633
|
0.0449339
|
7338
|
GOCC PROTEASOME CORE COMPLEX
|
18
|
0.0000020
|
-0.6472970
|
0.0000283
|
7079
|
GOCC LARGE RIBOSOMAL SUBUNIT
|
109
|
0.0000000
|
-0.6392663
|
0.0000000
|
7609
|
GOMF ACETYLCHOLINE GATED MONOATOMIC CATION SELECTIVE CHANNEL ACTIVITY
|
8
|
0.0025591
|
-0.6157996
|
0.0138851
|
7384
|
GOCC RIBOSOMAL SUBUNIT
|
181
|
0.0000000
|
-0.6058974
|
0.0000000
|
6881
|
GOCC CYTOSOLIC RIBOSOME
|
113
|
0.0000000
|
-0.6015235
|
0.0000000
|
8949
|
GOMF THREONINE TYPE ENDOPEPTIDASE ACTIVITY
|
7
|
0.0075206
|
-0.5833699
|
0.0323001
|
8483
|
GOMF ODORANT BINDING
|
8
|
0.0048302
|
-0.5753621
|
0.0230794
|
7610
|
GOMF ACETYLCHOLINE RECEPTOR ACTIVITY
|
8
|
0.0052371
|
-0.5700414
|
0.0245968
|
7065
|
GOCC IRON SULFUR CLUSTER ASSEMBLY COMPLEX
|
12
|
0.0006726
|
-0.5668993
|
0.0046062
|
6530
|
GOBP UTP BIOSYNTHETIC PROCESS
|
8
|
0.0058770
|
-0.5623855
|
0.0267829
|
7339
|
GOCC PROTEASOME CORE COMPLEX ALPHA SUBUNIT COMPLEX
|
7
|
0.0101835
|
-0.5608215
|
0.0413759
|
4538
|
GOBP PURINE RIBONUCLEOTIDE SALVAGE
|
8
|
0.0065033
|
-0.5555868
|
0.0289433
|
7442
|
GOCC SMALL RIBOSOMAL SUBUNIT
|
75
|
0.0000000
|
-0.5390298
|
0.0000000
|
8428
|
GOMF NEUROTRANSMITTER RECEPTOR ACTIVITY INVOLVED IN REGULATION OF POSTSYNAPTIC MEMBRANE POTENTIAL
|
17
|
0.0001200
|
-0.5387645
|
0.0010732
|
8950
|
GOMF THREONINE TYPE PEPTIDASE ACTIVITY
|
12
|
0.0012457
|
-0.5381803
|
0.0076372
|
8430
|
GOMF NEUROTRANSMITTER TRANSMEMBRANE TRANSPORTER ACTIVITY
|
10
|
0.0040017
|
-0.5255839
|
0.0198078
|
1
|
GOBP 2FE 2S CLUSTER ASSEMBLY
|
11
|
0.0027881
|
-0.5206631
|
0.0148611
|
8664
|
GOMF POSTSYNAPTIC NEUROTRANSMITTER RECEPTOR ACTIVITY
|
18
|
0.0001340
|
-0.5198988
|
0.0011778
|
7143
|
GOCC MITOCHONDRIAL PROTON TRANSPORTING ATP SYNTHASE COMPLEX COUPLING FACTOR F O
|
10
|
0.0050768
|
-0.5117247
|
0.0240585
|
7997
|
GOMF EXCITATORY EXTRACELLULAR LIGAND GATED MONOATOMIC ION CHANNEL ACTIVITY
|
17
|
0.0002678
|
-0.5105392
|
0.0021425
|
7180
|
GOCC NADPH OXIDASE COMPLEX
|
8
|
0.0127535
|
-0.5084984
|
0.0491695
|
1852
|
GOBP KETONE CATABOLIC PROCESS
|
11
|
0.0036348
|
-0.5063967
|
0.0183415
|
4533
|
GOBP PURINE NUCLEOTIDE SALVAGE
|
11
|
0.0038372
|
-0.5034403
|
0.0191395
|
9048
|
GOMF UBIQUITIN PROTEIN TRANSFERASE INHIBITOR ACTIVITY
|
12
|
0.0028508
|
-0.4973784
|
0.0150979
|
1084
|
GOBP DOUBLE STRAND BREAK REPAIR VIA BREAK INDUCED REPLICATION
|
9
|
0.0097980
|
-0.4971950
|
0.0401462
|
968
|
GOBP DETECTION OF MECHANICAL STIMULUS INVOLVED IN SENSORY PERCEPTION OF SOUND
|
9
|
0.0107584
|
-0.4909542
|
0.0430333
|
8484
|
GOMF OLFACTORY RECEPTOR ACTIVITY
|
29
|
0.0000049
|
-0.4902495
|
0.0000646
|
8003
|
GOMF EXTRACELLULAR LIGAND GATED MONOATOMIC ION CHANNEL ACTIVITY
|
27
|
0.0000203
|
-0.4737479
|
0.0002271
|
7657
|
GOMF ALCOHOL DEHYDROGENASE NADPPLUS ACTIVITY
|
16
|
0.0013118
|
-0.4639942
|
0.0079586
|
6028
|
GOBP RRNA 3 END PROCESSING
|
10
|
0.0124583
|
-0.4563590
|
0.0482409
|
7540
|
GOCC U1 SNRNP
|
19
|
0.0006004
|
-0.4547164
|
0.0041970
|
894
|
GOBP CYTOPLASMIC TRANSLATION
|
157
|
0.0000000
|
-0.4498640
|
0.0000000
|
7097
|
GOCC MANCHETTE
|
13
|
0.0058490
|
-0.4414866
|
0.0267113
|
7385
|
GOCC RIBOSOME
|
224
|
0.0000000
|
-0.4399841
|
0.0000000
|
3211
|
GOBP NUCLEOTIDE SALVAGE
|
16
|
0.0025976
|
-0.4348864
|
0.0140266
|
3162
|
GOBP NUCLEAR MRNA SURVEILLANCE
|
11
|
0.0130036
|
-0.4324847
|
0.0498425
|
7352
|
GOCC PROTON TRANSPORTING ATP SYNTHASE COMPLEX
|
21
|
0.0006627
|
-0.4291574
|
0.0045594
|
8427
|
GOMF NEUROTRANSMITTER RECEPTOR ACTIVITY
|
25
|
0.0002228
|
-0.4265404
|
0.0018322
|
par(mar=c(5,27,3,3))
top <- mres$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
nrow(top)
## [1] 2373
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.65,main="Pre vs Post Exercise",xlab="ES")
grid()

pdf("rna_mitchbar.pdf",width=7,height=7)
par(mar=c(5,27,3,3))
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.65,main="Pre vs Post Exercise",xlab="ES")
grid()
dev.off()
## X11cairo
## 2
par(mar=c(5.1, 4.1, 4.1, 2.1))
if (! file.exists("rna_mitch.html") ) {
mitch_report(mres,"rna_mitch.html")
}
SLC
SLC2A4 <- rpm[grep("ENSG00000181856",rownames(rpm)),]
SLC2A4
## pos1 pre1 pos2 pre2 pos3 pre3 pos4 pre4
## 192.7894 211.7837 268.4932 290.2613 230.0505 250.5801 176.6010 200.4703
## pos5 pre5 pos6 pre6
## 180.0970 201.4592 192.6686 252.2494
SLC2A4 <- matrix(SLC2A4,nrow=2)
colnames(SLC2A4) <- 1:6
rownames(SLC2A4) <- c("Post","Pre")
SLC2A4 <- SLC2A4[c(2,1),]
barplot(SLC2A4,beside=TRUE,col=c("#0047AB", "#D2042D"),ylim=c(0,300),
main="SLC2A4 mRNA",ylab="counts per million",xlab="participant")
legend(11,300, legend=c("Pre", "Post"), fill=c("#0047AB","#D2042D"), cex=1)

pdf("rna_SLC2A4.pdf",width=5,height=5)
barplot(SLC2A4,beside=TRUE,col=c("#0047AB", "#D2042D"),ylim=c(0,300),
main="SLC2A4 mRNA",ylab="counts per million",xlab="participant")
legend(11,300, legend=c("Pre", "Post"), fill=c("#0047AB","#D2042D"), cex=1)
dev.off()
## X11cairo
## 2
tpm <- apply(x[,1:12], 2 , function(x) { x / sum(x) } ) * 1000000
tpm <- tpm[rowMeans(tpm) > 1,]
dim(tpm)
## [1] 36942 12
SLC2A4 <- tpm[grep("ENSG00000181856",rownames(tpm)),]
rownames(SLC2A4) <- sapply(strsplit(rownames(SLC2A4),"\\|"),"[[",1)
SLC2A4
## AD-pos_mRNA AD-pre_mRNA AKH-pos_mRNA AKH-pre_mRNA
## ENST00000317370.13 145.2675550 153.17734 175.516303 203.11333
## ENST00000424875.2 0.6459906 0.00000 1.173132 0.00000
## ENST00000572485.5 45.8908386 57.33124 91.091064 86.04494
## AY-pos_mRNA AY-pre_mRNA RH-pos_mRNA RH-pre_mRNA SB-pos_mRNA
## ENST00000317370.13 161.195089 189.143942 133.162401 116.59716 132.028166
## ENST00000424875.2 3.475109 1.603876 1.701429 0.00000 2.563606
## ENST00000572485.5 65.349422 59.305853 41.765433 83.17798 45.505262
## SB-pre_mRNA ST-pos_mRNA ST-pre_mRNA
## ENST00000317370.13 158.05147 136.457650 179.10165
## ENST00000424875.2 1.30145 1.856872 2.97331
## ENST00000572485.5 42.03799 54.349366 70.16995
HATs and HDACs
hats <- c("ENSG00000010282.13 HAT1",
"ENSG00000122390.19 NAA60",
"ENSG00000108773.11 KAT2A",
"ENSG000001141663.8 KAT2B",
"ENSG00000172977.13 KAT5",
"ENSG00000083168.11 KAT6A",
"ENSG00000156650.14 KAT6B",
"ENSG00000136504.15 KAT7",
"ENSG00000103510.20 KAT8",
"ENSG00000100393.16 EP300",
"ENSG00000005339.15 CREBBP",
"ENSG00000147133.18 TAF1",
"ENSG00000125484.12 GTF3C4",
"ENSG00000084676.16 NCOA1",
"ENSG00000124151.19 NCOA3",
"ENSG00000140396.13 NCOA2",
"ENSG00000134852.15 CLOCK")
hdacs <- c("ENSG00000116478.12 HDAC1",
"ENSG00000196591.12 HDAC2",
"ENSG00000171720.10 HDAC3",
"ENSG00000068024.18 HDAC4",
"ENSG00000108840.17 HDAC5",
"ENSG00000094631.22 HDAC6",
"ENSG00000061273.18 HDAC7",
"ENSG00000147099.21 HDAC8",
"ENSG00000048052.25 HDAC9",
"ENSG00000100429.18 HDAC10",
"ENSG00000163517.15 HDAC11",
"ENSG00000096717.12 SIRT1",
"ENSG00000068903.21 SIRT2",
"ENSG00000142082.15 SIRT3",
"ENSG00000089163.4 SIRT4",
"ENSG00000124523.17 SIRT5",
"ENSG00000077463.15 SIRT6",
"ENSG00000187531.14 SIRT7")
y1 <- rpm[which(rownames(rpm) %in% hats),,drop=FALSE]
gbarplot <- function(i,y) {
y <- y[i,,drop=FALSE]
gname=rownames(y)[1]
yy <- matrix(y[1,],nrow=2)
colnames(yy) <- 1:6
rownames(yy) <- c("Post","Pre")
yy <- yy[c(2,1),]
barplot(yy,beside=TRUE,col=c("#0047AB", "#D2042D"),
main=gname,ylab="counts per million",xlab="participant")
legend(11,300, legend=c("Pre", "Post"), fill=c("#0047AB","#D2042D"), cex=1)
legend(11,300, legend=c("Pre", "Post"), fill=c("#0047AB","#D2042D"), cex=1)
}
lapply(1:nrow(y1), gbarplot, y1)















## [[1]]
## [[1]]$rect
## [[1]]$rect$w
## [1] 4.044734
##
## [[1]]$rect$h
## [1] 14.77587
##
## [[1]]$rect$left
## [1] 11
##
## [[1]]$rect$top
## [1] 300
##
##
## [[1]]$text
## [[1]]$text$x
## [1] 13.05085 13.05085
##
## [[1]]$text$y
## [1] 295.0747 290.1494
##
##
##
## [[2]]
## [[2]]$rect
## [[2]]$rect$w
## [1] 4.044734
##
## [[2]]$rect$h
## [1] 7.293703
##
## [[2]]$rect$left
## [1] 11
##
## [[2]]$rect$top
## [1] 300
##
##
## [[2]]$text
## [[2]]$text$x
## [1] 13.05085 13.05085
##
## [[2]]$text$y
## [1] 297.5688 295.1375
##
##
##
## [[3]]
## [[3]]$rect
## [[3]]$rect$w
## [1] 4.044734
##
## [[3]]$rect$h
## [1] 12.81928
##
## [[3]]$rect$left
## [1] 11
##
## [[3]]$rect$top
## [1] 300
##
##
## [[3]]$text
## [[3]]$text$x
## [1] 13.05085 13.05085
##
## [[3]]$text$y
## [1] 295.7269 291.4538
##
##
##
## [[4]]
## [[4]]$rect
## [[4]]$rect$w
## [1] 4.044734
##
## [[4]]$rect$h
## [1] 10.11755
##
## [[4]]$rect$left
## [1] 11
##
## [[4]]$rect$top
## [1] 300
##
##
## [[4]]$text
## [[4]]$text$x
## [1] 13.05085 13.05085
##
## [[4]]$text$y
## [1] 296.6275 293.2550
##
##
##
## [[5]]
## [[5]]$rect
## [[5]]$rect$w
## [1] 4.044734
##
## [[5]]$rect$h
## [1] 9.072821
##
## [[5]]$rect$left
## [1] 11
##
## [[5]]$rect$top
## [1] 300
##
##
## [[5]]$text
## [[5]]$text$x
## [1] 13.05085 13.05085
##
## [[5]]$text$y
## [1] 296.9757 293.9515
##
##
##
## [[6]]
## [[6]]$rect
## [[6]]$rect$w
## [1] 4.044734
##
## [[6]]$rect$h
## [1] 14.48734
##
## [[6]]$rect$left
## [1] 11
##
## [[6]]$rect$top
## [1] 300
##
##
## [[6]]$text
## [[6]]$text$x
## [1] 13.05085 13.05085
##
## [[6]]$text$y
## [1] 295.1709 290.3418
##
##
##
## [[7]]
## [[7]]$rect
## [[7]]$rect$w
## [1] 4.044734
##
## [[7]]$rect$h
## [1] 7.198351
##
## [[7]]$rect$left
## [1] 11
##
## [[7]]$rect$top
## [1] 300
##
##
## [[7]]$text
## [[7]]$text$x
## [1] 13.05085 13.05085
##
## [[7]]$text$y
## [1] 297.6005 295.2011
##
##
##
## [[8]]
## [[8]]$rect
## [[8]]$rect$w
## [1] 4.044734
##
## [[8]]$rect$h
## [1] 12.77775
##
## [[8]]$rect$left
## [1] 11
##
## [[8]]$rect$top
## [1] 300
##
##
## [[8]]$text
## [[8]]$text$x
## [1] 13.05085 13.05085
##
## [[8]]$text$y
## [1] 295.7408 291.4815
##
##
##
## [[9]]
## [[9]]$rect
## [[9]]$rect$w
## [1] 4.044734
##
## [[9]]$rect$h
## [1] 3.448627
##
## [[9]]$rect$left
## [1] 11
##
## [[9]]$rect$top
## [1] 300
##
##
## [[9]]$text
## [[9]]$text$x
## [1] 13.05085 13.05085
##
## [[9]]$text$y
## [1] 298.8505 297.7009
##
##
##
## [[10]]
## [[10]]$rect
## [[10]]$rect$w
## [1] 4.044734
##
## [[10]]$rect$h
## [1] 6.163766
##
## [[10]]$rect$left
## [1] 11
##
## [[10]]$rect$top
## [1] 300
##
##
## [[10]]$text
## [[10]]$text$x
## [1] 13.05085 13.05085
##
## [[10]]$text$y
## [1] 297.9454 295.8908
##
##
##
## [[11]]
## [[11]]$rect
## [[11]]$rect$w
## [1] 4.044734
##
## [[11]]$rect$h
## [1] 17.55452
##
## [[11]]$rect$left
## [1] 11
##
## [[11]]$rect$top
## [1] 300
##
##
## [[11]]$text
## [[11]]$text$x
## [1] 13.05085 13.05085
##
## [[11]]$text$y
## [1] 294.1485 288.2970
##
##
##
## [[12]]
## [[12]]$rect
## [[12]]$rect$w
## [1] 4.044734
##
## [[12]]$rect$h
## [1] 4.338335
##
## [[12]]$rect$left
## [1] 11
##
## [[12]]$rect$top
## [1] 300
##
##
## [[12]]$text
## [[12]]$text$x
## [1] 13.05085 13.05085
##
## [[12]]$text$y
## [1] 298.5539 297.1078
##
##
##
## [[13]]
## [[13]]$rect
## [[13]]$rect$w
## [1] 4.044734
##
## [[13]]$rect$h
## [1] 5.165018
##
## [[13]]$rect$left
## [1] 11
##
## [[13]]$rect$top
## [1] 300
##
##
## [[13]]$text
## [[13]]$text$x
## [1] 13.05085 13.05085
##
## [[13]]$text$y
## [1] 298.2783 296.5567
##
##
##
## [[14]]
## [[14]]$rect
## [[14]]$rect$w
## [1] 4.044734
##
## [[14]]$rect$h
## [1] 10.52618
##
## [[14]]$rect$left
## [1] 11
##
## [[14]]$rect$top
## [1] 300
##
##
## [[14]]$text
## [[14]]$text$x
## [1] 13.05085 13.05085
##
## [[14]]$text$y
## [1] 296.4913 292.9825
##
##
##
## [[15]]
## [[15]]$rect
## [[15]]$rect$w
## [1] 4.044734
##
## [[15]]$rect$h
## [1] 3.294816
##
## [[15]]$rect$left
## [1] 11
##
## [[15]]$rect$top
## [1] 300
##
##
## [[15]]$text
## [[15]]$text$x
## [1] 13.05085 13.05085
##
## [[15]]$text$y
## [1] 298.9017 297.8035
dge1 <- dge[which(rownames(dge) %in% hats),]
head(dge1) |>
kbl(caption = "HAT genes)") |>
kable_paper("hover", full_width = F)
HAT genes)
|
baseMean
|
log2FoldChange
|
lfcSE
|
stat
|
pvalue
|
padj
|
pos1
|
pre1
|
pos2
|
pre2
|
pos3
|
pre3
|
pos4
|
pre4
|
pos5
|
pre5
|
pos6
|
pre6
|
ENSG00000108773.11 KAT2A
|
823.7213
|
-0.3904717
|
0.0927294
|
-4.210873
|
0.0000254
|
0.0014766
|
10.66647
|
10.86577
|
10.55692
|
10.73603
|
10.66988
|
10.91499
|
10.90893
|
11.03982
|
10.64062
|
11.01623
|
10.59578
|
10.68415
|
ENSG00000124151.19 NCOA3
|
864.1477
|
0.2705133
|
0.0923327
|
2.929767
|
0.0033922
|
0.0560482
|
10.83693
|
10.67429
|
10.79039
|
10.76885
|
10.94746
|
10.69712
|
10.68816
|
10.67039
|
10.99910
|
10.83093
|
11.06034
|
10.81702
|
ENSG00000005339.15 CREBBP
|
1002.6364
|
0.2425909
|
0.0900621
|
2.693595
|
0.0070686
|
0.0916149
|
11.04177
|
10.89736
|
10.93579
|
10.90716
|
11.16227
|
11.08192
|
10.90787
|
10.87034
|
10.97749
|
10.68153
|
10.96481
|
10.74819
|
ENSG00000100393.16 EP300
|
747.8770
|
0.2721092
|
0.1034069
|
2.631441
|
0.0085024
|
0.1005081
|
10.85689
|
10.67519
|
10.57045
|
10.58967
|
10.86418
|
10.77953
|
10.79672
|
10.70386
|
10.80649
|
10.46075
|
10.76856
|
10.62672
|
ENSG00000083168.11 KAT6A
|
562.2708
|
0.2586337
|
0.1076801
|
2.401870
|
0.0163115
|
0.1471017
|
10.58150
|
10.40080
|
10.56966
|
10.47150
|
10.57632
|
10.42757
|
10.47929
|
10.51807
|
10.60171
|
10.54966
|
10.63057
|
10.39218
|
ENSG00000084676.16 NCOA1
|
868.3112
|
0.2277903
|
0.0969115
|
2.350499
|
0.0187482
|
0.1609802
|
11.12050
|
11.01614
|
10.75664
|
10.70299
|
10.88512
|
10.72777
|
10.78853
|
10.80932
|
10.84696
|
10.52308
|
10.86125
|
10.75817
|
HEADER=paste(NTOT,"genes detected;",NSIG,"@5%FDR;",NUP,"up",NDOWN,"down")
plot(log10(dge$baseMean),dge$log2FoldChange,cex=0.5,pch=19,col="darkgray",
xlab="log10 basemean",ylab="log2 fold change",main="RNA expression")
points(log10(dge1$baseMean),dge1$log2FoldChange,cex=0.5,pch=19,col="black")
mtext("HATs")

y2 <- rpm[which(rownames(rpm) %in% hdacs),,drop=FALSE]
lapply(1:nrow(y2), gbarplot, y2)


















## [[1]]
## [[1]]$rect
## [[1]]$rect$w
## [1] 4.044734
##
## [[1]]$rect$h
## [1] 6.5625
##
## [[1]]$rect$left
## [1] 11
##
## [[1]]$rect$top
## [1] 300
##
##
## [[1]]$text
## [[1]]$text$x
## [1] 13.05085 13.05085
##
## [[1]]$text$y
## [1] 297.8125 295.6250
##
##
##
## [[2]]
## [[2]]$rect
## [[2]]$rect$w
## [1] 4.044734
##
## [[2]]$rect$h
## [1] 4.292697
##
## [[2]]$rect$left
## [1] 11
##
## [[2]]$rect$top
## [1] 300
##
##
## [[2]]$text
## [[2]]$text$x
## [1] 13.05085 13.05085
##
## [[2]]$text$y
## [1] 298.5691 297.1382
##
##
##
## [[3]]
## [[3]]$rect
## [[3]]$rect$w
## [1] 4.044734
##
## [[3]]$rect$h
## [1] 11.54929
##
## [[3]]$rect$left
## [1] 11
##
## [[3]]$rect$top
## [1] 300
##
##
## [[3]]$text
## [[3]]$text$x
## [1] 13.05085 13.05085
##
## [[3]]$text$y
## [1] 296.1502 292.3005
##
##
##
## [[4]]
## [[4]]$rect
## [[4]]$rect$w
## [1] 4.044734
##
## [[4]]$rect$h
## [1] 36.92899
##
## [[4]]$rect$left
## [1] 11
##
## [[4]]$rect$top
## [1] 300
##
##
## [[4]]$text
## [[4]]$text$x
## [1] 13.05085 13.05085
##
## [[4]]$text$y
## [1] 287.6903 275.3807
##
##
##
## [[5]]
## [[5]]$rect
## [[5]]$rect$w
## [1] 4.044734
##
## [[5]]$rect$h
## [1] 0.8681859
##
## [[5]]$rect$left
## [1] 11
##
## [[5]]$rect$top
## [1] 300
##
##
## [[5]]$text
## [[5]]$text$x
## [1] 13.05085 13.05085
##
## [[5]]$text$y
## [1] 299.7106 299.4212
##
##
##
## [[6]]
## [[6]]$rect
## [[6]]$rect$w
## [1] 4.044734
##
## [[6]]$rect$h
## [1] 0.8347121
##
## [[6]]$rect$left
## [1] 11
##
## [[6]]$rect$top
## [1] 300
##
##
## [[6]]$text
## [[6]]$text$x
## [1] 13.05085 13.05085
##
## [[6]]$text$y
## [1] 299.7218 299.4435
##
##
##
## [[7]]
## [[7]]$rect
## [[7]]$rect$w
## [1] 4.044734
##
## [[7]]$rect$h
## [1] 6.8022
##
## [[7]]$rect$left
## [1] 11
##
## [[7]]$rect$top
## [1] 300
##
##
## [[7]]$text
## [[7]]$text$x
## [1] 13.05085 13.05085
##
## [[7]]$text$y
## [1] 297.7326 295.4652
##
##
##
## [[8]]
## [[8]]$rect
## [[8]]$rect$w
## [1] 4.044734
##
## [[8]]$rect$h
## [1] 3.216695
##
## [[8]]$rect$left
## [1] 11
##
## [[8]]$rect$top
## [1] 300
##
##
## [[8]]$text
## [[8]]$text$x
## [1] 13.05085 13.05085
##
## [[8]]$text$y
## [1] 298.9278 297.8555
##
##
##
## [[9]]
## [[9]]$rect
## [[9]]$rect$w
## [1] 4.044734
##
## [[9]]$rect$h
## [1] 2.940665
##
## [[9]]$rect$left
## [1] 11
##
## [[9]]$rect$top
## [1] 300
##
##
## [[9]]$text
## [[9]]$text$x
## [1] 13.05085 13.05085
##
## [[9]]$text$y
## [1] 299.0198 298.0396
##
##
##
## [[10]]
## [[10]]$rect
## [[10]]$rect$w
## [1] 4.044734
##
## [[10]]$rect$h
## [1] 16.7739
##
## [[10]]$rect$left
## [1] 11
##
## [[10]]$rect$top
## [1] 300
##
##
## [[10]]$text
## [[10]]$text$x
## [1] 13.05085 13.05085
##
## [[10]]$text$y
## [1] 294.4087 288.8174
##
##
##
## [[11]]
## [[11]]$rect
## [[11]]$rect$w
## [1] 4.044734
##
## [[11]]$rect$h
## [1] 2.288299
##
## [[11]]$rect$left
## [1] 11
##
## [[11]]$rect$top
## [1] 300
##
##
## [[11]]$text
## [[11]]$text$x
## [1] 13.05085 13.05085
##
## [[11]]$text$y
## [1] 299.2372 298.4745
##
##
##
## [[12]]
## [[12]]$rect
## [[12]]$rect$w
## [1] 4.044734
##
## [[12]]$rect$h
## [1] 7.829251
##
## [[12]]$rect$left
## [1] 11
##
## [[12]]$rect$top
## [1] 300
##
##
## [[12]]$text
## [[12]]$text$x
## [1] 13.05085 13.05085
##
## [[12]]$text$y
## [1] 297.3902 294.7805
##
##
##
## [[13]]
## [[13]]$rect
## [[13]]$rect$w
## [1] 4.044734
##
## [[13]]$rect$h
## [1] 5.61162
##
## [[13]]$rect$left
## [1] 11
##
## [[13]]$rect$top
## [1] 300
##
##
## [[13]]$text
## [[13]]$text$x
## [1] 13.05085 13.05085
##
## [[13]]$text$y
## [1] 298.1295 296.2589
##
##
##
## [[14]]
## [[14]]$rect
## [[14]]$rect$w
## [1] 4.044734
##
## [[14]]$rect$h
## [1] 2.752561
##
## [[14]]$rect$left
## [1] 11
##
## [[14]]$rect$top
## [1] 300
##
##
## [[14]]$text
## [[14]]$text$x
## [1] 13.05085 13.05085
##
## [[14]]$text$y
## [1] 299.0825 298.1650
##
##
##
## [[15]]
## [[15]]$rect
## [[15]]$rect$w
## [1] 4.044734
##
## [[15]]$rect$h
## [1] 6.043283
##
## [[15]]$rect$left
## [1] 11
##
## [[15]]$rect$top
## [1] 300
##
##
## [[15]]$text
## [[15]]$text$x
## [1] 13.05085 13.05085
##
## [[15]]$text$y
## [1] 297.9856 295.9711
##
##
##
## [[16]]
## [[16]]$rect
## [[16]]$rect$w
## [1] 4.044734
##
## [[16]]$rect$h
## [1] 4.694528
##
## [[16]]$rect$left
## [1] 11
##
## [[16]]$rect$top
## [1] 300
##
##
## [[16]]$text
## [[16]]$text$x
## [1] 13.05085 13.05085
##
## [[16]]$text$y
## [1] 298.4352 296.8703
##
##
##
## [[17]]
## [[17]]$rect
## [[17]]$rect$w
## [1] 4.044734
##
## [[17]]$rect$h
## [1] 1.295886
##
## [[17]]$rect$left
## [1] 11
##
## [[17]]$rect$top
## [1] 300
##
##
## [[17]]$text
## [[17]]$text$x
## [1] 13.05085 13.05085
##
## [[17]]$text$y
## [1] 299.5680 299.1361
##
##
##
## [[18]]
## [[18]]$rect
## [[18]]$rect$w
## [1] 4.044734
##
## [[18]]$rect$h
## [1] 8.090981
##
## [[18]]$rect$left
## [1] 11
##
## [[18]]$rect$top
## [1] 300
##
##
## [[18]]$text
## [[18]]$text$x
## [1] 13.05085 13.05085
##
## [[18]]$text$y
## [1] 297.303 294.606
dge2 <- dge[which(rownames(dge) %in% hdacs),]
head(dge2) |>
kbl(caption = "HDAC genes)") |>
kable_paper("hover", full_width = F)
HDAC genes)
|
baseMean
|
log2FoldChange
|
lfcSE
|
stat
|
pvalue
|
padj
|
pos1
|
pre1
|
pos2
|
pre2
|
pos3
|
pre3
|
pos4
|
pre4
|
pos5
|
pre5
|
pos6
|
pre6
|
ENSG00000096717.12 SIRT1
|
216.46509
|
0.5519410
|
0.1484932
|
3.716944
|
0.0002016
|
0.0069943
|
10.183383
|
9.976075
|
10.045656
|
9.861508
|
10.112940
|
10.061779
|
10.000132
|
9.853118
|
10.055607
|
9.853815
|
10.108297
|
9.935662
|
ENSG00000100429.18 HDAC10
|
118.93227
|
-0.5738910
|
0.2395790
|
-2.395415
|
0.0166016
|
0.1489558
|
9.770579
|
9.778175
|
9.709498
|
9.772188
|
9.604090
|
9.981868
|
9.940724
|
10.038299
|
9.613596
|
9.829335
|
9.584435
|
9.599082
|
ENSG00000108840.17 HDAC5
|
929.64390
|
0.2006982
|
0.0902478
|
2.223856
|
0.0261582
|
0.1946451
|
11.044684
|
11.022195
|
10.805302
|
10.710976
|
10.908164
|
10.764971
|
11.238850
|
10.953372
|
10.843068
|
10.868000
|
10.672234
|
10.544095
|
ENSG00000068024.18 HDAC4
|
796.56869
|
0.1522836
|
0.0894729
|
1.702008
|
0.0887539
|
0.3901151
|
11.019188
|
11.019509
|
10.707973
|
10.717471
|
10.855695
|
10.745277
|
10.666216
|
10.498403
|
10.712459
|
10.596771
|
10.777771
|
10.698445
|
ENSG00000048052.25 HDAC9
|
380.48088
|
0.1843314
|
0.1220415
|
1.510399
|
0.1309417
|
0.4702410
|
10.168324
|
10.088455
|
10.240364
|
10.305040
|
10.417715
|
10.323023
|
10.477744
|
10.462694
|
10.219912
|
10.086389
|
10.346098
|
10.192823
|
ENSG00000077463.15 SIRT6
|
48.24593
|
-0.4012873
|
0.3278881
|
-1.223854
|
0.2210072
|
0.5906585
|
9.628205
|
9.580537
|
9.499909
|
9.480289
|
9.398982
|
9.510206
|
9.413109
|
9.617271
|
9.634264
|
9.636789
|
9.512664
|
9.587088
|
plot(log10(dge$baseMean),dge$log2FoldChange,cex=0.5,pch=19,col="darkgray",
xlab="log10 basemean",ylab="log2 fold change",main="RNA expression")
points(log10(dge2$baseMean),dge2$log2FoldChange,cex=0.5,pch=19,col="black")
mtext("HDACs")

Session
sessionInfo()
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] pkgload_1.4.0 GGally_2.2.1
## [3] ggplot2_3.5.1 gtools_3.9.5
## [5] tibble_3.2.1 dplyr_1.1.4
## [7] echarts4r_0.4.5 kableExtra_1.4.0
## [9] beeswarm_0.4.0 topconfects_1.22.0
## [11] limma_3.60.6 eulerr_7.0.2
## [13] mitch_1.19.3 gplots_3.2.0
## [15] DESeq2_1.44.0 SummarizedExperiment_1.34.0
## [17] Biobase_2.64.0 MatrixGenerics_1.16.0
## [19] matrixStats_1.4.1 GenomicRanges_1.56.2
## [21] GenomeInfoDb_1.40.1 IRanges_2.38.1
## [23] S4Vectors_0.42.1 BiocGenerics_0.50.0
## [25] reshape2_1.4.4 RhpcBLASctl_0.23-42
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 viridisLite_0.4.2 bitops_1.0-9
## [4] fastmap_1.2.0 promises_1.3.1 digest_0.6.37
## [7] mime_0.12 lifecycle_1.0.4 statmod_1.5.0
## [10] magrittr_2.0.3 compiler_4.4.2 rlang_1.1.4
## [13] sass_0.4.9 tools_4.4.2 utf8_1.2.4
## [16] yaml_2.3.10 knitr_1.49 S4Arrays_1.4.1
## [19] htmlwidgets_1.6.4 DelayedArray_0.30.1 xml2_1.3.6
## [22] plyr_1.8.9 RColorBrewer_1.1-3 abind_1.4-8
## [25] BiocParallel_1.38.0 KernSmooth_2.23-24 withr_3.0.2
## [28] purrr_1.0.2 grid_4.4.2 fansi_1.0.6
## [31] caTools_1.18.3 xtable_1.8-4 colorspace_2.1-1
## [34] MASS_7.3-64 scales_1.3.0 cli_3.6.3
## [37] rmarkdown_2.29 crayon_1.5.3 generics_0.1.3
## [40] rstudioapi_0.17.1 httr_1.4.7 cachem_1.1.0
## [43] stringr_1.5.1 zlibbioc_1.50.0 assertthat_0.2.1
## [46] parallel_4.4.2 XVector_0.44.0 vctrs_0.6.5
## [49] Matrix_1.7-1 jsonlite_1.8.9 systemfonts_1.1.0
## [52] locfit_1.5-9.10 jquerylib_0.1.4 tidyr_1.3.1
## [55] glue_1.8.0 ggstats_0.7.0 codetools_0.2-20
## [58] stringi_1.8.4 gtable_0.3.6 later_1.4.0
## [61] UCSC.utils_1.0.0 munsell_0.5.1 pillar_1.9.0
## [64] htmltools_0.5.8.1 GenomeInfoDbData_1.2.12 R6_2.5.1
## [67] evaluate_1.0.1 shiny_1.9.1 lattice_0.22-6
## [70] httpuv_1.6.15 bslib_0.8.0 Rcpp_1.0.13-1
## [73] svglite_2.1.3 gridExtra_2.3 SparseArray_1.4.8
## [76] xfun_0.49 pkgconfig_2.0.3