Here we will be looking at gene expression in B-cells. Here are the sample descriptions:
FLW3: healthy no covid
FLW5: healthy no covid
1Recov3M: had covid post-3 months
2Recov3M: had covid, same person,
2Recov12M: had covid, same person 9 months later
MDC8: had covid (sample ~3 month post, was treated with steroids)
MMC7: had covid (sample ~3 month post, was treated with steroids).
suppressPackageStartupMessages({
library("dplyr")
library("ggplot2")
library("plyr")
library("Seurat")
library("hdf5r")
library("SingleCellExperiment")
library("parallel")
library("stringi")
library("beeswarm")
library("muscat")
library("DESeq2")
library("mitch")
library("harmony")
library("celldex")
library("SingleR")
library("kableExtra")
library("gplots")
library("eulerr")
})
Load the h5 matrices.
flw3 <- Read10X_h5("FLW3/outs/filtered_feature_bc_matrix.h5")
## Genome matrix has multiple modalities, returning a list of matrices for this genome
flw3 <- flw3[[1]]
colnames(flw3) <- paste("flw3",colnames(flw3))
flw3_metadata <- data.frame(colnames(flw3))
flw5 <- Read10X_h5("FLW5/outs/filtered_feature_bc_matrix.h5")
## Genome matrix has multiple modalities, returning a list of matrices for this genome
flw5 <- flw5[[1]]
colnames(flw5) <- paste("flw5",colnames(flw5))
flw5_metadata <- data.frame(colnames(flw5))
X1Recov3M <- Read10X_h5("1Recov3M/outs/filtered_feature_bc_matrix.h5")
## Genome matrix has multiple modalities, returning a list of matrices for this genome
X1Recov3M <- X1Recov3M[[1]]
colnames(X1Recov3M) <- paste("X1Recov3M",colnames(X1Recov3M))
X1Recov3M_metadata <- data.frame(colnames(X1Recov3M))
X2Recov12M <- Read10X_h5("2Recov12M/outs/filtered_feature_bc_matrix.h5")
## Genome matrix has multiple modalities, returning a list of matrices for this genome
X2Recov12M <- X2Recov12M[[1]]
colnames(X2Recov12M) <- paste("X2Recov12M",colnames(X2Recov12M))
X2Recov12M_metadata <- data.frame(colnames(X2Recov12M))
X2Recov3M <- Read10X_h5("2Recov3M/outs/filtered_feature_bc_matrix.h5")
## Genome matrix has multiple modalities, returning a list of matrices for this genome
X2Recov3M <- X2Recov3M[[1]]
colnames(X2Recov3M) <- paste("X2Recov3M",colnames(X2Recov3M))
X2Recov3M_metadata <- data.frame(colnames(X2Recov3M))
MDC8 <- Read10X_h5("MDC8/outs/filtered_feature_bc_matrix.h5")
## Genome matrix has multiple modalities, returning a list of matrices for this genome
MDC8 <- MDC8[[1]]
colnames(MDC8) <- paste("MDC8",colnames(MDC8))
MDC8_metadata <- data.frame(colnames(MDC8))
MMC7 <- Read10X_h5("MMC7/outs/filtered_feature_bc_matrix.h5")
## Genome matrix has multiple modalities, returning a list of matrices for this genome
MMC7 <- MMC7[[1]]
colnames(MMC7) <- paste("MMC7",colnames(MMC7))
MMC7_metadata <- data.frame(colnames(MMC7))
Analyse the data for quality. Look at the depth of quantification per cell.
message("FLW3")
## FLW3
dim(flw3)
## [1] 36611 8438
summary(colSums(flw3))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 49 1454 2184 3913 3830 103443
sum(flw3)
## [1] 33020506
message("FLW5")
## FLW5
dim(flw5)
## [1] 36611 3844
summary(colSums(flw5))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 61 1822 2650 5628 4412 854439
sum(flw5)
## [1] 21634457
message("X1Recov3M")
## X1Recov3M
dim(X1Recov3M)
## [1] 36611 6624
summary(colSums(X1Recov3M))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11 1020 1642 2840 3082 105824
sum(X1Recov3M)
## [1] 18809738
message("X2Recov12M")
## X2Recov12M
dim(X2Recov12M)
## [1] 36611 7454
summary(colSums(X2Recov12M))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 40 1545 2166 3898 3609 304679
sum(X2Recov12M)
## [1] 29057677
message("X2Recov3M")
## X2Recov3M
dim(X2Recov3M)
## [1] 36611 2819
summary(colSums(X2Recov3M))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 44 2040 3073 8079 4905 338583
sum(X2Recov3M)
## [1] 22775187
message("MDC8")
## MDC8
dim(MDC8)
## [1] 36611 11020
summary(colSums(MDC8))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 45 1481 1938 2656 3125 78241
sum(MDC8)
## [1] 29269764
message("MMC7")
## MMC7
dim(MMC7)
## [1] 36611 8928
summary(colSums(MMC7))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 73 1477 2266 3559 3759 107588
sum(MMC7)
## [1] 31777959
FLW3 has 8k cells and FLW5 has 4k. Median seq depth is also significantly higher for FLW5. FLW1 has 50% more reads as compared to FLW5.
Filter to remove cells with fewer than 100 reads.
flw3 <- flw3[,colSums(flw3)>=100]
flw5 <- flw5[,colSums(flw5)>=100]
X1Recov3M <- X1Recov3M[,colSums(X1Recov3M)>=100]
X2Recov12M <- X2Recov12M[,colSums(X2Recov12M)>=100]
X2Recov3M <- X2Recov3M[,colSums(X2Recov3M)>=100]
MDC8 <- MDC8[,colSums(MDC8)>=100]
MMC7 <- MMC7[,colSums(MMC7)>=100]
Rename cells by sample origin, and join.
comb <- cbind(flw3,flw5,X1Recov3M,X2Recov3M,X2Recov12M,MDC8,MMC7)
cellmetadata <- as.data.frame(colnames(comb))
colnames(cellmetadata) = "cell_id"
cellmetadata$library <-sapply(strsplit(cellmetadata[,1]," "),"[[",1)
comb <- CreateSeuratObject(counts = comb, project = "bcell", min.cells = 5, meta.data = cellmetadata)
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
Normalise scRNA-seq data.
comb <- NormalizeData(comb)
## Normalizing layer: counts
comb <- FindVariableFeatures(comb, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
comb <- ScaleData(comb)
## Centering and scaling data matrix
comb <- RunPCA(comb, features = VariableFeatures(object = comb), npcs = 20)
## PC_ 1
## Positive: LYZ, CD36, PID1, HCK, RTN1, MS4A6A, CPPED1, IFI30, FTH1, TMTC2
## TCF7L2, G0S2, MEGF9, DYSF, LINC02432, S100Z, PLXNB2, NRG1, HK3, MS4A7
## PDGFC, CD14, ZNF804A, PECAM1, MYOF, FAM198B-AS1, CXCL8, TMTC1, SERPINA1, LPAR1
## Negative: CAMK4, LEF1, BACH2, BCL11B, INPP4B, IL7R, SKAP1, BCL2, ANK3, TC2N
## NELL2, PCED1B, THEMIS, NR3C2, CD96, ZEB1, TCF7, TSHZ2, TXK, CCND3
## PDE7A, ITK, MLLT3, ABLIM1, RIPOR2, LTB, RPL3, PRKCA, HIVEP2, RPL13
## PC_ 2
## Positive: BANK1, AFF3, FCRL1, RALGPS2, MS4A1, PAX5, EBF1, MEF2C, IGHM, LINC00926
## COL19A1, OSBPL10, CD74, MARCH1, KHDRBS2, CD79A, BLK, HLA-DRA, ADAM28, COBLL1
## ARHGAP24, BCL11A, NIBAN3, HDAC9, CD22, IGHD, FCHSD2, PLEKHG1, CCSER1, GNG7
## Negative: B2M, BCL11B, IL32, ITK, TMSB4X, THEMIS, SKAP1, PRKCQ, SLFN12L, HLA-B
## INPP4B, CD3D, TRAC, CTSW, TC2N, CD96, HLA-C, HLA-A, CAMK4, IL7R
## PITPNC1, PDE3B, TRBC1, PFN1, CD6, SPOCK2, TRBC2, LINC00861, MGAT4A, CD7
## PC_ 3
## Positive: B2M, TMSB4X, HLA-B, HLA-C, PFN1, CD79A, HLA-A, BANK1, MS4A1, RPS2
## TMSB10, IGHM, RPL41, FCRL1, PAX5, RPLP1, SH3BGRL3, EBF1, CFL1, RPL13A
## RPL3, CTSW, FAU, LINC00926, CD79B, COL19A1, RPS11, OSBPL10, RPL13, RPS15
## Negative: CD36, DISC1, FYB1, XIST, TMTC2, RTN1, PID1, CPPED1, LDLRAD4, JAML
## MS4A6A, SERINC5, PRKCA, MAML2, LEF1, MEGF9, HCK, FHIT, PLCL1, PECAM1
## FAM13A, S100Z, MBNL1, ZNF609, FOXP1, LYZ, IGF1R, NELL2, NRG1, LINC02432
## PC_ 4
## Positive: BACH2, LEF1, CAMK4, ANK3, NELL2, INPP4B, BCL2, TSHZ2, SKAP1, NR3C2
## CCR7, BCL11B, IL7R, TC2N, ZEB1, ABLIM1, PATJ, DOCK9, PDE7A, TRABD2A
## TCF7, COL19A1, TESPA1, CD28, HIVEP2, CSGALNACT1, SATB1-AS1, PCED1B, RASGRF2, MLLT3
## Negative: CST3, ACTB, RTN1, LYZ, CPPED1, FCER1G, FTH1, IFI30, TCF7L2, TYROBP
## S100A6, HCK, PECAM1, ACTG1, FLNA, LST1, CSF1R, CD36, PFN1, SH3BGRL3
## PID1, MYOF, HDAC9, CFL1, FTL, MS4A7, ARPC1B, OAZ1, GAPDH, FCGR3A
## PC_ 5
## Positive: TCF7L2, HCK, POU2F2, MS4A7, AC105402.3, CSF1R, CPPED1, LINC02432, RTN1, S100Z
## SPRED1, LST1, MARCH1, IFI30, MYOF, MEGF9, TMTC2, PID1, AC104809.2, TMTC1
## LYZ, FCGR3A, PECAM1, SSH2, HK3, AC009093.2, AC092546.1, EPS8, SERPINA1, CDKN1C
## Negative: LINC01478, TUBB1, LINC01374, CAVIN2, GP1BB, ITGA2B, ITGB3, CUX2, PTPRS, CLU
## RHEX, EPHB1, FAM160A1, AC023590.1, LINC00996, NRP1, SPARC, PPBP, SCN9A, NRGN
## COL24A1, PTCRA, PF4, PLXNA4, GP9, GNG11, MPIG6B, TREML1, SCN1A-AS1, PHEX
comb <- RunHarmony(comb,"library")
## Transposing data matrix
## Initializing state using k-means centroids initialization
## Harmony 1/10
## Harmony 2/10
## Harmony 3/10
## Harmony 4/10
## Harmony 5/10
## Harmony converged after 5 iterations
DimHeatmap(comb, dims = 1:6, cells = 500, balanced = TRUE)
ElbowPlot(comb)
#comb <- JackStraw(comb, num.replicate = 100)
comb <- FindNeighbors(comb, dims = 1:5)
## Computing nearest neighbor graph
## Computing SNN
comb <- FindClusters(comb, algorithm = 3, resolution = 0.35, verbose = FALSE)
comb <- RunUMAP(comb, dims = 1:5)
## 00:09:17 UMAP embedding parameters a = 0.9922 b = 1.112
## 00:09:17 Read 48988 rows and found 5 numeric columns
## 00:09:17 Using Annoy for neighbor search, n_neighbors = 30
## 00:09:17 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 00:09:21 Writing NN index file to temp file /tmp/RtmpjywqML/file27ed8f65cbc7ac
## 00:09:21 Searching Annoy index using 1 thread, search_k = 3000
## 00:09:35 Annoy recall = 100%
## 00:09:36 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 00:09:38 Initializing from normalized Laplacian + noise (using RSpectra)
## 00:09:39 Commencing optimization for 200 epochs, with 1782842 positive edges
## 00:09:52 Optimization finished
DimPlot(comb, reduction = "umap")
#comb <- FindNeighbors(comb, dims = 1:10)
#comb <- FindClusters(comb, algorithm = 3, resolution = 0.5, verbose = FALSE)
#comb <- RunUMAP(comb, dims = 1:10)
#DimPlot(comb, reduction = "umap")
Look at the prominent cell markers.
message("Naive CD4+ T") # 1,3,5,6,7
## Naive CD4+ T
VlnPlot(comb, features = c("IL7R", "CCR7"))
message("CD14+ Mono")
## CD14+ Mono
VlnPlot(comb, features = c("CD14", "LYZ"))
message("Memory CD4+")
## Memory CD4+
VlnPlot(comb, features = c("IL7R", "S100A4"))
message("B") # 2,7
## B
VlnPlot(comb, features = c("MS4A1"))
message("CD8+ T") #2
## CD8+ T
VlnPlot(comb, features = c("CD8A"))
message("FCGR3A+ Mono") #?
## FCGR3A+ Mono
VlnPlot(comb, features = c("FCGR3A", "MS4A7"))
message("NK") # 2,5,6,7?
## NK
VlnPlot(comb, features = c("GNLY", "NKG7"))
message("DC") # 7?
## DC
VlnPlot(comb, features = c("FCER1A", "CST3"))
message("Platelet") #6
## Platelet
VlnPlot(comb, features = c("PPBP"))
new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T", "FCGR3A+ Mono",
"NK", "DC", "Platelet")
FeaturePlot(comb, features = c("IL7R","CCR7","CD14","LYZ","S100A4","MS4A1", "CD8A" ,
"FCGR3A", "MS4A7", "GNLY", "NKG7", "FCER1A", "CST3", "PPBP","CD3E" , "CD19"))
# b cell markers
FeaturePlot(comb, features = c("CD19","CD27","CD38","CD24"))
FeaturePlot(comb, features = c("CR2", "CD34", "MME", "MS4A1"))
FeaturePlot(comb, features = c("MZB1", "CXCR3", "FCRL5", "TBX21"))
FeaturePlot(comb, features = c("CCR6", "ITGAX","MX1","BST2"))
From Turner Lab: Create a reference using the monaco immune database. The Monaco reference consists of bulk RNA-seq samples of sorted immune cell populations from GSE107011 (Monaco et al. 2019). (from the CellDex documentation)
ref <- celldex::MonacoImmuneData()
DefaultAssay(comb) <- "RNA"
comb2 <- as.SingleCellExperiment(comb)
lc <- logcounts(comb2)
pred_imm_broad <- SingleR(test=comb2, ref=ref,
labels=ref$label.main)
head(pred_imm_broad)
## DataFrame with 6 rows and 4 columns
## scores labels
## <matrix> <character>
## flw3 AAACAGCCACATTAAC-1 0.1838240:0.1798454:0.0668172:... Monocytes
## flw3 AAACATGCACCGGTAT-1 0.2133065:0.1682427:0.3923648:... CD4+ T cells
## flw3 AAACATGCATAATGTC-1 0.1241514:0.1089673:0.2266038:... CD4+ T cells
## flw3 AAACATGCATACTCCT-1 0.2994710:0.1875276:0.3675424:... T cells
## flw3 AAACATGCATTATGGT-1 0.0908606:0.0467543:0.1950370:... CD8+ T cells
## flw3 AAACCAACAATTAAGG-1 0.1425373:0.1192283:0.2563216:... T cells
## delta.next pruned.labels
## <numeric> <character>
## flw3 AAACAGCCACATTAAC-1 0.0883235 Monocytes
## flw3 AAACATGCACCGGTAT-1 0.0653410 CD4+ T cells
## flw3 AAACATGCATAATGTC-1 0.0272195 CD4+ T cells
## flw3 AAACATGCATACTCCT-1 0.0302115 T cells
## flw3 AAACATGCATTATGGT-1 0.0705356 CD8+ T cells
## flw3 AAACCAACAATTAAGG-1 0.0359376 T cells
table(pred_imm_broad$pruned.labels)
##
## B cells Basophils CD4+ T cells CD8+ T cells Dendritic cells
## 5497 45 5624 1409 2576
## Monocytes Neutrophils NK cells Progenitors T cells
## 14472 29 9120 240 9425
cellmetadata$label <- pred_imm_broad$pruned.labels
pred_imm_fine <- SingleR(test=comb2, ref=ref,
labels=ref$label.fine)
head(pred_imm_fine)
## DataFrame with 6 rows and 4 columns
## scores
## <matrix>
## flw3 AAACAGCCACATTAAC-1 0.0950415:0.2862279:0.0972819:...
## flw3 AAACATGCACCGGTAT-1 0.3375173:0.1610507:0.2956709:...
## flw3 AAACATGCATAATGTC-1 0.1923652:0.0942964:0.1856419:...
## flw3 AAACATGCATACTCCT-1 0.3508795:0.1867607:0.3342319:...
## flw3 AAACATGCATTATGGT-1 0.1960738:0.0724535:0.1618841:...
## flw3 AAACCAACAATTAAGG-1 0.2261702:0.1108775:0.2228686:...
## labels delta.next
## <character> <numeric>
## flw3 AAACAGCCACATTAAC-1 Classical monocytes 0.06841161
## flw3 AAACATGCACCGGTAT-1 Naive CD4 T cells 0.00749510
## flw3 AAACATGCATAATGTC-1 Th1 cells 0.00723785
## flw3 AAACATGCATACTCCT-1 Central memory CD8 T.. 0.00731102
## flw3 AAACATGCATTATGGT-1 Naive CD8 T cells 0.08295119
## flw3 AAACCAACAATTAAGG-1 Vd2 gd T cells 0.00329823
## pruned.labels
## <character>
## flw3 AAACAGCCACATTAAC-1 Classical monocytes
## flw3 AAACATGCACCGGTAT-1 Naive CD4 T cells
## flw3 AAACATGCATAATGTC-1 Th1 cells
## flw3 AAACATGCATACTCCT-1 Central memory CD8 T..
## flw3 AAACATGCATTATGGT-1 Naive CD8 T cells
## flw3 AAACCAACAATTAAGG-1 Vd2 gd T cells
table(pred_imm_fine$pruned.labels)
##
## Central memory CD8 T cells Classical monocytes
## 648 8946
## Effector memory CD8 T cells Exhausted B cells
## 262 319
## Follicular helper T cells Intermediate monocytes
## 582 4734
## Low-density basophils Low-density neutrophils
## 48 12
## MAIT cells Myeloid dendritic cells
## 918 1710
## Naive B cells Naive CD4 T cells
## 3936 2873
## Naive CD8 T cells Natural killer cells
## 1163 8056
## Non classical monocytes Non-switched memory B cells
## 1413 1024
## Non-Vd2 gd T cells Plasmablasts
## 4084 84
## Plasmacytoid dendritic cells Progenitor cells
## 280 225
## Switched memory B cells T regulatory cells
## 832 788
## Terminal effector CD4 T cells Terminal effector CD8 T cells
## 849 697
## Th1 cells Th1/Th17 cells
## 1146 672
## Th17 cells Th2 cells
## 550 536
## Vd2 gd T cells
## 1300
cellmetadata$finelabel <- pred_imm_fine$pruned.labels
col_pal <- c('#e31a1c', '#ff7f00', "#999900", '#cc00ff', '#1f78b4', '#fdbf6f',
'#33a02c', '#fb9a99', "#a6cee3", "#cc6699", "#b2df8a", "#99004d", "#66ff99",
"#669999", "#006600", "#9966ff", "#cc9900", "#e6ccff", "#3399ff", "#ff66cc",
"#ffcc66", "#003399")
annot_df <- data.frame(
barcodes = rownames(pred_imm_broad),
monaco_broad_annotation = pred_imm_broad$labels,
monaco_broad_pruned_labels = pred_imm_broad$pruned.labels,
monaco_fine_annotation = pred_imm_fine$labels,
monaco_fine_pruned_labels = pred_imm_fine$pruned.labels
)
meta_inf <- comb@meta.data
meta_inf$cell_barcode <- colnames(comb)
meta_inf <- meta_inf %>% dplyr::left_join(y = annot_df,
by = c("cell_barcode" = "barcodes"))
rownames(meta_inf) <- colnames(lc)
comb@meta.data <- meta_inf
DimPlot(comb, label=TRUE, group.by = "monaco_broad_annotation", reduction = "umap",
cols = col_pal, pt.size = 0.5) + ggtitle("Annotation With the Monaco Reference Database")
Extract B cells
bcells <- comb[,which(meta_inf$monaco_broad_annotation == "B cells")]
bcells_metainf <- meta_inf[which(meta_inf$monaco_broad_annotation == "B cells"),]
# remove non bcells
bcells_metainf1 <- bcells_metainf[grep("B cells",bcells_metainf$monaco_fine_pruned_labels),]
bcells_metainf2 <- bcells_metainf[grep("Plasmablasts",bcells_metainf$monaco_fine_pruned_labels),]
bcells_metainf <- rbind(bcells_metainf1,bcells_metainf2)
bcells <- bcells[,which(colnames(bcells) %in% rownames(bcells_metainf))]
bcells <- FindVariableFeatures(bcells, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
bcells <- RunPCA(bcells, features = VariableFeatures(object = bcells))
## Warning: The following 64 features requested have zero variance; running
## reduction without them: MZB1, INPP4B, PDE3B, GLDC, PTCHD1-AS, TRABD2A, RASGRF2,
## SSR4, SGCD, GLIS3, DTHD1, HESX1, ADGRB3, TMEM232, DOCK9, TNFAIP3, VMP1, TRBC1,
## NR3C2, PTPRM, AC007100.1, SPARCL1, AL589740.1, GPC5, RAPGEF4-AS1, CCDC149,
## GZMK, PCAT4, MARVELD3, LINC01146, RASGRP1, BAALC-AS1, AC089985.1, ADARB2,
## NMNAT3, C15orf62, NEXMIF, AL049828.1, LINC01937, LINC01182, ANKRD34B, CNTLN,
## SND1, AC090844.2, LINC00159, CSF1R, F11-AS1, NIPAL3, AC009120.4, AC004895.1,
## EPHX3, PNCK, AC114956.1, CORT, ZDHHC11B, EFNB2, AC008474.1, GINS1, PRKCA-AS1,
## TLR5, RNF213, ZFYVE9, ABCC4, MAP3K13
## Warning in PrepDR5(object = object, features = features, layer = layer, : The
## following features were not available: VCAN, PLXDC2, MAN1A1, NAMPT, FNDC3B,
## HSPA5, LRMDA, XBP1, PLCB1, AOAH, PRKCH, SLC8A1, LINC01505, CD247, PRDM1,
## SDF2L1, NUSAP1, RBM47, AAK1, NEAT1, DPYD, CENPE, DCC, ACSL1, GPC6, TNIK, MANF,
## NCALD, PCSK5, FKBP11, STAT4, TOX, RORA, PPP2R2B, DMXL2, SLCO3A1, MYDGF, SEC24D,
## GNAQ, SNX32, CDC14A, ITGB1, SHCBP1, CEP128, CSF3R, IQGAP2, ARHGAP26, RRBP1,
## CALR, VCAN-AS1, GTSE1, PDIA4, CREB5, DOCK4, SLC11A1, A2M, STXBP6, SLAMF7,
## PDE4D, TFEC, RAB39A, AC008574.1, GAB1, AC079336.5, SSR3, MCTP1, MYBL1, KIF4A,
## AGAP1, AC243829.2, AL442163.1, AL138716.1, HIST1H4C, ATXN1, WWC1, PLAAT2, SMC4,
## SPATS2, IPCEF1, LINC02384, MAML3, EIF4E3, AC044781.1, SEC11C, LINC02296, TPRG1,
## MAGI1, ERN1, MCM10, NLGN4Y, CADPS2, FYN, LCP2, TOX2, SAMHD1, LMAN1, LINC02456,
## GPRIN3, PDIA6, SORL1, LINC02363, LINC01821, GLT1D1, CLEC12A, PPP1R26-AS1,
## SNAP25-AS1, ESRRB, WDFY3, IRAK3, TRERF1, BX322234.1, IL6ST, SLC22A15, PTPRE,
## SRGN, AC002072.1, LRRC8C, ARLNC1, CHODL-AS1, ME1, EPB41L4A, AC091938.1,
## COL12A1, AL807761.4, AC037198.1, ZNF239, LRRC4C, PWRN1, CCR9, NDFIP1, ROR2,
## IGF2BP3, ANO5, DENND1B, TYMS, BTBD11, RCAN2, WNK3, RGS13, AL356108.1, SEMA3B,
## AC026353.1, AL442636.1, CFAP54, NFIA, ESR1, AC073332.1, RIN2, FKBP5,
## AC006581.2, FBXO5, INPP4A, EXT1, MAFTRR, ELL2, RUNX1, CERS6, KNL1, MIR181A1HG,
## MSC-AS1, NIBAN1, SEMA3C, MYO1F, ADAMTSL4-AS1, AC108169.1, AADACL2-AS1,
## MAMDC2-AS1, SPART-AS1, SAMD3, SYNE2, DAPK1, ESCO2, AL078602.1, AC011995.2,
## SPC25, Z99758.1, TCF7L1, LEPROTL1, IL20RB-AS1, LDLRAD3, CENPP, AL358777.1,
## DOCK5, DEPDC1B, MAGI3, SLFN5, HIVEP3, TAFA2, TRPA1, ANXA10, LINC02211, KLF12,
## SPN, LINC00334, ATF5, TGFBR3, PIK3R5, AP001977.1, KRT1, ADCY9, SPANXA2-OT1,
## IGF2BP2, MPP7, KIFC1, PPARG, CRELD2, VWC2, TLL2, AC079352.1, AC009974.2,
## AC027702.1, AC108925.1, TNC, TRAV8-3, CDC45, SEPTIN4-AS1, AC109811.1, ART4,
## MOCOS, UPK1A-AS1, ZNF541, AC026979.4, AP001831.1, RBMS1, AC005355.1,
## AC024558.2, AC104964.3, ANXA1, TNFAIP2, FRY, ARHGAP10, AC009975.1, NCAPG,
## EEPD1, CCL5, SULT2B1, NUCB2, ARL17B, AC011416.3, NIM1K, PTPRJ, PROX1,
## AC092611.1, TRIP13, TCERG1L, AC084809.1, AC090376.1, AL646090.2, IGHV3-73,
## AC012459.1, NHS, AC073050.1, CCDC113, SVIL, ADGRE2, DIO1, LINC01847,
## AL451166.1, TNFRSF10C, CLEC19A, AC103987.2, CDH2, BMX, LHFPL1, LINC00907,
## OPRM1, FANCC, SPOCK1, TBXAS1, AL360093.1, AC019117.2, TIAM1, CD226, AC073114.1,
## E2F1, CNGA1, AC007262.2, ARHGAP6, MVB12B, ZEB2, CYP27A1, LINC01163, PRICKLE2,
## PF4V1, TGFB2, LINC01169, CDCA5, PDGFD, FRMD4B, SUB1, RFX2, AC025263.1, PARP8,
## TXNDC11, PERP, ZCCHC24, NLRP3, KCNN3, HIST1H2AJ, AC008170.1, C1orf189, FCN1,
## DENND2A, KLRG1, SYTL3, TLR2, CDHR3, STK3, POU6F2, GAB2, PLA2G4A, COL18A1,
## HIST1H3C, AC020978.2, LINC02080, AC011509.2, GATA1, C8orf88, C14orf178, NRG3,
## TSPAN9, TAF1A-AS1, MUC13, PCDHGA12, OR1L8, LINC02625, AC079601.1, AL121772.3,
## CCN5, AC024382.1, CABCOCO1, SFMBT2, TENM1, POF1B, SYTL2, BRIP1, SDSL, FER1L5,
## SULF1, AC018845.1, PYHIN1, RBL2, IGLV1-51, C8orf37-AS1, DPYD-AS1, FAM222A-AS1,
## AC073475.1, ASPH, SLC26A7, TRAV17, NPIPA8, VSTM1, IL6R, CACNB4, GAS7,
## AL096854.1, ATP8B4, CD8A, MRC2, STK32B, JAKMIP2-AS1, AQP9, RNF175, CCDC88A,
## CFAP44-AS1, AL445928.2, CTBP2, UPP2, LINC02137, SMYD3, LINC01605, AC135803.1,
## CLCA4, AL592402.1, FRZB, LINC01878, FAM124B, AC023503.1, LINC01983, ODAPH,
## LINC01511, AC010280.1, LINC02526, AC005682.2, VPS37D, AC105206.3, AL512634.1,
## AL450322.1, ZNF214, AC090099.1, AC092111.1, CLEC1A, AC078962.2, IL22,
## AL355516.1, C13orf42, AL358334.4, LINC00911, AC087639.2, MESP1, KCNJ12,
## AC015911.2, AC115100.1, SLC14A2-AS1, AC138470.2, HIF3A, LINC01620, KCNS1,
## AL162457.1, IGLV3-9, AL023574.1, GDPD2, SLC1A7, SMG7-AS1, MINDY4B, LINC01276,
## AL591468.1, AC007938.3, GHET1, CARD17, AC121338.1, PAH, PCDH9-AS1, LINC00433,
## MCF2L-AS1, DSCAS, LINC01919, AP000265.1, AC245140.3, SELENOS, AL109840.2,
## MICAL2, SBF2, SOBP, LINC02008, KIF13A, FGD4, CADPS, HIST1H2BB, NMT2, KIAA0825,
## TANC2, TSHZ3, BUB1, ICOS, AL353151.2, LINC01229, BEX5, AL139294.1, CDS1, FOLR3,
## UBE2J1, NHSL1, NLRP12, SLC44A3, STOX2, AP000593.4, AC074051.5, LINC02860, FGD6,
## BUB1B, AC105180.2, LRGUK, AC010609.1, C1orf21, AC104459.1, AC079760.2,
## AP003110.1, CCDC7, H2AFX, IL4I1, AC023480.1, TRAIP, LYPLAL1-DT, JAKMIP2, TRPS1,
## MCC, AC092164.1, ASTL, VOPP1, TNR, SCOC-AS1, BMPR1A, AC026341.1, CLDN11,
## AL024498.1, LINC02676, IGHV5-10-1, DLGAP1-AS5, ZNF534, AC002472.1, MN1,
## APOBEC3H, ASMT, ST8SIA6, WDR64, OSCAR, LINC02328, TEX41, AC003044.1, NEDD4,
## SLC44A1, TSPAN5, TENT5A, KIF23, CAV3, ALPL, NCAPG2, C16orf71, FBXO15, WNT2B,
## HIPK2, SPCS2, PCNX1, SNTB1, PAM, TVP23C, ZBTB16, MYO3A, CEP70, FANCI, L2HGDH,
## KCNMB2-AS1, RGL1, DNM3, SIPA1L2, AC005833.2, ZYG11A, VIPR2, AP003071.2,
## RTN4RL1, PTPN4, AGTPBP1, CRADD, AL365295.1, GASK1A, ALDH1L2, AUXG01000058.1,
## PIP4P2, GLRA2, AC109927.1, C8orf31, AL355303.1, ID2, CEP85L, AC125618.1, NEIL3,
## AL022724.3, AC019257.1, BASP1-AS1, AL354733.2, CTNNA3, MARCO, DACT3, CFAP61,
## AC007610.1, PPP4R4, CMTM2, LPCAT2, POLE2, ESYT2, ETS1, MIR4435-2HG, AC068643.1,
## LINC01933, PPM1L, PLEKHA5, CYTOR, VIM, CYSLTR2, AC066613.2, LMAN2, UTY, SCLT1,
## TNFSF8, AL359644.1, ERC1, AC015923.1, ARHGAP22, AC097460.1, CMTM4, CLEC7A,
## CPVL, CLIP4, SPAG16, AL365255.1, RGS1, ANKRD7, ATP8A2, PRAM1, TUBA1B,
## LGALSL-DT, LINC02234, CHN1, ZRANB2-AS2, TMEM252-DT, KLRC2, LINC00278, TRAT1,
## AC108718.1, DIAPH2-AS1, CIT, SGMS2, ZBP1, SEMA4D, C6orf58, HACD1, SCN2A, MCF2,
## MAP7, MLEC, FRMD3, ASAP3, AL512288.1, AC108210.1, ZNF391, PFKFB1, HLF, CD3G,
## ME3, CCSER2, HLCS, AC020916.1, LINC00298, AL357054.5, AL357141.1, TSPAN11,
## AC007611.1, AC100863.1, KLHL34, LINC00571, ISOC2, SGSM1, CPQ, MYO5B, PLAUR,
## GAS2, AL591518.1, DACH2, EVA1C, C20orf194, FOS, PLS1, SSC5D, AC107068.2,
## AL358937.1, PAK1, HYOU1, TIMP3, KIF2C, PRLR, HNRNPLL, TRG-AS1, TLN2, C4orf36,
## CERS6-AS1, RLN2, AL354989.1, CPEB1, DHRS3, NAV1, SLC24A4, MTHFD1L, SYNE1,
## AL357873.1, COL16A1, ERICH3-AS1, AC095030.1, LINC02609, AL590666.4, SERPINC1,
## TEX35, NEK2, WNT3A, STON1-GTF2A1L, LINC01793, AC016747.2, IGKV5-2, KLHL41,
## AC108066.1, GRM7-AS3, ZNF662, CADM2-AS2, IGSF10, AC092944.3, TRPC3, AC104083.1,
## AC026726.1, LINC01942, AL365226.1, CFAP206, TRDN-AS1, ITPRID1, TRGV9,
## AC005076.1, AC067930.1, AL445526.1, FAM201A, AL353742.1, AKR1C4, LINC00707,
## AL354916.1, ASAH2, PLEKHS1, AL139123.1, AC104383.2, CBLIF, NECTIN1-AS1, EMP1,
## GPD1, LINC02389, AC091214.1, AC089999.2, CCDC169, TNFSF11, DZIP1, AL358332.1,
## C15orf54, AC103740.1, CCDC33, AC068870.2, KIF7, AC022819.1, CERS3-AS1,
## AC090907.1, AC120498.4, AC012676.1, AC099518.5, AC015908.2, FBXW10, TTLL6,
## CACNG1, KIF19, AC091691.2, AC011446.1, AC008747.1, AC006213.1, AL354993.2,
## AP000355.1, APOL4, AL683807.2, DIPK2B, RAB40A, RNASEH2B-AS1, TMEM170B, HDAC4,
## ZEB1-AS1, LINC02798, OSTN-AS1, TTTY10, LRIG1, ARSG, ATP2B4, TMEM163, JAZF1-AS1,
## WWC2, NETO2, AC122697.1, DNAJC1, MANEA, WDR17, AC079174.2, AC008870.4,
## LINC01692, NR6A1, CA3, DST, SLC2A13, CCDC144A, P4HB, SLC5A9, PTGFR, AL391811.1,
## LINC01816, SULT1C4, LINC01173, CNTN4-AS1, THOC7-AS1, SPTSSB, LINC02505,
## AC096759.1, AC107067.2, AC116616.1, DNAH5, LINC02060, LINC01622, TFAP2A,
## POPDC3, LINC00326, AL139393.1, AC005100.1, PCOLCE-AS1, AC073314.1, LINC00681,
## CDH17, AL157829.1, NRARP, PITX3, TAC3, AVPR1A, AC010201.1, LINC00423, TRAV26-1,
## FLRT2, AL355836.2, IGHV4-28, AC090617.1, TMIGD1, AC022903.2, AP001029.1, MEP1B,
## CNN1, AC010463.3, DLL3, EHD2, LINC00945, BRWD1-AS2, LINC01424, AP001468.1,
## TCN2, ARSF, TLR8-AS1, FMR1NB, AL133334.1, AC004817.5, LINC02133, KLRK1, DGKG,
## PSD3, CD2, ARNTL2, KIF9-AS1, AC004158.1, LARP1B, GATA3, RAB31, SSR1, NUGGC,
## MIR646HG, LINC01625, AC025569.1, PPEF1, RFX8, MIR193BHG, MYBL2, AL596218.1,
## PSTPIP2, UACA, ATL1, ALG14, MS4A4E, AL035427.1, WAKMAR2, ITPKB, AC139769.2,
## LMNB1, SYBU, ARRB1, CLIC5, FRRS1, AC119674.1, BCAT1, NMRK1, MBNL1-AS1, RAB3C,
## AC018695.2, LINC02246, RAB20, AC097515.1, MAP4K3-DT, VCL, CCDC30, AMPH, MELK,
## AC021086.1, HIST1H2AL, UGGT2, SAT1, DDAH1, FSD1L, MCM4, RPS6KA6, AC104170.1,
## STK38, GCNT4, ANO10, PCBP3, TRDC, DENND2C, TK1, LINC01353, SLC9A2, RNF180,
## AL158801.2, AC136431.1, ITGA2, TECTA, KANK2, SMPDL3A, CDC6, ZSCAN31,
## AC096536.3, CRMP1, AMBN, EGR3, CLEC6A, TMPRSS12, AC122685.1, FERMT2,
## AC027458.1, PLAC1, SLC8A1-AS1, PXDNL, HM13, NCOA1, HDX, TACR1, HIST1H1B,
## NT5DC2, CDCA8, BRCA1, FBXO32, ZNF438, LINC01118, LINC00299, SAMSN1, CD59, Z
## PC_ 1
## Positive: FYB1, PITPNC1, BCL11B, PRKCA, ITK, THEMIS, PHACTR2, PRKCQ, SLFN12L, IL32
## TC2N, SERINC5, CAMK4, CD36, ATP10A, JAML, TXK, PLCL1, DISC1, MGAT4A
## IL7R, PAG1, PID1, LINC00861, CD6, RTN1, TCF7L2, CD96, TRAC, ARHGEF3
## Negative: IGHM, IGKC, STEAP1B, SOX5, AL355076.2, FCRL5, PCDH9, KLHL14, SLC38A11, IGLC2
## GPM6A, SSPN, AL592429.2, JCHAIN, RHEX, KCNQ5, IGLC3, AC083837.1, LINC01811, MACROD2
## IFNG-AS1, AL078459.1, AC007368.1, RGS7, PARM1, GEN1, NCOA3, AC108879.1, AC008014.1, IGLC1
## PC_ 2
## Positive: AL355076.2, SSPN, IGHA2, SOX5, IGHA1, JCHAIN, RHEX, AC008691.1, CSGALNACT1, EML6
## DNAH8, MYO1D, TNFRSF17, TEX9, PVT1, AL592429.2, IGHG1, LINC01320, GEN1, TP63
## FUT8, IGHG3, AC007368.1, ITM2C, DERL3, XIST, TXNDC5, SAMD12, DOCK10, FA2H
## Negative: IGHM, PCDH9, AC108879.1, STEAP1B, SLC38A11, SYN3, AKAP6, THRB, LINC01811, NETO1
## AL139020.1, FOXP1, MACROD2, RAPGEF5, SDK1, KLHL14, LINC01340, LINC01374, PLD5, ACSM3
## CARMIL1, LINC02161, RIMBP2, TTC28, SKAP1, TTTY14, LINC01572, RGS7, LINC02550, CHL1
## PC_ 3
## Positive: SLC38A11, STEAP1B, RGS7, AKAP6, AC108879.1, FOXP1, AC007368.1, LEF1, KLHL14, GPM6A
## IGHM, NETO1, CAMK4, MBNL1, BCL11B, BCL2, MAML2, PCDH9, IGF1R, SYN3
## SKAP1, PRKCA, CCR7, SERINC5, LINC02550, IL7R, MLLT3, PRKN, TC2N, HIVEP2
## Negative: SSPN, IGHA1, IGHA2, TXNDC5, EML6, AC008691.1, JCHAIN, SOX5, LINC01320, TNFRSF17
## TP63, DNAH8, IGHG1, IGHG3, TEX9, DERL3, IGHGP, AL355076.2, CRIP1, PPP1R9A
## IGHG2, KCNMA1, IGLC1, EYA2, ITM2C, IGHG4, FA2H, MYO1D, SOX5-AS1, ACOXL
## PC_ 4
## Positive: TXNDC5, AC108879.1, IGHA1, IGHA2, JCHAIN, AL589693.1, LINC01811, IFNG-AS1, PARM1, TNFRSF17
## AKAP6, DERL3, SYN3, TP63, PPP1R9A, CD38, SSPN, MYO1D, PCDH9, IGKC
## THRB, AL139020.1, KLHL14, IRF4, RIMBP2, TSHR, CARMIL1, IGLC1, RAPGEF5, LINC01320
## Negative: AC007368.1, GPM6A, SOX5, GALNTL6, RGS7, AL592429.2, AL355076.2, AC083837.1, GEN1, ANK2
## SYT1, FCRL5, AC092546.1, MAST4, RHEX, CSGALNACT1, SOX5-AS1, TENM4, PRKD1, STEAP1B
## ADAMTS6, ZNF804A, AL450352.1, NTNG1, PLPP3, MIR3681HG, AL078459.1, DLGAP1, KCNJ3, AC093879.1
## PC_ 5
## Positive: FCRL5, SOX5, PCDH9, MACROD2, AL079338.1, SYT1, TTC28, LINC01013, SOX5-AS1, MPP6
## MIR3681HG, NETO1, AL139020.1, GEN1, AC008691.1, IGHG3, LINC01374, ANK2, ROR1, RAPGEF5
## AC108879.1, SYN3, SKAP1, AC092546.1, PLPP3, ADAM23, PPP1R9A, MOXD1, PARM1, NRCAM
## Negative: SLC38A11, RGS7, STEAP1B, AC007368.1, GPM6A, JCHAIN, GALNTL6, PTPRG, RHEX, IGHA1
## IGHA2, AL355076.2, KLHL14, MAST4, EML6, STK33, TENM4, DERL3, MYO1D, NTNG1
## TNFRSF17, AL078459.1, IFNG-AS1, TXNDC5, ADAMTS6, AC083837.1, PRKD1, BCL2, ZNF804A, ARHGAP20
## Warning: Number of dimensions changing from 20 to 50
DimHeatmap(bcells, dims = 1:2, cells = 500, balanced = TRUE)
DimHeatmap(bcells, dims = 3:4, cells = 500, balanced = TRUE)
ElbowPlot(bcells)
#comb <- JackStraw(comb, num.replicate = 100)
bcells <- FindNeighbors(bcells, dims = 1:4)
## Computing nearest neighbor graph
## Computing SNN
bcells <- FindClusters(bcells, algorithm = 3, resolution = 0.3, verbose = FALSE)
bcells <- RunUMAP(bcells, dims = 1:4)
## 00:12:59 UMAP embedding parameters a = 0.9922 b = 1.112
## 00:12:59 Read 5314 rows and found 4 numeric columns
## 00:12:59 Using Annoy for neighbor search, n_neighbors = 30
## 00:12:59 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 00:13:00 Writing NN index file to temp file /tmp/RtmpjywqML/file27ed8f4f9d08ab
## 00:13:00 Searching Annoy index using 1 thread, search_k = 3000
## 00:13:01 Annoy recall = 100%
## 00:13:02 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 00:13:03 Initializing from normalized Laplacian + noise (using RSpectra)
## 00:13:04 Commencing optimization for 500 epochs, with 183396 positive edges
## 00:13:07 Optimization finished
DimPlot(bcells, reduction = "umap", label=TRUE,)
DimPlot(bcells, group.by="monaco_fine_annotation" , reduction = "umap", label=TRUE,)
bcells.markers <- FindAllMarkers(bcells, only.pos = TRUE)
## Calculating cluster 0
## Calculating cluster 1
## Calculating cluster 2
## Calculating cluster 3
## Calculating cluster 4
## Calculating cluster 5
## Calculating cluster 6
bcells.markers %>%
group_by(cluster) %>%
dplyr::filter(avg_log2FC > 1)
## # A tibble: 4,810 × 7
## # Groups: cluster [7]
## p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene
## <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <chr>
## 1 7.63e-20 1.06 0.441 0.381 2.27e-15 0 SNX9
## 2 5.15e-11 1.27 0.208 0.148 1.53e- 6 0 YBX3
## 3 9.16e-11 1.01 0.321 0.281 2.72e- 6 0 TMEM123
## 4 4.37e-10 1.86 0.083 0.041 1.30e- 5 0 ARRDC4
## 5 7.54e- 9 1.02 0.203 0.15 2.24e- 4 0 FOS
## 6 1.25e- 8 1.05 0.145 0.094 3.72e- 4 0 USP9Y
## 7 5.83e- 7 1.03 0.114 0.074 1.73e- 2 0 DDX3Y
## 8 1.75e- 6 1.07 0.077 0.044 5.19e- 2 0 LINC00278
## 9 2.28e- 5 1.52 0.036 0.017 6.77e- 1 0 TTTY10
## 10 4.53e- 5 1.08 0.166 0.134 1 e+ 0 0 RPGR
## # ℹ 4,800 more rows
bcells.markers %>%
group_by(cluster) %>%
dplyr::filter(avg_log2FC > 1) %>%
slice_head(n = 10) %>%
ungroup() -> top10
DoHeatmap(bcells, features = top10$gene) + NoLegend()
## Warning in DoHeatmap(bcells, features = top10$gene): The following features
## were omitted as they were not found in the scale.data slot for the RNA assay:
## PRDM1, SDF2L1, SLAMF7, VIM, HIST1H4C, SAMHD1, MT-ND2, MT-ND1, PDE4D, NEK6,
## C12orf74, HIPK2, PTPRJ, CD247, PRKCH, RPGR, TTTY10, LINC00278, DDX3Y, USP9Y,
## FOS, ARRDC4, TMEM123, YBX3, SNX9
More featureplots.
# b cell markers
FeaturePlot(bcells, features = c("CD19","CD27","CD38","CD24"))
FeaturePlot(bcells, features = c("CR2", "CD34", "MME", "MS4A1"))
FeaturePlot(bcells, features = c("MZB1", "CXCR3", "FCRL5", "TBX21"))
FeaturePlot(bcells, features = c("CCR6", "ITGAX","MX1","BST2"))
# IGH genes
genes <- rownames(bcells)[grep("^IGH",rownames(bcells))]
genes
## [1] "IGHEP2" "IGHMBP2" "IGHA2" "IGHE" "IGHG4"
## [6] "IGHG2" "IGHGP" "IGHA1" "IGHEP1" "IGHG1"
## [11] "IGHG3" "IGHD" "IGHM" "IGHJ6" "IGHJ3P"
## [16] "IGHJ5" "IGHJ4" "IGHV6-1" "IGHV1-2" "IGHV1-3"
## [21] "IGHV4-4" "IGHV7-4-1" "IGHV2-5" "IGHV3-7" "IGHV3-64D"
## [26] "IGHV5-10-1" "IGHV3-11" "IGHV3-13" "IGHV3-15" "IGHV1-18"
## [31] "IGHV3-20" "IGHV3-21" "IGHV3-23" "IGHV1-24" "IGHV2-26"
## [36] "IGHV4-28" "IGHV3-30" "IGHV4-31" "IGHV3-29" "IGHV3-33"
## [41] "IGHV4-34" "IGHV4-39" "IGHV3-43" "IGHV1-46" "IGHV3-48"
## [46] "IGHV3-49" "IGHV5-51" "IGHV3-53" "IGHV1-58" "IGHV4-59"
## [51] "IGHV3-64" "IGHV3-66" "IGHV1-69" "IGHV2-70D" "IGHV1-69-2"
## [56] "IGHV1-69D" "IGHV2-70" "IGHV3-72" "IGHV3-73" "IGHV3-74"
## [61] "IGHV5-78"
lapply(seq(1,61,4), function(i) {
j=i+3
mygenes <- genes[i:j]
FeaturePlot(bcells, features = mygenes )
})
## Warning: All cells have the same value (0) of "IGHEP2"
## Warning: All cells have the same value (0) of "IGHV3-29"
## Warning: All cells have the same value (0) of "IGHV1-58"
## Warning: All cells have the same value (0) of "IGHV3-66"
## Warning: All cells have the same value (0) of "IGHV1-69-2"
## Warning: The following requested variables were not found: NA
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
##
## [[7]]
##
## [[8]]
##
## [[9]]
##
## [[10]]
##
## [[11]]
##
## [[12]]
##
## [[13]]
##
## [[14]]
##
## [[15]]
##
## [[16]]
Analyse differences between samples in B cells
bcells@meta.data$covid <- grepl("M",bcells@meta.data$library)
Idents(bcells) <- "covid"
covid.de <- FindMarkers(bcells, ident.1 = "TRUE", ident.2 = "FALSE", verbose = TRUE)
head(covid.de,20)
## p_val avg_log2FC pct.1 pct.2 p_val_adj
## XIST 9.935340e-178 -1.4634068 0.287 0.700 2.952286e-173
## MALAT1 5.327151e-154 -0.4579590 0.986 0.999 1.582963e-149
## ARL17B 1.454177e-101 -2.8307874 0.037 0.222 4.321086e-97
## UTY 1.369802e-95 11.6504731 0.233 0.000 4.070368e-91
## DUSP1 4.019999e-95 2.4150213 0.403 0.126 1.194543e-90
## CXCR4 9.452891e-73 1.2802545 0.606 0.388 2.808926e-68
## PELI1 4.672331e-71 1.6305845 0.573 0.376 1.388383e-66
## RIPOR2 1.105943e-69 -0.5539199 0.771 0.920 3.286309e-65
## TSIX 4.940117e-66 -1.4471311 0.137 0.340 1.467956e-61
## HLA-DQA2 1.147568e-64 2.2683470 0.304 0.089 3.409998e-60
## PLCG2 7.114690e-64 -0.5670829 0.784 0.913 2.114130e-59
## GPM6A 4.241425e-62 -1.8532312 0.110 0.291 1.260339e-57
## TSC22D3 4.574745e-59 1.1956814 0.633 0.497 1.359386e-54
## RGS7 3.119841e-58 -2.0267471 0.069 0.221 9.270606e-54
## USP9Y 4.793243e-58 8.2360536 0.151 0.001 1.424312e-53
## AC007368.1 9.109379e-56 -2.6039285 0.031 0.148 2.706852e-51
## CSGALNACT1 5.953374e-53 -1.0873090 0.315 0.514 1.769045e-48
## GNLY 2.278711e-52 2.5926535 0.267 0.086 6.771189e-48
## ANK3 5.239092e-52 -1.0182389 0.230 0.430 1.556796e-47
## LINC02550 6.525279e-52 -2.4642119 0.024 0.127 1.938987e-47
Remove chrX and chrY genes
Shell command:
zcat gencode.v44.annotation.gtf.gz | grep chrX | cut -f9 | sed ‘s/gene_name //’ | grep @ | cut -d ‘"’ -f2 | uniq | sort -u > chrX_genes.txt
zcat gencode.v44.annotation.gtf.gz | grep chrY | cut -f9 | sed ‘s/gene_name //’ | grep @ | cut -d ‘"’ -f2 | uniq | sort -u > chrY_genes.txt
chrx <- readLines("ref/chrX_genes.txt")
chry <- readLines("ref/chrY_genes.txt")
covid.de <- covid.de[which(! rownames(covid.de) %in% chrx),]
covid.de <- covid.de[which(! rownames(covid.de) %in% chry),]
head(subset(covid.de,avg_log2FC>0),20) %>%
kbl(caption="Upregulated in B cells after covid") %>%
kable_paper("hover", full_width = F)
p_val | avg_log2FC | pct.1 | pct.2 | p_val_adj | |
---|---|---|---|---|---|
DUSP1 | 0 | 2.4150213 | 0.403 | 0.126 | 0 |
CXCR4 | 0 | 1.2802545 | 0.606 | 0.388 | 0 |
PELI1 | 0 | 1.6305845 | 0.573 | 0.376 | 0 |
HLA-DQA2 | 0 | 2.2683470 | 0.304 | 0.089 | 0 |
GNLY | 0 | 2.5926535 | 0.267 | 0.086 | 0 |
EZR | 0 | 0.9578868 | 0.709 | 0.631 | 0 |
YPEL5 | 0 | 1.7193243 | 0.374 | 0.198 | 0 |
KLF6 | 0 | 1.1403361 | 0.610 | 0.494 | 0 |
FOS | 0 | 2.6020863 | 0.206 | 0.059 | 0 |
KLF2 | 0 | 1.2160893 | 0.484 | 0.329 | 0 |
CD69 | 0 | 1.0360232 | 0.519 | 0.381 | 0 |
EIF2AK3 | 0 | 1.0161844 | 0.548 | 0.416 | 0 |
NFKBIA | 0 | 2.0214365 | 0.245 | 0.108 | 0 |
YBX3 | 0 | 2.0804468 | 0.200 | 0.072 | 0 |
JUNB | 0 | 1.3445145 | 0.353 | 0.212 | 0 |
AC105402.3 | 0 | 0.7817414 | 0.475 | 0.309 | 0 |
JUN | 0 | 1.2190982 | 0.417 | 0.284 | 0 |
HLA-C | 0 | 0.6188876 | 0.677 | 0.611 | 0 |
RPS2 | 0 | 0.4887913 | 0.807 | 0.773 | 0 |
LYN | 0 | 0.6114082 | 0.812 | 0.792 | 0 |
head(subset(covid.de,avg_log2FC<0),20) %>%
kbl(caption="Downregulated in B cells after covid") %>%
kable_paper("hover", full_width = F)
p_val | avg_log2FC | pct.1 | pct.2 | p_val_adj | |
---|---|---|---|---|---|
MALAT1 | 0 | -0.4579590 | 0.986 | 0.999 | 0 |
ARL17B | 0 | -2.8307874 | 0.037 | 0.222 | 0 |
RIPOR2 | 0 | -0.5539199 | 0.771 | 0.920 | 0 |
PLCG2 | 0 | -0.5670829 | 0.784 | 0.913 | 0 |
GPM6A | 0 | -1.8532312 | 0.110 | 0.291 | 0 |
RGS7 | 0 | -2.0267471 | 0.069 | 0.221 | 0 |
AC007368.1 | 0 | -2.6039285 | 0.031 | 0.148 | 0 |
CSGALNACT1 | 0 | -1.0873090 | 0.315 | 0.514 | 0 |
ANK3 | 0 | -1.0182389 | 0.230 | 0.430 | 0 |
LINC02550 | 0 | -2.4642119 | 0.024 | 0.127 | 0 |
MBNL1 | 0 | -0.4558884 | 0.835 | 0.924 | 0 |
MT-CO1 | 0 | -0.2156893 | 0.989 | 0.992 | 0 |
GALNTL6 | 0 | -2.1541408 | 0.035 | 0.134 | 0 |
DOCK10 | 0 | -0.5854147 | 0.506 | 0.687 | 0 |
RNF17 | 0 | -6.2601348 | 0.001 | 0.047 | 0 |
AC004687.1 | 0 | -1.0713013 | 0.159 | 0.313 | 0 |
CPED1 | 0 | -0.9486663 | 0.205 | 0.367 | 0 |
AL355076.2 | 0 | -1.2214266 | 0.114 | 0.244 | 0 |
RALGPS2 | 0 | -0.4363306 | 0.835 | 0.915 | 0 |
PPBP | 0 | -0.7972448 | 0.091 | 0.214 | 0 |
VlnPlot(bcells, features <- c('DUSP1','CXCR4','PELI1','HLA-DQA2'),
idents = c("FALSE", "TRUE"), group.by = "covid", ncol = 2)
VlnPlot(bcells, features <- c('ARL17B','GPM6A','RGS7','AC007368.1'),
idents = c("FALSE", "TRUE"), group.by = "covid", ncol = 2)
Volcano
par(mar=c(5.1, 4.1, 4.1, 2.1))
HEADER="Effect of COVID infection on B cells"
plot(covid.de$avg_log2FC, -log10(covid.de$p_val),xlab="log2FC",ylab="-log10(p val)",pch=19,cex=0.8,main=HEADER)
sig <- subset(covid.de, p_val_adj<0.05)
points(sig$avg_log2FC, -log10(sig$p_val),pch=19,cex=0.8,col="red")
up=nrow(subset(sig,avg_log2FC>0))
dn=nrow(subset(sig,avg_log2FC<0))
nsig=nrow(sig)
ntot=nrow(covid.de)
SUBHEADER=paste("Total=",ntot,"genes;",nsig,"@5% FDR;",up,"up;",dn,"down")
mtext(SUBHEADER)
Heatmap of top genes.
top <- rownames(head(covid.de,15))
mx <- bcells[["RNA"]]["data"]
dim(mx)
## [1] 29715 5314
mx <- mx[which(rownames(mx) %in% top),]
dim(mx)
## [1] 15 5314
colfunc <- colorRampPalette(c("blue", "white", "red"))
colsidecols <- gsub("3","orange",gsub("2","gray", as.character(as.numeric(bcells@meta.data$covid)+2)))
heatmap.2(as.matrix(mx),col=colfunc(25), scale="row",trace="none",cexRow=0.8,
cexCol=0.01,dendrogram="none",ColSideColors=colsidecols)
Pseudobulk
pseudo_bcells <- AggregateExpression(bcells, assays = "RNA", return.seurat = T, group.by = "library")
## Centering and scaling data matrix
Idents(pseudo_bcells) <- c("FALSE","FALSE","TRUE","TRUE","TRUE","TRUE","TRUE")
pseudo_bcells@meta.data$covid <- c("FALSE","FALSE","TRUE","TRUE","TRUE","TRUE","TRUE")
mx2 <- pseudo_bcells[["RNA"]]["counts"]
mx2 <- as.matrix(mx2)
dim(mx2)
## [1] 29715 7
mx2f <- mx2[which(rowMeans(mx2)>=10),]
dim(mx2f)
## [1] 11338 7
dds <- DESeqDataSetFromMatrix(countData = mx2f , colData = pseudo_bcells@meta.data , design = ~ covid )
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z<- results(res)
vsd <- vst(dds, blind=FALSE)
zz<-cbind(as.data.frame(z),assay(vsd))
dge<-as.data.frame(zz[order(zz$pvalue),])
head(subset(dge,log2FoldChange>0),20) %>%
kbl(caption="Upregulated in B cells after covid") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | flw3 | flw5 | MDC8 | MMC7 | X1Recov3M | X2Recov12M | X2Recov3M | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DUSP1 | 395.55815 | 2.4764963 | 0.4346142 | 5.698148 | 0.0000000 | 0.0000646 | 6.582319 | 7.257682 | 8.965373 | 9.461725 | 9.737484 | 8.243784 | 8.599466 |
TXNDC5 | 146.47800 | 1.9423747 | 0.4065961 | 4.777161 | 0.0000018 | 0.0037958 | 6.491252 | 6.066685 | 8.118962 | 7.266855 | 7.280582 | 8.310718 | 7.540042 |
JUNB | 341.96398 | 1.3261093 | 0.2885687 | 4.595472 | 0.0000043 | 0.0057615 | 7.407362 | 7.814588 | 8.543616 | 9.198303 | 8.916368 | 8.430589 | 8.785369 |
ELL2 | 212.44250 | 1.8718481 | 0.4221863 | 4.433701 | 0.0000093 | 0.0109868 | 6.549910 | 6.845662 | 8.814079 | 8.328032 | 8.473961 | 7.761967 | 7.328673 |
HERPUD1 | 130.47015 | 1.0173990 | 0.2345095 | 4.338412 | 0.0000144 | 0.0152618 | 6.810331 | 6.615941 | 7.494263 | 7.354909 | 7.725897 | 7.588041 | 7.483969 |
DUSP5 | 22.14794 | 2.2378217 | 0.5379643 | 4.159796 | 0.0000319 | 0.0261564 | 4.906877 | 4.894999 | 5.771838 | 5.750654 | 6.285509 | 5.501499 | 5.804975 |
SEC61G | 47.31752 | 1.4250258 | 0.3474793 | 4.101039 | 0.0000411 | 0.0313616 | 5.637449 | 5.649305 | 6.816338 | 6.476638 | 6.205853 | 6.416690 | 6.313656 |
YBX3 | 165.62580 | 1.9000438 | 0.4664356 | 4.073539 | 0.0000463 | 0.0329530 | 6.047595 | 6.758334 | 8.371819 | 8.466255 | 7.752942 | 7.298886 | 7.234394 |
RAB20 | 18.95957 | 3.3387606 | 0.8298575 | 4.023294 | 0.0000574 | 0.0382898 | 4.695479 | 4.450625 | 5.472012 | 5.896833 | 6.431670 | 5.128758 | 5.438513 |
IRS2 | 64.41087 | 1.9038183 | 0.4882451 | 3.899308 | 0.0000965 | 0.0510705 | 5.809811 | 5.366227 | 7.022173 | 7.043492 | 7.242693 | 6.060923 | 6.405831 |
SOCS3 | 12.03247 | 3.2040194 | 0.8253029 | 3.882235 | 0.0001035 | 0.0510705 | 4.642907 | 4.084235 | 5.334428 | 5.490062 | 5.708983 | 5.151229 | 5.477264 |
UCP2 | 149.97664 | 0.9329086 | 0.2408735 | 3.873024 | 0.0001075 | 0.0510705 | 6.762061 | 7.114117 | 7.736774 | 7.858991 | 7.641535 | 7.578439 | 7.586402 |
ISG15 | 33.85000 | 1.3780489 | 0.3636906 | 3.789070 | 0.0001512 | 0.0630285 | 5.327362 | 5.575581 | 6.322463 | 6.126733 | 5.932125 | 6.145795 | 6.151232 |
CXCR4 | 793.17877 | 1.4488624 | 0.3828790 | 3.784126 | 0.0001542 | 0.0630285 | 8.626848 | 8.576801 | 10.427065 | 10.483624 | 9.206415 | 9.310576 | 9.929458 |
RBM38 | 103.52866 | 1.6178946 | 0.4284766 | 3.775923 | 0.0001594 | 0.0630285 | 6.317717 | 5.933403 | 7.641388 | 7.423080 | 7.725897 | 6.523616 | 7.001582 |
MKI67 | 10.91401 | 4.6273760 | 1.2446548 | 3.717799 | 0.0002010 | 0.0766184 | 4.438889 | 4.084235 | 5.174966 | 5.312983 | 4.084235 | 5.801716 | 5.746448 |
PWP1 | 118.47655 | 1.0260538 | 0.2778518 | 3.692810 | 0.0002218 | 0.0816417 | 6.590301 | 6.648892 | 7.521359 | 7.550298 | 7.582379 | 7.023085 | 7.346795 |
NFKBIA | 252.42803 | 2.1665559 | 0.5885538 | 3.681152 | 0.0002322 | 0.0826184 | 6.574289 | 6.788063 | 8.002564 | 8.969015 | 9.472207 | 7.310576 | 7.328673 |
NLRP3 | 28.72989 | 3.4498879 | 0.9427388 | 3.659431 | 0.0002528 | 0.0870445 | 4.788321 | 4.601014 | 5.231107 | 5.553400 | 7.353433 | 5.469770 | 5.438513 |
LINC01505 | 64.13954 | 1.0828392 | 0.2970429 | 3.645397 | 0.0002670 | 0.0890628 | 5.947510 | 6.066685 | 6.831054 | 6.575422 | 7.036207 | 6.635355 | 6.573041 |
head(subset(dge,log2FoldChange<0),20) %>%
kbl(caption="Downregulated in B cells after covid") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | flw3 | flw5 | MDC8 | MMC7 | X1Recov3M | X2Recov12M | X2Recov3M | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SOX5 | 705.82052 | -1.2561359 | 0.1791376 | -7.012130 | 0.0000000 | 0.0000000 | 10.236080 | 10.305568 | 9.057044 | 9.051942 | 9.309653 | 9.038877 | 8.905264 |
LINC02550 | 46.74057 | -2.0523302 | 0.3915757 | -5.241210 | 0.0000002 | 0.0005677 | 7.330121 | 6.773279 | 5.738364 | 5.670222 | 5.261825 | 5.605844 | 6.129420 |
AC007368.1 | 86.96251 | -2.7089394 | 0.5250238 | -5.159650 | 0.0000002 | 0.0006603 | 7.597419 | 8.307365 | 5.897105 | 5.189549 | 5.579256 | 6.481863 | 6.214539 |
MSR1 | 15.23551 | -2.0517712 | 0.4397875 | -4.665370 | 0.0000031 | 0.0048193 | 5.866769 | 6.066685 | 5.115178 | 5.047080 | 5.054271 | 5.057700 | 4.997913 |
GALNTL6 | 125.45101 | -2.1652405 | 0.4646314 | -4.660125 | 0.0000032 | 0.0048193 | 7.954641 | 8.543098 | 6.384925 | 5.776287 | 7.280582 | 6.732747 | 6.234973 |
RGS7 | 151.60592 | -1.6141461 | 0.3737955 | -4.318260 | 0.0000157 | 0.0152618 | 8.319308 | 8.327319 | 6.902372 | 6.321537 | 7.582379 | 6.732747 | 7.194840 |
ARL17B | 61.84379 | -2.6122834 | 0.6264255 | -4.170142 | 0.0000304 | 0.0261564 | 8.212793 | 6.254573 | 5.231107 | 6.182824 | 5.261825 | 5.739998 | 5.939965 |
AL450352.1 | 10.73580 | -2.8385730 | 0.7179583 | -3.953674 | 0.0000770 | 0.0483266 | 5.973292 | 5.613043 | 4.084235 | 4.410478 | 5.054271 | 4.923894 | 4.932090 |
MRVI1-AS1 | 37.74215 | -1.2004468 | 0.3063022 | -3.919158 | 0.0000889 | 0.0510705 | 6.456547 | 6.665073 | 5.866981 | 5.850046 | 5.708983 | 5.727258 | 5.887747 |
ARHGAP20 | 16.07999 | -1.9132769 | 0.4895500 | -3.908235 | 0.0000930 | 0.0510705 | 5.734585 | 6.187279 | 5.174966 | 5.047080 | 5.054271 | 4.923894 | 5.312819 |
EGLN3 | 23.03402 | -1.8734757 | 0.4844369 | -3.867327 | 0.0001100 | 0.0510705 | 6.447729 | 6.066685 | 5.703910 | 5.047080 | 5.432463 | 5.294949 | 4.997913 |
ADAMTS6 | 121.23221 | -0.9915976 | 0.2588111 | -3.831357 | 0.0001274 | 0.0566836 | 7.782105 | 7.785947 | 7.245664 | 6.963762 | 6.990982 | 6.999063 | 6.634525 |
LINC00996 | 21.75474 | -1.5986022 | 0.4500602 | -3.551974 | 0.0003824 | 0.1133780 | 6.140333 | 6.254573 | 5.115178 | 5.312983 | 4.776488 | 5.403337 | 5.716062 |
AC092279.1 | 17.83620 | -1.5181387 | 0.4472592 | -3.394315 | 0.0006880 | 0.1360084 | 5.960468 | 6.015059 | 5.174966 | 4.993816 | 5.054271 | 5.332381 | 5.514670 |
ZNF804A | 154.94694 | -0.9733200 | 0.2941799 | -3.308588 | 0.0009377 | 0.1756087 | 7.730227 | 8.361585 | 7.319795 | 7.033771 | 7.488750 | 7.422440 | 6.990019 |
SAXO2 | 9.91328 | -2.6592247 | 0.8089926 | -3.287082 | 0.0010123 | 0.1801078 | 5.070553 | 6.210100 | 4.455508 | 4.936773 | 4.084235 | 4.923894 | 4.779756 |
AL355076.2 | 158.20850 | -1.1058951 | 0.3386378 | -3.265716 | 0.0010919 | 0.1855372 | 8.094995 | 8.261426 | 6.888399 | 6.753726 | 7.203756 | 7.656539 | 7.467532 |
SUPT3H | 303.12176 | -0.6456667 | 0.1977592 | -3.264914 | 0.0010950 | 0.1855372 | 8.823673 | 8.756612 | 8.027868 | 8.339749 | 8.085953 | 8.156539 | 8.346245 |
CSGALNACT1 | 678.83374 | -0.9260578 | 0.2877283 | -3.218514 | 0.0012886 | 0.1977923 | 10.145142 | 9.948853 | 8.860459 | 8.696148 | 9.095203 | 9.424037 | 9.554550 |
AL079338.1 | 42.41566 | -1.1769347 | 0.3677302 | -3.200539 | 0.0013717 | 0.2009894 | 6.629524 | 6.743225 | 6.364430 | 5.776287 | 5.432463 | 5.825538 | 5.914133 |
VlnPlot(bcells, features <- c('DUSP1','TXNDC5','JUNB','YBX3'),
idents = c("FALSE", "TRUE"), group.by = "covid", ncol = 2)
VlnPlot(bcells, features <- c('SOX5','LINC02550','MSR1','GALNTL6'),
idents = c("FALSE", "TRUE"), group.by = "covid", ncol = 2)
More heat
top <- rownames(head(dge,20))
rpm <- apply(mx2f,2,function(x) {x/sum(x)*1000000} )
hm <- rpm[rownames(rpm) %in% top,]
colsidecols <- gsub("TRUE","orange",gsub("FALSE","gray",pseudo_bcells@meta.data$covid))
heatmap.2(hm,col=colfunc(25), scale="row",trace="none",cexRow=1.2,
cexCol=1.2,dendrogram="none",ColSideColors=colsidecols,mar=c(8,10),
main="B cell genes after COVID")
table(bcells@meta.data$seurat_clusters)
##
## 0 1 2 3 4 5 6
## 1343 1039 1022 701 655 447 107
table(bcells@meta.data$monaco_fine_annotation)
##
## Exhausted B cells Naive B cells
## 278 3296
## Non-switched memory B cells Plasmablasts
## 912 79
## Switched memory B cells
## 749
table(paste(bcells@meta.data$seurat_clusters,bcells@meta.data$monaco_fine_annotation))
##
## 0 Exhausted B cells 0 Naive B cells
## 23 1213
## 0 Non-switched memory B cells 0 Plasmablasts
## 79 1
## 0 Switched memory B cells 1 Exhausted B cells
## 27 3
## 1 Naive B cells 1 Non-switched memory B cells
## 991 44
## 1 Switched memory B cells 2 Exhausted B cells
## 1 36
## 2 Naive B cells 2 Non-switched memory B cells
## 725 135
## 2 Switched memory B cells 3 Exhausted B cells
## 126 42
## 3 Naive B cells 3 Non-switched memory B cells
## 110 496
## 3 Switched memory B cells 4 Exhausted B cells
## 53 105
## 4 Naive B cells 4 Non-switched memory B cells
## 35 94
## 4 Plasmablasts 4 Switched memory B cells
## 8 413
## 5 Exhausted B cells 5 Naive B cells
## 53 221
## 5 Non-switched memory B cells 5 Plasmablasts
## 63 5
## 5 Switched memory B cells 6 Exhausted B cells
## 105 16
## 6 Naive B cells 6 Non-switched memory B cells
## 1 1
## 6 Plasmablasts 6 Switched memory B cells
## 65 24
bcellseuratclusters <- lapply(unique(bcells@meta.data$seurat_clusters),function(x) {
rownames(bcells@meta.data[which(bcells@meta.data$seurat_clusters == x),])
})
names(bcellseuratclusters) <- paste("S",unique(bcells@meta.data$seurat_clusters),sep="")
bcellsubtypes <- lapply(unique(bcells@meta.data$monaco_fine_annotation),function(x) {
rownames(bcells@meta.data[which(bcells@meta.data$monaco_fine_annotation == x),])
})
names(bcellsubtypes) <- unique(bcells@meta.data$monaco_fine_annotation)
v1 <- c(bcellseuratclusters,bcellsubtypes)
plot(euler(v1),quantities = list(cex = 1.0), labels = list(cex = 1.5))
flw_metainf <- meta_inf[grep("flw",meta_inf$cell_id),]
flw_metainf <- flw_metainf[which(flw_metainf$monaco_broad_annotation == "B cells"),]
flw <- comb[,which(colnames(comb) %in% rownames(flw_metainf))]
# remove non bcells
flw_metainf1 <- flw_metainf[grep("B cells",flw_metainf$monaco_fine_pruned_labels),]
flw_metainf2 <- flw_metainf[grep("Plasmablasts",flw_metainf$monaco_fine_pruned_labels),]
flw_metainf <- rbind(flw_metainf1,flw_metainf2)
flw <- flw[,which(colnames(flw) %in% rownames(flw_metainf))]
flw <- FindVariableFeatures(flw, selection.method = "vst", nfeatures = 2000)
## Finding variable features for layer counts
flw <- RunPCA(flw, features = VariableFeatures(object = bcells))
## Warning: The following 139 features requested have zero variance; running
## reduction without them: IGHG3, MZB1, TP63, INPP4B, PDE3B, DERL3, ZNF804A, GLDC,
## PITPNC1, PTCHD1-AS, TRABD2A, RASGRF2, DMXL2, DNAH8, SSR4, SGCD, RRBP1, KCNIP4,
## DLG2, MAGI2, GLIS3, NEGR1, AC243829.2, DTHD1, HESX1, ATXN1, IPCEF1, MERTK,
## LMAN1, BX322234.1, NCAM1, FAAH2, ADGRB3, TMEM232, AL353660.1, DOCK9,
## AC093916.1, TNFAIP3, VMP1, DAPK1, AL078602.1, IGLV3-1, TRBC1, AC068286.2,
## NR3C2, SLFN5, PTPRM, AC007100.1, SPANXA2-OT1, IGF2BP2, SPARCL1, ANXA1,
## IGHV3-73, CLEC19A, AL592429.2, PRICKLE2, AL589740.1, AC078881.1, PRMT2, GPC5,
## RAPGEF4-AS1, TBC1D4, ASPH, CCDC149, GZMK, CKAP2L, STPG2, LINC01983, PCAT4,
## MARVELD3, AC007938.3, LINC01146, RASGRP1, SUGCT, BAALC-AS1, AC089985.1, MN1,
## SLC44A1, CAV3, ADARB2, AGTPBP1, NMNAT3, C15orf62, CYTOR, VIM, NEXMIF,
## AL049828.1, LINC01937, LINC01182, HNRNPLL, AC097654.1, ANKRD34B, EMP1, CNTLN,
## SND1, NETO2, AC090844.2, AC107067.2, LINC00423, EHD2, LINC00159, PPEF1,
## MIR193BHG, GIMAP7, MAP4K3-DT, CSF1R, F11-AS1, CRMP1, NIPAL3, PHEX, IGF1,
## AC009120.4, PRH1, HIST1H2AH, AC004895.1, EPHX3, PNCK, AC114956.1, LINC01297,
## CORT, ZDHHC11B, EFNB2, ADGRA3, EEF1AKMT1, GBP2, AC008474.1, GINS1, VEGFA,
## PRKCA-AS1, TLR5, AC090945.1, NPAS2, AC021231.1, GNLY, AL139317.5, RNF213,
## ZFYVE9, ABCC4, MAP3K13
## Warning in PrepDR5(object = object, features = features, layer = layer, : The
## following features were not available: VCAN, PLXDC2, MAN1A1, NAMPT, FNDC3B,
## HSPA5, LRMDA, XBP1, PLCB1, AOAH, PRKCH, SLC8A1, LINC01505, CD247, PRDM1,
## SDF2L1, NUSAP1, RBM47, AAK1, NEAT1, DPYD, CENPE, DCC, ACSL1, GPC6, TNIK, MANF,
## NCALD, PCSK5, FKBP11, STAT4, TOX, RORA, PPP2R2B, SLCO3A1, MYDGF, SEC24D, GNAQ,
## SNX32, CDC14A, ITGB1, SHCBP1, CEP128, CSF3R, IQGAP2, ARHGAP26, CALR, VCAN-AS1,
## GTSE1, PDIA4, CREB5, DOCK4, SLC11A1, A2M, STXBP6, SLAMF7, PDE4D, TFEC, RAB39A,
## AC008574.1, GAB1, AC079336.5, SSR3, MCTP1, MYBL1, KIF4A, AGAP1, AL442163.1,
## AL138716.1, HIST1H4C, WWC1, PLAAT2, SMC4, SPATS2, LINC02384, MAML3, EIF4E3,
## AC044781.1, SEC11C, LINC02296, TPRG1, MAGI1, ERN1, MCM10, NLGN4Y, CADPS2, FYN,
## LCP2, TOX2, SAMHD1, LINC02456, GPRIN3, PDIA6, SORL1, LINC02363, LINC01821,
## GLT1D1, CLEC12A, PPP1R26-AS1, SNAP25-AS1, ESRRB, WDFY3, IRAK3, TRERF1, IL6ST,
## SLC22A15, PTPRE, SRGN, AC002072.1, LRRC8C, ARLNC1, CHODL-AS1, ME1, EPB41L4A,
## AC091938.1, COL12A1, AL807761.4, AC037198.1, ZNF239, LRRC4C, PWRN1, CCR9,
## NDFIP1, ROR2, IGF2BP3, ANO5, DENND1B, TYMS, BTBD11, RCAN2, WNK3, RGS13,
## AL356108.1, SEMA3B, AC026353.1, AL442636.1, CFAP54, NFIA, ESR1, AC073332.1,
## RIN2, FKBP5, AC006581.2, FBXO5, INPP4A, EXT1, MAFTRR, ELL2, RUNX1, CERS6, KNL1,
## MIR181A1HG, MSC-AS1, NIBAN1, SEMA3C, MYO1F, ADAMTSL4-AS1, AC108169.1,
## AADACL2-AS1, MAMDC2-AS1, SPART-AS1, SAMD3, SYNE2, ESCO2, AC011995.2, SPC25,
## Z99758.1, TCF7L1, LEPROTL1, IL20RB-AS1, LDLRAD3, CENPP, AL358777.1, DOCK5,
## DEPDC1B, MAGI3, HIVEP3, TAFA2, TRPA1, ANXA10, LINC02211, KLF12, SPN, LINC00334,
## ATF5, TGFBR3, PIK3R5, AP001977.1, KRT1, ADCY9, MPP7, KIFC1, PPARG, CRELD2,
## VWC2, TLL2, AC079352.1, AC009974.2, AC027702.1, AC108925.1, TNC, TRAV8-3,
## CDC45, SEPTIN4-AS1, AC109811.1, ART4, MOCOS, UPK1A-AS1, ZNF541, AC026979.4,
## AP001831.1, RBMS1, AC005355.1, AC024558.2, AC104964.3, TNFAIP2, FRY, ARHGAP10,
## AC009975.1, NCAPG, EEPD1, CCL5, SULT2B1, NUCB2, ARL17B, AC011416.3, NIM1K,
## PTPRJ, PROX1, AC092611.1, TRIP13, TCERG1L, AC084809.1, AC090376.1, AL646090.2,
## AC012459.1, NHS, AC073050.1, CCDC113, SVIL, ADGRE2, DIO1, LINC01847,
## AL451166.1, TNFRSF10C, AC103987.2, CDH2, BMX, LHFPL1, LINC00907, OPRM1, FANCC,
## SPOCK1, TBXAS1, AL360093.1, AC019117.2, TIAM1, CD226, AC073114.1, E2F1, CNGA1,
## AC007262.2, ARHGAP6, MVB12B, ZEB2, CYP27A1, LINC01163, PF4V1, TGFB2, LINC01169,
## CDCA5, PDGFD, FRMD4B, SUB1, RFX2, AC025263.1, PARP8, TXNDC11, PERP, ZCCHC24,
## NLRP3, KCNN3, HIST1H2AJ, AC008170.1, C1orf189, FCN1, DENND2A, KLRG1, SYTL3,
## TLR2, CDHR3, STK3, POU6F2, GAB2, PLA2G4A, COL18A1, HIST1H3C, AC020978.2,
## LINC02080, AC011509.2, GATA1, C8orf88, C14orf178, NRG3, TSPAN9, TAF1A-AS1,
## MUC13, PCDHGA12, OR1L8, LINC02625, AC079601.1, AL121772.3, CCN5, AC024382.1,
## CABCOCO1, SFMBT2, TENM1, POF1B, SYTL2, BRIP1, SDSL, FER1L5, SULF1, AC018845.1,
## PYHIN1, RBL2, IGLV1-51, C8orf37-AS1, DPYD-AS1, FAM222A-AS1, AC073475.1,
## SLC26A7, TRAV17, NPIPA8, VSTM1, IL6R, CACNB4, GAS7, AL096854.1, ATP8B4, CD8A,
## MRC2, STK32B, JAKMIP2-AS1, AQP9, RNF175, CCDC88A, CFAP44-AS1, AL445928.2,
## CTBP2, UPP2, LINC02137, SMYD3, LINC01605, AC135803.1, CLCA4, AL592402.1, FRZB,
## LINC01878, FAM124B, AC023503.1, ODAPH, LINC01511, AC010280.1, LINC02526,
## AC005682.2, VPS37D, AC105206.3, AL512634.1, AL450322.1, ZNF214, AC090099.1,
## AC092111.1, CLEC1A, AC078962.2, IL22, AL355516.1, C13orf42, AL358334.4,
## LINC00911, AC087639.2, MESP1, KCNJ12, AC015911.2, AC115100.1, SLC14A2-AS1,
## AC138470.2, HIF3A, LINC01620, KCNS1, AL162457.1, IGLV3-9, AL023574.1, GDPD2,
## SLC1A7, SMG7-AS1, MINDY4B, LINC01276, AL591468.1, GHET1, CARD17, AC121338.1,
## PAH, PCDH9-AS1, LINC00433, MCF2L-AS1, DSCAS, LINC01919, AP000265.1, AC245140.3,
## SELENOS, AL109840.2, MICAL2, SBF2, SOBP, LINC02008, KIF13A, FGD4, CADPS,
## HIST1H2BB, NMT2, KIAA0825, TANC2, TSHZ3, BUB1, ICOS, AL353151.2, LINC01229,
## BEX5, AL139294.1, CDS1, FOLR3, UBE2J1, NHSL1, NLRP12, SLC44A3, STOX2,
## AP000593.4, AC074051.5, LINC02860, FGD6, BUB1B, AC105180.2, LRGUK, AC010609.1,
## C1orf21, AC104459.1, AC079760.2, AP003110.1, CCDC7, H2AFX, IL4I1, AC023480.1,
## TRAIP, LYPLAL1-DT, JAKMIP2, TRPS1, MCC, AC092164.1, ASTL, VOPP1, TNR, SCOC-AS1,
## BMPR1A, AC026341.1, CLDN11, AL024498.1, LINC02676, IGHV5-10-1, DLGAP1-AS5,
## ZNF534, AC002472.1, APOBEC3H, ASMT, ST8SIA6, WDR64, OSCAR, LINC02328, TEX41,
## AC003044.1, NEDD4, TSPAN5, TENT5A, KIF23, ALPL, NCAPG2, C16orf71, FBXO15,
## WNT2B, HIPK2, SPCS2, PCNX1, SNTB1, PAM, TVP23C, ZBTB16, MYO3A, CEP70, FANCI,
## L2HGDH, KCNMB2-AS1, RGL1, DNM3, SIPA1L2, AC005833.2, ZYG11A, VIPR2, AP003071.2,
## RTN4RL1, PTPN4, CRADD, AL365295.1, GASK1A, ALDH1L2, AUXG01000058.1, PIP4P2,
## GLRA2, AC109927.1, C8orf31, AL355303.1, ID2, CEP85L, AC125618.1, NEIL3,
## AL022724.3, AC019257.1, BASP1-AS1, AL354733.2, CTNNA3, MARCO, DACT3, CFAP61,
## AC007610.1, PPP4R4, CMTM2, LPCAT2, POLE2, ESYT2, ETS1, MIR4435-2HG, AC068643.1,
## LINC01933, PPM1L, PLEKHA5, CYSLTR2, AC066613.2, LMAN2, UTY, SCLT1, TNFSF8,
## AL359644.1, ERC1, AC015923.1, ARHGAP22, AC097460.1, CMTM4, CLEC7A, CPVL, CLIP4,
## SPAG16, AL365255.1, RGS1, ANKRD7, ATP8A2, PRAM1, TUBA1B, LGALSL-DT, LINC02234,
## CHN1, ZRANB2-AS2, TMEM252-DT, KLRC2, LINC00278, TRAT1, AC108718.1, DIAPH2-AS1,
## CIT, SGMS2, ZBP1, SEMA4D, C6orf58, HACD1, SCN2A, MCF2, MAP7, MLEC, FRMD3,
## ASAP3, AL512288.1, AC108210.1, ZNF391, PFKFB1, HLF, CD3G, ME3, CCSER2, HLCS,
## AC020916.1, LINC00298, AL357054.5, AL357141.1, TSPAN11, AC007611.1, AC100863.1,
## KLHL34, LINC00571, ISOC2, SGSM1, CPQ, MYO5B, PLAUR, GAS2, AL591518.1, DACH2,
## EVA1C, C20orf194, FOS, PLS1, SSC5D, AC107068.2, AL358937.1, PAK1, HYOU1, TIMP3,
## KIF2C, PRLR, TRG-AS1, TLN2, C4orf36, CERS6-AS1, RLN2, AL354989.1, CPEB1, DHRS3,
## NAV1, SLC24A4, MTHFD1L, SYNE1, AL357873.1, COL16A1, ERICH3-AS1, AC095030.1,
## LINC02609, AL590666.4, SERPINC1, TEX35, NEK2, WNT3A, STON1-GTF2A1L, LINC01793,
## AC016747.2, IGKV5-2, KLHL41, AC108066.1, GRM7-AS3, ZNF662, CADM2-AS2, IGSF10,
## AC092944.3, TRPC3, AC104083.1, AC026726.1, LINC01942, AL365226.1, CFAP206,
## TRDN-AS1, ITPRID1, TRGV9, AC005076.1, AC067930.1, AL445526.1, FAM201A,
## AL353742.1, AKR1C4, LINC00707, AL354916.1, ASAH2, PLEKHS1, AL139123.1,
## AC104383.2, CBLIF, NECTIN1-AS1, GPD1, LINC02389, AC091214.1, AC089999.2,
## CCDC169, TNFSF11, DZIP1, AL358332.1, C15orf54, AC103740.1, CCDC33, AC068870.2,
## KIF7, AC022819.1, CERS3-AS1, AC090907.1, AC120498.4, AC012676.1, AC099518.5,
## AC015908.2, FBXW10, TTLL6, CACNG1, KIF19, AC091691.2, AC011446.1, AC008747.1,
## AC006213.1, AL354993.2, AP000355.1, APOL4, AL683807.2, DIPK2B, RAB40A,
## RNASEH2B-AS1, TMEM170B, HDAC4, ZEB1-AS1, LINC02798, OSTN-AS1, TTTY10, LRIG1,
## ARSG, ATP2B4, TMEM163, JAZF1-AS1, WWC2, AC122697.1, DNAJC1, MANEA, WDR17,
## AC079174.2, AC008870.4, LINC01692, NR6A1, CA3, DST, SLC2A13, CCDC144A, P4HB,
## SLC5A9, PTGFR, AL391811.1, LINC01816, SULT1C4, LINC01173, CNTN4-AS1, THOC7-AS1,
## SPTSSB, LINC02505, AC096759.1, AC116616.1, DNAH5, LINC02060, LINC01622, TFAP2A,
## POPDC3, LINC00326, AL139393.1, AC005100.1, PCOLCE-AS1, AC073314.1, LINC00681,
## CDH17, AL157829.1, NRARP, PITX3, TAC3, AVPR1A, AC010201.1, TRAV26-1, FLRT2,
## AL355836.2, IGHV4-28, AC090617.1, TMIGD1, AC022903.2, AP001029.1, MEP1B, CNN1,
## AC010463.3, DLL3, LINC00945, BRWD1-AS2, LINC01424, AP001468.1, TCN2, ARSF,
## TLR8-AS1, FMR1NB, AL133334.1, AC004817.5, LINC02133, KLRK1, DGKG, PSD3, CD2,
## ARNTL2, KIF9-AS1, AC004158.1, LARP1B, GATA3, RAB31, SSR1, NUGGC, MIR646HG,
## LINC01625, AC025569.1, RFX8, MYBL2, AL596218.1, PSTPIP2, UACA, ATL1, ALG14,
## MS4A4E, AL035427.1, WAKMAR2, ITPKB, AC139769.2, LMNB1, SYBU, ARRB1, CLIC5,
## FRRS1, AC119674.1, BCAT1, NMRK1, MBNL1-AS1, RAB3C, AC018695.2, LINC02246,
## RAB20, AC097515.1, VCL, CCDC30, AMPH, MELK, AC021086.1, HIST1H2AL, UGGT2, SAT1,
## DDAH1, FSD1L, MCM4, RPS6KA6, AC104170.1, STK38, GCNT4, ANO10, PCBP3, TRDC,
## DENND2C, TK1, LINC01353, SLC9A2, RNF180, AL158801.2, AC136431.1, ITGA2, TECTA,
## KANK2, SMPDL3A, CDC6, ZSCAN31, AC096536.3, AMBN, EGR3, CLEC6A, TMPRSS12,
## AC122685.1, FERMT2, AC027458.1, PLAC1, SLC8A1-AS1, PXDNL, HM13, NCOA1, HDX,
## TACR1, HIST1H1B, NT5DC2, CDCA8, BRCA1, FBXO32, ZNF438, LINC01118, LINC00299,
## SAMSN1, CD59, ZNF658, CEP112, AL162493.1, ARHGAP18, POT1-AS1, AL138828.1,
## SLC2A9, HPGD, KIAA0319, CCNH, CPEB4, AP001021.3, XRCC4, BMP8B, ZC2HC1B, ACVR2A,
## LINC02391, BNC2, KALRN, HIST1H2AG, GSTCD, CCL4, LINC00393, AC087482.1, SUSD5,
## AC003666.1, PIP4K2A, FBXW7, FOXN3, ETV4, AC104823.1, STPG2-AS1, KCTD16, LEPR,
## RAP1GA
## PC_ 1
## Positive: FYB1, ITK, BCL11B, PRKCA, IL32, CD36, THEMIS, PID1, TCF7L2, RTN1
## PRKCQ, JAML, SLFN12L, PHACTR2, DISC1, MS4A6A, ATP10A, CPPED1, SKAP1, TMTC2
## TC2N, PZP, UBASH3B, MGAT4A, TXK, CD6, SERINC5, PAG1, PLCL1, TRAC
## Negative: GPM6A, SOX5, AC007368.1, AL355076.2, IGHM, STEAP1B, RGS7, SLC38A11, GALNTL6, FCRL5
## RHEX, IGKC, AC083837.1, PCDH9, LINC02550, SSPN, CSGALNACT1, KLHL14, KCNQ5, GEN1
## MACROD2, AL078459.1, AL079338.1, IGLC2, FUT8, XIST, RIPOR2, SYT1, PARM1, ADAMTS6
## PC_ 2
## Positive: SOX5, AL355076.2, SSPN, RHEX, GALNTL6, AC008691.1, AC007368.1, SYT1, GEN1, AC092546.1
## IGHG1, GPM6A, ANK2, SOX5-AS1, CSGALNACT1, FCRL5, EML6, IGHA2, MIR3681HG, TEX9
## IGHA1, PLPP3, AL450352.1, IGHGP, TENM4, JCHAIN, CRIP1, MAST4, OSTN, ITM2C
## Negative: SLC38A11, AKAP6, STEAP1B, AC108879.1, SYN3, LINC02550, PCDH9, IGHM, IFNG-AS1, KLHL14
## MACROD2, NETO1, PLD5, SATB1-AS1, CARMIL1, RGS7, CCR7, SKAP1, LINC01811, LINC01340
## FOXP1, PRKN, AL139020.1, AL079338.1, LEF1, PARM1, PCAT1, CCND3, IGF1R, MLLT3
## PC_ 3
## Positive: PCDH9, MACROD2, SYN3, AL079338.1, AC108879.1, IGHM, NETO1, AL139020.1, FCRL5, SLC38A11
## LINC01013, AKAP6, IGKC, RAPGEF5, LINC01374, TTC28, STEAP1B, LINC02550, IFNG-AS1, AC105402.3
## LINC01340, PARM1, THRB, MOXD1, MPP6, IGLC1, KLHL14, AL133346.1, SYT1, TXNDC5
## Negative: AC007368.1, AL355076.2, LEF1, CAMK4, GALNTL6, CSGALNACT1, PRKCA, BCL11B, MAST4, ANK3
## NELL2, FYB1, SERINC5, TCF7, TC2N, IL7R, TXK, PLCL1, GPM6A, FHIT
## RHEX, TESPA1, TAFA1, ADAMTS6, THEMIS, ITK, TSHZ2, ITGA6, DOCK10, MLLT3
## PC_ 4
## Positive: AC007368.1, RGS7, GPM6A, SLC38A11, GALNTL6, STEAP1B, MAST4, TENM4, STK33, KLHL14
## AC083837.1, ACSM3, PTPRG, FOXP1, NTNG1, ARHGAP20, DLGAP1, DCLK2, IGHM, KCNJ3
## AC105402.3, SEMA3D, PRKD1, LINC01572, TMEM182, MSR1, IGF1R, MYO3B, AC005699.1, NAALADL2-AS2
## Negative: SOX5, FCRL5, SSPN, PCDH9, AL079338.1, PARM1, SYT1, MACROD2, AC008691.1, TEX9
## LINC01013, AL589693.1, MIR3681HG, TTC28, MPP6, NETO1, IGHA2, SOX5-AS1, SYN3, IFNG-AS1
## NAV2, AC099560.1, AC108879.1, PPP1R9A, MOXD1, IGHG1, IGHGP, EPHA4, PLPP3, IGKC
## PC_ 5
## Positive: SOX5, FCRL5, AL079338.1, AC007368.1, SYT1, ANK2, GALNTL6, PCDH9, SOX5-AS1, MACROD2
## NETO1, LINC01013, AC092546.1, MPP6, PLPP3, AC093879.1, GEN1, MIR3681HG, SMOC2, GPM6A
## TTC28, SKAP1, KCNJ3, FOXP1, SYN3, PCSK6, ROR1, FYB1, AL450352.1, BCL11B
## Negative: SSPN, AL355076.2, PARM1, IFNG-AS1, TEX9, IGHA2, JCHAIN, RASSF6, AC008691.1, NAV2
## AL589693.1, IGHG1, AL078459.1, IGHA1, EML6, LINC01811, SNED1, RHEX, KLHL14, MYO1D
## EPHA4, IGHGP, SLCO5A1, AC008014.1, EYA2, SAMD12, AKAP6, PPP1R9A, IGKC, LINC01320
## Warning: Number of dimensions changing from 20 to 50
DimHeatmap(flw, dims = 1:2, cells = 500, balanced = TRUE)
DimHeatmap(flw, dims = 3:4, cells = 500, balanced = TRUE)
ElbowPlot(flw)
#comb <- JackStraw(comb, num.replicate = 100)
flw <- FindNeighbors(flw, dims = 1:4)
## Computing nearest neighbor graph
## Computing SNN
flw <- FindClusters(flw, algorithm = 3, resolution = 0.3, verbose = FALSE)
flw <- RunUMAP(flw, dims = 1:4)
## 00:28:16 UMAP embedding parameters a = 0.9922 b = 1.112
## 00:28:16 Read 1558 rows and found 4 numeric columns
## 00:28:16 Using Annoy for neighbor search, n_neighbors = 30
## 00:28:16 Building Annoy index with metric = cosine, n_trees = 50
## 0% 10 20 30 40 50 60 70 80 90 100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 00:28:16 Writing NN index file to temp file /tmp/RtmpjywqML/file27ed8f2890f821
## 00:28:16 Searching Annoy index using 1 thread, search_k = 3000
## 00:28:17 Annoy recall = 100%
## 00:28:18 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 00:28:19 Initializing from normalized Laplacian + noise (using RSpectra)
## 00:28:19 Commencing optimization for 500 epochs, with 53734 positive edges
## 00:28:21 Optimization finished
DimPlot(flw, reduction = "umap", label=TRUE,)
DimPlot(flw, group.by="monaco_fine_annotation" , reduction = "umap", label=TRUE,)
flw.markers <- FindAllMarkers(flw, only.pos = TRUE)
## Calculating cluster 0
## Calculating cluster 1
## Calculating cluster 2
## Calculating cluster 3
## Calculating cluster 4
flw.markers %>%
group_by(cluster) %>%
dplyr::filter(avg_log2FC > 1)
## # A tibble: 2,640 × 7
## # Groups: cluster [5]
## p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene
## <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <chr>
## 1 4.99e-106 1.57 0.984 0.798 1.48e-101 0 BACH2
## 2 1.12e- 74 1.88 0.839 0.549 3.32e- 70 0 COL19A1
## 3 1.55e- 67 2.36 0.625 0.247 4.62e- 63 0 IL4R
## 4 4.66e- 63 2.22 0.647 0.279 1.39e- 58 0 LIX1-AS1
## 5 6.95e- 63 1.36 0.861 0.685 2.07e- 58 0 SNX29
## 6 7.04e- 54 1.27 0.865 0.774 2.09e- 49 0 FCRL1
## 7 1.75e- 49 1.19 0.885 0.764 5.19e- 45 0 ADK
## 8 5.28e- 47 1.17 0.885 0.802 1.57e- 42 0 MEF2C
## 9 6.61e- 41 1.63 0.637 0.396 1.96e- 36 0 IGHD
## 10 2.61e- 36 1.10 0.788 0.665 7.76e- 32 0 ITPR1
## # ℹ 2,630 more rows
flw.markers %>%
group_by(cluster) %>%
dplyr::filter(avg_log2FC > 1) %>%
slice_head(n = 10) %>%
ungroup() -> top10
DoHeatmap(flw, features = top10$gene) + NoLegend()
## Warning in DoHeatmap(flw, features = top10$gene): The following features were
## omitted as they were not found in the scale.data slot for the RNA assay:
## AC021055.1, HYAL3, AC066580.1, LINC01143, AL161640.1, AC105275.2, LINC01768,
## LINC01739, AL137798.2, MT-ND2, PTPRJ, CD247, PRKCH, FAM49A, C12orf74, ITPR1,
## ADK, SNX29
More B cell heat maps.
# b cell markers
FeaturePlot(flw, features = c("CD19","CD27","CD38","CD24"))
FeaturePlot(flw, features = c("CR2", "CD34", "MME", "MS4A1"))
FeaturePlot(flw, features = c("MZB1", "CXCR3", "FCRL5", "TBX21"))
FeaturePlot(flw, features = c("CCR6", "ITGAX","MX1","BST2"))
# IGH genes
genes <- rownames(bcells)[grep("^IGH",rownames(bcells))]
genes
## [1] "IGHEP2" "IGHMBP2" "IGHA2" "IGHE" "IGHG4"
## [6] "IGHG2" "IGHGP" "IGHA1" "IGHEP1" "IGHG1"
## [11] "IGHG3" "IGHD" "IGHM" "IGHJ6" "IGHJ3P"
## [16] "IGHJ5" "IGHJ4" "IGHV6-1" "IGHV1-2" "IGHV1-3"
## [21] "IGHV4-4" "IGHV7-4-1" "IGHV2-5" "IGHV3-7" "IGHV3-64D"
## [26] "IGHV5-10-1" "IGHV3-11" "IGHV3-13" "IGHV3-15" "IGHV1-18"
## [31] "IGHV3-20" "IGHV3-21" "IGHV3-23" "IGHV1-24" "IGHV2-26"
## [36] "IGHV4-28" "IGHV3-30" "IGHV4-31" "IGHV3-29" "IGHV3-33"
## [41] "IGHV4-34" "IGHV4-39" "IGHV3-43" "IGHV1-46" "IGHV3-48"
## [46] "IGHV3-49" "IGHV5-51" "IGHV3-53" "IGHV1-58" "IGHV4-59"
## [51] "IGHV3-64" "IGHV3-66" "IGHV1-69" "IGHV2-70D" "IGHV1-69-2"
## [56] "IGHV1-69D" "IGHV2-70" "IGHV3-72" "IGHV3-73" "IGHV3-74"
## [61] "IGHV5-78"
lapply(seq(1,61,4), function(i) {
j=i+3
mygenes <- genes[i:j]
FeaturePlot(flw, features = mygenes )
})
## Warning: All cells have the same value (0) of "IGHEP2"
## Warning: All cells have the same value (0) of "IGHV7-4-1"
## Warning: All cells have the same value (0) of "IGHV3-64D"
## Warning: All cells have the same value (0) of "IGHV5-10-1"
## Warning: All cells have the same value (0) of "IGHV1-24"
## Warning: All cells have the same value (0) of "IGHV4-28"
## Warning: All cells have the same value (0) of "IGHV3-29"
## Warning: All cells have the same value (0) of "IGHV3-49"
## Warning: All cells have the same value (0) of "IGHV1-58"
## Warning: All cells have the same value (0) of "IGHV3-64"
## Warning: All cells have the same value (0) of "IGHV3-66"
## Warning: All cells have the same value (0) of "IGHV1-69-2"
## Warning: The following requested variables were not found: NA
## Warning: All cells have the same value (0) of "IGHV5-78"
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
##
## [[7]]
##
## [[8]]
##
## [[9]]
##
## [[10]]
##
## [[11]]
##
## [[12]]
##
## [[13]]
##
## [[14]]
##
## [[15]]
##
## [[16]]
sessionInfo()
## R version 4.4.0 (2024-04-24)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] eulerr_7.0.2 gplots_3.1.3.1
## [3] kableExtra_1.4.0 SingleR_2.6.0
## [5] celldex_1.14.0 harmony_1.2.0
## [7] Rcpp_1.0.12 mitch_1.16.0
## [9] DESeq2_1.44.0 muscat_1.18.0
## [11] beeswarm_0.4.0 stringi_1.8.4
## [13] SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0
## [15] Biobase_2.64.0 GenomicRanges_1.56.0
## [17] GenomeInfoDb_1.40.0 IRanges_2.38.0
## [19] S4Vectors_0.42.0 BiocGenerics_0.50.0
## [21] MatrixGenerics_1.16.0 matrixStats_1.3.0
## [23] hdf5r_1.3.10 Seurat_5.0.3
## [25] SeuratObject_5.0.2 sp_2.1-4
## [27] plyr_1.8.9 ggplot2_3.5.1
## [29] dplyr_1.1.4
##
## loaded via a namespace (and not attached):
## [1] progress_1.2.3 goftest_1.2-3
## [3] Biostrings_2.72.0 HDF5Array_1.32.0
## [5] vctrs_0.6.5 spatstat.random_3.2-3
## [7] digest_0.6.35 png_0.1-8
## [9] corpcor_1.6.10 shape_1.4.6.1
## [11] gypsum_1.0.1 ggrepel_0.9.5
## [13] echarts4r_0.4.5 deldir_2.0-4
## [15] parallelly_1.37.1 MASS_7.3-60.2
## [17] reshape2_1.4.4 httpuv_1.6.15
## [19] foreach_1.5.2 withr_3.0.0
## [21] ggrastr_1.0.2 xfun_0.43
## [23] survival_3.6-4 memoise_2.0.1.9000
## [25] ggbeeswarm_0.7.2 systemfonts_1.0.6
## [27] zoo_1.8-12 GlobalOptions_0.1.2
## [29] gtools_3.9.5 pbapply_1.7-2
## [31] prettyunits_1.2.0 GGally_2.2.1
## [33] KEGGREST_1.44.0 promises_1.3.0
## [35] httr_1.4.7 globals_0.16.3
## [37] fitdistrplus_1.1-11 rhdf5filters_1.16.0
## [39] rhdf5_2.48.0 rstudioapi_0.16.0
## [41] UCSC.utils_1.0.0 miniUI_0.1.1.1
## [43] generics_0.1.3 curl_5.2.1
## [45] zlibbioc_1.50.0 ScaledMatrix_1.12.0
## [47] polylabelr_0.2.0 polyclip_1.10-6
## [49] GenomeInfoDbData_1.2.12 ExperimentHub_2.12.0
## [51] SparseArray_1.4.3 xtable_1.8-4
## [53] stringr_1.5.1 doParallel_1.0.17
## [55] evaluate_0.23 S4Arrays_1.4.0
## [57] BiocFileCache_2.12.0 hms_1.1.3
## [59] irlba_2.3.5.1 colorspace_2.1-0
## [61] filelock_1.0.3 ROCR_1.0-11
## [63] reticulate_1.36.1 spatstat.data_3.0-4
## [65] magrittr_2.0.3 lmtest_0.9-40
## [67] later_1.3.2 viridis_0.6.5
## [69] lattice_0.22-6 spatstat.geom_3.2-9
## [71] future.apply_1.11.2 scattermore_1.2
## [73] scuttle_1.14.0 cowplot_1.1.3
## [75] RcppAnnoy_0.0.22 pillar_1.9.0
## [77] nlme_3.1-164 iterators_1.0.14
## [79] caTools_1.18.2 compiler_4.4.0
## [81] beachmat_2.20.0 RSpectra_0.16-1
## [83] tensor_1.5 minqa_1.2.6
## [85] crayon_1.5.2 abind_1.4-5
## [87] scater_1.32.0 blme_1.0-5
## [89] locfit_1.5-9.9 bit_4.0.5
## [91] codetools_0.2-20 BiocSingular_1.20.0
## [93] bslib_0.7.0 alabaster.ranges_1.4.0
## [95] GetoptLong_1.0.5 plotly_4.10.4
## [97] remaCor_0.0.18 mime_0.12
## [99] splines_4.4.0 circlize_0.4.16
## [101] fastDummies_1.7.3 dbplyr_2.5.0
## [103] sparseMatrixStats_1.16.0 knitr_1.46
## [105] blob_1.2.4 utf8_1.2.4
## [107] clue_0.3-65 BiocVersion_3.19.1
## [109] lme4_1.1-35.3 listenv_0.9.1
## [111] DelayedMatrixStats_1.26.0 Rdpack_2.6
## [113] tibble_3.2.1 Matrix_1.7-0
## [115] statmod_1.5.0 svglite_2.1.3
## [117] fANCOVA_0.6-1 pkgconfig_2.0.3
## [119] tools_4.4.0 cachem_1.0.8
## [121] RhpcBLASctl_0.23-42 rbibutils_2.2.16
## [123] RSQLite_2.3.6 viridisLite_0.4.2
## [125] DBI_1.2.2 numDeriv_2016.8-1.1
## [127] fastmap_1.1.1 rmarkdown_2.26
## [129] scales_1.3.0 grid_4.4.0
## [131] ica_1.0-3 broom_1.0.5
## [133] AnnotationHub_3.12.0 sass_0.4.9
## [135] patchwork_1.2.0 BiocManager_1.30.23
## [137] ggstats_0.6.0 dotCall64_1.1-1
## [139] RANN_2.6.1 alabaster.schemas_1.4.0
## [141] farver_2.1.1 aod_1.3.3
## [143] mgcv_1.9-1 yaml_2.3.8
## [145] cli_3.6.2 purrr_1.0.2
## [147] leiden_0.4.3.1 lifecycle_1.0.4
## [149] uwot_0.2.2 glmmTMB_1.1.9
## [151] mvtnorm_1.2-4 backports_1.4.1
## [153] BiocParallel_1.38.0 gtable_0.3.5
## [155] rjson_0.2.21 ggridges_0.5.6
## [157] progressr_0.14.0 limma_3.60.0
## [159] jsonlite_1.8.8 edgeR_4.2.0
## [161] RcppHNSW_0.6.0 bitops_1.0-7
## [163] bit64_4.0.5 Rtsne_0.17
## [165] alabaster.matrix_1.4.0 spatstat.utils_3.0-4
## [167] BiocNeighbors_1.22.0 highr_0.10
## [169] jquerylib_0.1.4 alabaster.se_1.4.0
## [171] pbkrtest_0.5.2 lazyeval_0.2.2
## [173] alabaster.base_1.4.1 shiny_1.8.1.1
## [175] htmltools_0.5.8.1 sctransform_0.4.1
## [177] rappdirs_0.3.3 glue_1.7.0
## [179] spam_2.10-0 httr2_1.0.1
## [181] XVector_0.44.0 gridExtra_2.3
## [183] EnvStats_2.8.1 boot_1.3-30
## [185] igraph_2.0.3 variancePartition_1.34.0
## [187] TMB_1.9.11 R6_2.5.1
## [189] tidyr_1.3.1 labeling_0.4.3
## [191] cluster_2.1.6 Rhdf5lib_1.26.0
## [193] nloptr_2.0.3 DelayedArray_0.30.1
## [195] tidyselect_1.2.1 vipor_0.4.7
## [197] xml2_1.3.6 AnnotationDbi_1.66.0
## [199] future_1.33.2 rsvd_1.0.5
## [201] munsell_0.5.1 KernSmooth_2.23-22
## [203] data.table_1.15.4 htmlwidgets_1.6.4
## [205] ComplexHeatmap_2.20.0 RColorBrewer_1.1-3
## [207] rlang_1.1.3 spatstat.sparse_3.0-3
## [209] spatstat.explore_3.2-7 lmerTest_3.1-3
## [211] fansi_1.0.6