Here we are splitting the dataset and testing concordance between LA and AL approaches.
suppressPackageStartupMessages({
library("limma")
library("eulerr")
library("IlluminaHumanMethylation450kmanifest")
library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
library("tictoc")
library("mitch")
library("kableExtra")
library("beeswarm")
})
CORES=28
annotations
probe sets
gene sets
design matrix
mval matrix
anno <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
myann <- data.frame(anno[,c("UCSC_RefGene_Name","Regulatory_Feature_Group","Islands_Name","Relation_to_Island")])
gp <- myann[,"UCSC_RefGene_Name",drop=FALSE]
gp2 <- strsplit(gp$UCSC_RefGene_Name,";")
names(gp2) <- rownames(gp)
sets <- split(rep(names(gp2), lengths(gp2)), unlist(gp2))
summary(unlist(lapply(sets,length)))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 9.00 24.00 49.68 55.00 6778.00
genesets <- gmt_import("https://ziemann-lab.net/public/gmea_prototype/ReactomePathways.gmt")
if (!file.exists("GSE158422_design.rds")) {
download.file("https://ziemann-lab.net/public/gmea_prototype/GSE158422_design.rds", "GSE158422_design.rds")
}
design <- readRDS("GSE158422_design.rds")
if (!file.exists("GSE158422_design.rds")) {
download.file("https://ziemann-lab.net/public/gmea_prototype/GSE158422_mx.rds","GSE158422_mx.rds")
}
mval <- readRDS("GSE158422_mx.rds")
boxplot(list("normal"=matrix(colMeans(mval),ncol=2)[,2],"tumor"=matrix(colMeans(mval),ncol=2)[,1]),
main="mean probe methylation mval")
Reactome pathways were downloaded on the 14th Sept 2023 from MsigDB.
gs_entrez <- gmt_import("c2.cp.reactome.v2023.1.Hs.entrez.gmt")
gs_symbols <- gmt_import("c2.cp.reactome.v2023.1.Hs.symbols.gmt")
There are three approaches. First, limma can be done first, followed by aggregation by gene and then enrichment test (called LA). Secondly, probe values can be aggregated by gene, followed by limma, followed by enrichment test (AL). Third, probe values can be aggregated to gene level, and then aggregated to gene set level followed by limma test (AA).
This process runs limma first and then aggregates the results before doing an enrichment test.
# limma
runlimma <- function(mval,design,myann) {
fit.reduced <- lmFit(mval,design)
fit.reduced <- eBayes(fit.reduced)
summary(decideTests(fit.reduced))
dm <- topTable(fit.reduced,coef=4, number = Inf)
dm <- merge(myann,dm,by=0)
dm <- dm[order(dm$P.Value),]
rownames(dm) <- dm$Row.names
dm$Row.names=NULL
return(dm)
}
# aggregate
agg <- function(dm,cores=1) {
gn <- unique(unlist(strsplit( dm$UCSC_RefGene_Name ,";")))
gnl <- strsplit( dm$UCSC_RefGene_Name ,";")
gnl <- mclapply(gnl,unique,mc.cores=cores)
dm$UCSC_RefGene_Name <- gnl
l <- mclapply(1:nrow(dm), function(i) {
a <- dm[i,]
len <- length(a[[1]][[1]])
tvals <- as.numeric(rep(a["t"],len))
genes <- a[[1]][[1]]
data.frame(genes,tvals)
},mc.cores=cores)
df <- do.call(rbind,l)
keep <- names(which(table(df$genes)>1))
df <- df[df$genes %in% keep,]
gn <- unique(df$genes)
gme_res <- lapply( 1:length(gn), function(i) {
g <- gn[i]
tstats <- df[which(df$genes==g),"tvals"]
myn <- length(tstats)
mymean <- mean(tstats)
mymedian <- median(tstats)
if ( length(tstats) > 2 ) {
ttest <- t.test(tstats)
pval <- ttest$p.value
} else {
pval = 1
}
res <- c("gene"=g,"nprobes"=myn,"mean"=mymean,
"median"=mymedian, pval=pval)
} )
gme_res_df <- do.call(rbind, gme_res)
rownames(gme_res_df) <- gme_res_df[,1]
gme_res_df <- gme_res_df[,-1]
tmp <- apply(gme_res_df,2,as.numeric)
rownames(tmp) <- rownames(gme_res_df)
gme_res_df <- as.data.frame(tmp)
gme_res_df$sig <- -log10(gme_res_df[,4])
gme_res_df <- gme_res_df[order(-gme_res_df$sig),]
gme_res_df$fdr <- p.adjust(gme_res_df$pval)
out <- list("df"=df,"gme_res_df"=gme_res_df)
return(out)
}
# enrich
ttenrich <- function(m,genesets,cores=1) {
res <- mclapply( 1:length(genesets), function(i) {
gs <- genesets[i]
name <- names(gs)
n_members <- length(which(rownames(m) %in% gs[[1]]))
if ( n_members > 4 ) {
tstats <- m[which(rownames(m) %in% gs[[1]]),]
myn <- length(tstats)
mymean <- mean(tstats)
mymedian <- median(tstats)
wt <- t.test(tstats)
res <- c(name,myn,mymean,mymedian,wt$p.value)
}
} , mc.cores = cores)
res_df <- do.call(rbind, res)
rownames(res_df) <- res_df[,1]
res_df <- res_df[,-1]
colnames(res_df) <- c("n_genes","t_mean","t_median","pval")
tmp <- apply(res_df,2,as.numeric)
rownames(tmp) <- rownames(res_df)
res_df <- tmp
res_df <- as.data.frame(res_df)
res_df <- res_df[order(res_df$pval),]
res_df$logp <- -log10(res_df$pval )
res_df$fdr <- p.adjust(res_df$pval,method="fdr")
res_df[order(abs(res_df$pval)),]
return(res_df)
}
Functions for aggregate-limma-enrich approach.
# chromosome by chromosome will be much faster
magg <- function(mval,myann,cores=1){
gn <- unique(unlist(strsplit( myann$UCSC_RefGene_Name ,";")))
gnl <- strsplit( myann$UCSC_RefGene_Name ,";")
gnl <- mclapply(gnl,unique,mc.cores=cores)
myann$gnl <- gnl
keep <- rownames(subset(myann,UCSC_RefGene_Name!=""))
mx <- mval[rownames(mval) %in% keep,]
mymed <- function(g) {
probes <- rownames(myann[grep(g,myann$gnl),])
rows <- which(rownames(mx) %in% probes)
if ( length(rows) > 1 ) {
b <- mx[rows,]
med <- apply(b,2,median)
med <- matrix(med,nrow=1)
colnames(med) <- colnames(b)
rownames(med) <- g
return(med)
}
}
med <- mclapply(gn,mymed,mc.cores=cores)
med <- med[lapply(med,length)>0]
medf <- do.call(rbind,med)
return(medf)
}
chragg <- function(mval,myann,cores=1){
annodf <- as.data.frame(anno)
keep <- rownames(subset(myann,UCSC_RefGene_Name!=""))
mx <- mval[rownames(mval) %in% keep,]
chrs <- unique(anno$chr)
myorder <- unlist(lapply(chrs,function(mychr) { nrow( annodf[annodf$chr==mychr,] ) } ))
chrs <- chrs[order(-myorder)]
leadercores <- floor(sqrt(cores))
workercores <- ceiling(sqrt(cores))
chrmedf <- mclapply(chrs,function(chr) {
chrfrag <- annodf[annodf$chr==chr,]
chrprobes <-rownames(chrfrag)
chrmx <- mx[rownames(mx) %in% chrprobes,]
chranno <- myann[rownames(myann) %in% chrprobes,]
chrmedf <- magg(mval=chrmx,myann=chranno,cores=workercores)
return(chrmedf)
},mc.cores=leadercores)
medf <- do.call(rbind, chrmedf)
return(medf)
}
agglimma <- function(medf,design) {
fit.reduced <- lmFit(medf,design)
fit.reduced <- eBayes(fit.reduced)
dmagg <- topTable(fit.reduced,coef=ncol(design), number = Inf)
nondup <- !duplicated(dmagg$ID)
dmagg <- dmagg[nondup,]
rownames(dmagg) <- dmagg$ID
dmagg$ID = NULL
return(dmagg)
}
gsagg <- function(x,genesets,cores=1) {
meds <- mclapply(1:length(genesets), function(i) {
gs = genesets[[i]]
xx <- x[rownames(x) %in% gs,]
med <- apply(xx,2,median)
},mc.cores=cores)
mymed <- do.call(rbind,meds)
rownames(mymed) <- names(genesets)
as.data.frame(mymed)
}
aalimma <- function(agag,design) {
fit.reduced <- lmFit(agag,design)
fit.reduced <- eBayes(fit.reduced)
dmagg <- topTable(fit.reduced,coef=ncol(design), number = Inf)
return(dmagg)
}
aal <- function(mval,myann,genesets,design,cores=1) {
medf <- chragg(mval,myann,cores=CORES)
agag <- gsagg(x=medf,genesets=gs_symbols,cores=CORES)
aal <- aalimma(agag=agag,design=design)
return(aal)
}
aalres <- aal(mval=mval,myann=myann,genesets=gs_symbols,design=design,cores=CORES)
## Coefficients not estimable: patientpat32
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning in .ebayes(fit = fit, proportion = proportion, stdev.coef.lim =
## stdev.coef.lim, : Estimation of var.prior failed - set to default value
# prep
sex <- as.data.frame(design)$sex
tumor <- as.data.frame(design)$tumor
patient <- as.character(unlist(lapply(1:ncol(mval),function(i) {c(i,i)})))
patient <- head(patient,ncol(mval))
design <- model.matrix(~ patient + tumor )
rownames(design) <- colnames(mval)
split 74 samples 37 patients split into 18 + 18 Conduct LA workflow analysis. Then make overlap.
splitanalyze_la <- function(seed){
set.seed(seed)
a <- sample(1:37,18)
a <- a[order(a)]
nona <- setdiff(1:37,a)
set.seed(seed)
b <- sample(nona,18)
b <- b[order(b)]
a <- c( (a*2)-1 ,a*2 )
a <- a[order(a)]
b <- c( (b*2)-1 ,b*2 )
b <- b[order(b)]
design_a <- design[a,]
design_a <- design_a[,colSums(design_a)>0]
mval_a <- mval[,a]
design_b <- design[b,]
design_b <- design_b[,colSums(design_b)>0]
mval_b <- mval[,b]
# la1
dm1 <- runlimma(mval_a,design_a,myann)
dmagg1 <- agg(dm1,cores=CORES)
m1 <- dmagg1$gme_res_df[,"mean",drop=FALSE]
lares1 <- ttenrich(m=m1,genesets=gs_symbols,cores=CORES)
# la2
dm2 <- runlimma(mval_b,design_b,myann)
dmagg2 <- agg(dm2,cores=CORES)
m2 <- dmagg2$gme_res_df[,"mean",drop=FALSE]
lares2 <- ttenrich(m=m2,genesets=gs_symbols,cores=CORES)
list("lares1"=lares1,"lares2"=lares2)
}
lares <- lapply( seq(100,5000,100) ,splitanalyze_la)
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning in .ebayes(fit = fit, proportion = proportion, stdev.coef.lim =
## stdev.coef.lim, : Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient6
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient34
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient5
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient4
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 839473 probe(s)
## Warning: Estimation of var.prior failed - set to default value
splitanalyze_al <- function(seed){
set.seed(seed)
a <- sample(1:37,18)
a <- a[order(a)]
nona <- setdiff(1:37,a)
set.seed(seed)
b <- sample(nona,18)
b <- b[order(b)]
a <- c( (a*2)-1 ,a*2 )
a <- a[order(a)]
b <- c( (b*2)-1 ,b*2 )
b <- b[order(b)]
design_a <- design[a,]
design_a <- design_a[,colSums(design_a)>0]
mval_a <- mval[,a]
design_b <- design[b,]
design_b <- design_b[,colSums(design_b)>0]
mval_b <- mval[,b]
#al
medf1 <- chragg(mval_a,myann,cores=CORES)
magg1 <- agglimma(medf1,design_a)
m1 <- as.data.frame(magg1$t)
rownames(m1) <- rownames(magg1)
colnames(m1) <- "t"
alres1 <- ttenrich(m=m1,genesets=gs_symbols,cores=CORES)
#al
medf2 <- chragg(mval_b,myann,cores=CORES)
magg2 <- agglimma(medf2,design_b)
m2 <- as.data.frame(magg2$t)
rownames(m2) <- rownames(magg2)
colnames(m2) <- "t"
alres2 <- ttenrich(m=m2,genesets=gs_symbols,cores=CORES)
list("alres1"=alres1,"alres2"=alres2)
}
alres <- lapply( seq(100,5000,100) ,splitanalyze_al)
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning in .ebayes(fit = fit, proportion = proportion, stdev.coef.lim =
## stdev.coef.lim, : Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient6
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient34
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient5
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient4
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 25424 probe(s)
## Warning: Estimation of var.prior failed - set to default value
splitanalyze_aa <- function(seed){
set.seed(seed)
a <- sample(1:37,18)
a <- a[order(a)]
nona <- setdiff(1:37,a)
set.seed(seed)
b <- sample(nona,18)
b <- b[order(b)]
a <- c( (a*2)-1 ,a*2 )
a <- a[order(a)]
b <- c( (b*2)-1 ,b*2 )
b <- b[order(b)]
design_a <- design[a,]
design_a <- design_a[,colSums(design_a)>0]
mval_a <- mval[,a]
design_b <- design[b,]
design_b <- design_b[,colSums(design_b)>0]
mval_b <- mval[,b]
#aa1
aares1 <- aal(mval=mval_a,myann=myann,genesets=gs_symbols,
design=design_a,cores=CORES)
#aa2
aares2 <- aal(mval=mval_b,myann=myann,genesets=gs_symbols,
design=design_b,cores=CORES)
list("aares1"=aares1,"aares2"=aares2)
}
aares <- lapply( seq(100,5000,100) ,splitanalyze_aa)
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning in .ebayes(fit = fit, proportion = proportion, stdev.coef.lim =
## stdev.coef.lim, : Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient6
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient34
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient8
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient5
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient4
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient7
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
## Coefficients not estimable: patient9
## Warning: Partial NA coefficients for 1653 probe(s)
## Warning: Estimation of var.prior failed - set to default value
lacompare <- function(lares){
lares1 <- lares[[1]]
lares2 <- lares[[2]]
lasig1 <- subset(lares1,fdr<0.05)
lasig2 <- subset(lares2,fdr<0.05)
lasig1_up <- rownames(subset(lasig1,t_median>0))
lasig1_dn <- rownames(subset(lasig1,t_median<0))
lasig2_up <- rownames(subset(lasig2,t_median>0))
lasig2_dn <- rownames(subset(lasig2,t_median<0))
total <- length(unique(c(lasig1_up,lasig2_up,lasig1_dn,lasig2_dn)))
common <- length(intersect(lasig1_up, lasig2_up)) + length(intersect(lasig1_dn, lasig2_dn))
discordant <- length(intersect(lasig1_up, lasig2_dn)) + length(intersect(lasig1_dn, lasig2_up))
uncommon = total - common - discordant
laout <- data.frame(total,common,discordant,uncommon)
laout$p_comm <-laout$common / laout$total
laout$p_disc <-laout$discordant / laout$total
laout$p_uncom <-laout$uncommon / laout$total
laout
}
alcompare <-function(alres){
alres1 <- alres[[1]]
alres2 <- alres[[2]]
alsig1 <- subset(alres1,fdr<0.05)
alsig2 <- subset(alres2,fdr<0.05)
alsig1_up <- rownames(subset(alsig1,t_median>0))
alsig1_dn <- rownames(subset(alsig1,t_median<0))
alsig2_up <- rownames(subset(alsig2,t_median>0))
alsig2_dn <- rownames(subset(alsig2,t_median<0))
total <- length(unique(c(alsig1_up,alsig2_up,alsig1_dn,alsig2_dn)))
common <- length(intersect(alsig1_up, alsig2_up)) + length(intersect(alsig1_dn, alsig2_dn))
discordant <- length(intersect(alsig1_up, alsig2_dn)) + length(intersect(alsig1_dn, alsig2_up))
uncommon = total - common - discordant
result <- c("total"=total,"common"=common,"discordant"=discordant,"uncommon"=uncommon)
alout <- data.frame(total,common,discordant,uncommon)
alout$p_comm <-alout$common / alout$total
alout$p_disc <-alout$discordant / alout$total
alout$p_uncom <-alout$uncommon / alout$total
alout
}
aacompare <-function(aares){
aares1 <- aares[[1]]
aares2 <- aares[[2]]
aasig1 <- subset(aares1,adj.P.Val<0.05)
aasig2 <- subset(aares2,adj.P.Val<0.05)
aasig1_up <- rownames(subset(aasig1,logFC>0))
aasig1_dn <- rownames(subset(aasig1,logFC<0))
aasig2_up <- rownames(subset(aasig2,logFC>0))
aasig2_dn <- rownames(subset(aasig2,logFC<0))
total <- length(unique(c(aasig1_up,aasig2_up,aasig1_dn,aasig2_dn)))
common <- length(intersect(aasig1_up, aasig2_up)) + length(intersect(aasig1_dn, aasig2_dn))
discordant <- length(intersect(aasig1_up, aasig2_dn)) + length(intersect(aasig1_dn, aasig2_up))
uncommon = total - common - discordant
result <- c("total"=total,"common"=common,"discordant"=discordant,"uncommon"=uncommon)
aaout <- data.frame(total,common,discordant,uncommon)
aaout$p_comm <- aaout$common / aaout$total
aaout$p_disc <- aaout$discordant / aaout$total
aaout$p_uncom <-aaout$uncommon / aaout$total
aaout
}
laout <- do.call(rbind,lapply(lares,lacompare))
alout <- do.call(rbind,lapply(alres,alcompare))
aaout <- do.call(rbind,lapply(aares,aacompare))
laout
## total common discordant uncommon p_comm p_disc p_uncom
## 1 1421 866 0 555 0.6094299789 0.000000000 0.39057002
## 2 1620 1242 1 377 0.7666666667 0.000617284 0.23271605
## 3 931 475 9 447 0.5102040816 0.009667025 0.48012889
## 4 935 483 12 440 0.5165775401 0.012834225 0.47058824
## 5 1271 483 0 788 0.3800157356 0.000000000 0.61998426
## 6 1277 554 0 723 0.4338292874 0.000000000 0.56617071
## 7 1592 0 1320 272 0.0000000000 0.829145729 0.17085427
## 8 1417 1 791 625 0.0007057163 0.558221595 0.44107269
## 9 904 419 11 474 0.4634955752 0.012168142 0.52433628
## 10 1611 1492 0 119 0.9261328367 0.000000000 0.07386716
## 11 1550 1 603 946 0.0006451613 0.389032258 0.61032258
## 12 1603 2 918 683 0.0012476606 0.572676232 0.42607611
## 13 1604 90 12 1502 0.0561097257 0.007481297 0.93640898
## 14 1519 2 726 791 0.0013166557 0.477946017 0.52073733
## 15 1562 1221 0 341 0.7816901408 0.000000000 0.21830986
## 16 1308 1 736 571 0.0007645260 0.562691131 0.43654434
## 17 1527 181 0 1346 0.1185330714 0.000000000 0.88146693
## 18 1603 12 838 753 0.0074859638 0.522769807 0.46974423
## 19 1260 389 0 871 0.3087301587 0.000000000 0.69126984
## 20 1588 0 1312 276 0.0000000000 0.826196474 0.17380353
## 21 1605 11 805 789 0.0068535826 0.501557632 0.49158879
## 22 1620 1521 0 99 0.9388888889 0.000000000 0.06111111
## 23 634 9 59 566 0.0141955836 0.093059937 0.89274448
## 24 923 441 12 470 0.4777898158 0.013001083 0.50920910
## 25 1597 0 1327 270 0.0000000000 0.830932999 0.16906700
## 26 1561 628 1 932 0.4023062140 0.000640615 0.59705317
## 27 1260 415 0 845 0.3293650794 0.000000000 0.67063492
## 28 1585 0 1304 281 0.0000000000 0.822712934 0.17728707
## 29 1568 1 1238 329 0.0006377551 0.789540816 0.20982143
## 30 1548 36 491 1021 0.0232558140 0.317183463 0.65956072
## 31 1557 1 1102 454 0.0006422608 0.707771355 0.29158638
## 32 1594 1435 0 159 0.9002509410 0.000000000 0.09974906
## 33 1525 195 0 1330 0.1278688525 0.000000000 0.87213115
## 34 903 1 100 802 0.0011074197 0.110741971 0.88815061
## 35 977 3 60 914 0.0030706244 0.061412487 0.93551689
## 36 1049 6 520 523 0.0057197331 0.495710200 0.49857007
## 37 1507 557 0 950 0.3696084937 0.000000000 0.63039151
## 38 1613 33 526 1054 0.0204587725 0.326100434 0.65344079
## 39 1506 3 764 739 0.0019920319 0.507304117 0.49070385
## 40 1562 1 1142 419 0.0006402049 0.731113956 0.26824584
## 41 1555 28 577 950 0.0180064309 0.371061093 0.61093248
## 42 1598 0 1460 138 0.0000000000 0.913642053 0.08635795
## 43 1549 230 106 1213 0.1484828922 0.068431246 0.78308586
## 44 1633 0 1524 109 0.0000000000 0.933251684 0.06674832
## 45 1426 1 928 497 0.0007012623 0.650771388 0.34852735
## 46 1057 14 434 609 0.0132450331 0.410596026 0.57615894
## 47 982 3 409 570 0.0030549898 0.416496945 0.58044807
## 48 1567 1269 0 298 0.8098276962 0.000000000 0.19017230
## 49 1513 5 740 768 0.0033046927 0.489094514 0.50760079
## 50 909 4 163 742 0.0044004400 0.179317932 0.81628163
alout
## total common discordant uncommon p_comm p_disc p_uncom
## 1 1049 367 0 682 0.3498570 0.0000000000 0.6501430
## 2 811 625 0 186 0.7706535 0.0000000000 0.2293465
## 3 865 598 1 266 0.6913295 0.0011560694 0.3075145
## 4 1147 295 0 852 0.2571927 0.0000000000 0.7428073
## 5 859 487 0 372 0.5669383 0.0000000000 0.4330617
## 6 853 570 0 283 0.6682298 0.0000000000 0.3317702
## 7 885 454 0 431 0.5129944 0.0000000000 0.4870056
## 8 1054 189 1 864 0.1793169 0.0009487666 0.8197343
## 9 904 589 0 315 0.6515487 0.0000000000 0.3484513
## 10 1059 353 0 706 0.3333333 0.0000000000 0.6666667
## 11 859 469 0 390 0.5459837 0.0000000000 0.4540163
## 12 986 493 0 493 0.5000000 0.0000000000 0.5000000
## 13 891 653 0 238 0.7328844 0.0000000000 0.2671156
## 14 1271 135 2 1134 0.1062156 0.0015735641 0.8922109
## 15 839 677 0 162 0.8069130 0.0000000000 0.1930870
## 16 865 539 0 326 0.6231214 0.0000000000 0.3768786
## 17 839 659 0 180 0.7854589 0.0000000000 0.2145411
## 18 984 557 0 427 0.5660569 0.0000000000 0.4339431
## 19 1023 514 0 509 0.5024438 0.0000000000 0.4975562
## 20 1064 219 0 845 0.2058271 0.0000000000 0.7941729
## 21 916 581 0 335 0.6342795 0.0000000000 0.3657205
## 22 896 639 0 257 0.7131696 0.0000000000 0.2868304
## 23 875 592 0 283 0.6765714 0.0000000000 0.3234286
## 24 1101 250 0 851 0.2270663 0.0000000000 0.7729337
## 25 865 623 0 242 0.7202312 0.0000000000 0.2797688
## 26 1007 295 0 712 0.2929494 0.0000000000 0.7070506
## 27 1025 597 4 424 0.5824390 0.0039024390 0.4136585
## 28 903 427 0 476 0.4728682 0.0000000000 0.5271318
## 29 964 337 1 626 0.3495851 0.0010373444 0.6493776
## 30 953 502 0 451 0.5267576 0.0000000000 0.4732424
## 31 796 573 0 223 0.7198492 0.0000000000 0.2801508
## 32 956 569 1 386 0.5951883 0.0010460251 0.4037657
## 33 980 642 0 338 0.6551020 0.0000000000 0.3448980
## 34 887 465 0 422 0.5242390 0.0000000000 0.4757610
## 35 844 630 0 214 0.7464455 0.0000000000 0.2535545
## 36 959 533 0 426 0.5557873 0.0000000000 0.4442127
## 37 842 462 0 380 0.5486936 0.0000000000 0.4513064
## 38 914 282 0 632 0.3085339 0.0000000000 0.6914661
## 39 966 407 0 559 0.4213251 0.0000000000 0.5786749
## 40 896 290 0 606 0.3236607 0.0000000000 0.6763393
## 41 937 410 0 527 0.4375667 0.0000000000 0.5624333
## 42 920 703 0 217 0.7641304 0.0000000000 0.2358696
## 43 887 671 0 216 0.7564825 0.0000000000 0.2435175
## 44 935 445 0 490 0.4759358 0.0000000000 0.5240642
## 45 825 653 1 171 0.7915152 0.0012121212 0.2072727
## 46 987 518 1 468 0.5248227 0.0010131712 0.4741641
## 47 1223 161 1 1061 0.1316435 0.0008176615 0.8675388
## 48 1056 532 0 524 0.5037879 0.0000000000 0.4962121
## 49 931 536 0 395 0.5757250 0.0000000000 0.4242750
## 50 962 468 0 494 0.4864865 0.0000000000 0.5135135
aaout
## total common discordant uncommon p_comm p_disc p_uncom
## 1 996 527 0 469 0.5291165 0.000000000 0.4708835
## 2 888 602 0 286 0.6779279 0.000000000 0.3220721
## 3 897 593 0 304 0.6610925 0.000000000 0.3389075
## 4 1151 365 0 786 0.3171156 0.000000000 0.6828844
## 5 818 490 0 328 0.5990220 0.000000000 0.4009780
## 6 904 426 0 478 0.4712389 0.000000000 0.5287611
## 7 960 446 0 514 0.4645833 0.000000000 0.5354167
## 8 1123 332 0 791 0.2956367 0.000000000 0.7043633
## 9 957 573 1 383 0.5987461 0.001044932 0.4002090
## 10 986 564 0 422 0.5720081 0.000000000 0.4279919
## 11 1003 427 0 576 0.4257228 0.000000000 0.5742772
## 12 1001 454 0 547 0.4535465 0.000000000 0.5464535
## 13 923 454 0 469 0.4918743 0.000000000 0.5081257
## 14 1208 453 3 752 0.3750000 0.002483444 0.6225166
## 15 840 551 0 289 0.6559524 0.000000000 0.3440476
## 16 853 574 0 279 0.6729191 0.000000000 0.3270809
## 17 921 600 0 321 0.6514658 0.000000000 0.3485342
## 18 915 476 0 439 0.5202186 0.000000000 0.4797814
## 19 1042 426 0 616 0.4088292 0.000000000 0.5911708
## 20 1101 253 0 848 0.2297911 0.000000000 0.7702089
## 21 969 556 0 413 0.5737874 0.000000000 0.4262126
## 22 912 539 0 373 0.5910088 0.000000000 0.4089912
## 23 877 598 0 279 0.6818700 0.000000000 0.3181300
## 24 1121 452 0 669 0.4032114 0.000000000 0.5967886
## 25 951 610 0 341 0.6414301 0.000000000 0.3585699
## 26 985 455 0 530 0.4619289 0.000000000 0.5380711
## 27 934 637 0 297 0.6820128 0.000000000 0.3179872
## 28 898 429 0 469 0.4777283 0.000000000 0.5222717
## 29 1069 304 0 765 0.2843779 0.000000000 0.7156221
## 30 973 492 0 481 0.5056526 0.000000000 0.4943474
## 31 908 380 0 528 0.4185022 0.000000000 0.5814978
## 32 974 636 0 338 0.6529774 0.000000000 0.3470226
## 33 963 599 0 364 0.6220145 0.000000000 0.3779855
## 34 989 382 0 607 0.3862487 0.000000000 0.6137513
## 35 972 556 0 416 0.5720165 0.000000000 0.4279835
## 36 881 487 0 394 0.5527809 0.000000000 0.4472191
## 37 908 422 0 486 0.4647577 0.000000000 0.5352423
## 38 965 406 0 559 0.4207254 0.000000000 0.5792746
## 39 985 400 0 585 0.4060914 0.000000000 0.5939086
## 40 1036 179 0 857 0.1727799 0.000000000 0.8272201
## 41 982 333 0 649 0.3391039 0.000000000 0.6608961
## 42 938 623 0 315 0.6641791 0.000000000 0.3358209
## 43 950 588 0 362 0.6189474 0.000000000 0.3810526
## 44 949 450 0 499 0.4741834 0.000000000 0.5258166
## 45 873 497 0 376 0.5693013 0.000000000 0.4306987
## 46 1049 553 0 496 0.5271687 0.000000000 0.4728313
## 47 1097 389 0 708 0.3546035 0.000000000 0.6453965
## 48 1004 609 0 395 0.6065737 0.000000000 0.3934263
## 49 1013 318 0 695 0.3139191 0.000000000 0.6860809
## 50 950 554 0 396 0.5831579 0.000000000 0.4168421
save.image("GSE158422_gmea.Rdata")
sessionInfo()
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] beeswarm_0.4.0
## [2] kableExtra_1.3.4
## [3] mitch_1.12.0
## [4] tictoc_1.2
## [5] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [6] IlluminaHumanMethylation450kmanifest_0.4.0
## [7] minfi_1.46.0
## [8] bumphunter_1.42.0
## [9] locfit_1.5-9.8
## [10] iterators_1.0.14
## [11] foreach_1.5.2
## [12] Biostrings_2.68.1
## [13] XVector_0.40.0
## [14] SummarizedExperiment_1.30.2
## [15] Biobase_2.60.0
## [16] MatrixGenerics_1.12.3
## [17] matrixStats_1.0.0
## [18] GenomicRanges_1.52.0
## [19] GenomeInfoDb_1.36.3
## [20] IRanges_2.34.1
## [21] S4Vectors_0.38.2
## [22] BiocGenerics_0.46.0
## [23] eulerr_7.0.0
## [24] limma_3.56.2
##
## loaded via a namespace (and not attached):
## [1] splines_4.3.1 later_1.3.1
## [3] BiocIO_1.10.0 bitops_1.0-7
## [5] filelock_1.0.2 tibble_3.2.1
## [7] preprocessCore_1.62.1 XML_3.99-0.14
## [9] lifecycle_1.0.3 lattice_0.21-9
## [11] MASS_7.3-60 base64_2.0.1
## [13] scrime_1.3.5 magrittr_2.0.3
## [15] sass_0.4.7 rmarkdown_2.25
## [17] jquerylib_0.1.4 yaml_2.3.7
## [19] httpuv_1.6.11 doRNG_1.8.6
## [21] askpass_1.2.0 DBI_1.1.3
## [23] RColorBrewer_1.1-3 abind_1.4-5
## [25] zlibbioc_1.46.0 rvest_1.0.3
## [27] quadprog_1.5-8 purrr_1.0.2
## [29] RCurl_1.98-1.12 rappdirs_0.3.3
## [31] GenomeInfoDbData_1.2.10 genefilter_1.82.1
## [33] annotate_1.78.0 svglite_2.1.1
## [35] DelayedMatrixStats_1.22.6 codetools_0.2-19
## [37] DelayedArray_0.26.7 xml2_1.3.5
## [39] tidyselect_1.2.0 beanplot_1.3.1
## [41] BiocFileCache_2.8.0 webshot_0.5.5
## [43] illuminaio_0.42.0 GenomicAlignments_1.36.0
## [45] jsonlite_1.8.7 multtest_2.56.0
## [47] ellipsis_0.3.2 survival_3.5-7
## [49] systemfonts_1.0.4 tools_4.3.1
## [51] progress_1.2.2 Rcpp_1.0.11
## [53] glue_1.6.2 gridExtra_2.3
## [55] xfun_0.40 dplyr_1.1.3
## [57] HDF5Array_1.28.1 fastmap_1.1.1
## [59] GGally_2.1.2 rhdf5filters_1.12.1
## [61] fansi_1.0.4 openssl_2.1.1
## [63] caTools_1.18.2 digest_0.6.33
## [65] R6_2.5.1 mime_0.12
## [67] colorspace_2.1-0 gtools_3.9.4
## [69] biomaRt_2.56.1 RSQLite_2.3.1
## [71] utf8_1.2.3 tidyr_1.3.0
## [73] generics_0.1.3 data.table_1.14.8
## [75] rtracklayer_1.60.1 prettyunits_1.2.0
## [77] httr_1.4.7 htmlwidgets_1.6.2
## [79] S4Arrays_1.0.6 pkgconfig_2.0.3
## [81] gtable_0.3.4 blob_1.2.4
## [83] siggenes_1.74.0 htmltools_0.5.6
## [85] echarts4r_0.4.5 scales_1.2.1
## [87] png_0.1-8 knitr_1.44
## [89] rstudioapi_0.15.0 reshape2_1.4.4
## [91] tzdb_0.4.0 rjson_0.2.21
## [93] nlme_3.1-163 curl_5.0.2
## [95] cachem_1.0.8 rhdf5_2.44.0
## [97] stringr_1.5.0 KernSmooth_2.23-22
## [99] AnnotationDbi_1.62.2 restfulr_0.0.15
## [101] GEOquery_2.68.0 pillar_1.9.0
## [103] grid_4.3.1 reshape_0.8.9
## [105] vctrs_0.6.3 gplots_3.1.3
## [107] promises_1.2.1 dbplyr_2.3.4
## [109] xtable_1.8-4 evaluate_0.22
## [111] readr_2.1.4 GenomicFeatures_1.52.2
## [113] cli_3.6.1 compiler_4.3.1
## [115] Rsamtools_2.16.0 rlang_1.1.1
## [117] crayon_1.5.2 rngtools_1.5.2
## [119] nor1mix_1.3-0 mclust_6.0.0
## [121] plyr_1.8.8 stringi_1.7.12
## [123] viridisLite_0.4.2 BiocParallel_1.34.2
## [125] munsell_0.5.0 Matrix_1.6-1.1
## [127] hms_1.1.3 sparseMatrixStats_1.12.2
## [129] bit64_4.0.5 ggplot2_3.4.3
## [131] Rhdf5lib_1.22.1 KEGGREST_1.40.1
## [133] shiny_1.7.5 memoise_2.0.1
## [135] bslib_0.5.1 bit_4.0.5