Introduction

The purpose of this analysis is to explore different enrichment approaches to the cancer methylation data: Infinium EPIC array (GSE158422) data for matched control and cancer tissues.

We will specifically be testing the GMEA approach versus existing approaches:

  • 1-way Wilcox text

  • 1-way t-test

  • FGSEA test

  • roast test

After each of these tests, downstream GSEA can be conducted.

suppressPackageStartupMessages({
  library("plyr")
  library("R.utils")
  library("missMethyl")
  library("limma")
  library("DMRcate")
  library("DMRcatedata")
  library("topconfects")
  library("minfi")
  library("IlluminaHumanMethylation450kmanifest")
  library("RColorBrewer")
  library("IlluminaHumanMethylation450kanno.ilmn12.hg19")
  library("GEOquery")
  library("eulerr")
  library("plyr")
  library("gplots")
  library("reshape2")
  library("forestplot")
  library("beeswarm")
  library("RCircos")
  library("qqman")
  library("ENmix")
  library("tictoc")
  library("mitch")
  library("kableExtra")
  library("fgsea")
})

source("../meth_functions.R")
CORES=8

Obtaining array annotations

anno <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
myann <- data.frame(anno[,c("UCSC_RefGene_Name",
  "Regulatory_Feature_Group","Islands_Name","Relation_to_Island")])
promoters <- grep("Prom",myann$Regulatory_Feature_Group)

Gene probe sets

gp <- myann[,"UCSC_RefGene_Name",drop=FALSE]
gp2 <- strsplit(gp$UCSC_RefGene_Name,";")
names(gp2) <- rownames(gp)
sets <- split(rep(names(gp2), lengths(gp2)), unlist(gp2))

hist(unlist(lapply(sets,length)),xlim=c(0,200),breaks=500,xlab="set size",main="probes per gene")

Load array result

GSE158422 is the accession number for the array data.

#GSE158422 <- readRDS("GSE158422.rds")
dm <- read.table("GSE158422_limma.tsv",header=TRUE,sep="\t")

head(dm,50) %>%
  kbl(caption = "Top significant probes with limma") %>%
  kable_paper("hover", full_width = F)
Top significant probes with limma
Row.names UCSC_RefGene_Name Regulatory_Feature_Group Islands_Name Relation_to_Island logFC AveExpr t P.Value adj.P.Val B
5777 cg00159780 REXO1L2P;REXO1L1 chr8:86573421-86575248 Island -1.6810156 1.1199758 -13.41989 0 0 38.61314
61184 cg01772014 C20orf160 Unclassified_Cell_type_specific chr20:30606492-30607174 N_Shore -1.2581347 -2.1384838 -13.36031 0 0 38.38467
468211 cg14205001 NOTCH1 chr9:139405089-139405292 S_Shore 1.0609528 1.0240980 13.34777 0 0 38.33651
221392 cg06569947 DCUN1D2 OpenSea 1.6933468 1.5977978 13.21072 0 0 37.80891
577564 cg17655624 ZNF385A;ZNF385A Unclassified_Cell_type_specific chr12:54784900-54785238 S_Shore -1.6062843 -2.4260117 -13.17366 0 0 37.66580
444856 cg13531667 MCC chr5:112823256-112824304 S_Shore -1.9451786 -2.4725269 -13.13667 0 0 37.52278
669100 cg20979986 SERINC5;SERINC5;SERINC5;SERINC5;SERINC5 Unclassified_Cell_type_specific OpenSea -1.9389375 -1.5165570 -13.05957 0 0 37.22412
657981 cg20568402 DCUN1D2 OpenSea 1.6831260 1.3499641 13.03319 0 0 37.12174
60887 cg01762663 DOCK9;DOCK9 OpenSea 1.4190052 1.6213375 12.94365 0 0 36.77360
760860 cg24334634 DCUN1D2 OpenSea 1.8952109 1.3472386 12.89559 0 0 36.58628
791527 cg25422938 RPA3;UMAD1;UMAD1;UMAD1 OpenSea 2.0931417 0.9054807 12.88130 0 0 36.53053
102318 cg02973960 CAMKK2;CAMKK2;CAMKK2;CAMKK2;CAMKK2;CAMKK2;CAMKK2;CAMKK2 OpenSea 1.8653298 0.9885988 12.82480 0 0 36.30981
159551 cg04690379 SPTLC2 OpenSea 1.4808359 1.6632219 12.81647 0 0 36.27725
401316 cg12131862 ATP2B4;ATP2B4 OpenSea 1.3214447 1.1562250 12.73097 0 0 35.94239
549143 cg16732616 DMRTA2 chr1:50884228-50891471 Island 3.0282534 -2.2765252 12.67359 0 0 35.71713
560139 cg17094249 Unclassified_Cell_type_specific OpenSea -1.6984142 -1.5599415 -12.62766 0 0 35.53653
91439 cg02655980 GALK2;GALK2;GALK2;MIR4716;GALK2 OpenSea 1.1562534 1.9223113 12.59459 0 0 35.40631
15682 cg00446235 TSTD1;TSTD1;TSTD1 Promoter_Associated chr1:161008377-161008830 Island -1.4800380 -2.5291407 -12.57768 0 0 35.33968
440784 cg13417058 TKT;TKT;TKT;TKT chr3:53289533-53290213 N_Shore -1.2138572 -3.1919784 -12.56018 0 0 35.27064
576795 cg17627973 SRPK2;SRPK2 chr7:104885049-104885400 Island 1.2313437 1.4827501 12.55575 0 0 35.25318
397225 cg12003230 C21orf84 OpenSea 1.2476557 1.2625415 12.51287 0 0 35.08392
736989 cg23480296 DAB2IP OpenSea 1.5228320 2.0541757 12.49776 0 0 35.02422
667781 cg20934096 C7orf50;C7orf50;C7orf50 chr7:1119980-1120248 N_Shelf 1.8073593 1.0858697 12.48786 0 0 34.98510
74972 cg02174232 APEH Promoter_Associated chr3:49710968-49712279 Island -1.3008066 -2.2997937 -12.47090 0 0 34.91804
224178 cg06651376 SMYD4 Unclassified_Cell_type_specific OpenSea 1.7518820 2.1327280 12.39961 0 0 34.63569
48818 cg01399319 CCNL2;CCNL2;CCNL2;CCNL2 chr1:1322644-1322924 S_Shelf 1.5152093 1.6887531 12.39857 0 0 34.63157
836007 cg26993251 MACROD1 Promoter_Associated chr11:63932990-63934070 Island -1.8619005 -2.5408778 -12.38902 0 0 34.59373
317907 cg09496762 Promoter_Associated chr20:42285961-42286535 Island -1.3804253 -3.4226436 -12.38487 0 0 34.57725
141548 cg04147064 TBC1D22A;TBC1D22A;TBC1D22A;TBC1D22A;TBC1D22A chr22:47558272-47558513 S_Shelf 1.6643797 1.1404515 12.38173 0 0 34.56481
689315 cg21722612 TPCN1;TPCN1;TPCN1 OpenSea 1.7694572 1.3631921 12.37873 0 0 34.55291
303960 cg09067993 SUCLG2;SUCLG2 OpenSea 1.6770912 1.0487424 12.34700 0 0 34.42698
327281 cg09792881 DMRTA2 chr1:50884228-50891471 Island 2.6518400 -2.3846188 12.30475 0 0 34.25906
811041 cg26134703 FAM49B;FAM49B;FAM49B;FAM49B;FAM49B;FAM49B;FAM49B;FAM49B OpenSea 1.1456692 2.1751297 12.30127 0 0 34.24524
536592 cg16350950 ARFGEF2;ARFGEF2 OpenSea 1.5891250 1.7433091 12.28112 0 0 34.16508
577091 cg17639795 chr19:2950359-2950962 N_Shore 0.9854179 1.4310298 12.25750 0 0 34.07103
500102 cg15169038 PLEKHG1 OpenSea 1.2350751 1.2815770 12.25413 0 0 34.05762
833500 cg26908825 GMDS OpenSea 1.5139160 0.9404246 12.24443 0 0 34.01897
515979 cg15698065 DCUN1D2 OpenSea 1.1600645 1.1265920 12.24075 0 0 34.00432
281220 cg08365845 GNAI2;GNAI2 Promoter_Associated chr3:50264402-50265101 S_Shore -1.1317946 -3.7762019 -12.22984 0 0 33.96084
27631 cg00781839 DCUN1D2 OpenSea 1.5928682 2.1251831 12.19970 0 0 33.84066
663755 cg20778786 OpenSea -2.2891897 -1.4266297 -12.19677 0 0 33.82896
601050 cg18483766 PPP4R1;PPP4R1;PPP4R1 OpenSea 1.3919045 1.7771650 12.17365 0 0 33.73668
690514 cg21768042 ARAP3 Unclassified OpenSea 0.9038892 1.1291209 12.17317 0 0 33.73475
66144 cg01915688 PPP1R12A;PPP1R12A;PPP1R12A;PPP1R12A;PPP1R12A OpenSea 1.5092716 2.2025612 12.13652 0 0 33.58836
134752 cg03946762 ZNF385A;ZNF385A;ZNF385A;ZNF385A Unclassified_Cell_type_specific chr12:54784900-54785238 Island -1.7206885 -2.0731893 -12.13557 0 0 33.58454
228200 cg06767326 DCUN1D2 OpenSea 1.8092946 1.9834216 12.13503 0 0 33.58240
693283 cg21870038 RFFL;RFFL;RFFL Promoter_Associated OpenSea -1.8490646 -3.1666138 -12.11240 0 0 33.49190
351767 cg10546600 BRD7;BRD7 OpenSea 1.4049959 1.7498277 12.11131 0 0 33.48755
524497 cg15970145 LARGE;LARGE OpenSea -1.8418429 -0.8440018 -12.09043 0 0 33.40397
54185 cg01558390 PIP4K2A OpenSea 1.6277425 0.6732985 12.08821 0 0 33.39509
rownames(dm) <- dm[,1]
dm <- dm[,c("UCSC_RefGene_Name","t")]

GMEA whole gene - wilcox test

hist(dm$t)

tic() ; res <- calc_sc(dm) ; toc() #32 cores 95.5
## 116.156 sec elapsed
res2 <- res[[2]]

head(res2,20) %>%
  kbl(caption = "Top significant genes with GMEA") %>%
  kable_paper("hover", full_width = F)
Top significant genes with GMEA
nprobes mean median p-value(sc) sig fdr(sc)
PTPRN2 1474 -3.813234 -4.397006 0 196.48861 0
MAD1L1 817 -2.042400 -2.277810 0 70.11979 0
TNXB 529 -3.156354 -3.605676 0 69.75063 0
DIP2C 607 -2.479070 -3.095174 0 63.78267 0
CDH4 382 -3.919010 -4.543389 0 54.63858 0
PCDHGA1 439 3.122674 3.776895 0 52.91420 0
SHANK2 491 -2.794116 -3.589533 0 51.36588 0
PCDHGA2 422 3.159710 3.783492 0 51.21125 0
PCDHGA3 399 3.179048 3.797327 0 48.12942 0
ADARB2 475 -2.507251 -3.021943 0 48.00564 0
PCDHGB1 380 3.182828 3.785979 0 45.95262 0
PRDM16 663 -2.082507 -2.808744 0 44.79882 0
PCDHGA4 362 3.243741 3.881572 0 44.50243 0
RASA3 361 -2.612493 -2.761520 0 42.79716 0
PCDHGB2 343 3.255906 3.949639 0 41.81006 0
PCDHGA5 326 3.258105 4.026341 0 39.45533 0
TRAPPC9 420 -2.548773 -3.071687 0 38.99707 0
LMF1 262 -3.279107 -3.705261 0 38.85506 0
RPS6KA2 355 -2.828566 -3.489451 0 38.78985 0
CACNA1C 290 -3.605957 -4.538620 0 37.76518 0
sig <- subset(res2,`fdr(sc)`<0.05)

es <- sig[order(-abs(sig$median)),]

head(es,20) %>%
  kbl(caption = "Top effect size probes with GMEA") %>%
  kable_paper("hover", full_width = F)
Top effect size probes with GMEA
nprobes mean median p-value(sc) sig fdr(sc)
HOXA5 44 7.623040 7.780885 0.0e+00 12.944290 0.0000000
HOXD10 21 7.142220 7.426734 1.0e-06 6.020600 0.0249023
HOXD9 25 7.665227 7.412387 1.0e-07 7.224720 0.0015815
HOXD4 28 7.471039 7.349427 0.0e+00 8.127810 0.0001990
SFTA3 40 5.835427 7.108292 0.0e+00 9.089862 0.0000218
CCDC140 52 6.792560 6.995631 0.0e+00 9.442748 0.0000097
DLX6AS 66 5.720625 6.862673 0.0e+00 11.222806 0.0000002
OTX2 38 6.288114 6.766082 0.0e+00 10.837080 0.0000004
HOXA3 77 6.546720 6.671353 0.0e+00 13.600021 0.0000000
IRX1 24 6.319978 6.616094 1.0e-07 6.923690 0.0031527
SOX1 25 6.058103 6.516175 1.0e-07 7.224720 0.0015815
SIM1 73 4.353270 6.467176 0.0e+00 9.145769 0.0000192
DRD4 20 5.670473 6.440472 1.9e-06 5.719570 0.0495014
MUC19 21 -6.200077 -6.435404 1.0e-06 6.020600 0.0249023
OR9Q1 32 -5.049954 -6.398015 1.7e-06 5.761153 0.0450092
SIX6 23 6.101058 6.375368 2.0e-07 6.622660 0.0062802
PAX3 58 5.432323 6.178637 0.0e+00 9.927403 0.0000032
UNC13C 22 -5.520481 -6.155292 1.0e-06 6.020600 0.0249023
CNTNAP4 35 -5.354329 -6.137429 0.0e+00 9.389922 0.0000110
GHSR 21 5.456063 6.134691 1.0e-06 6.020600 0.0249023
gmea_volc(res2)

gmea_boxplot(res)

res2_wg <- res2

Investigate how probe number influences significance.

plot(res2$nprobes,res2$sig,log="x",ylim=c(0,50),pch=19,cex=0.6)
points(sig$nprobes,sig$sig,col="red",pch=19,cex=0.62)
MIN = min(sig$nprobes)
LEFT = nrow(subset(res2,nprobes<MIN))
RIGHT = nrow(subset(res2,nprobes>MIN))
SIG = nrow(sig)
TOT = nrow(res2)
HEADER <- paste(TOT, "genes in total.", SIG, "with FDR<0.05.",
  RIGHT, "well covered and", LEFT, "poorly covered")
mtext(HEADER)
abline(v=MIN,lty=2)

GMEA whole gene - t.test

dm <- read.table("GSE158422_limma.tsv",header=TRUE,sep="\t")
rownames(dm) <- dm[,1]
dm <- dm[,c("UCSC_RefGene_Name","t")]

hist(dm$t)

tic()
res <- calc_sc2(dm)
toc()
## 254.451 sec elapsed
res2 <- res[[2]]

head(res2,20) %>%
  kbl(caption = "Top significant genes with GMEA-t") %>%
  kable_paper("hover", full_width = F)
Top significant genes with GMEA-t
nprobes mean median p-value(sc) sig fdr(sc)
PTPRN2 1474 -3.813234 -4.397006 0 Inf 0
TNXB 529 -3.156354 -3.605676 0 113.00665 0
CDH4 382 -3.919010 -4.543389 0 99.12338 0
DIP2C 607 -2.479070 -3.095174 0 86.68677 0
MAD1L1 817 -2.042400 -2.277810 0 81.22935 0
PCDHGA1 439 3.122674 3.776895 0 75.90437 0
PCDHGA2 422 3.159710 3.783492 0 73.92040 0
SHANK2 491 -2.794116 -3.589533 0 73.17547 0
SNORD115-15 81 -6.138454 -6.052379 0 70.09110 0
SNORD115-21 81 -6.138454 -6.052379 0 70.09110 0
PCDHGA3 399 3.179048 3.797327 0 69.19488 0
LMF1 262 -3.279107 -3.705261 0 67.83114 0
PCDHGB1 380 3.182828 3.785979 0 66.11569 0
PCDHGA4 362 3.243741 3.881572 0 64.49388 0
MYT1L 245 -3.956712 -4.423715 0 64.37781 0
ADARB2 475 -2.507251 -3.021943 0 62.24055 0
PCDHGB2 343 3.255906 3.949639 0 60.22098 0
RASA3 361 -2.612493 -2.761520 0 59.68705 0
PCDHGA5 326 3.258105 4.026341 0 56.53669 0
CACNA1C 290 -3.605957 -4.538620 0 56.17918 0
sig <- subset(res2,`fdr(sc)`<0.05)

es <- sig[order(-abs(sig$median)),]

head(es,20) %>%
  kbl(caption = "Top effect size probes with GMEA") %>%
  kable_paper("hover", full_width = F)
Top effect size probes with GMEA
nprobes mean median p-value(sc) sig fdr(sc)
MIR10B 13 7.587783 8.134873 0.0e+00 8.007009 0.0002488
HOXD12 14 7.862712 7.922158 0.0e+00 12.765511 0.0000000
HOXA5 44 7.623040 7.780885 0.0e+00 40.923039 0.0000000
LINC01246 7 -7.478710 -7.729335 1.0e-07 6.973414 0.0026483
PFN3 10 7.723714 7.630209 0.0e+00 7.650953 0.0005621
MIR196A1 7 7.437659 7.478137 7.0e-07 6.160796 0.0169168
C17orf112 6 -7.509326 -7.471408 1.5e-06 5.816728 0.0370409
MIR205 7 -6.909420 -7.466330 2.0e-06 5.704269 0.0478546
HOXD10 21 7.142220 7.426734 0.0e+00 12.079764 0.0000000
HOXD9 25 7.665227 7.412387 0.0e+00 22.120455 0.0000000
HOXD4 28 7.471039 7.349427 0.0e+00 25.596279 0.0000000
MIR503 12 6.473450 7.288326 0.0e+00 7.337316 0.0011527
HOXB1 16 6.521135 7.287845 9.0e-07 6.062606 0.0211564
TAS2R1 6 -6.937028 -7.169484 1.8e-06 5.750589 0.0430630
MIR411 11 -6.635723 -7.159973 1.0e-07 7.229529 0.0014751
SFTA3 40 5.835427 7.108292 0.0e+00 13.314641 0.0000000
LOC101929681 9 -6.576090 -7.075011 9.0e-07 6.052007 0.0216720
MNDA 10 -6.561520 -7.040268 0.0e+00 7.404846 0.0009876
CCDC140 52 6.792560 6.995631 0.0e+00 39.740933 0.0000000
KRTAP7-1 6 -6.916205 -6.989707 0.0e+00 7.365598 0.0010804
gmea_volc(res2)

gmea_boxplot(res)

res2_t <- res2

plot(res2$nprobes,res2$sig,log="x",ylim=c(0,50),pch=19,cex=0.6)
points(sig$nprobes,sig$sig,col="red",pch=19,cex=0.62)
MIN = min(sig$nprobes)
LEFT = nrow(subset(res2,nprobes<MIN))
RIGHT = nrow(subset(res2,nprobes>MIN))
SIG = nrow(sig)
TOT = nrow(res2)
HEADER <- paste(TOT, "genes in total.", SIG, "with FDR<0.05.",
  RIGHT, "well covered and", LEFT, "poorly covered")
mtext(HEADER)
abline(v=MIN,lty=2)

GMEA using FGSEA test

head(dm)
##            UCSC_RefGene_Name         t
## cg00159780  REXO1L2P;REXO1L1 -13.41989
## cg01772014         C20orf160 -13.36031
## cg14205001            NOTCH1  13.34777
## cg06569947           DCUN1D2  13.21072
## cg17655624   ZNF385A;ZNF385A -13.17366
## cg13531667               MCC -13.13667
tstats <- dm$t
names(tstats) <- rownames(dm)

tic()
fgseaRes <- fgsea(pathways = sets,
                  stats    = tstats,
                  minSize  = 5,
                  nproc = 16)
## Warning in fgseaMultilevel(...): There were 24 pathways for which P-values were
## not calculated properly due to unbalanced (positive and negative) gene-level
## statistic values. For such pathways pval, padj, NES, log2err are set to NA. You
## can try to increase the value of the argument nPermSimple (for example set it
## nPermSimple = 10000)
## Warning in fgseaMultilevel(...): For some of the pathways the P-values were
## likely overestimated. For such pathways log2err is set to NA.
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-50. You can set the `eps` argument to zero for better estimation.
toc()
## 49.495 sec elapsed
fgseaRes <- as.data.frame(fgseaRes)[,1:7]
fgseaRes <- fgseaRes[order(fgseaRes$pval),]

head(fgseaRes,20) %>%
  kbl(caption = "Top significant genes with GMEA-FGSEA") %>%
  kable_paper("hover", full_width = F)
Top significant genes with GMEA-FGSEA
pathway pval padj log2err ES NES size
8626 HOXA5 0 0 NA 0.9751158 4.264259 44
15480 PAX6 0 0 NA 0.8355458 4.540388 131
15576 PCDHGA8 0 0 NA 0.7066343 4.257646 234
15582 PCDHGB5 0 0 NA 0.6960881 4.129469 215
16969 PTPRN2 0 0 NA -0.5493220 -2.371055 1474
15577 PCDHGA9 0 0 1.825919 0.6740625 3.896916 198
3333 CCDC140 0 0 1.762439 0.9413319 4.313300 52
22866 ZIC4 0 0 1.750650 0.8765661 4.361757 77
15583 PCDHGB6 0 0 1.714797 0.6586990 3.867038 187
8624 HOXA3 0 0 1.690472 0.8627231 4.292875 77
16008 PITX2 0 0 1.671997 0.8576116 4.235153 74
5408 DLX6AS 0 0 1.640742 0.8782157 4.255537 66
20520 TBX5 0 0 1.621700 0.8292883 4.115278 81
15540 PCDHA5 0 0 1.602431 0.5833933 3.407617 221
3724 CDH4 0 0 1.589456 -0.5596017 -2.353428 382
15477 PAX3 0 0 1.582928 0.8881333 4.117349 58
19451 SNORD115-15 0 0 1.582928 -0.8243442 -3.073420 81
19457 SNORD115-21 0 0 1.582928 -0.8243442 -3.073420 81
8647 HOXC4 0 0 1.569792 0.6886474 3.830130 137
15567 PCDHGA10 0 0 1.563182 0.6308482 3.688264 172
sig <- subset(fgseaRes,padj<0.05)
SIG = nrow(sig)

plot(fgseaRes$ES,-log10(fgseaRes$pval))
points(sig$ES,-log10(sig$pval),col="red")

plot(fgseaRes$size,-log10(fgseaRes$pval),log="x")
points(sig$size,-log10(sig$pval),col="red")

gmea_volc(res2)

gmea_boxplot(res)

res2_wg <- res2

GMEA using ROAST test

TODO

Mitch whole gene

Methylation only.

genesets <- gmt_import("../ReactomePathways.gmt")

meth <- res2$sig * res2$median
meth <- as.data.frame(meth)
rownames(meth) <- rownames(res2)

mres <- mitch_calc(x=meth, genesets=genesets,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
head(mres$enrichment_result,20) %>%
  kbl(caption = "Top differential pathways with GMEA+mitch") %>%
  kable_paper("hover", full_width = F)
Top differential pathways with GMEA+mitch
set setSize pANOVA s.dist p.adjustANOVA
323 Digestion of dietary carbohydrate 10 0.0000238 -0.7715770 0.0006371
405 Expression and translocation of olfactory receptors 351 0.0000000 -0.6913602 0.0000000
861 Olfactory Signaling Pathway 359 0.0000000 -0.6848450 0.0000000
291 Defective GALNT3 causes HFTC 18 0.0000007 -0.6768037 0.0000311
390 Endosomal/Vacuolar pathway 12 0.0000529 0.6738191 0.0012828
119 Beta defensins 31 0.0000000 -0.6641412 0.0000000
290 Defective GALNT12 causes CRCS1 18 0.0000054 -0.6193648 0.0001978
304 Defensins 39 0.0000000 -0.6163304 0.0000000
281 Dectin-2 family 28 0.0000000 -0.5959173 0.0000032
286 Defective C1GALT1C1 causes TNPS 19 0.0000137 -0.5760934 0.0004434
321 Digestion 22 0.0000038 -0.5690575 0.0001514
1404 Termination of O-glycan biosynthesis 25 0.0000021 -0.5481980 0.0000947
87 Antimicrobial peptides 83 0.0000000 -0.5470219 0.0000000
380 ERKs are inactivated 13 0.0007751 0.5383799 0.0096231
742 Metallothioneins bind metals 11 0.0020694 0.5362633 0.0187082
1157 Response to metal ions 14 0.0006043 0.5293178 0.0081553
56 Activation of the TFAP2 (AP-2) family of transcription factors 12 0.0015324 0.5281737 0.0151485
963 Presynaptic depolarization and calcium channel opening 12 0.0016093 -0.5257980 0.0154173
1449 Transcriptional regulation of testis differentiation 12 0.0017594 0.5214446 0.0166501
1220 Sensory Perception 575 0.0000000 -0.5209378 0.0000000

Session Information

sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      parallel  stats4    stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] fgsea_1.22.0                                       
##  [2] kableExtra_1.3.4                                   
##  [3] mitch_1.8.0                                        
##  [4] tictoc_1.1                                         
##  [5] ENmix_1.32.0                                       
##  [6] doParallel_1.0.17                                  
##  [7] qqman_0.1.8                                        
##  [8] RCircos_1.2.2                                      
##  [9] beeswarm_0.4.0                                     
## [10] forestplot_2.0.1                                   
## [11] checkmate_2.1.0                                    
## [12] magrittr_2.0.3                                     
## [13] reshape2_1.4.4                                     
## [14] gplots_3.1.3                                       
## [15] eulerr_6.1.1                                       
## [16] GEOquery_2.64.2                                    
## [17] RColorBrewer_1.1-3                                 
## [18] IlluminaHumanMethylation450kmanifest_0.4.0         
## [19] topconfects_1.12.0                                 
## [20] DMRcatedata_2.14.0                                 
## [21] ExperimentHub_2.4.0                                
## [22] AnnotationHub_3.4.0                                
## [23] BiocFileCache_2.4.0                                
## [24] dbplyr_2.2.1                                       
## [25] DMRcate_2.10.0                                     
## [26] limma_3.52.1                                       
## [27] missMethyl_1.30.0                                  
## [28] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [29] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1 
## [30] minfi_1.42.0                                       
## [31] bumphunter_1.38.0                                  
## [32] locfit_1.5-9.5                                     
## [33] iterators_1.0.14                                   
## [34] foreach_1.5.2                                      
## [35] Biostrings_2.64.0                                  
## [36] XVector_0.36.0                                     
## [37] SummarizedExperiment_1.26.1                        
## [38] Biobase_2.56.0                                     
## [39] MatrixGenerics_1.8.0                               
## [40] matrixStats_0.62.0                                 
## [41] GenomicRanges_1.48.0                               
## [42] GenomeInfoDb_1.32.2                                
## [43] IRanges_2.30.0                                     
## [44] S4Vectors_0.34.0                                   
## [45] BiocGenerics_0.42.0                                
## [46] R.utils_2.12.0                                     
## [47] R.oo_1.25.0                                        
## [48] R.methodsS3_1.8.2                                  
## [49] plyr_1.8.7                                         
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3                rtracklayer_1.56.0           
##   [3] GGally_2.1.2                  tidyr_1.2.0                  
##   [5] ggplot2_3.3.6                 bit64_4.0.5                  
##   [7] knitr_1.39                    DelayedArray_0.22.0          
##   [9] data.table_1.14.2             rpart_4.1.16                 
##  [11] KEGGREST_1.36.2               RCurl_1.98-1.7               
##  [13] AnnotationFilter_1.20.0       generics_0.1.2               
##  [15] GenomicFeatures_1.48.3        preprocessCore_1.58.0        
##  [17] RSQLite_2.2.14                bit_4.0.4                    
##  [19] tzdb_0.3.0                    webshot_0.5.3                
##  [21] xml2_1.3.3                    httpuv_1.6.5                 
##  [23] assertthat_0.2.1              xfun_0.31                    
##  [25] hms_1.1.1                     jquerylib_0.1.4              
##  [27] evaluate_0.15                 promises_1.2.0.1             
##  [29] fansi_1.0.3                   restfulr_0.0.15              
##  [31] scrime_1.3.5                  progress_1.2.2               
##  [33] caTools_1.18.2                readxl_1.4.0                 
##  [35] DBI_1.1.3                     geneplotter_1.74.0           
##  [37] htmlwidgets_1.5.4             reshape_0.8.9                
##  [39] purrr_0.3.4                   ellipsis_0.3.2               
##  [41] dplyr_1.0.9                   backports_1.4.1              
##  [43] permute_0.9-7                 calibrate_1.7.7              
##  [45] annotate_1.74.0               biomaRt_2.52.0               
##  [47] sparseMatrixStats_1.8.0       vctrs_0.4.1                  
##  [49] ensembldb_2.20.2              cachem_1.0.6                 
##  [51] Gviz_1.40.1                   BSgenome_1.64.0              
##  [53] GenomicAlignments_1.32.0      prettyunits_1.1.1            
##  [55] mclust_5.4.10                 svglite_2.1.0                
##  [57] cluster_2.1.3                 RPMM_1.25                    
##  [59] lazyeval_0.2.2                crayon_1.5.1                 
##  [61] genefilter_1.78.0             edgeR_3.38.1                 
##  [63] pkgconfig_2.0.3               nlme_3.1-159                 
##  [65] ProtGenerics_1.28.0           nnet_7.3-17                  
##  [67] rlang_1.0.3                   lifecycle_1.0.1              
##  [69] filelock_1.0.2                dichromat_2.0-0.1            
##  [71] cellranger_1.1.0              rngtools_1.5.2               
##  [73] base64_2.0                    Matrix_1.4-1                 
##  [75] Rhdf5lib_1.18.2               base64enc_0.1-3              
##  [77] viridisLite_0.4.0             png_0.1-7                    
##  [79] rjson_0.2.21                  bitops_1.0-7                 
##  [81] KernSmooth_2.23-20            rhdf5filters_1.8.0           
##  [83] blob_1.2.3                    DelayedMatrixStats_1.18.0    
##  [85] doRNG_1.8.2                   stringr_1.4.0                
##  [87] nor1mix_1.3-0                 readr_2.1.2                  
##  [89] jpeg_0.1-9                    scales_1.2.0                 
##  [91] memoise_2.0.1                 zlibbioc_1.42.0              
##  [93] compiler_4.2.1                BiocIO_1.6.0                 
##  [95] illuminaio_0.38.0             Rsamtools_2.12.0             
##  [97] cli_3.3.0                     DSS_2.44.0                   
##  [99] htmlTable_2.4.0               Formula_1.2-4                
## [101] MASS_7.3-58                   tidyselect_1.1.2             
## [103] stringi_1.7.6                 highr_0.9                    
## [105] yaml_2.3.5                    askpass_1.1                  
## [107] latticeExtra_0.6-29           sass_0.4.1                   
## [109] VariantAnnotation_1.42.1      fastmatch_1.1-3              
## [111] tools_4.2.1                   rstudioapi_0.13              
## [113] foreign_0.8-82                bsseq_1.32.0                 
## [115] gridExtra_2.3                 digest_0.6.29                
## [117] BiocManager_1.30.18           shiny_1.7.1                  
## [119] quadprog_1.5-8                Rcpp_1.0.8.3                 
## [121] siggenes_1.70.0               BiocVersion_3.15.2           
## [123] later_1.3.0                   org.Hs.eg.db_3.15.0          
## [125] httr_1.4.3                    AnnotationDbi_1.58.0         
## [127] biovizBase_1.44.0             colorspace_2.0-3             
## [129] rvest_1.0.2                   XML_3.99-0.10                
## [131] splines_4.2.1                 statmod_1.4.36               
## [133] multtest_2.52.0               systemfonts_1.0.4            
## [135] xtable_1.8-4                  jsonlite_1.8.0               
## [137] dynamicTreeCut_1.63-1         R6_2.5.1                     
## [139] echarts4r_0.4.4               Hmisc_4.7-0                  
## [141] pillar_1.7.0                  htmltools_0.5.2              
## [143] mime_0.12                     glue_1.6.2                   
## [145] fastmap_1.1.0                 BiocParallel_1.30.3          
## [147] interactiveDisplayBase_1.34.0 beanplot_1.3.1               
## [149] codetools_0.2-18              utf8_1.2.2                   
## [151] lattice_0.20-45               bslib_0.3.1                  
## [153] tibble_3.1.7                  curl_4.3.2                   
## [155] gtools_3.9.2.2                openssl_2.0.2                
## [157] survival_3.4-0                rmarkdown_2.14               
## [159] munsell_0.5.0                 rhdf5_2.40.0                 
## [161] GenomeInfoDbData_1.2.8        HDF5Array_1.24.1             
## [163] impute_1.70.0                 gtable_0.3.0