In this report we establish a new method for generating simulated data with known ground truth. This will be used to test different gene methylation enrichment approaches systematically.
The general steps are:
Import GSE158422 data corresponding to control (non-tumour tissue).
From the 37 samples, create two groups of 18 samples. One of these will be considered “control” and the other “case”.
Create random gene sets that have similar sized to Reactome pathways.
Some gene sets will be selected to be differentially methylated. Half of these will be hypermethylated and the others will be hypomethylated.
The changes will be incorporated into the “case” samples.
The enrichment analysis will be conducted.
The accuracy will be calculated.
suppressPackageStartupMessages({
library("stringi")
library("limma")
library("missMethyl")
library("IlluminaHumanMethylation450kmanifest")
library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
library('org.Hs.eg.db')
library("psych")
library("mitch")
library("kableExtra")
})
# optimised for 128 GB sever with 32 threads
CORES=6
annotations
probe sets
gene sets
design matrix
mval matrix
anno <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
myann <- data.frame(anno[,c("UCSC_RefGene_Name","Regulatory_Feature_Group","Islands_Name","Relation_to_Island")])
gp <- myann[,"UCSC_RefGene_Name",drop=FALSE]
gp2 <- strsplit(gp$UCSC_RefGene_Name,";")
names(gp2) <- rownames(gp)
sets <- split(rep(names(gp2), lengths(gp2)), unlist(gp2))
summary(unlist(lapply(sets,length)))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 9.00 24.00 49.68 55.00 6778.00
#genesets <- gmt_import("https://ziemann-lab.net/public/gmea_prototype/ReactomePathways.gmt")
if (!file.exists("GSE158422_design.rds")) {
download.file("https://ziemann-lab.net/public/gmea_prototype/GSE158422_design.rds", "GSE158422_design.rds")
}
design <- readRDS("GSE158422_design.rds")
if (!file.exists("GSE158422_design.rds")) {
download.file("https://ziemann-lab.net/public/gmea_prototype/GSE158422_mx.rds","GSE158422_mx.rds")
}
mval <- readRDS("GSE158422_mx.rds")
boxplot(list("normal"=matrix(colMeans(mval),ncol=2)[,2],"tumor"=matrix(colMeans(mval),ncol=2)[,1]),
main="mean probe methylation mval")
We could use Reactome pathways, however these have a lot of overlapping sets, which could cause inflated false positives. A better solution could be to select random gene sets with size range between 10 and 100 genes.
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- rep(1:10,100)*10
randomGeneSets <- function(gene_catalog, lengths, seed){
num_gsets <- length(lengths)
set.seed(seed) ; seeds <- sample(1:1e6, num_gsets)
gsets <- lapply(1:num_gsets,function(i) {
set.seed(seeds[i]) ; gs <- sample(gene_catalog,lengths[i])
return(gs)
} )
names(gsets)<-stri_rand_strings(length(gsets), 15, pattern = "[A-Za-z]")
return(gsets)
}
gsets <- randomGeneSets(gene_catalog,lengths,seed=100)
Select nonoverlapping gene sets.
Not in use now. Might delete later.
gset_selection <- function(genesetdatabase,seed,gene_catalog) {
set.seed(seed)
gsets <- genesetdatabase[sample(1:length(genesetdatabase))]
genelist=NULL
genesets=NULL
for ( i in 1:length(gsets) ) {
gs <- gsets[i]
inx <- length(intersect(unlist(gs),genelist))
num <- length(intersect(unlist(gs),gene_catalog))
if ( inx == 0 & num >= 10 ) {
genesets <- c(genesets,gs)
genelist <- c(unname(unlist(gs)),genelist)
}
}
return(genesets)
}
gset_mod <- gset_selection(genesetdatabase=gsets,seed=100,gene_catalog=gene_catalog)
TODO: to incorporate changes to case samples.
Need to figure out what magnitude to change. Will refer to the cancer/normal comparison.
Select genes and probes to alter.
seed=100
frac_genes=0.5
frac_probes=0.5
delta=1
nsamples=10
normal_mval <- mval[,(1:(ncol(mval)/2)*2)]
incorp_dm <- function(genesets,myann,mval,seed,
frac_genes,frac_probes,groupsize,delta=1) {
# divide gene sets between hyper and hypomethylated
nset <- floor(length(genesets)/2)
set.seed(seed) ; gtup <-sample(genesets,nset)
set.seed(seed) ; gtdn <- sample(setdiff(genesets,gtup),nset)
gup <- unname(unlist(gtup))
gdn <- unname(unlist(gtdn))
# make probe-gene vector
probe2gene <- strsplit(myann$UCSC_RefGene_Name,";")
names(probe2gene) <- rownames(myann)
probe2gene <- unlist(probe2gene)
# select probes hypermethylated
set.seed(seed) ; gup2 <- sample(gup,floor(length(gup)*frac_genes))
pup <- names(probe2gene[which(probe2gene %in% gup2)])
set.seed(seed) ; pup2 <- sample(pup,floor(length(pup)*frac_probes))
# select probes hypomethylated
set.seed(seed) ; gdn2 <- sample(gdn,floor(length(gdn)*frac_genes))
pdn <- names(probe2gene[which(probe2gene %in% gdn2)])
set.seed(seed) ; pdn2 <- sample(pdn,floor(length(pdn)*frac_probes))
# divide samples between ctrl and case
ncols <- ncol(mval)
maxgroupsize=floor(ncols/2)
if ( groupsize > maxgroupsize ) { stop("groupsize cannot be larger than half the ncols of mval") }
set.seed(seed) ; ctrl <- sample(1:ncols,groupsize)
set.seed(seed) ; case <- sample(setdiff(1:ncols,ctrl),groupsize)
mval_ctrl <- mval[,ctrl]
mval_case <- mval[,case]
# incorporate altered signals - change by +1 or -1
mval_case[rownames(mval_case) %in% pup2,] <- mval_case[rownames(mval_case) %in% pup2,] + delta
mval_case[rownames(mval_case) %in% pdn2,] <- mval_case[rownames(mval_case) %in% pdn2,] - delta
mval2 <- cbind(mval_ctrl,mval_case)
result <- list("mval"=mval2,"probes up"=pup2,"probes down"=pdn2,
"genes up"=gup2,"genes down"=gdn2,
"genesets up"=gtup,"genesets down"=gtdn)
return(result)
}
# limma
runlimma <- function(mval,design,myann) {
fit.reduced <- lmFit(mval,design)
fit.reduced <- eBayes(fit.reduced)
dm <- topTable(fit.reduced,coef=ncol(design), number = Inf)
dm <- merge(myann,dm,by=0)
dm <- dm[order(dm$P.Value),]
rownames(dm) <- dm$Row.names
dm$Row.names=NULL
return(dm)
}
This is how to use the function
This could be complicated as it requires translation of symbols to entrez IDs, but could be simplified if the entrez translation is done at the gsameth step.
simgsa <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
dm3 <- runlimma(mval=mval2,design=d,myann=myann)
pup3 <- rownames(subset(dm3,adj.P.Val<0.05 & logFC>0))
pdn3 <- rownames(subset(dm3,adj.P.Val<0.05 & logFC<0))
if ( length(pup3) < 250 ) { pup3 <- head(rownames(subset(dm3, logFC > 0)), 250) }
if ( length(pdn3) < 250 ) { pdn3 <- head(rownames(subset(dm3, logFC < 0)), 250) }
# convert gene sets to entrez
suppressWarnings(suppressMessages({ gene2entrez <- mapIds(org.Hs.eg.db, gene_catalog, 'ENTREZID', 'SYMBOL') }))
gsets_entrez <- lapply(gsets,function(gs) {
gs2 <- unique(gene2entrez[names(gene2entrez) %in% gs])
gs2 <- gs2[!is.na(gs2)]
return(gs2)
})
suppressWarnings(suppressMessages({
gsaup3 <- gsameth(sig.cpg=pup3, all.cpg=rownames(dm3), collection=gsets_entrez)
gsadn3 <- gsameth(sig.cpg=pdn3, all.cpg=rownames(dm3), collection=gsets_entrez)
}))
gsig_up3 <- rownames(subset(gsaup3,FDR<0.05))
gsig_dn3 <- rownames(subset(gsadn3,FDR<0.05))
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(gsadn3)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
This process runs limma first and then aggregates the results before doing an enrichment test.
# aggregate
agg <- function(dm,cores=1) {
gn <- unique(unlist(strsplit( dm$UCSC_RefGene_Name ,";")))
gnl <- strsplit( dm$UCSC_RefGene_Name ,";")
gnl <- mclapply(gnl,unique,mc.cores=cores)
dm$UCSC_RefGene_Name <- gnl
l <- mclapply(1:nrow(dm), function(i) {
a <- dm[i,]
len <- length(a[[1]][[1]])
tvals <- as.numeric(rep(a["t"],len))
genes <- a[[1]][[1]]
data.frame(genes,tvals)
},mc.cores=cores)
df <- do.call(rbind,l)
keep <- names(which(table(df$genes)>1))
df <- df[df$genes %in% keep,]
gn <- unique(df$genes)
gme_res <- lapply( 1:length(gn), function(i) {
g <- gn[i]
tstats <- df[which(df$genes==g),"tvals"]
myn <- length(tstats)
mymean <- mean(tstats)
mymedian <- median(tstats)
if ( length(tstats) > 2 ) {
ttest <- t.test(tstats)
pval <- ttest$p.value
} else {
pval = 1
}
res <- c("gene"=g,"nprobes"=myn,"mean"=mymean,
"median"=mymedian, pval=pval)
} )
gme_res_df <- do.call(rbind, gme_res)
rownames(gme_res_df) <- gme_res_df[,1]
gme_res_df <- gme_res_df[,-1]
tmp <- apply(gme_res_df,2,as.numeric)
rownames(tmp) <- rownames(gme_res_df)
gme_res_df <- as.data.frame(tmp)
gme_res_df$sig <- -log10(gme_res_df[,4])
gme_res_df <- gme_res_df[order(-gme_res_df$sig),]
gme_res_df$fdr <- p.adjust(gme_res_df$pval)
out <- list("df"=df,"gme_res_df"=gme_res_df)
return(out)
}
# enrich parametric
ttenrich <- function(m,genesets,cores=1,testtype="selfcontained") {
res <- mclapply( 1:length(genesets), function(i) {
scores <- m[,1]
gs <- genesets[i]
name <- names(gs)
n_members <- length(which(rownames(m) %in% gs[[1]]))
if ( n_members > 4 ) {
tstats <- m[which(rownames(m) %in% gs[[1]]),]
myn <- length(tstats)
mymean <- mean(tstats)
mymedian <- median(tstats)
if ( testtype == "selfcontained" ) { wt <- t.test(tstats) }
if ( testtype == "competitive" ) { wt <- t.test(tstats,scores) }
res <- c(name,myn,mymean,mymedian,wt$p.value)
}
} , mc.cores = cores)
res_df <- do.call(rbind, res)
rownames(res_df) <- res_df[,1]
res_df <- res_df[,-1]
colnames(res_df) <- c("n_genes","t_mean","t_median","pval")
tmp <- apply(res_df,2,as.numeric)
rownames(tmp) <- rownames(res_df)
res_df <- tmp
res_df <- as.data.frame(res_df)
res_df <- res_df[order(res_df$pval),]
res_df$logp <- -log10(res_df$pval )
res_df$fdr <- p.adjust(res_df$pval,method="fdr")
res_df[order(abs(res_df$pval)),]
return(res_df)
}
# enrich non-parametric
wtenrich <- function(m,genesets,cores=1,testtype="selfcontained") {
res <- mclapply( 1:length(genesets), function(i) {
scores <- m[,1]
gs <- genesets[i]
name <- names(gs)
n_members <- length(which(rownames(m) %in% gs[[1]]))
if ( n_members > 4 ) {
tstats <- m[which(rownames(m) %in% gs[[1]]),]
myn <- length(tstats)
mymean <- mean(tstats)
mymedian <- median(tstats)
if ( testtype == "selfcontained" ) { wt <- wilcox.test(tstats) }
if ( testtype == "competitive" ) { wt <- wilcox.test(tstats,scores) }
res <- c(name,myn,mymean,mymedian,wt$p.value)
}
} , mc.cores = cores)
res_df <- do.call(rbind, res)
rownames(res_df) <- res_df[,1]
res_df <- res_df[,-1]
colnames(res_df) <- c("n_genes","t_mean","t_median","pval")
tmp <- apply(res_df,2,as.numeric)
rownames(tmp) <- rownames(res_df)
res_df <- tmp
res_df <- as.data.frame(res_df)
res_df <- res_df[order(res_df$pval),]
res_df$logp <- -log10(res_df$pval )
res_df$fdr <- p.adjust(res_df$pval,method="fdr")
res_df[order(abs(res_df$pval)),]
return(res_df)
}
# parametric self-contained
simla <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
dm3 <- runlimma(mval=mval2,design=d,myann=myann)
dmagg1 <- agg(dm3,cores=4)
m1 <- dmagg1$gme_res_df[,"mean",drop=FALSE]
lares1 <- ttenrich(m=m1,genesets=gsets,cores=4,testtype="selfcontained")
gsig_up3 <- rownames(subset(lares1, fdr < 0.05 & t_mean > 0))
gsig_dn3 <- rownames(subset(lares1, fdr < 0.05 & t_mean < 0))
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(lares1)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
# parametric competitive
simlac <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
dm3 <- runlimma(mval=mval2,design=d,myann=myann)
dmagg1 <- agg(dm3,cores=4)
m1 <- dmagg1$gme_res_df[,"mean",drop=FALSE]
lares1 <- ttenrich(m=m1,genesets=gsets,cores=4,testtype="competitive")
gsig_up3 <- rownames(subset(lares1, fdr < 0.05 & t_mean > 0))
gsig_dn3 <- rownames(subset(lares1, fdr < 0.05 & t_mean < 0))
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(lares1)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
# nonparametric self-contained
simnla <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
dm3 <- runlimma(mval=mval2,design=d,myann=myann)
dmagg1 <- agg(dm3,cores=4)
m1 <- dmagg1$gme_res_df[,"mean",drop=FALSE]
lares1 <- wtenrich(m=m1,genesets=gsets,cores=4,testtype="selfcontained")
gsig_up3 <- rownames(subset(lares1, fdr < 0.05 & t_mean > 0))
gsig_dn3 <- rownames(subset(lares1, fdr < 0.05 & t_mean < 0))
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(lares1)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
# nonparametric competitive
simnlac <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
dm3 <- runlimma(mval=mval2,design=d,myann=myann)
dmagg1 <- agg(dm3,cores=4)
m1 <- dmagg1$gme_res_df[,"mean",drop=FALSE]
lares1 <- wtenrich(m=m1,genesets=gsets,cores=4,testtype="competitive")
gsig_up3 <- rownames(subset(lares1, fdr < 0.05 & t_mean > 0))
gsig_dn3 <- rownames(subset(lares1, fdr < 0.05 & t_mean < 0))
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(lares1)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
Functions for aggregate-limma-enrich approach.
# chromosome by chromosome will be much faster
magg <- function(mval,myann,cores=1){
gn <- unique(unlist(strsplit( myann$UCSC_RefGene_Name ,";")))
gnl <- strsplit( myann$UCSC_RefGene_Name ,";")
gnl <- mclapply(gnl,unique,mc.cores=cores)
myann$gnl <- gnl
keep <- rownames(subset(myann,UCSC_RefGene_Name!=""))
mx <- mval[rownames(mval) %in% keep,]
mymed <- function(g) {
probes <- rownames(myann[grep(g,myann$gnl),])
rows <- which(rownames(mx) %in% probes)
if ( length(rows) > 1 ) {
b <- mx[rows,]
med <- apply(b,2,mean)
med <- matrix(med,nrow=1)
colnames(med) <- colnames(b)
rownames(med) <- g
return(med)
}
}
med <- mclapply(gn,mymed,mc.cores=cores)
med <- med[lapply(med,length)>0]
medf <- do.call(rbind,med)
return(medf)
}
chragg <- function(mval,myann,cores=1){
annodf <- as.data.frame(anno)
keep <- rownames(subset(myann,UCSC_RefGene_Name!=""))
mx <- mval[rownames(mval) %in% keep,]
chrs <- unique(anno$chr)
myorder <- unlist(lapply(chrs,function(mychr) { nrow( annodf[annodf$chr==mychr,] ) } ))
chrs <- chrs[order(-myorder)]
leadercores <- floor(sqrt(cores))
workercores <- ceiling(sqrt(cores))
chrmedf <- mclapply(chrs,function(chr) {
chrfrag <- annodf[annodf$chr==chr,]
chrprobes <-rownames(chrfrag)
chrmx <- mx[rownames(mx) %in% chrprobes,]
chranno <- myann[rownames(myann) %in% chrprobes,]
chrmedf <- magg(mval=chrmx,myann=chranno,cores=workercores)
return(chrmedf)
},mc.cores=leadercores)
medf <- do.call(rbind, chrmedf)
return(medf)
}
agglimma <- function(medf,design) {
fit.reduced <- lmFit(medf,design)
fit.reduced <- eBayes(fit.reduced)
dmagg <- topTable(fit.reduced,coef=ncol(design), number = Inf)
nondup <- !duplicated(dmagg$ID)
dmagg <- dmagg[nondup,]
rownames(dmagg) <- dmagg$ID
dmagg$ID = NULL
return(dmagg)
}
# AL approach parametric self-contained
simal <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
# al pipeline
medf1 <- chragg(mval=mval2,myann=myann,cores=4)
magg1 <- agglimma(medf1,d)
m1 <- as.data.frame(magg1$t)
rownames(m1) <- rownames(magg1)
colnames(m1) <- "t"
alres1 <- ttenrich(m=m1,genesets=gsets,cores=4,testtype="selfcontained")
# summarise results
gsig_up3 <- rownames(subset(alres1, fdr < 0.05 & t_mean > 0))
gsig_dn3 <- rownames(subset(alres1, fdr < 0.05 & t_mean < 0))
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(alres1)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
# AL approach parametric competitive
simalc <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
# al pipeline
medf1 <- chragg(mval=mval2,myann=myann,cores=4)
magg1 <- agglimma(medf1,d)
m1 <- as.data.frame(magg1$t)
rownames(m1) <- rownames(magg1)
colnames(m1) <- "t"
alres1 <- ttenrich(m=m1,genesets=gsets,cores=4,testtype="competitive")
# summarise results
gsig_up3 <- rownames(subset(alres1, fdr < 0.05 & t_mean > 0))
gsig_dn3 <- rownames(subset(alres1, fdr < 0.05 & t_mean < 0))
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(alres1)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
# AL approach nonparametric self-contained
simnal <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
# al pipeline
medf1 <- chragg(mval=mval2,myann=myann,cores=4)
magg1 <- agglimma(medf1,d)
m1 <- as.data.frame(magg1$t)
rownames(m1) <- rownames(magg1)
colnames(m1) <- "t"
alres1 <- wtenrich(m=m1,genesets=gsets,cores=4,testtype="selfcontained")
# summarise results
gsig_up3 <- rownames(subset(alres1, fdr < 0.05 & t_mean > 0))
gsig_dn3 <- rownames(subset(alres1, fdr < 0.05 & t_mean < 0))
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(alres1)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
# AL approach nonparametric competitive
simnalc <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
# al pipeline
medf1 <- chragg(mval=mval2,myann=myann,cores=4)
magg1 <- agglimma(medf1,d)
m1 <- as.data.frame(magg1$t)
rownames(m1) <- rownames(magg1)
colnames(m1) <- "t"
alres1 <- wtenrich(m=m1,genesets=gsets,cores=4,testtype="competitive")
# summarise results
gsig_up3 <- rownames(subset(alres1, fdr < 0.05 & t_mean > 0))
gsig_dn3 <- rownames(subset(alres1, fdr < 0.05 & t_mean < 0))
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(alres1)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
Use mean value works well here.
gsagg <- function(x,genesets,cores=1) {
meds <- mclapply(1:length(genesets), function(i) {
gs = genesets[[i]]
xx <- x[rownames(x) %in% gs,]
med <- apply(xx,2,mean)
},mc.cores=cores)
mymed <- do.call(rbind,meds)
rownames(mymed) <- names(genesets)
as.data.frame(mymed)
}
aalimma <- function(agag,design) {
fit.reduced <- lmFit(agag,design)
fit.reduced <- eBayes(fit.reduced)
dmagg <- topTable(fit.reduced,coef=ncol(design), number = Inf)
return(dmagg)
}
aal <- function(mval,myann,genesets,design,cores=1) {
medf <- chragg(mval,myann,cores=cores)
agag <- gsagg(x=medf,genesets=genesets,cores=cores)
aalres <- aalimma(agag=agag,design=design)
return(aalres)
}
simaa <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
# aa pipeline
aares1 <- aal(mval=mval2, myann=myann, genesets=gsets, design=d, cores=4)
# summarise results
gsig_up3 <- rownames(subset(aares1, adj.P.Val < 0.05 & logFC > 0))
gsig_dn3 <- rownames(subset(aares1, adj.P.Val < 0.05 & logFC < 0))
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(aares1)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
This approach uses the aggregated mvals, limma and instead of a 1-sample t-test it uses mitch which is a competitive test and could give more interpretable results.
runmitch <- function(m,genesets,cores=1) {
suppressMessages({ mres <- mitch_calc(m,genesets,minsetsize=5,cores=cores) })
mres <- mres$enrichment_result
rownames(mres) <- mres$set
mres$set=NULL
return(mres)
}
simalm <- function(genesetdatabase, myann, mval, seed, frac_genes, frac_probes, groupsize, delta=1, num_dm_sets=50) {
# generate gene sets
gene_catalog <- unique(unlist(strsplit(myann$UCSC_RefGene_Name,";")))
lengths <- unname(unlist(lapply(genesetdatabase,length)))
gsets <- randomGeneSets(gene_catalog,lengths,seed=seed)
# select gene sets to alter
set.seed(seed) ; gset_mod <- sample(gsets,num_dm_sets)
# incorporate select changes
sim <- incorp_dm(genesets=gset_mod, myann=myann, mval=mval, seed=seed,
frac_genes=0.5,frac_probes=0.5,groupsize=groupsize,delta=delta)
# set up limma
mval2 <- sim$mval
ncols <- ncol(mval2)
groupsize <- ncols/2
ss <- data.frame(colnames(mval2))
colnames(ss) <- "sample"
ss$case <- c(rep(0,groupsize),rep(1,groupsize))
d <- model.matrix(~ ss$case )
# alm pipeline
medf1 <- chragg(mval2,myann,cores=4)
magg1 <- agglimma(medf1,d)
m1 <- as.data.frame(magg1$t)
rownames(m1) <- rownames(magg1)
colnames(m1) <- "t"
almres1 <- runmitch(m=m1,genesets=gsets,cores=4)
# summarise results
gsig_up3 <- rownames( subset( almres1, p.adjustANOVA < 0.05 & s.dist > 0 ) )
gsig_dn3 <- rownames( subset( almres1, p.adjustANOVA < 0.05 & s.dist < 0 ) )
gtup <- names(sim[[6]])
gtdn <- names(sim[[7]])
UPTP=length(intersect(gsig_up3 ,gtup))
UPFP=length(setdiff(gsig_up3 ,gtup))
UPFN=length(setdiff(gtup,gsig_up3))
DNTP=length(intersect(gsig_dn3 ,gtdn))
DNFP=length(setdiff(gsig_dn3 ,gtdn))
DNFN=length(setdiff(gtdn,gsig_dn3))
TP=UPTP+DNTP
FP=UPFP+DNFP
FN=UPFN+DNFN
TN=nrow(almres1)-DNTP-DNFP-DNFN-UPTP-UPFP-UPFN
PREC=TP/(TP+FP)
REC=TP/(TP+FN)
F1=TP/(TP+(0.5*(FP+FN)))
result <- c("TP"=TP,"FP"=FP,"FN"=FN,"TN"=TN,"PREC"=PREC,"REC"=REC)
return(result)
}
F1 <- function(x,y) {
( 2 * x * y ) / ( x + y )
}
Set assumptions.
num_dm_sets=50
sims=10
groupsizes=c(3,6,12)
deltas=c(0.1,0.2,0.3,0.5)
params <- expand.grid("groupsizes"=groupsizes,"deltas"=deltas)
params
## groupsizes deltas
## 1 3 0.1
## 2 6 0.1
## 3 12 0.1
## 4 3 0.2
## 5 6 0.2
## 6 12 0.2
## 7 3 0.3
## 8 6 0.3
## 9 12 0.3
## 10 3 0.5
## 11 6 0.5
## 12 12 0.5
Cannot be run in multicore due to fragility of AnnotationDbi SQLite objects.
gres <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- lapply(1:sims,function(i) {
simgsa(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5,
frac_probes=0.5, groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
})
res <- do.call(rbind,res)
return(res)
})
gres
## [[1]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 0 50 950 NaN 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 1 50 949 0 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[2]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 0 50 950 NaN 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 0 50 950 NaN 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[3]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 0 50 950 NaN 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 0 50 950 NaN 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[4]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 0 50 950 NaN 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 1 50 949 0 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[5]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 0 0 50 950 NaN 0.00
## [3,] 1 0 49 950 1 0.02
## [4,] 0 0 50 950 NaN 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 0 0 50 950 NaN 0.00
## [7,] 0 0 50 950 NaN 0.00
## [8,] 0 0 50 950 NaN 0.00
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[6]]
## TP FP FN TN PREC REC
## [1,] 11 2 39 948 0.8461538 0.22
## [2,] 4 0 46 950 1.0000000 0.08
## [3,] 10 0 40 950 1.0000000 0.20
## [4,] 3 0 47 950 1.0000000 0.06
## [5,] 6 0 44 950 1.0000000 0.12
## [6,] 6 0 44 950 1.0000000 0.12
## [7,] 11 0 39 950 1.0000000 0.22
## [8,] 9 0 41 950 1.0000000 0.18
## [9,] 3 0 47 950 1.0000000 0.06
## [10,] 9 0 41 950 1.0000000 0.18
##
## [[7]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 0 50 950 NaN 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 1 50 949 0 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[8]]
## TP FP FN TN PREC REC
## [1,] 7 0 43 950 1 0.14
## [2,] 1 0 49 950 1 0.02
## [3,] 6 0 44 950 1 0.12
## [4,] 2 0 48 950 1 0.04
## [5,] 0 0 50 950 NaN 0.00
## [6,] 1 0 49 950 1 0.02
## [7,] 6 0 44 950 1 0.12
## [8,] 2 0 48 950 1 0.04
## [9,] 3 0 47 950 1 0.06
## [10,] 6 0 44 950 1 0.12
##
## [[9]]
## TP FP FN TN PREC REC
## [1,] 31 1 19 949 0.9687500 0.62
## [2,] 18 0 32 950 1.0000000 0.36
## [3,] 33 1 17 949 0.9705882 0.66
## [4,] 28 1 22 949 0.9655172 0.56
## [5,] 27 0 23 950 1.0000000 0.54
## [6,] 21 0 29 950 1.0000000 0.42
## [7,] 29 2 21 948 0.9354839 0.58
## [8,] 24 0 26 950 1.0000000 0.48
## [9,] 27 1 23 949 0.9642857 0.54
## [10,] 24 0 26 950 1.0000000 0.48
##
## [[10]]
## TP FP FN TN PREC REC
## [1,] 3 0 47 950 1.0000000 0.06
## [2,] 0 0 50 950 NaN 0.00
## [3,] 0 0 50 950 NaN 0.00
## [4,] 0 0 50 950 NaN 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 1 0 49 950 1.0000000 0.02
## [7,] 0 0 50 950 NaN 0.00
## [8,] 2 0 48 950 1.0000000 0.04
## [9,] 2 1 48 949 0.6666667 0.04
## [10,] 1 0 49 950 1.0000000 0.02
##
## [[11]]
## TP FP FN TN PREC REC
## [1,] 32 1 18 949 0.9696970 0.64
## [2,] 26 0 24 950 1.0000000 0.52
## [3,] 28 0 22 950 1.0000000 0.56
## [4,] 26 0 24 950 1.0000000 0.52
## [5,] 21 0 29 950 1.0000000 0.42
## [6,] 24 0 26 950 1.0000000 0.48
## [7,] 24 0 26 950 1.0000000 0.48
## [8,] 25 1 25 949 0.9615385 0.50
## [9,] 25 1 25 949 0.9615385 0.50
## [10,] 25 0 25 950 1.0000000 0.50
##
## [[12]]
## TP FP FN TN PREC REC
## [1,] 46 2 4 948 0.9583333 0.92
## [2,] 43 0 7 950 1.0000000 0.86
## [3,] 44 1 6 949 0.9777778 0.88
## [4,] 46 1 4 949 0.9787234 0.92
## [5,] 40 1 10 949 0.9756098 0.80
## [6,] 45 1 5 949 0.9782609 0.90
## [7,] 43 2 7 948 0.9555556 0.86
## [8,] 46 1 4 949 0.9787234 0.92
## [9,] 45 2 5 948 0.9574468 0.90
## [10,] 41 0 9 950 1.0000000 0.82
gres2 <- do.call(rbind,lapply(gres,colMeans))
gres2
## TP FP FN TN PREC REC
## [1,] 0.0 0.1 50.0 949.9 NaN 0.000
## [2,] 0.0 0.0 50.0 950.0 NaN 0.000
## [3,] 0.0 0.0 50.0 950.0 NaN 0.000
## [4,] 0.0 0.1 50.0 949.9 NaN 0.000
## [5,] 0.1 0.0 49.9 950.0 NaN 0.002
## [6,] 7.2 0.2 42.8 949.8 0.9846154 0.144
## [7,] 0.0 0.1 50.0 949.9 NaN 0.000
## [8,] 3.4 0.0 46.6 950.0 NaN 0.068
## [9,] 26.2 0.6 23.8 949.4 0.9804625 0.524
## [10,] 0.9 0.1 49.1 949.9 NaN 0.018
## [11,] 25.6 0.3 24.4 949.7 0.9892774 0.512
## [12,] 43.9 1.1 6.1 948.9 0.9760431 0.878
gres3p <- do.call(rbind,lapply(groupsizes, function (g) { gres2[params$groupsizes==g,"PREC"] }))
colnames(gres3p) <- deltas
rownames(gres3p) <- groupsizes
gres3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN NaN
## 6 NaN NaN NaN 0.9892774
## 12 NaN 0.9846154 0.9804625 0.9760431
gres3r <- do.call(rbind,lapply(groupsizes, function (g) { gres2[params$groupsizes==g,"REC"] }))
colnames(gres3r) <- deltas
rownames(gres3r) <- groupsizes
gres3r
## 0.1 0.2 0.3 0.5
## 3 0 0.000 0.000 0.018
## 6 0 0.002 0.068 0.512
## 12 0 0.144 0.524 0.878
F1(gres3p,gres3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN NaN
## 6 NaN NaN NaN 0.6747721
## 12 NaN 0.2512541 0.6829846 0.9244293
lares <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- mclapply(1:sims,function(i) {
simla(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5, frac_probes=0.5,
groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
},mc.cores=4)
res <- do.call(rbind,res)
return(res)
})
lares2 <- do.call(rbind,lapply(lares,colMeans))
lares2
## TP FP FN TN PREC REC
## [1,] 16.7 574.9 33.3 375.1 NaN 0.334
## [2,] 20.8 666.3 29.2 283.7 0.06976369 0.416
## [3,] 20.6 624.5 29.4 325.5 NaN 0.412
## [4,] 17.9 562.3 32.1 387.7 NaN 0.358
## [5,] 21.9 655.1 28.1 294.9 0.07823014 0.438
## [6,] 22.2 599.5 27.8 350.5 0.10627255 0.444
## [7,] 19.0 551.1 31.0 398.9 0.22755219 0.380
## [8,] 23.6 641.2 26.4 308.8 0.08769080 0.472
## [9,] 26.3 573.8 23.7 376.2 0.11407826 0.526
## [10,] 22.8 528.7 27.2 421.3 0.22581790 0.456
## [11,] 27.5 603.0 22.5 347.0 0.11024111 0.550
## [12,] 33.2 505.3 16.8 444.7 0.13789056 0.664
lares3p <- do.call(rbind,lapply(groupsizes, function (g) { lares2[params$groupsizes==g,"PREC"] }))
colnames(lares3p) <- deltas
rownames(lares3p) <- groupsizes
lares3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN 0.2275522 0.2258179
## 6 0.06976369 0.07823014 0.0876908 0.1102411
## 12 NaN 0.10627255 0.1140783 0.1378906
lares3r <- do.call(rbind,lapply(groupsizes, function (g) { lares2[params$groupsizes==g,"REC"] }))
colnames(lares3r) <- deltas
rownames(lares3r) <- groupsizes
lares3r
## 0.1 0.2 0.3 0.5
## 3 0.334 0.358 0.380 0.456
## 6 0.416 0.438 0.472 0.550
## 12 0.412 0.444 0.526 0.664
F1(lares3p,lares3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN 0.2846499 0.3020541
## 6 0.1194889 0.1327501 0.1479033 0.1836681
## 12 NaN 0.1714969 0.1874932 0.2283587
lacres <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- mclapply(1:sims,function(i) {
simlac(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5, frac_probes=0.5,
groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
},mc.cores=4)
res <- do.call(rbind,res)
return(res)
})
lacres
## [[1]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 0 50 950 NaN 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 0 50 950 NaN 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[2]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 1 0 49 950 1 0.02
## [3,] 0 1 50 949 0 0.00
## [4,] 0 0 50 950 NaN 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 0 0 50 950 NaN 0.00
## [7,] 0 0 50 950 NaN 0.00
## [8,] 0 0 50 950 NaN 0.00
## [9,] 0 1 50 949 0 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[3]]
## TP FP FN TN PREC REC
## [1,] 1 0 49 950 1 0.02
## [2,] 0 0 50 950 NaN 0.00
## [3,] 0 0 50 950 NaN 0.00
## [4,] 0 0 50 950 NaN 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 1 0 49 950 1 0.02
## [7,] 1 0 49 950 1 0.02
## [8,] 0 0 50 950 NaN 0.00
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[4]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 0 0 50 950 NaN 0.00
## [3,] 0 0 50 950 NaN 0.00
## [4,] 0 0 50 950 NaN 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 3 1 47 949 0.75 0.06
## [7,] 0 0 50 950 NaN 0.00
## [8,] 1 4 49 946 0.20 0.02
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[5]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 4 0 46 950 1.0000000 0.08
## [3,] 10 2 40 948 0.8333333 0.20
## [4,] 5 0 45 950 1.0000000 0.10
## [5,] 1 0 49 950 1.0000000 0.02
## [6,] 2 0 48 950 1.0000000 0.04
## [7,] 0 0 50 950 NaN 0.00
## [8,] 1 1 49 949 0.5000000 0.02
## [9,] 1 2 49 948 0.3333333 0.02
## [10,] 3 0 47 950 1.0000000 0.06
##
## [[6]]
## TP FP FN TN PREC REC
## [1,] 14 1 36 949 0.9333333 0.28
## [2,] 4 0 46 950 1.0000000 0.08
## [3,] 16 3 34 947 0.8421053 0.32
## [4,] 1 0 49 950 1.0000000 0.02
## [5,] 12 1 38 949 0.9230769 0.24
## [6,] 7 0 43 950 1.0000000 0.14
## [7,] 13 1 37 949 0.9285714 0.26
## [8,] 2 0 48 950 1.0000000 0.04
## [9,] 7 5 43 945 0.5833333 0.14
## [10,] 7 0 43 950 1.0000000 0.14
##
## [[7]]
## TP FP FN TN PREC REC
## [1,] 1 0 49 950 1.0000000 0.02
## [2,] 2 0 48 950 1.0000000 0.04
## [3,] 1 0 49 950 1.0000000 0.02
## [4,] 4 0 46 950 1.0000000 0.08
## [5,] 2 0 48 950 1.0000000 0.04
## [6,] 6 1 44 949 0.8571429 0.12
## [7,] 0 0 50 950 NaN 0.00
## [8,] 8 4 42 946 0.6666667 0.16
## [9,] 0 1 50 949 0.0000000 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[8]]
## TP FP FN TN PREC REC
## [1,] 7 3 43 947 0.7000000 0.14
## [2,] 13 0 37 950 1.0000000 0.26
## [3,] 21 1 29 949 0.9545455 0.42
## [4,] 14 2 36 948 0.8750000 0.28
## [5,] 11 0 39 950 1.0000000 0.22
## [6,] 9 0 41 950 1.0000000 0.18
## [7,] 5 1 45 949 0.8333333 0.10
## [8,] 2 7 48 943 0.2222222 0.04
## [9,] 5 8 45 942 0.3846154 0.10
## [10,] 7 0 43 950 1.0000000 0.14
##
## [[9]]
## TP FP FN TN PREC REC
## [1,] 26 0 24 950 1.0000000 0.52
## [2,] 16 1 34 949 0.9411765 0.32
## [3,] 23 2 27 948 0.9200000 0.46
## [4,] 13 0 37 950 1.0000000 0.26
## [5,] 20 0 30 950 1.0000000 0.40
## [6,] 16 0 34 950 1.0000000 0.32
## [7,] 23 0 27 950 1.0000000 0.46
## [8,] 18 0 32 950 1.0000000 0.36
## [9,] 23 5 27 945 0.8214286 0.46
## [10,] 20 0 30 950 1.0000000 0.40
##
## [[10]]
## TP FP FN TN PREC REC
## [1,] 13 0 37 950 1.0000000 0.26
## [2,] 10 0 40 950 1.0000000 0.20
## [3,] 12 0 38 950 1.0000000 0.24
## [4,] 19 0 31 950 1.0000000 0.38
## [5,] 12 0 38 950 1.0000000 0.24
## [6,] 9 1 41 949 0.9000000 0.18
## [7,] 20 1 30 949 0.9523810 0.40
## [8,] 21 1 29 949 0.9545455 0.42
## [9,] 8 7 42 943 0.5333333 0.16
## [10,] 9 1 41 949 0.9000000 0.18
##
## [[11]]
## TP FP FN TN PREC REC
## [1,] 19 3 31 947 0.8636364 0.38
## [2,] 21 0 29 950 1.0000000 0.42
## [3,] 33 1 17 949 0.9705882 0.66
## [4,] 28 0 22 950 1.0000000 0.56
## [5,] 21 1 29 949 0.9545455 0.42
## [6,] 21 0 29 950 1.0000000 0.42
## [7,] 21 0 29 950 1.0000000 0.42
## [8,] 9 11 41 939 0.4500000 0.18
## [9,] 27 2 23 948 0.9310345 0.54
## [10,] 21 2 29 948 0.9130435 0.42
##
## [[12]]
## TP FP FN TN PREC REC
## [1,] 33 0 17 950 1.0000000 0.66
## [2,] 27 0 23 950 1.0000000 0.54
## [3,] 29 1 21 949 0.9666667 0.58
## [4,] 25 0 25 950 1.0000000 0.50
## [5,] 23 0 27 950 1.0000000 0.46
## [6,] 26 0 24 950 1.0000000 0.52
## [7,] 29 0 21 950 1.0000000 0.58
## [8,] 27 0 23 950 1.0000000 0.54
## [9,] 31 1 19 949 0.9687500 0.62
## [10,] 24 0 26 950 1.0000000 0.48
lacres2 <- do.call(rbind,lapply(lacres,colMeans))
lacres2
## TP FP FN TN PREC REC
## [1,] 0.0 0.0 50.0 950.0 NaN 0.000
## [2,] 0.1 0.2 49.9 949.8 NaN 0.002
## [3,] 0.3 0.0 49.7 950.0 NaN 0.006
## [4,] 0.4 0.5 49.6 949.5 NaN 0.008
## [5,] 2.7 0.5 47.3 949.5 NaN 0.054
## [6,] 8.3 1.1 41.7 948.9 0.9210420 0.166
## [7,] 2.4 0.6 47.6 949.4 NaN 0.048
## [8,] 9.4 2.2 40.6 947.8 0.7969716 0.188
## [9,] 19.8 0.8 30.2 949.2 0.9682605 0.396
## [10,] 13.3 1.1 36.7 948.9 0.9240260 0.266
## [11,] 22.1 2.0 27.9 948.0 0.9082848 0.442
## [12,] 27.4 0.2 22.6 949.8 0.9935417 0.548
lacres3p <- do.call(rbind,lapply(groupsizes, function (g) { lacres2[params$groupsizes==g,"PREC"] }))
colnames(lacres3p) <- deltas
rownames(lacres3p) <- groupsizes
lacres3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.9240260
## 6 NaN NaN 0.7969716 0.9082848
## 12 NaN 0.921042 0.9682605 0.9935417
lacres3r <- do.call(rbind,lapply(groupsizes, function (g) { lacres2[params$groupsizes==g,"REC"] }))
colnames(lacres3r) <- deltas
rownames(lacres3r) <- groupsizes
lacres3r
## 0.1 0.2 0.3 0.5
## 3 0.000 0.008 0.048 0.266
## 6 0.002 0.054 0.188 0.442
## 12 0.006 0.166 0.396 0.548
F1(lacres3p,lacres3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.4130849
## 6 NaN NaN 0.3042335 0.5946329
## 12 NaN 0.2813009 0.5621084 0.7063848
nlares <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- mclapply(1:sims,function(i) {
simnla(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5, frac_probes=0.5,
groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
},mc.cores=4)
res <- do.call(rbind,res)
return(res)
})
nlares
## [[1]]
## TP FP FN TN PREC REC
## [1,] 21 662 29 288 0.03074671 0.42
## [2,] 25 851 25 99 0.02853881 0.50
## [3,] 18 717 32 233 0.02448980 0.36
## [4,] 16 476 34 474 0.03252033 0.32
## [5,] 18 818 32 132 0.02153110 0.36
## [6,] 0 0 50 950 NaN 0.00
## [7,] 21 691 29 259 0.02949438 0.42
## [8,] 24 877 26 73 0.02663707 0.48
## [9,] 24 958 26 -8 0.02443992 0.48
## [10,] 0 0 50 950 NaN 0.00
##
## [[2]]
## TP FP FN TN PREC REC
## [1,] 25 950 25 0 0.02564103 0.50
## [2,] 22 206 28 744 0.09649123 0.44
## [3,] 25 774 25 176 0.03128911 0.50
## [4,] 22 865 28 85 0.02480271 0.44
## [5,] 24 782 26 168 0.02977667 0.48
## [6,] 3 1 47 949 0.75000000 0.06
## [7,] 23 855 27 95 0.02619590 0.46
## [8,] 25 948 25 2 0.02569373 0.50
## [9,] 24 898 26 52 0.02603037 0.48
## [10,] 18 604 32 346 0.02893891 0.36
##
## [[3]]
## TP FP FN TN PREC REC
## [1,] 24 859 26 91 0.02718007 0.48
## [2,] 25 803 25 147 0.03019324 0.50
## [3,] 24 876 26 74 0.02666667 0.48
## [4,] 0 0 50 950 NaN 0.00
## [5,] 20 393 30 557 0.04842615 0.40
## [6,] 23 616 27 334 0.03599374 0.46
## [7,] 23 776 27 174 0.02878598 0.46
## [8,] 24 827 26 123 0.02820212 0.48
## [9,] 24 885 26 65 0.02640264 0.48
## [10,] 21 496 29 454 0.04061896 0.42
##
## [[4]]
## TP FP FN TN PREC REC
## [1,] 21 637 29 313 0.03191489 0.42
## [2,] 25 847 25 103 0.02866972 0.50
## [3,] 21 708 29 242 0.02880658 0.42
## [4,] 20 471 30 479 0.04073320 0.40
## [5,] 20 809 30 141 0.02412545 0.40
## [6,] 1 0 49 950 1.00000000 0.02
## [7,] 22 668 28 282 0.03188406 0.44
## [8,] 24 863 26 87 0.02705750 0.48
## [9,] 24 958 26 -8 0.02443992 0.48
## [10,] 0 0 50 950 NaN 0.00
##
## [[5]]
## TP FP FN TN PREC REC
## [1,] 25 946 25 4 0.02574665 0.50
## [2,] 23 196 27 754 0.10502283 0.46
## [3,] 25 762 25 188 0.03176620 0.50
## [4,] 22 854 28 96 0.02511416 0.44
## [5,] 25 766 25 184 0.03160556 0.50
## [6,] 6 7 44 943 0.46153846 0.12
## [7,] 24 845 26 105 0.02761795 0.48
## [8,] 25 945 25 5 0.02577320 0.50
## [9,] 24 888 26 62 0.02631579 0.48
## [10,] 20 578 30 372 0.03344482 0.40
##
## [[6]]
## TP FP FN TN PREC REC
## [1,] 24 835 26 115 0.02793946 0.48
## [2,] 25 787 25 163 0.03078818 0.50
## [3,] 24 858 26 92 0.02721088 0.48
## [4,] 6 2 44 948 0.75000000 0.12
## [5,] 21 367 29 583 0.05412371 0.42
## [6,] 24 597 26 353 0.03864734 0.48
## [7,] 23 759 27 191 0.02941176 0.46
## [8,] 25 803 25 147 0.03019324 0.50
## [9,] 24 864 26 86 0.02702703 0.48
## [10,] 22 488 28 462 0.04313725 0.44
##
## [[7]]
## TP FP FN TN PREC REC
## [1,] 21 616 29 334 0.03296703 0.42
## [2,] 25 840 25 110 0.02890173 0.50
## [3,] 22 694 28 256 0.03072626 0.44
## [4,] 22 459 28 491 0.04573805 0.44
## [5,] 20 801 30 149 0.02436054 0.40
## [6,] 3 0 47 950 1.00000000 0.06
## [7,] 23 661 27 289 0.03362573 0.46
## [8,] 24 847 26 103 0.02755454 0.48
## [9,] 24 954 26 -4 0.02453988 0.48
## [10,] 3 0 47 950 1.00000000 0.06
##
## [[8]]
## TP FP FN TN PREC REC
## [1,] 25 937 25 13 0.02598753 0.50
## [2,] 24 187 26 763 0.11374408 0.48
## [3,] 27 755 23 195 0.03452685 0.54
## [4,] 23 838 27 112 0.02671312 0.46
## [5,] 25 759 25 191 0.03188776 0.50
## [6,] 13 9 37 941 0.59090909 0.26
## [7,] 24 826 26 124 0.02823529 0.48
## [8,] 25 942 25 8 0.02585315 0.50
## [9,] 24 878 26 72 0.02660754 0.48
## [10,] 22 563 28 387 0.03760684 0.44
##
## [[9]]
## TP FP FN TN PREC REC
## [1,] 24 831 26 119 0.02807018 0.48
## [2,] 25 774 25 176 0.03128911 0.50
## [3,] 24 848 26 102 0.02752294 0.48
## [4,] 14 4 36 946 0.77777778 0.28
## [5,] 27 356 23 594 0.07049608 0.54
## [6,] 28 592 22 358 0.04516129 0.56
## [7,] 25 749 25 201 0.03229974 0.50
## [8,] 25 794 25 156 0.03052503 0.50
## [9,] 24 854 26 96 0.02733485 0.48
## [10,] 23 477 27 473 0.04600000 0.46
##
## [[10]]
## TP FP FN TN PREC REC
## [1,] 23 608 27 342 0.03645008 0.46
## [2,] 25 830 25 120 0.02923977 0.50
## [3,] 23 684 27 266 0.03253182 0.46
## [4,] 27 449 23 501 0.05672269 0.54
## [5,] 22 791 28 159 0.02706027 0.44
## [6,] 10 0 40 950 1.00000000 0.20
## [7,] 25 642 25 308 0.03748126 0.50
## [8,] 26 833 24 117 0.03026775 0.52
## [9,] 24 949 26 1 0.02466598 0.48
## [10,] 9 1 41 949 0.90000000 0.18
##
## [[11]]
## TP FP FN TN PREC REC
## [1,] 25 919 25 31 0.02648305 0.50
## [2,] 28 189 22 761 0.12903226 0.56
## [3,] 28 745 22 205 0.03622251 0.56
## [4,] 25 832 25 118 0.02917153 0.50
## [5,] 28 747 22 203 0.03612903 0.56
## [6,] 17 9 33 941 0.65384615 0.34
## [7,] 24 815 26 135 0.02860548 0.48
## [8,] 25 926 25 24 0.02628812 0.50
## [9,] 24 870 26 80 0.02684564 0.48
## [10,] 24 547 26 403 0.04203152 0.48
##
## [[12]]
## TP FP FN TN PREC REC
## [1,] 27 829 23 121 0.03154206 0.54
## [2,] 28 770 22 180 0.03508772 0.56
## [3,] 27 841 23 109 0.03110599 0.54
## [4,] 19 7 31 943 0.73076923 0.38
## [5,] 29 334 21 616 0.07988981 0.58
## [6,] 32 585 18 365 0.05186386 0.64
## [7,] 28 747 22 203 0.03612903 0.56
## [8,] 28 791 22 159 0.03418803 0.56
## [9,] 25 850 25 100 0.02857143 0.50
## [10,] 27 471 23 479 0.05421687 0.54
nlares2 <- do.call(rbind,lapply(nlares,colMeans))
nlares2
## TP FP FN TN PREC REC
## [1,] 16.7 605.0 33.3 345.0 NaN 0.334
## [2,] 21.1 688.3 28.9 261.7 0.10648597 0.422
## [3,] 20.8 653.1 29.2 296.9 NaN 0.416
## [4,] 17.8 596.1 32.2 353.9 NaN 0.356
## [5,] 21.9 678.7 28.1 271.3 0.07939456 0.438
## [6,] 21.8 636.0 28.2 314.0 0.10584789 0.436
## [7,] 18.7 587.2 31.3 362.8 0.22484137 0.374
## [8,] 23.2 669.4 26.8 280.6 0.09420713 0.464
## [9,] 23.9 627.9 26.1 322.1 0.11164770 0.478
## [10,] 21.4 578.7 28.6 371.3 0.21744196 0.428
## [11,] 24.8 659.9 25.2 290.1 0.10346553 0.496
## [12,] 27.0 622.5 23.0 327.5 0.11133640 0.540
nlares3p <- do.call(rbind,lapply(groupsizes, function (g) { nlares2[params$groupsizes==g,"PREC"] }))
colnames(nlares3p) <- deltas
rownames(nlares3p) <- groupsizes
nlares3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN 0.22484137 0.2174420
## 6 0.106486 0.07939456 0.09420713 0.1034655
## 12 NaN 0.10584789 0.11164770 0.1113364
nlares3r <- do.call(rbind,lapply(groupsizes, function (g) { nlares2[params$groupsizes==g,"REC"] }))
colnames(nlares3r) <- deltas
rownames(nlares3r) <- groupsizes
nlares3r
## 0.1 0.2 0.3 0.5
## 3 0.334 0.356 0.374 0.428
## 6 0.422 0.438 0.464 0.496
## 12 0.416 0.436 0.478 0.540
F1(nlares3p,nlares3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN 0.2808446 0.2883765
## 6 0.1700597 0.1344228 0.1566161 0.1712155
## 12 NaN 0.1703418 0.1810152 0.1846102
nlacres <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- mclapply(1:sims,function(i) {
simnlac(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5, frac_probes=0.5,
groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
},mc.cores=4)
res <- do.call(rbind,res)
return(res)
})
nlacres
## [[1]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 0 50 950 NaN 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 0 50 950 NaN 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[2]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 0 0 50 950 NaN 0.00
## [3,] 1 1 49 949 0.5 0.02
## [4,] 0 0 50 950 NaN 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 0 0 50 950 NaN 0.00
## [7,] 0 0 50 950 NaN 0.00
## [8,] 0 0 50 950 NaN 0.00
## [9,] 0 1 50 949 0.0 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[3]]
## TP FP FN TN PREC REC
## [1,] 1 1 49 949 0.50 0.02
## [2,] 1 0 49 950 1.00 0.02
## [3,] 0 0 50 950 NaN 0.00
## [4,] 0 0 50 950 NaN 0.00
## [5,] 2 0 48 950 1.00 0.04
## [6,] 3 1 47 949 0.75 0.06
## [7,] 3 1 47 949 0.75 0.06
## [8,] 0 0 50 950 NaN 0.00
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[4]]
## TP FP FN TN PREC REC
## [1,] 2 0 48 950 1.0000000 0.04
## [2,] 2 0 48 950 1.0000000 0.04
## [3,] 2 1 48 949 0.6666667 0.04
## [4,] 2 0 48 950 1.0000000 0.04
## [5,] 2 1 48 949 0.6666667 0.04
## [6,] 3 1 47 949 0.7500000 0.06
## [7,] 0 0 50 950 NaN 0.00
## [8,] 2 7 48 943 0.2222222 0.04
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[5]]
## TP FP FN TN PREC REC
## [1,] 5 1 45 949 0.8333333 0.10
## [2,] 7 0 43 950 1.0000000 0.14
## [3,] 17 3 33 947 0.8500000 0.34
## [4,] 6 2 44 948 0.7500000 0.12
## [5,] 1 0 49 950 1.0000000 0.02
## [6,] 10 0 40 950 1.0000000 0.20
## [7,] 4 1 46 949 0.8000000 0.08
## [8,] 1 2 49 948 0.3333333 0.02
## [9,] 1 3 49 947 0.2500000 0.02
## [10,] 5 0 45 950 1.0000000 0.10
##
## [[6]]
## TP FP FN TN PREC REC
## [1,] 19 2 31 948 0.9047619 0.38
## [2,] 8 0 42 950 1.0000000 0.16
## [3,] 17 3 33 947 0.8500000 0.34
## [4,] 12 0 38 950 1.0000000 0.24
## [5,] 14 1 36 949 0.9333333 0.28
## [6,] 15 1 35 949 0.9375000 0.30
## [7,] 17 1 33 949 0.9444444 0.34
## [8,] 6 2 44 948 0.7500000 0.12
## [9,] 11 10 39 940 0.5238095 0.22
## [10,] 12 0 38 950 1.0000000 0.24
##
## [[7]]
## TP FP FN TN PREC REC
## [1,] 7 0 43 950 1.0000000 0.14
## [2,] 3 0 47 950 1.0000000 0.06
## [3,] 6 0 44 950 1.0000000 0.12
## [4,] 11 0 39 950 1.0000000 0.22
## [5,] 8 1 42 949 0.8888889 0.16
## [6,] 7 1 43 949 0.8750000 0.14
## [7,] 12 0 38 950 1.0000000 0.24
## [8,] 9 4 41 946 0.6923077 0.18
## [9,] 2 2 48 948 0.5000000 0.04
## [10,] 0 0 50 950 NaN 0.00
##
## [[8]]
## TP FP FN TN PREC REC
## [1,] 8 4 42 946 0.6666667 0.16
## [2,] 19 0 31 950 1.0000000 0.38
## [3,] 28 1 22 949 0.9655172 0.56
## [4,] 15 1 35 949 0.9375000 0.30
## [5,] 13 1 37 949 0.9285714 0.26
## [6,] 12 0 38 950 1.0000000 0.24
## [7,] 7 2 43 948 0.7777778 0.14
## [8,] 2 7 48 943 0.2222222 0.04
## [9,] 13 11 37 939 0.5416667 0.26
## [10,] 16 2 34 948 0.8888889 0.32
##
## [[9]]
## TP FP FN TN PREC REC
## [1,] 24 0 26 950 1.0000000 0.48
## [2,] 28 0 22 950 1.0000000 0.56
## [3,] 25 2 25 948 0.9259259 0.50
## [4,] 18 0 32 950 1.0000000 0.36
## [5,] 21 1 29 949 0.9545455 0.42
## [6,] 23 2 27 948 0.9200000 0.46
## [7,] 24 0 26 950 1.0000000 0.48
## [8,] 18 0 32 950 1.0000000 0.36
## [9,] 25 6 25 944 0.8064516 0.50
## [10,] 23 0 27 950 1.0000000 0.46
##
## [[10]]
## TP FP FN TN PREC REC
## [1,] 19 1 31 949 0.9500000 0.38
## [2,] 15 1 35 949 0.9375000 0.30
## [3,] 18 0 32 950 1.0000000 0.36
## [4,] 23 0 27 950 1.0000000 0.46
## [5,] 13 0 37 950 1.0000000 0.26
## [6,] 15 1 35 949 0.9375000 0.30
## [7,] 20 0 30 950 1.0000000 0.40
## [8,] 21 3 29 947 0.8750000 0.42
## [9,] 10 11 40 939 0.4761905 0.20
## [10,] 17 2 33 948 0.8947368 0.34
##
## [[11]]
## TP FP FN TN PREC REC
## [1,] 23 9 27 941 0.7187500 0.46
## [2,] 25 1 25 949 0.9615385 0.50
## [3,] 33 1 17 949 0.9705882 0.66
## [4,] 29 0 21 950 1.0000000 0.58
## [5,] 23 1 27 949 0.9583333 0.46
## [6,] 24 0 26 950 1.0000000 0.48
## [7,] 20 0 30 950 1.0000000 0.40
## [8,] 10 12 40 938 0.4545455 0.20
## [9,] 29 3 21 947 0.9062500 0.58
## [10,] 20 2 30 948 0.9090909 0.40
##
## [[12]]
## TP FP FN TN PREC REC
## [1,] 33 0 17 950 1.0000000 0.66
## [2,] 33 0 17 950 1.0000000 0.66
## [3,] 31 1 19 949 0.9687500 0.62
## [4,] 24 1 26 949 0.9600000 0.48
## [5,] 26 1 24 949 0.9629630 0.52
## [6,] 29 3 21 947 0.9062500 0.58
## [7,] 27 1 23 949 0.9642857 0.54
## [8,] 27 0 23 950 1.0000000 0.54
## [9,] 35 2 15 948 0.9459459 0.70
## [10,] 28 0 22 950 1.0000000 0.56
nlacres2 <- do.call(rbind,lapply(nlacres,colMeans))
nlacres2
## TP FP FN TN PREC REC
## [1,] 0.0 0.0 50.0 950.0 NaN 0.000
## [2,] 0.1 0.2 49.9 949.8 NaN 0.002
## [3,] 1.0 0.3 49.0 949.7 NaN 0.020
## [4,] 1.5 1.0 48.5 949.0 NaN 0.030
## [5,] 5.7 1.2 44.3 948.8 0.7816667 0.114
## [6,] 13.1 2.0 36.9 948.0 0.8843849 0.262
## [7,] 6.5 0.8 43.5 949.2 NaN 0.130
## [8,] 13.3 2.9 36.7 947.1 0.7928811 0.266
## [9,] 22.9 1.1 27.1 948.9 0.9606923 0.458
## [10,] 17.1 1.9 32.9 948.1 0.9070927 0.342
## [11,] 23.6 2.9 26.4 947.1 0.8879096 0.472
## [12,] 29.3 0.9 20.7 949.1 0.9708195 0.586
nlacres3p <- do.call(rbind,lapply(groupsizes, function (g) { nlacres2[params$groupsizes==g,"PREC"] }))
colnames(nlacres3p) <- deltas
rownames(nlacres3p) <- groupsizes
nlacres3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.9070927
## 6 NaN 0.7816667 0.7928811 0.8879096
## 12 NaN 0.8843849 0.9606923 0.9708195
nlacres3r <- do.call(rbind,lapply(groupsizes, function (g) { nlacres2[params$groupsizes==g,"REC"] }))
colnames(nlacres3r) <- deltas
rownames(nlacres3r) <- groupsizes
nlacres3r
## 0.1 0.2 0.3 0.5
## 3 0.000 0.030 0.130 0.342
## 6 0.002 0.114 0.266 0.472
## 12 0.020 0.262 0.458 0.586
F1(nlacres3p,nlacres3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.4967217
## 6 NaN 0.1989803 0.3983570 0.6163547
## 12 NaN 0.4042427 0.6202854 0.7308493
alres <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- mclapply(1:sims,function(i) {
simal(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5, frac_probes=0.5,
groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
},mc.cores=4)
res <- do.call(rbind,res)
return(res)
})
alres
## [[1]]
## TP FP FN TN PREC REC
## [1,] 20 612 30 338 0.03164557 0.40
## [2,] 25 841 25 109 0.02886836 0.50
## [3,] 20 690 30 260 0.02816901 0.40
## [4,] 13 394 37 556 0.03194103 0.26
## [5,] 19 765 31 185 0.02423469 0.38
## [6,] 0 0 50 950 NaN 0.00
## [7,] 20 645 30 305 0.03007519 0.40
## [8,] 24 862 26 88 0.02708804 0.48
## [9,] 24 961 26 -11 0.02436548 0.48
## [10,] 0 0 50 950 NaN 0.00
##
## [[2]]
## TP FP FN TN PREC REC
## [1,] 25 951 25 -1 0.02561475 0.50
## [2,] 14 84 36 866 0.14285714 0.28
## [3,] 25 779 25 171 0.03109453 0.50
## [4,] 22 848 28 102 0.02528736 0.44
## [5,] 25 807 25 143 0.03004808 0.50
## [6,] 4 4 46 946 0.50000000 0.08
## [7,] 24 843 26 107 0.02768166 0.48
## [8,] 25 953 25 -3 0.02556237 0.50
## [9,] 24 901 26 49 0.02594595 0.48
## [10,] 18 626 32 324 0.02795031 0.36
##
## [[3]]
## TP FP FN TN PREC REC
## [1,] 25 855 25 95 0.02840909 0.50
## [2,] 25 778 25 172 0.03113325 0.50
## [3,] 25 886 25 64 0.02744237 0.50
## [4,] 0 0 50 950 NaN 0.00
## [5,] 19 365 31 585 0.04947917 0.38
## [6,] 22 532 28 418 0.03971119 0.44
## [7,] 22 752 28 198 0.02842377 0.44
## [8,] 25 860 25 90 0.02824859 0.50
## [9,] 24 890 26 60 0.02625821 0.48
## [10,] 21 379 29 571 0.05250000 0.42
##
## [[4]]
## TP FP FN TN PREC REC
## [1,] 21 588 29 362 0.03448276 0.42
## [2,] 25 836 25 114 0.02903600 0.50
## [3,] 21 674 29 276 0.03021583 0.42
## [4,] 18 375 32 575 0.04580153 0.36
## [5,] 21 755 29 195 0.02706186 0.42
## [6,] 0 0 50 950 NaN 0.00
## [7,] 23 615 27 335 0.03605016 0.46
## [8,] 24 851 26 99 0.02742857 0.48
## [9,] 24 961 26 -11 0.02436548 0.48
## [10,] 0 0 50 950 NaN 0.00
##
## [[5]]
## TP FP FN TN PREC REC
## [1,] 25 947 25 3 0.02572016 0.50
## [2,] 21 90 29 860 0.18918919 0.42
## [3,] 25 759 25 191 0.03188776 0.50
## [4,] 22 833 28 117 0.02573099 0.44
## [5,] 25 783 25 167 0.03094059 0.50
## [6,] 8 9 42 941 0.47058824 0.16
## [7,] 24 832 26 118 0.02803738 0.48
## [8,] 25 951 25 -1 0.02561475 0.50
## [9,] 24 891 26 59 0.02622951 0.48
## [10,] 21 593 29 357 0.03420195 0.42
##
## [[6]]
## TP FP FN TN PREC REC
## [1,] 25 823 25 127 0.02948113 0.50
## [2,] 25 752 25 198 0.03217503 0.50
## [3,] 25 865 25 85 0.02808989 0.50
## [4,] 13 24 37 926 0.35135135 0.26
## [5,] 25 339 25 611 0.06868132 0.50
## [6,] 24 503 26 447 0.04554080 0.48
## [7,] 25 726 25 224 0.03328895 0.50
## [8,] 25 832 25 118 0.02917153 0.50
## [9,] 24 870 26 80 0.02684564 0.48
## [10,] 21 370 29 580 0.05370844 0.42
##
## [[7]]
## TP FP FN TN PREC REC
## [1,] 22 577 28 373 0.03672788 0.44
## [2,] 25 822 25 128 0.02951594 0.50
## [3,] 22 667 28 283 0.03193033 0.44
## [4,] 22 365 28 585 0.05684755 0.44
## [5,] 21 740 29 210 0.02759527 0.42
## [6,] 2 0 48 950 1.00000000 0.04
## [7,] 23 598 27 352 0.03703704 0.46
## [8,] 24 836 26 114 0.02790698 0.48
## [9,] 24 955 26 -5 0.02451481 0.48
## [10,] 3 0 47 950 1.00000000 0.06
##
## [[8]]
## TP FP FN TN PREC REC
## [1,] 25 932 25 18 0.02612330 0.50
## [2,] 25 91 25 859 0.21551724 0.50
## [3,] 27 734 23 216 0.03547963 0.54
## [4,] 24 818 26 132 0.02850356 0.48
## [5,] 25 770 25 180 0.03144654 0.50
## [6,] 13 11 37 939 0.54166667 0.26
## [7,] 24 810 26 140 0.02877698 0.48
## [8,] 25 949 25 1 0.02566735 0.50
## [9,] 24 879 26 71 0.02657807 0.48
## [10,] 24 560 26 390 0.04109589 0.48
##
## [[9]]
## TP FP FN TN PREC REC
## [1,] 25 806 25 144 0.03008424 0.50
## [2,] 26 736 24 214 0.03412073 0.52
## [3,] 27 844 23 106 0.03099885 0.54
## [4,] 20 18 30 932 0.52631579 0.40
## [5,] 27 279 23 671 0.08823529 0.54
## [6,] 32 459 18 491 0.06517312 0.64
## [7,] 28 692 22 258 0.03888889 0.56
## [8,] 25 816 25 134 0.02972652 0.50
## [9,] 24 856 26 94 0.02727273 0.48
## [10,] 24 334 26 616 0.06703911 0.48
##
## [[10]]
## TP FP FN TN PREC REC
## [1,] 26 547 24 403 0.04537522 0.52
## [2,] 25 811 25 139 0.02990431 0.50
## [3,] 23 642 27 308 0.03458647 0.46
## [4,] 27 332 23 618 0.07520891 0.54
## [5,] 24 716 26 234 0.03243243 0.48
## [6,] 11 0 39 950 1.00000000 0.22
## [7,] 26 549 24 401 0.04521739 0.52
## [8,] 27 810 23 140 0.03225806 0.54
## [9,] 24 953 26 -3 0.02456499 0.48
## [10,] 14 0 36 950 1.00000000 0.28
##
## [[11]]
## TP FP FN TN PREC REC
## [1,] 24 906 26 44 0.02580645 0.48
## [2,] 29 71 21 879 0.29000000 0.58
## [3,] 36 673 14 277 0.05077574 0.72
## [4,] 28 775 22 175 0.03486924 0.56
## [5,] 31 744 19 206 0.04000000 0.62
## [6,] 22 10 28 940 0.68750000 0.44
## [7,] 26 784 24 166 0.03209877 0.52
## [8,] 25 929 25 21 0.02620545 0.50
## [9,] 24 860 26 90 0.02714932 0.48
## [10,] 30 480 20 470 0.05882353 0.60
##
## [[12]]
## TP FP FN TN PREC REC
## [1,] 37 734 13 216 0.04798962 0.74
## [2,] 31 672 19 278 0.04409673 0.62
## [3,] 34 799 16 151 0.04081633 0.68
## [4,] 31 15 19 935 0.67391304 0.62
## [5,] 30 197 20 753 0.13215859 0.60
## [6,] 38 365 12 585 0.09429280 0.76
## [7,] 37 586 13 364 0.05939005 0.74
## [8,] 31 775 19 175 0.03846154 0.62
## [9,] 32 801 18 149 0.03841537 0.64
## [10,] 28 256 22 694 0.09859155 0.56
alres2 <- do.call(rbind,lapply(alres,colMeans))
alres2
## TP FP FN TN PREC REC
## [1,] 16.5 577.0 33.5 373.0 NaN 0.330
## [2,] 20.6 679.6 29.4 270.4 0.08620421 0.412
## [3,] 20.8 629.7 29.2 320.3 NaN 0.416
## [4,] 17.7 565.5 32.3 384.5 NaN 0.354
## [5,] 22.0 668.8 28.0 281.2 0.08881405 0.440
## [6,] 23.2 610.4 26.8 339.6 0.06983341 0.464
## [7,] 18.8 556.0 31.2 394.0 0.22720758 0.376
## [8,] 23.6 655.4 26.4 294.6 0.10008552 0.472
## [9,] 25.8 584.0 24.2 366.0 0.09378553 0.516
## [10,] 22.7 536.0 27.3 414.0 0.23195478 0.454
## [11,] 27.5 623.2 22.5 326.8 0.12732285 0.550
## [12,] 32.9 520.0 17.1 430.0 0.12681256 0.658
alres3p <- do.call(rbind,lapply(groupsizes, function (g) { alres2[params$groupsizes==g,"PREC"] }))
colnames(alres3p) <- deltas
rownames(alres3p) <- groupsizes
alres3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN 0.22720758 0.2319548
## 6 0.08620421 0.08881405 0.10008552 0.1273228
## 12 NaN 0.06983341 0.09378553 0.1268126
alres3r <- do.call(rbind,lapply(groupsizes, function (g) { alres2[params$groupsizes==g,"REC"] }))
colnames(alres3r) <- deltas
rownames(alres3r) <- groupsizes
alres3r
## 0.1 0.2 0.3 0.5
## 3 0.330 0.354 0.376 0.454
## 6 0.412 0.440 0.472 0.550
## 12 0.416 0.464 0.516 0.658
F1(alres3p,alres3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN 0.2832526 0.3070391
## 6 0.1425766 0.1477956 0.1651514 0.2067775
## 12 NaN 0.1213963 0.1587225 0.2126436
alcres <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- mclapply(1:sims,function(i) {
simalc(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5, frac_probes=0.5,
groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
},mc.cores=4)
res <- do.call(rbind,res)
return(res)
})
alcres
## [[1]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 0 50 950 NaN 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 0 50 950 NaN 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[2]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 0 0 50 950 NaN 0.00
## [3,] 2 1 48 949 0.6666667 0.04
## [4,] 0 0 50 950 NaN 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 0 0 50 950 NaN 0.00
## [7,] 0 0 50 950 NaN 0.00
## [8,] 0 0 50 950 NaN 0.00
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[3]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 0 0 50 950 NaN 0.00
## [3,] 0 1 50 949 0.00 0.00
## [4,] 0 0 50 950 NaN 0.00
## [5,] 1 0 49 950 1.00 0.02
## [6,] 0 0 50 950 NaN 0.00
## [7,] 3 1 47 949 0.75 0.06
## [8,] 0 0 50 950 NaN 0.00
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[4]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 0 0 50 950 NaN 0.00
## [3,] 2 0 48 950 1.0000000 0.04
## [4,] 0 0 50 950 NaN 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 0 0 50 950 NaN 0.00
## [7,] 0 0 50 950 NaN 0.00
## [8,] 1 5 49 945 0.1666667 0.02
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[5]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 1 0 49 950 1.0000000 0.02
## [3,] 8 1 42 949 0.8888889 0.16
## [4,] 1 3 49 947 0.2500000 0.02
## [5,] 2 1 48 949 0.6666667 0.04
## [6,] 4 0 46 950 1.0000000 0.08
## [7,] 2 1 48 949 0.6666667 0.04
## [8,] 1 1 49 949 0.5000000 0.02
## [9,] 0 1 50 949 0.0000000 0.00
## [10,] 2 0 48 950 1.0000000 0.04
##
## [[6]]
## TP FP FN TN PREC REC
## [1,] 12 3 38 947 0.8000000 0.24
## [2,] 7 1 43 949 0.8750000 0.14
## [3,] 10 5 40 945 0.6666667 0.20
## [4,] 5 0 45 950 1.0000000 0.10
## [5,] 11 1 39 949 0.9166667 0.22
## [6,] 10 0 40 950 1.0000000 0.20
## [7,] 14 1 36 949 0.9333333 0.28
## [8,] 1 2 49 948 0.3333333 0.02
## [9,] 9 6 41 944 0.6000000 0.18
## [10,] 0 0 50 950 NaN 0.00
##
## [[7]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 1 0 49 950 1.0000000 0.02
## [3,] 5 0 45 950 1.0000000 0.10
## [4,] 7 0 43 950 1.0000000 0.14
## [5,] 5 0 45 950 1.0000000 0.10
## [6,] 3 0 47 950 1.0000000 0.06
## [7,] 4 0 46 950 1.0000000 0.08
## [8,] 8 3 42 947 0.7272727 0.16
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[8]]
## TP FP FN TN PREC REC
## [1,] 4 1 46 949 0.8000000 0.08
## [2,] 15 1 35 949 0.9375000 0.30
## [3,] 22 0 28 950 1.0000000 0.44
## [4,] 12 1 38 949 0.9230769 0.24
## [5,] 12 0 38 950 1.0000000 0.24
## [6,] 8 0 42 950 1.0000000 0.16
## [7,] 8 1 42 949 0.8888889 0.16
## [8,] 2 7 48 943 0.2222222 0.04
## [9,] 3 7 47 943 0.3000000 0.06
## [10,] 8 0 42 950 1.0000000 0.16
##
## [[9]]
## TP FP FN TN PREC REC
## [1,] 23 1 27 949 0.9583333 0.46
## [2,] 16 1 34 949 0.9411765 0.32
## [3,] 22 2 28 948 0.9166667 0.44
## [4,] 11 0 39 950 1.0000000 0.22
## [5,] 17 1 33 949 0.9444444 0.34
## [6,] 22 0 28 950 1.0000000 0.44
## [7,] 23 1 27 949 0.9583333 0.46
## [8,] 16 0 34 950 1.0000000 0.32
## [9,] 20 7 30 943 0.7407407 0.40
## [10,] 16 0 34 950 1.0000000 0.32
##
## [[10]]
## TP FP FN TN PREC REC
## [1,] 13 0 37 950 1.0000000 0.26
## [2,] 10 1 40 949 0.9090909 0.20
## [3,] 16 0 34 950 1.0000000 0.32
## [4,] 18 1 32 949 0.9473684 0.36
## [5,] 10 1 40 949 0.9090909 0.20
## [6,] 10 0 40 950 1.0000000 0.20
## [7,] 19 2 31 948 0.9047619 0.38
## [8,] 19 1 31 949 0.9500000 0.38
## [9,] 6 4 44 946 0.6000000 0.12
## [10,] 10 1 40 949 0.9090909 0.20
##
## [[11]]
## TP FP FN TN PREC REC
## [1,] 20 2 30 948 0.9090909 0.40
## [2,] 19 1 31 949 0.9500000 0.38
## [3,] 29 0 21 950 1.0000000 0.58
## [4,] 25 1 25 949 0.9615385 0.50
## [5,] 18 0 32 950 1.0000000 0.36
## [6,] 20 0 30 950 1.0000000 0.40
## [7,] 23 0 27 950 1.0000000 0.46
## [8,] 5 7 45 943 0.4166667 0.10
## [9,] 26 6 24 944 0.8125000 0.52
## [10,] 23 1 27 949 0.9583333 0.46
##
## [[12]]
## TP FP FN TN PREC REC
## [1,] 28 0 22 950 1.0000000 0.56
## [2,] 21 0 29 950 1.0000000 0.42
## [3,] 31 1 19 949 0.9687500 0.62
## [4,] 25 0 25 950 1.0000000 0.50
## [5,] 24 0 26 950 1.0000000 0.48
## [6,] 24 0 26 950 1.0000000 0.48
## [7,] 29 0 21 950 1.0000000 0.58
## [8,] 27 2 23 948 0.9310345 0.54
## [9,] 32 3 18 947 0.9142857 0.64
## [10,] 23 0 27 950 1.0000000 0.46
alcres2 <- do.call(rbind,lapply(alcres,colMeans))
alcres2
## TP FP FN TN PREC REC
## [1,] 0.0 0.0 50.0 950.0 NaN 0.000
## [2,] 0.2 0.1 49.8 949.9 NaN 0.004
## [3,] 0.4 0.2 49.6 949.8 NaN 0.008
## [4,] 0.3 0.5 49.7 949.5 NaN 0.006
## [5,] 2.1 0.8 47.9 949.2 NaN 0.042
## [6,] 7.9 1.9 42.1 948.1 NaN 0.158
## [7,] 3.3 0.3 46.7 949.7 NaN 0.066
## [8,] 9.4 1.8 40.6 948.2 0.8071688 0.188
## [9,] 18.6 1.3 31.4 948.7 0.9459695 0.372
## [10,] 13.1 1.1 36.9 948.9 0.9129403 0.262
## [11,] 20.8 1.8 29.2 948.2 0.9008129 0.416
## [12,] 26.4 0.6 23.6 949.4 0.9814070 0.528
alcres3p <- do.call(rbind,lapply(groupsizes, function (g) { alcres2[params$groupsizes==g,"PREC"] }))
colnames(alcres3p) <- deltas
rownames(alcres3p) <- groupsizes
alcres3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.9129403
## 6 NaN NaN 0.8071688 0.9008129
## 12 NaN NaN 0.9459695 0.9814070
alcres3r <- do.call(rbind,lapply(groupsizes, function (g) { alcres2[params$groupsizes==g,"REC"] }))
colnames(alcres3r) <- deltas
rownames(alcres3r) <- groupsizes
alcres3r
## 0.1 0.2 0.3 0.5
## 3 0.000 0.006 0.066 0.262
## 6 0.004 0.042 0.188 0.416
## 12 0.008 0.158 0.372 0.528
F1(alcres3p,alcres3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.4071532
## 6 NaN NaN 0.3049688 0.5691593
## 12 NaN NaN 0.5340042 0.6866046
nalres <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- mclapply(1:sims,function(i) {
simnal(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5, frac_probes=0.5,
groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
},mc.cores=4)
res <- do.call(rbind,res)
return(res)
})
nalres
## [[1]]
## TP FP FN TN PREC REC
## [1,] 21 652 29 298 0.03120357 0.42
## [2,] 25 850 25 100 0.02857143 0.50
## [3,] 19 704 31 246 0.02627939 0.38
## [4,] 15 448 35 502 0.03239741 0.30
## [5,] 20 818 30 132 0.02386635 0.40
## [6,] 0 0 50 950 NaN 0.00
## [7,] 20 647 30 303 0.02998501 0.40
## [8,] 24 870 26 80 0.02684564 0.48
## [9,] 24 959 26 -9 0.02441506 0.48
## [10,] 0 0 50 950 NaN 0.00
##
## [[2]]
## TP FP FN TN PREC REC
## [1,] 25 942 25 8 0.02585315 0.50
## [2,] 16 88 34 862 0.15384615 0.32
## [3,] 24 768 26 182 0.03030303 0.48
## [4,] 22 849 28 101 0.02525832 0.44
## [5,] 23 814 27 136 0.02747909 0.46
## [6,] 4 7 46 943 0.36363636 0.08
## [7,] 23 836 27 114 0.02677532 0.46
## [8,] 25 944 25 6 0.02579979 0.50
## [9,] 24 892 26 58 0.02620087 0.48
## [10,] 17 631 33 319 0.02623457 0.34
##
## [[3]]
## TP FP FN TN PREC REC
## [1,] 24 857 26 93 0.02724177 0.48
## [2,] 25 780 25 170 0.03105590 0.50
## [3,] 25 890 25 60 0.02732240 0.50
## [4,] 0 0 50 950 NaN 0.00
## [5,] 19 375 31 575 0.04822335 0.38
## [6,] 22 562 28 388 0.03767123 0.44
## [7,] 22 760 28 190 0.02813299 0.44
## [8,] 24 844 26 106 0.02764977 0.48
## [9,] 24 886 26 64 0.02637363 0.48
## [10,] 20 389 30 561 0.04889976 0.40
##
## [[4]]
## TP FP FN TN PREC REC
## [1,] 21 638 29 312 0.03186646 0.42
## [2,] 25 846 25 104 0.02870264 0.50
## [3,] 19 692 31 258 0.02672293 0.38
## [4,] 19 434 31 516 0.04194260 0.38
## [5,] 21 808 29 142 0.02533172 0.42
## [6,] 1 0 49 950 1.00000000 0.02
## [7,] 22 626 28 324 0.03395062 0.44
## [8,] 24 857 26 93 0.02724177 0.48
## [9,] 24 958 26 -8 0.02443992 0.48
## [10,] 0 0 50 950 NaN 0.00
##
## [[5]]
## TP FP FN TN PREC REC
## [1,] 25 940 25 10 0.02590674 0.50
## [2,] 19 93 31 857 0.16964286 0.38
## [3,] 24 741 26 209 0.03137255 0.48
## [4,] 22 834 28 116 0.02570093 0.44
## [5,] 25 797 25 153 0.03041363 0.50
## [6,] 6 7 44 943 0.46153846 0.12
## [7,] 23 825 27 125 0.02712264 0.46
## [8,] 25 941 25 9 0.02587992 0.50
## [9,] 24 889 26 61 0.02628697 0.48
## [10,] 19 612 31 338 0.03011094 0.38
##
## [[6]]
## TP FP FN TN PREC REC
## [1,] 24 832 26 118 0.02803738 0.48
## [2,] 25 753 25 197 0.03213368 0.50
## [3,] 25 873 25 77 0.02783964 0.50
## [4,] 8 4 42 946 0.66666667 0.16
## [5,] 21 355 29 595 0.05585106 0.42
## [6,] 25 554 25 396 0.04317789 0.50
## [7,] 23 737 27 213 0.03026316 0.46
## [8,] 25 825 25 125 0.02941176 0.50
## [9,] 24 869 26 81 0.02687570 0.48
## [10,] 21 381 29 569 0.05223881 0.42
##
## [[7]]
## TP FP FN TN PREC REC
## [1,] 23 629 27 321 0.03527607 0.46
## [2,] 25 835 25 115 0.02906977 0.50
## [3,] 20 688 30 262 0.02824859 0.40
## [4,] 22 424 28 526 0.04932735 0.44
## [5,] 21 798 29 152 0.02564103 0.42
## [6,] 4 1 46 949 0.80000000 0.08
## [7,] 23 613 27 337 0.03616352 0.46
## [8,] 25 841 25 109 0.02886836 0.50
## [9,] 24 954 26 -4 0.02453988 0.48
## [10,] 0 0 50 950 NaN 0.00
##
## [[8]]
## TP FP FN TN PREC REC
## [1,] 25 929 25 21 0.02620545 0.50
## [2,] 22 91 28 859 0.19469027 0.44
## [3,] 26 732 24 218 0.03430079 0.52
## [4,] 22 819 28 131 0.02615933 0.44
## [5,] 25 781 25 169 0.03101737 0.50
## [6,] 10 8 40 942 0.55555556 0.20
## [7,] 23 813 27 137 0.02751196 0.46
## [8,] 25 940 25 10 0.02590674 0.50
## [9,] 24 878 26 72 0.02660754 0.48
## [10,] 22 600 28 350 0.03536977 0.44
##
## [[9]]
## TP FP FN TN PREC REC
## [1,] 24 828 26 122 0.02816901 0.48
## [2,] 25 751 25 199 0.03221649 0.50
## [3,] 25 859 25 91 0.02828054 0.50
## [4,] 14 6 36 944 0.70000000 0.28
## [5,] 25 336 25 614 0.06925208 0.50
## [6,] 28 547 22 403 0.04869565 0.56
## [7,] 25 728 25 222 0.03320053 0.50
## [8,] 25 808 25 142 0.03001200 0.50
## [9,] 24 856 26 94 0.02727273 0.48
## [10,] 21 368 29 582 0.05398458 0.42
##
## [[10]]
## TP FP FN TN PREC REC
## [1,] 23 610 27 340 0.03633491 0.46
## [2,] 25 828 25 122 0.02930832 0.50
## [3,] 22 680 28 270 0.03133903 0.44
## [4,] 27 408 23 542 0.06206897 0.54
## [5,] 23 785 27 165 0.02846535 0.46
## [6,] 10 1 40 949 0.90909091 0.20
## [7,] 25 594 25 356 0.04038772 0.50
## [8,] 25 828 25 122 0.02930832 0.50
## [9,] 24 948 26 2 0.02469136 0.48
## [10,] 10 2 40 948 0.83333333 0.20
##
## [[11]]
## TP FP FN TN PREC REC
## [1,] 25 913 25 37 0.02665245 0.50
## [2,] 27 104 23 846 0.20610687 0.54
## [3,] 28 723 22 227 0.03728362 0.56
## [4,] 25 815 25 135 0.02976190 0.50
## [5,] 27 770 23 180 0.03387704 0.54
## [6,] 16 12 34 938 0.57142857 0.32
## [7,] 23 805 27 145 0.02777778 0.46
## [8,] 25 924 25 26 0.02634352 0.50
## [9,] 24 867 26 83 0.02693603 0.48
## [10,] 24 591 26 359 0.03902439 0.48
##
## [[12]]
## TP FP FN TN PREC REC
## [1,] 25 824 25 126 0.02944641 0.50
## [2,] 27 747 23 203 0.03488372 0.54
## [3,] 27 853 23 97 0.03068182 0.54
## [4,] 19 9 31 941 0.67857143 0.38
## [5,] 27 325 23 625 0.07670455 0.54
## [6,] 32 536 18 414 0.05633803 0.64
## [7,] 29 720 21 230 0.03871829 0.58
## [8,] 26 797 24 153 0.03159174 0.52
## [9,] 26 854 24 96 0.02954545 0.52
## [10,] 26 361 24 589 0.06718346 0.52
nalres2 <- do.call(rbind,lapply(nalres,colMeans))
nalres2
## TP FP FN TN PREC REC
## [1,] 16.8 594.8 33.2 355.2 NaN 0.336
## [2,] 20.3 677.1 29.7 272.9 0.07313867 0.406
## [3,] 20.5 634.3 29.5 315.7 NaN 0.410
## [4,] 17.6 585.9 32.4 364.1 NaN 0.352
## [5,] 21.2 667.9 28.8 282.1 0.08539756 0.424
## [6,] 22.1 618.3 27.9 331.7 0.09924958 0.442
## [7,] 18.7 578.3 31.3 371.7 NaN 0.374
## [8,] 22.4 659.1 27.6 290.9 0.09833248 0.448
## [9,] 23.6 608.7 26.4 341.3 0.10510836 0.472
## [10,] 21.4 568.4 28.6 381.6 0.20243282 0.428
## [11,] 24.4 652.4 25.6 297.6 0.10251922 0.488
## [12,] 26.4 602.6 23.6 347.4 0.10736649 0.528
nalres3p <- do.call(rbind,lapply(groupsizes, function (g) { nalres2[params$groupsizes==g,"PREC"] }))
colnames(nalres3p) <- deltas
rownames(nalres3p) <- groupsizes
nalres3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.2024328
## 6 0.07313867 0.08539756 0.09833248 0.1025192
## 12 NaN 0.09924958 0.10510836 0.1073665
nalres3r <- do.call(rbind,lapply(groupsizes, function (g) { nalres2[params$groupsizes==g,"REC"] }))
colnames(nalres3r) <- deltas
rownames(nalres3r) <- groupsizes
nalres3r
## 0.1 0.2 0.3 0.5
## 3 0.336 0.352 0.374 0.428
## 6 0.406 0.424 0.448 0.488
## 12 0.410 0.442 0.472 0.528
F1(nalres3p,nalres3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.2748627
## 6 0.1239487 0.1421623 0.1612679 0.1694420
## 12 NaN 0.1621001 0.1719301 0.1784466
nalcres <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- mclapply(1:sims,function(i) {
simnalc(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5, frac_probes=0.5,
groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
},mc.cores=4)
res <- do.call(rbind,res)
return(res)
})
nalcres
## [[1]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 0 50 950 NaN 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 1 50 949 0 0
## [7,] 0 0 50 950 NaN 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[2]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 0 0 50 950 NaN 0.00
## [3,] 2 0 48 950 1 0.04
## [4,] 0 0 50 950 NaN 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 0 0 50 950 NaN 0.00
## [7,] 0 0 50 950 NaN 0.00
## [8,] 1 0 49 950 1 0.02
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[3]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 2 0 48 950 1.00 0.04
## [3,] 0 2 50 948 0.00 0.00
## [4,] 0 0 50 950 NaN 0.00
## [5,] 1 0 49 950 1.00 0.02
## [6,] 1 0 49 950 1.00 0.02
## [7,] 3 1 47 949 0.75 0.06
## [8,] 0 0 50 950 NaN 0.00
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[4]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 0 0 50 950 NaN 0.00
## [3,] 4 0 46 950 1.0 0.08
## [4,] 2 0 48 950 1.0 0.04
## [5,] 2 0 48 950 1.0 0.04
## [6,] 1 1 49 949 0.5 0.02
## [7,] 0 0 50 950 NaN 0.00
## [8,] 3 7 47 943 0.3 0.06
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[5]]
## TP FP FN TN PREC REC
## [1,] 1 0 49 950 1.0000000 0.02
## [2,] 7 0 43 950 1.0000000 0.14
## [3,] 9 3 41 947 0.7500000 0.18
## [4,] 4 4 46 946 0.5000000 0.08
## [5,] 3 1 47 949 0.7500000 0.06
## [6,] 7 0 43 950 1.0000000 0.14
## [7,] 2 1 48 949 0.6666667 0.04
## [8,] 1 4 49 946 0.2000000 0.02
## [9,] 0 1 50 949 0.0000000 0.00
## [10,] 4 0 46 950 1.0000000 0.08
##
## [[6]]
## TP FP FN TN PREC REC
## [1,] 16 3 34 947 0.8421053 0.32
## [2,] 7 0 43 950 1.0000000 0.14
## [3,] 14 8 36 942 0.6363636 0.28
## [4,] 10 0 40 950 1.0000000 0.20
## [5,] 15 0 35 950 1.0000000 0.30
## [6,] 13 2 37 948 0.8666667 0.26
## [7,] 18 1 32 949 0.9473684 0.36
## [8,] 2 3 48 947 0.4000000 0.04
## [9,] 9 7 41 943 0.5625000 0.18
## [10,] 9 0 41 950 1.0000000 0.18
##
## [[7]]
## TP FP FN TN PREC REC
## [1,] 6 0 44 950 1.0000000 0.12
## [2,] 2 0 48 950 1.0000000 0.04
## [3,] 7 0 43 950 1.0000000 0.14
## [4,] 9 0 41 950 1.0000000 0.18
## [5,] 7 1 43 949 0.8750000 0.14
## [6,] 3 1 47 949 0.7500000 0.06
## [7,] 11 0 39 950 1.0000000 0.22
## [8,] 9 4 41 946 0.6923077 0.18
## [9,] 0 0 50 950 NaN 0.00
## [10,] 1 0 49 950 1.0000000 0.02
##
## [[8]]
## TP FP FN TN PREC REC
## [1,] 8 2 42 948 0.8000000 0.16
## [2,] 16 0 34 950 1.0000000 0.32
## [3,] 26 0 24 950 1.0000000 0.52
## [4,] 14 1 36 949 0.9333333 0.28
## [5,] 14 1 36 949 0.9333333 0.28
## [6,] 11 0 39 950 1.0000000 0.22
## [7,] 8 1 42 949 0.8888889 0.16
## [8,] 2 7 48 943 0.2222222 0.04
## [9,] 8 7 42 943 0.5333333 0.16
## [10,] 10 0 40 950 1.0000000 0.20
##
## [[9]]
## TP FP FN TN PREC REC
## [1,] 26 0 24 950 1.0000000 0.52
## [2,] 17 1 33 949 0.9444444 0.34
## [3,] 25 3 25 947 0.8928571 0.50
## [4,] 16 0 34 950 1.0000000 0.32
## [5,] 20 1 30 949 0.9523810 0.40
## [6,] 22 2 28 948 0.9166667 0.44
## [7,] 25 1 25 949 0.9615385 0.50
## [8,] 15 0 35 950 1.0000000 0.30
## [9,] 21 5 29 945 0.8076923 0.42
## [10,] 19 1 31 949 0.9500000 0.38
##
## [[10]]
## TP FP FN TN PREC REC
## [1,] 21 0 29 950 1.0000000 0.42
## [2,] 14 2 36 948 0.8750000 0.28
## [3,] 16 0 34 950 1.0000000 0.32
## [4,] 18 0 32 950 1.0000000 0.36
## [5,] 12 0 38 950 1.0000000 0.24
## [6,] 15 2 35 948 0.8823529 0.30
## [7,] 21 0 29 950 1.0000000 0.42
## [8,] 21 3 29 947 0.8750000 0.42
## [9,] 6 8 44 942 0.4285714 0.12
## [10,] 17 1 33 949 0.9444444 0.34
##
## [[11]]
## TP FP FN TN PREC REC
## [1,] 22 4 28 946 0.8461538 0.44
## [2,] 23 1 27 949 0.9583333 0.46
## [3,] 33 1 17 949 0.9705882 0.66
## [4,] 26 0 24 950 1.0000000 0.52
## [5,] 20 1 30 949 0.9523810 0.40
## [6,] 23 0 27 950 1.0000000 0.46
## [7,] 19 0 31 950 1.0000000 0.38
## [8,] 9 11 41 939 0.4500000 0.18
## [9,] 28 7 22 943 0.8000000 0.56
## [10,] 21 1 29 949 0.9545455 0.42
##
## [[12]]
## TP FP FN TN PREC REC
## [1,] 29 0 21 950 1.0000000 0.58
## [2,] 26 1 24 949 0.9629630 0.52
## [3,] 29 2 21 948 0.9354839 0.58
## [4,] 24 0 26 950 1.0000000 0.48
## [5,] 23 1 27 949 0.9583333 0.46
## [6,] 28 3 22 947 0.9032258 0.56
## [7,] 28 1 22 949 0.9655172 0.56
## [8,] 28 2 22 948 0.9333333 0.56
## [9,] 34 2 16 948 0.9444444 0.68
## [10,] 28 1 22 949 0.9655172 0.56
nalcres2 <- do.call(rbind,lapply(nalcres,colMeans))
nalcres2
## TP FP FN TN PREC REC
## [1,] 0.0 0.1 50.0 949.9 NaN 0.000
## [2,] 0.3 0.0 49.7 950.0 NaN 0.006
## [3,] 0.7 0.3 49.3 949.7 NaN 0.014
## [4,] 1.2 0.8 48.8 949.2 NaN 0.024
## [5,] 3.8 1.4 46.2 948.6 0.6866667 0.076
## [6,] 11.3 2.4 38.7 947.6 0.8255004 0.226
## [7,] 5.5 0.6 44.5 949.4 NaN 0.110
## [8,] 11.7 1.9 38.3 948.1 0.8311111 0.234
## [9,] 20.6 1.4 29.4 948.6 0.9425580 0.412
## [10,] 16.1 1.6 33.9 948.4 0.9005369 0.322
## [11,] 22.4 2.6 27.6 947.4 0.8932002 0.448
## [12,] 27.7 1.3 22.3 948.7 0.9568818 0.554
nalcres3p <- do.call(rbind,lapply(groupsizes, function (g) { nalcres2[params$groupsizes==g,"PREC"] }))
colnames(nalcres3p) <- deltas
rownames(nalcres3p) <- groupsizes
nalcres3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.9005369
## 6 NaN 0.6866667 0.8311111 0.8932002
## 12 NaN 0.8255004 0.9425580 0.9568818
nalcres3r <- do.call(rbind,lapply(groupsizes, function (g) { nalcres2[params$groupsizes==g,"REC"] }))
colnames(nalcres3r) <- deltas
rownames(nalcres3r) <- groupsizes
nalcres3r
## 0.1 0.2 0.3 0.5
## 3 0.000 0.024 0.110 0.322
## 6 0.006 0.076 0.234 0.448
## 12 0.014 0.226 0.412 0.554
F1(nalcres3p,nalcres3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.4743789
## 6 NaN 0.1368531 0.3651826 0.5967099
## 12 NaN 0.3548512 0.5733736 0.7017260
aares <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- mclapply(1:sims,function(i) {
simaa(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5, frac_probes=0.5,
groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
},mc.cores=4)
res <- do.call(rbind,res)
return(res)
})
aares
## [[1]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.0
## [2,] 0 0 50 950 NaN 0.0
## [3,] 0 0 50 950 NaN 0.0
## [4,] 0 0 50 950 NaN 0.0
## [5,] 0 0 50 950 NaN 0.0
## [6,] 0 0 50 950 NaN 0.0
## [7,] 0 0 50 950 NaN 0.0
## [8,] 0 0 50 950 NaN 0.0
## [9,] 25 929 25 21 0.02620545 0.5
## [10,] 0 0 50 950 NaN 0.0
##
## [[2]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.0
## [2,] 0 0 50 950 NaN 0.0
## [3,] 0 1 50 949 0.00000000 0.0
## [4,] 0 1 50 949 0.00000000 0.0
## [5,] 0 0 50 950 NaN 0.0
## [6,] 0 0 50 950 NaN 0.0
## [7,] 0 0 50 950 NaN 0.0
## [8,] 25 896 25 54 0.02714441 0.5
## [9,] 0 0 50 950 NaN 0.0
## [10,] 0 0 50 950 NaN 0.0
##
## [[3]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 1 50 949 0 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 0 50 950 NaN 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[4]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.0
## [2,] 0 0 50 950 NaN 0.0
## [3,] 0 0 50 950 NaN 0.0
## [4,] 0 0 50 950 NaN 0.0
## [5,] 0 0 50 950 NaN 0.0
## [6,] 0 0 50 950 NaN 0.0
## [7,] 0 0 50 950 NaN 0.0
## [8,] 0 0 50 950 NaN 0.0
## [9,] 25 928 25 22 0.02623295 0.5
## [10,] 0 0 50 950 NaN 0.0
##
## [[5]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.0
## [2,] 0 0 50 950 NaN 0.0
## [3,] 0 1 50 949 0.0000000 0.0
## [4,] 0 1 50 949 0.0000000 0.0
## [5,] 0 0 50 950 NaN 0.0
## [6,] 0 0 50 950 NaN 0.0
## [7,] 0 0 50 950 NaN 0.0
## [8,] 25 882 25 68 0.0275634 0.5
## [9,] 0 0 50 950 NaN 0.0
## [10,] 0 0 50 950 NaN 0.0
##
## [[6]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 1 50 949 0 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 0 50 950 NaN 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[7]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.0
## [2,] 0 0 50 950 NaN 0.0
## [3,] 0 0 50 950 NaN 0.0
## [4,] 0 0 50 950 NaN 0.0
## [5,] 0 0 50 950 NaN 0.0
## [6,] 0 0 50 950 NaN 0.0
## [7,] 0 0 50 950 NaN 0.0
## [8,] 0 0 50 950 NaN 0.0
## [9,] 25 916 25 34 0.02656748 0.5
## [10,] 0 0 50 950 NaN 0.0
##
## [[8]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.0
## [2,] 0 0 50 950 NaN 0.0
## [3,] 0 1 50 949 0.00000000 0.0
## [4,] 0 1 50 949 0.00000000 0.0
## [5,] 0 0 50 950 NaN 0.0
## [6,] 0 0 50 950 NaN 0.0
## [7,] 0 0 50 950 NaN 0.0
## [8,] 25 873 25 77 0.02783964 0.5
## [9,] 0 0 50 950 NaN 0.0
## [10,] 0 0 50 950 NaN 0.0
##
## [[9]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 1 50 949 0 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 0 50 950 NaN 0
## [7,] 0 0 50 950 NaN 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[10]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.0
## [2,] 0 0 50 950 NaN 0.0
## [3,] 0 0 50 950 NaN 0.0
## [4,] 0 0 50 950 NaN 0.0
## [5,] 0 0 50 950 NaN 0.0
## [6,] 0 0 50 950 NaN 0.0
## [7,] 0 0 50 950 NaN 0.0
## [8,] 0 0 50 950 NaN 0.0
## [9,] 25 904 25 46 0.02691066 0.5
## [10,] 0 0 50 950 NaN 0.0
##
## [[11]]
## TP FP FN TN PREC REC
## [1,] 1 0 49 950 1.00000000 0.02
## [2,] 0 0 50 950 NaN 0.00
## [3,] 0 1 50 949 0.00000000 0.00
## [4,] 0 1 50 949 0.00000000 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 0 0 50 950 NaN 0.00
## [7,] 0 0 50 950 NaN 0.00
## [8,] 25 866 25 84 0.02805836 0.50
## [9,] 1 0 49 950 1.00000000 0.02
## [10,] 0 0 50 950 NaN 0.00
##
## [[12]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 2 0 48 950 1.0 0.04
## [3,] 1 1 49 949 0.5 0.02
## [4,] 1 0 49 950 1.0 0.02
## [5,] 2 0 48 950 1.0 0.04
## [6,] 0 0 50 950 NaN 0.00
## [7,] 1 0 49 950 1.0 0.02
## [8,] 4 1 46 949 0.8 0.08
## [9,] 1 0 49 950 1.0 0.02
## [10,] 2 0 48 950 1.0 0.04
aares2 <- do.call(rbind,lapply(aares,colMeans))
aares2
## TP FP FN TN PREC REC
## [1,] 2.5 92.9 47.5 857.1 NaN 0.050
## [2,] 2.5 89.8 47.5 860.2 NaN 0.050
## [3,] 0.0 0.1 50.0 949.9 NaN 0.000
## [4,] 2.5 92.8 47.5 857.2 NaN 0.050
## [5,] 2.5 88.4 47.5 861.6 NaN 0.050
## [6,] 0.0 0.1 50.0 949.9 NaN 0.000
## [7,] 2.5 91.6 47.5 858.4 NaN 0.050
## [8,] 2.5 87.5 47.5 862.5 NaN 0.050
## [9,] 0.0 0.1 50.0 949.9 NaN 0.000
## [10,] 2.5 90.4 47.5 859.6 NaN 0.050
## [11,] 2.7 86.8 47.3 863.2 NaN 0.054
## [12,] 1.4 0.2 48.6 949.8 NaN 0.028
aares3p <- do.call(rbind,lapply(groupsizes, function (g) { aares2[params$groupsizes==g,"PREC"] }))
colnames(aares3p) <- deltas
rownames(aares3p) <- groupsizes
aares3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN NaN
## 6 NaN NaN NaN NaN
## 12 NaN NaN NaN NaN
aares3r <- do.call(rbind,lapply(groupsizes, function (g) { aares2[params$groupsizes==g,"REC"] }))
colnames(aares3r) <- deltas
rownames(aares3r) <- groupsizes
aares3r
## 0.1 0.2 0.3 0.5
## 3 0.05 0.05 0.05 0.050
## 6 0.05 0.05 0.05 0.054
## 12 0.00 0.00 0.00 0.028
F1(aares3p,aares3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN NaN
## 6 NaN NaN NaN NaN
## 12 NaN NaN NaN NaN
almres <- lapply(1:nrow(params) , function(j) {
groupsize = params[j,1]
delta = params[j,2]
res <- mclapply(1:sims,function(i) {
simalm(genesetdatabase=gsets, myann=myann, mval=normal_mval, seed=i*100, frac_genes=0.5, frac_probes=0.5,
groupsize=groupsize, delta=delta, num_dm_sets=num_dm_sets)
},mc.cores=4)
res <- do.call(rbind,res)
return(res)
})
almres
## [[1]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0
## [2,] 0 0 50 950 NaN 0
## [3,] 0 0 50 950 NaN 0
## [4,] 0 0 50 950 NaN 0
## [5,] 0 0 50 950 NaN 0
## [6,] 0 1 50 949 0 0
## [7,] 0 0 50 950 NaN 0
## [8,] 0 0 50 950 NaN 0
## [9,] 0 0 50 950 NaN 0
## [10,] 0 0 50 950 NaN 0
##
## [[2]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 0 0 50 950 NaN 0.00
## [3,] 3 0 47 950 1 0.06
## [4,] 0 0 50 950 NaN 0.00
## [5,] 0 0 50 950 NaN 0.00
## [6,] 0 0 50 950 NaN 0.00
## [7,] 0 0 50 950 NaN 0.00
## [8,] 1 0 49 950 1 0.02
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[3]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 2 0 48 950 1.00 0.04
## [3,] 1 1 49 949 0.50 0.02
## [4,] 0 0 50 950 NaN 0.00
## [5,] 1 0 49 950 1.00 0.02
## [6,] 3 1 47 949 0.75 0.06
## [7,] 4 0 46 950 1.00 0.08
## [8,] 0 0 50 950 NaN 0.00
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[4]]
## TP FP FN TN PREC REC
## [1,] 0 0 50 950 NaN 0.00
## [2,] 0 0 50 950 NaN 0.00
## [3,] 4 0 46 950 1.0 0.08
## [4,] 2 0 48 950 1.0 0.04
## [5,] 2 0 48 950 1.0 0.04
## [6,] 1 1 49 949 0.5 0.02
## [7,] 0 0 50 950 NaN 0.00
## [8,] 9 1 41 949 0.9 0.18
## [9,] 0 0 50 950 NaN 0.00
## [10,] 0 0 50 950 NaN 0.00
##
## [[5]]
## TP FP FN TN PREC REC
## [1,] 1 0 49 950 1 0.02
## [2,] 7 0 43 950 1 0.14
## [3,] 12 0 38 950 1 0.24
## [4,] 8 0 42 950 1 0.16
## [5,] 4 0 46 950 1 0.08
## [6,] 7 0 43 950 1 0.14
## [7,] 3 0 47 950 1 0.06
## [8,] 5 0 45 950 1 0.10
## [9,] 1 0 49 950 1 0.02
## [10,] 4 0 46 950 1 0.08
##
## [[6]]
## TP FP FN TN PREC REC
## [1,] 19 0 31 950 1.0000000 0.38
## [2,] 7 0 43 950 1.0000000 0.14
## [3,] 20 2 30 948 0.9090909 0.40
## [4,] 10 0 40 950 1.0000000 0.20
## [5,] 15 0 35 950 1.0000000 0.30
## [6,] 13 2 37 948 0.8666667 0.26
## [7,] 18 1 32 949 0.9473684 0.36
## [8,] 5 0 45 950 1.0000000 0.10
## [9,] 15 2 35 948 0.8823529 0.30
## [10,] 9 0 41 950 1.0000000 0.18
##
## [[7]]
## TP FP FN TN PREC REC
## [1,] 6 0 44 950 1.0000000 0.12
## [2,] 2 0 48 950 1.0000000 0.04
## [3,] 7 0 43 950 1.0000000 0.14
## [4,] 9 0 41 950 1.0000000 0.18
## [5,] 8 0 42 950 1.0000000 0.16
## [6,] 3 2 47 948 0.6000000 0.06
## [7,] 11 0 39 950 1.0000000 0.22
## [8,] 12 1 38 949 0.9230769 0.24
## [9,] 0 0 50 950 NaN 0.00
## [10,] 1 0 49 950 1.0000000 0.02
##
## [[8]]
## TP FP FN TN PREC REC
## [1,] 10 0 40 950 1.0000000 0.20
## [2,] 16 0 34 950 1.0000000 0.32
## [3,] 26 0 24 950 1.0000000 0.52
## [4,] 15 0 35 950 1.0000000 0.30
## [5,] 14 1 36 949 0.9333333 0.28
## [6,] 11 0 39 950 1.0000000 0.22
## [7,] 9 0 41 950 1.0000000 0.18
## [8,] 10 0 40 950 1.0000000 0.20
## [9,] 15 1 35 949 0.9375000 0.30
## [10,] 11 0 39 950 1.0000000 0.22
##
## [[9]]
## TP FP FN TN PREC REC
## [1,] 26 0 24 950 1.0000000 0.52
## [2,] 17 1 33 949 0.9444444 0.34
## [3,] 26 2 24 948 0.9285714 0.52
## [4,] 16 0 34 950 1.0000000 0.32
## [5,] 20 1 30 949 0.9523810 0.40
## [6,] 22 2 28 948 0.9166667 0.44
## [7,] 25 1 25 949 0.9615385 0.50
## [8,] 15 0 35 950 1.0000000 0.30
## [9,] 24 2 26 948 0.9230769 0.48
## [10,] 19 1 31 949 0.9500000 0.38
##
## [[10]]
## TP FP FN TN PREC REC
## [1,] 21 0 29 950 1.0000000 0.42
## [2,] 15 1 35 949 0.9375000 0.30
## [3,] 17 0 33 950 1.0000000 0.34
## [4,] 18 0 32 950 1.0000000 0.36
## [5,] 12 0 38 950 1.0000000 0.24
## [6,] 15 2 35 948 0.8823529 0.30
## [7,] 21 0 29 950 1.0000000 0.42
## [8,] 21 3 29 947 0.8750000 0.42
## [9,] 13 1 37 949 0.9285714 0.26
## [10,] 17 1 33 949 0.9444444 0.34
##
## [[11]]
## TP FP FN TN PREC REC
## [1,] 26 0 24 950 1.0000000 0.52
## [2,] 23 1 27 949 0.9583333 0.46
## [3,] 33 1 17 949 0.9705882 0.66
## [4,] 26 0 24 950 1.0000000 0.52
## [5,] 20 1 30 949 0.9523810 0.40
## [6,] 23 0 27 950 1.0000000 0.46
## [7,] 19 0 31 950 1.0000000 0.38
## [8,] 20 0 30 950 1.0000000 0.40
## [9,] 34 1 16 949 0.9714286 0.68
## [10,] 21 1 29 949 0.9545455 0.42
##
## [[12]]
## TP FP FN TN PREC REC
## [1,] 29 0 21 950 1.0000000 0.58
## [2,] 27 1 23 949 0.9642857 0.54
## [3,] 32 2 18 948 0.9411765 0.64
## [4,] 24 0 26 950 1.0000000 0.48
## [5,] 23 1 27 949 0.9583333 0.46
## [6,] 28 3 22 947 0.9032258 0.56
## [7,] 28 1 22 949 0.9655172 0.56
## [8,] 28 2 22 948 0.9333333 0.56
## [9,] 35 2 15 948 0.9459459 0.70
## [10,] 28 1 22 949 0.9655172 0.56
almres2 <- do.call(rbind,lapply(almres,colMeans))
almres2
## TP FP FN TN PREC REC
## [1,] 0.0 0.1 50.0 949.9 NaN 0.000
## [2,] 0.4 0.0 49.6 950.0 NaN 0.008
## [3,] 1.1 0.2 48.9 949.8 NaN 0.022
## [4,] 1.8 0.2 48.2 949.8 NaN 0.036
## [5,] 5.2 0.0 44.8 950.0 1.0000000 0.104
## [6,] 13.1 0.7 36.9 949.3 0.9605479 0.262
## [7,] 5.9 0.3 44.1 949.7 NaN 0.118
## [8,] 13.7 0.2 36.3 949.8 0.9870833 0.274
## [9,] 21.0 1.0 29.0 949.0 0.9576679 0.420
## [10,] 17.0 0.8 33.0 949.2 0.9567869 0.340
## [11,] 24.5 0.5 25.5 949.5 0.9807277 0.490
## [12,] 28.2 1.3 21.8 948.7 0.9577335 0.564
almres3p <- do.call(rbind,lapply(groupsizes, function (g) { almres2[params$groupsizes==g,"PREC"] }))
colnames(almres3p) <- deltas
rownames(almres3p) <- groupsizes
almres3p
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.9567869
## 6 NaN 1.0000000 0.9870833 0.9807277
## 12 NaN 0.9605479 0.9576679 0.9577335
almres3r <- do.call(rbind,lapply(groupsizes, function (g) { almres2[params$groupsizes==g,"REC"] }))
colnames(almres3r) <- deltas
rownames(almres3r) <- groupsizes
almres3r
## 0.1 0.2 0.3 0.5
## 3 0.000 0.036 0.118 0.340
## 6 0.008 0.104 0.274 0.490
## 12 0.022 0.262 0.420 0.564
F1(almres3p,almres3r)
## 0.1 0.2 0.3 0.5
## 3 NaN NaN NaN 0.5017132
## 6 NaN 0.1884058 0.4289341 0.6534950
## 12 NaN 0.4117034 0.5839151 0.7099294
save.image("GSE158422_simulate.Rdata")
sessionInfo()
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] kableExtra_1.3.4
## [2] mitch_1.12.0
## [3] psych_2.3.9
## [4] org.Hs.eg.db_3.17.0
## [5] AnnotationDbi_1.62.2
## [6] IlluminaHumanMethylation450kmanifest_0.4.0
## [7] missMethyl_1.34.0
## [8] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [9] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1
## [10] minfi_1.46.0
## [11] bumphunter_1.42.0
## [12] locfit_1.5-9.8
## [13] iterators_1.0.14
## [14] foreach_1.5.2
## [15] Biostrings_2.68.1
## [16] XVector_0.40.0
## [17] SummarizedExperiment_1.30.2
## [18] Biobase_2.60.0
## [19] MatrixGenerics_1.12.3
## [20] matrixStats_1.0.0
## [21] GenomicRanges_1.52.0
## [22] GenomeInfoDb_1.36.3
## [23] IRanges_2.34.1
## [24] S4Vectors_0.38.2
## [25] BiocGenerics_0.46.0
## [26] limma_3.56.2
## [27] stringi_1.7.12
##
## loaded via a namespace (and not attached):
## [1] splines_4.3.1 later_1.3.1
## [3] BiocIO_1.10.0 bitops_1.0-7
## [5] filelock_1.0.2 BiasedUrn_2.0.11
## [7] tibble_3.2.1 preprocessCore_1.62.1
## [9] XML_3.99-0.14 lifecycle_1.0.3
## [11] lattice_0.21-9 MASS_7.3-60
## [13] base64_2.0.1 scrime_1.3.5
## [15] magrittr_2.0.3 sass_0.4.7
## [17] rmarkdown_2.25 jquerylib_0.1.4
## [19] yaml_2.3.7 httpuv_1.6.11
## [21] doRNG_1.8.6 askpass_1.2.0
## [23] DBI_1.1.3 RColorBrewer_1.1-3
## [25] abind_1.4-5 zlibbioc_1.46.0
## [27] rvest_1.0.3 quadprog_1.5-8
## [29] purrr_1.0.2 RCurl_1.98-1.12
## [31] rappdirs_0.3.3 GenomeInfoDbData_1.2.10
## [33] genefilter_1.82.1 annotate_1.78.0
## [35] svglite_2.1.1 DelayedMatrixStats_1.22.6
## [37] codetools_0.2-19 DelayedArray_0.26.7
## [39] xml2_1.3.5 tidyselect_1.2.0
## [41] beanplot_1.3.1 BiocFileCache_2.8.0
## [43] webshot_0.5.5 illuminaio_0.42.0
## [45] GenomicAlignments_1.36.0 jsonlite_1.8.7
## [47] multtest_2.56.0 ellipsis_0.3.2
## [49] survival_3.5-7 systemfonts_1.0.4
## [51] tools_4.3.1 progress_1.2.2
## [53] Rcpp_1.0.11 glue_1.6.2
## [55] mnormt_2.1.1 gridExtra_2.3
## [57] xfun_0.40 dplyr_1.1.3
## [59] HDF5Array_1.28.1 fastmap_1.1.1
## [61] GGally_2.1.2 rhdf5filters_1.12.1
## [63] fansi_1.0.4 openssl_2.1.1
## [65] caTools_1.18.2 digest_0.6.33
## [67] R6_2.5.1 mime_0.12
## [69] colorspace_2.1-0 gtools_3.9.4
## [71] biomaRt_2.56.1 RSQLite_2.3.1
## [73] utf8_1.2.3 tidyr_1.3.0
## [75] generics_0.1.3 data.table_1.14.8
## [77] rtracklayer_1.60.1 prettyunits_1.2.0
## [79] httr_1.4.7 htmlwidgets_1.6.2
## [81] S4Arrays_1.0.6 pkgconfig_2.0.3
## [83] gtable_0.3.4 blob_1.2.4
## [85] siggenes_1.74.0 htmltools_0.5.6
## [87] echarts4r_0.4.5 scales_1.2.1
## [89] png_0.1-8 knitr_1.44
## [91] rstudioapi_0.15.0 reshape2_1.4.4
## [93] tzdb_0.4.0 rjson_0.2.21
## [95] nlme_3.1-163 curl_5.0.2
## [97] cachem_1.0.8 rhdf5_2.44.0
## [99] stringr_1.5.0 KernSmooth_2.23-22
## [101] restfulr_0.0.15 GEOquery_2.68.0
## [103] pillar_1.9.0 grid_4.3.1
## [105] reshape_0.8.9 vctrs_0.6.3
## [107] gplots_3.1.3 promises_1.2.1
## [109] dbplyr_2.3.4 xtable_1.8-4
## [111] beeswarm_0.4.0 evaluate_0.22
## [113] readr_2.1.4 GenomicFeatures_1.52.2
## [115] cli_3.6.1 compiler_4.3.1
## [117] Rsamtools_2.16.0 rlang_1.1.1
## [119] crayon_1.5.2 rngtools_1.5.2
## [121] nor1mix_1.3-0 mclust_6.0.0
## [123] plyr_1.8.8 viridisLite_0.4.2
## [125] BiocParallel_1.34.2 munsell_0.5.0
## [127] Matrix_1.6-1.1 hms_1.1.3
## [129] sparseMatrixStats_1.12.2 bit64_4.0.5
## [131] ggplot2_3.4.3 Rhdf5lib_1.22.1
## [133] KEGGREST_1.40.1 statmod_1.5.0
## [135] shiny_1.7.5 memoise_2.0.1
## [137] bslib_0.5.1 bit_4.0.5
LA
simla: parametric self-contained
simlac: parametric competitive
simnla: nonparametric self-contained
simnlac: nonparametric competitive
AL
simal: parametric self-contained
simalc: parametric competitive
simnal: nonparametric self-contained
simnalc: nonparametric competitive