Introduction

Previously, Mandhri and I analysed the B-PROOF 450K data, trying to understand whether vitamin supplementation caused changes in gene methylation. We used Limma and some basic analyses, which showed no specific probes with FDR<0.05, nor any DMRs.

Here we will attempt another approach. First aggregate median signal for probes belonging to a gene, followed by limma and enrichment analysis.

To validate this approach it is possible to cut the dataset in half and see what % of results are consistent.

suppressPackageStartupMessages({
  library("limma")
  library("parallel")
  library("dplyr")
  library("kableExtra")
  library("eulerr")
  library("mitch")
  library("IlluminaHumanMethylation450kmanifest")
  library("IlluminaHumanMethylation450kanno.ilmn12.hg19")
  library("tictoc")
})

source("meth_functions.R")

Get array annotation data

ann450k <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
myann <- data.frame(ann450k[,c("UCSC_RefGene_Name","Regulatory_Feature_Group")])
gp <- myann[,"UCSC_RefGene_Name",drop=FALSE]
gp2 <- strsplit(gp$UCSC_RefGene_Name,";")
names(gp2) <- rownames(gp)
sets <- split(rep(names(gp2), lengths(gp2)), unlist(gp2))
promoters <- grep("Prom",myann$Regulatory_Feature_Group)

DM3 - association of Hcy with gene methylation

It is thought that high plasma homocysteine can inhibit DNA methylation. Let’s see whether that is the case, and which genes are most affected. This analysis is conducted at the whole gene level as well as on the level of promoters.

This approach involves performing limma, and then for each gene the median t-score is calculated. This value is then used by mitch.

design <- readRDS(file="hcy_design.rds")
mval <- readRDS(file="hcy_mval.rds")

tic()
res <- main(mval=mval,design=design,sets=sets,cores=4)
res_df <- res[[1]] # enrichment results
res_top <- res[[2]] # limma results
toc() ## 502-522 sec elapsed on 8 cores (8.3-8.7 mins)
## 591.806 sec elapsed
hist(res_top$t)

hist(res_df$median)

head(res_df,30) %>%
  kbl(caption="Top GMEA genes") %>%
  kable_styling("hover", full_width = F)
Top GMEA genes
nprobes median PValue FDR
PDZK1IP1 8 -1.859377 0.0000935 0.589115
ASPRV1 11 -1.302865 0.0000950 0.589115
LOC100128023 1 -3.929833 0.0001268 0.589115
CPVL 18 -1.425266 0.0001567 0.589115
HAL 12 -1.730888 0.0001975 0.589115
SNORD115-22 5 -2.103461 0.0002981 0.589115
C12orf27 5 -1.729725 0.0003147 0.589115
DCUN1D2 38 -1.255057 0.0003350 0.589115
RNASE11 5 -1.623172 0.0003891 0.589115
GPR109B 5 -2.057596 0.0004102 0.589115
MIR195 6 -2.102848 0.0004515 0.589115
MIR143 5 -2.373868 0.0004586 0.589115
WBSCR26 3 -3.138159 0.0004609 0.589115
GUCY1B2 12 -2.793912 0.0004644 0.589115
QSOX2 24 -1.344775 0.0004850 0.589115
CEACAM8 6 -2.251108 0.0005085 0.589115
FAM153C 4 -2.714201 0.0005386 0.589115
CD177 7 -3.034576 0.0006618 0.589115
MIRLET7A3 8 -2.033064 0.0006669 0.589115
SLC22A17 20 -1.107041 0.0006882 0.589115
ANKRD33B 49 -1.001862 0.0007299 0.589115
PLXNB1 24 -1.024144 0.0007478 0.589115
CYP2A13 8 -1.484049 0.0007561 0.589115
CSTA 3 -2.351129 0.0007616 0.589115
UBE2MP1 8 -1.790921 0.0008419 0.589115
RIN2 18 -1.539252 0.0008706 0.589115
ENG 7 -2.117828 0.0008803 0.589115
LRRC70 1 -3.392764 0.0008925 0.589115
MIR497 5 -1.678467 0.0009088 0.589115
SNORD116-26 1 -3.394603 0.0009254 0.589115
genesets <- gmt_import("ReactomePathways.gmt")

y <- res_df[,"median",drop=FALSE]

colnames(y) <- "meth"

res <- mitch_calc(y, genesets, priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
head(res$enrichment_result,30) %>%
  kbl(caption="Top GMEA pathways", row.names = F) %>%
  kable_styling("hover", full_width = F)
Top GMEA pathways
set setSize pANOVA s.dist p.adjustANOVA
Thyroxine biosynthesis 10 0.0016466 -0.5747660 0.0076537
Apoptotic cleavage of cell adhesion proteins 11 0.0011910 -0.5643081 0.0058152
Scavenging of heme from plasma 11 0.0022490 -0.5319605 0.0100842
TICAM1, RIP1-mediated IKK complex recruitment 18 0.0001915 0.5077483 0.0011740
TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain 19 0.0001404 0.5044793 0.0009282
MASTL Facilitates Mitotic Progression 10 0.0070918 0.4916899 0.0262276
Transcriptional regulation of testis differentiation 12 0.0033665 -0.4888125 0.0139049
HDR through MMEJ (alt-NHEJ) 11 0.0050633 0.4880519 0.0196835
Defective HDR through Homologous Recombination (HRR) due to BRCA1 loss-of-function 20 0.0001831 0.4831748 0.0011316
Defective HDR through Homologous Recombination (HRR) due to PALB2 loss of function 20 0.0001831 0.4831748 0.0011316
Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA1 binding function 20 0.0001831 0.4831748 0.0011316
Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA2/RAD51/RAD51C binding function 20 0.0001831 0.4831748 0.0011316
Impaired BRCA2 binding to PALB2 20 0.0001831 0.4831748 0.0011316
SRP-dependent cotranslational protein targeting to membrane 105 0.0000000 0.4762477 0.0000000
PECAM1 interactions 12 0.0047623 0.4705707 0.0186086
Ubiquitin-dependent degradation of Cyclin D 50 0.0000000 0.4639473 0.0000003
Resolution of D-loop Structures through Holliday Junction Intermediates 25 0.0000621 0.4626379 0.0004392
Class I peroxisomal membrane protein import 18 0.0006815 0.4624289 0.0035751
Viral mRNA Translation 84 0.0000000 0.4612688 0.0000000
Regulation of ornithine decarboxylase (ODC) 49 0.0000000 0.4610351 0.0000005
Bicarbonate transporters 10 0.0116949 -0.4604163 0.0390188
Autodegradation of the E3 ubiquitin ligase COP1 50 0.0000000 0.4593574 0.0000004
Stabilization of p53 55 0.0000000 0.4551479 0.0000001
Peptide chain elongation 84 0.0000000 0.4544448 0.0000000
Eukaryotic Translation Termination 87 0.0000000 0.4522337 0.0000000
Metabolism of polyamines 54 0.0000000 0.4497912 0.0000003
Regulation of activated PAK-2p34 by proteasome mediated degradation 48 0.0000001 0.4491669 0.0000012
Eukaryotic Translation Elongation 88 0.0000000 0.4474163 0.0000000
Deadenylation of mRNA 24 0.0001531 0.4463959 0.0009903
Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 106 0.0000000 0.4452875 0.0000000

A slight variation is to use cameraPR instead of mitch to better control for correlation.

stat <- res_df$median

names(stat) <- rownames(res_df)
stat[is.na(stat)] <- 0

tic()
cres <- cameraPR(statistic=stat, index=genesets, use.ranks = FALSE, inter.gene.cor=0.01, sort = TRUE)
cres <- subset(cres,NGenes>4)
cres$FDR <- p.adjust(cres$PValue,method="fdr")
mymedians <- sapply(1:nrow(cres),function(i) {
  myset <- genesets[[which(names(genesets) == rownames(cres)[i])]]
  mystats <- stat[names(stat) %in% myset]
  median(mystats)
})
cres$median <- mymedians
toc() # 1.0 sec
## 2.933 sec elapsed
sig <- subset(cres,FDR<0.05)

head(sig[order(-abs(sig$median)),],20) %>%
  kbl(caption = "Top GMEA pathways found with CAMERA after 5% FDR filtering") %>%
  kable_styling("hover", full_width = F)
Top GMEA pathways found with CAMERA after 5% FDR filtering
NGenes Direction PValue FDR median
Defective F9 activation 6 Down 0.0008918 0.0151544 -1.0187475
Histidine catabolism 6 Down 0.0009943 0.0160688 -0.8601699
Apoptotic cleavage of cell adhesion proteins 11 Down 0.0023466 0.0288713 -0.8503640
Scavenging of heme from plasma 11 Down 0.0025557 0.0306524 -0.7851758
Platelet Adhesion to exposed collagen 13 Down 0.0049945 0.0493503 -0.6951431
Regulation of TLR by endogenous ligand 17 Down 0.0029347 0.0340635 -0.5776825
Common Pathway of Fibrin Clot Formation 22 Down 0.0012829 0.0194164 -0.5646874
Formation of Fibrin Clot (Clotting Cascade) 39 Down 0.0002462 0.0066118 -0.5643871
Paracetamol ADME 30 Down 0.0036389 0.0389851 -0.5092101
Aspirin ADME 43 Down 0.0029473 0.0340635 -0.4623278
Keratinization 205 Down 0.0047126 0.0472935 -0.4125242
Drug ADME 98 Down 0.0029287 0.0340635 -0.3972550
ROS and RNS production in phagocytes 36 Down 0.0045759 0.0462841 -0.3605977
TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain 19 Up 0.0008198 0.0146713 0.1882688
Deadenylation of mRNA 24 Up 0.0029918 0.0343696 0.1440051
Defective HDR through Homologous Recombination (HRR) due to BRCA1 loss-of-function 20 Up 0.0031821 0.0352809 0.1182056
Defective HDR through Homologous Recombination (HRR) due to PALB2 loss of function 20 Up 0.0031821 0.0352809 0.1182056
Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA1 binding function 20 Up 0.0031821 0.0352809 0.1182056
Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA2/RAD51/RAD51C binding function 20 Up 0.0031821 0.0352809 0.1182056
Impaired BRCA2 binding to PALB2 20 Up 0.0031821 0.0352809 0.1182056

Now try another approach by first aggregating and then performing limma, then pathway enrichment.

Aggregate mval to genes and examine pathway enrichment in blood.

gsmea <- function(mval,design,probesets,genesets,cores=2) {
  ag <- mclapply(probesets,function(ps) {
    mval <- mval[rownames(mval) %in% ps,,drop=FALSE]
    if (nrow(mval>1)) {
      o <- apply(mval,2,median)
    } else {
      o <- mval
    }
   o
  },mc.cores=cores)
  ag <- do.call(rbind,ag)
  res <- main(mval=ag,design=design,sets=genesets,cores=cores )
}

tic()
hcy_gsmea <- gsmea(mval=mval,design=design,probesets=sets,genesets=genesets,cores=8)
toc()
## 100.042 sec elapsed
hcy_gsmea$res <- subset(hcy_gsmea$res,nprobes>=5)
hcy_gsmea$res$FDR <- p.adjust(hcy_gsmea$res$PValue,method="fdr")

head(hcy_gsmea$res,20) %>%
  kbl(caption = "Pathways found using the agg,lim,fry method") %>%
  kable_styling("hover", full_width = F)
Pathways found using the agg,lim,fry method
nprobes median PValue FDR
RUNX1 regulates transcription of genes involved in WNT signaling 5 -2.1901707 0.0049213 0.9998201
Histidine catabolism 6 -1.7254211 0.0057306 0.9998201
Metal sequestration by antimicrobial proteins 6 -1.7937251 0.0068823 0.9998201
Elevation of cytosolic Ca2+ levels 16 -1.1680203 0.0081327 0.9998201
Defective B3GALTL causes PpS 34 -0.8239993 0.0089175 0.9998201
O-glycosylation of TSR domain-containing proteins 35 -0.8535126 0.0092411 0.9998201
Pyrimidine salvage 10 -1.3093735 0.0108085 0.9998201
Paracetamol ADME 29 -1.2339871 0.0133597 0.9998201
Cation-coupled Chloride cotransporters 7 -0.7799046 0.0152959 0.9998201
DNA methylation 6 -0.9357507 0.0172100 0.9998201
Defective CHSY1 causes TPBS 7 -1.1704274 0.0180292 0.9998201
Prostanoid ligand receptors 8 -1.4453650 0.0181647 0.9998201
Platelet Adhesion to exposed collagen 13 -0.7616780 0.0183280 0.9998201
Metabolism of Angiotensinogen to Angiotensins 15 -0.9682746 0.0196268 0.9998201
Regulation of localization of FOXO transcription factors 10 -1.1349116 0.0203682 0.9998201
Caspase activation via Dependence Receptors in the absence of ligand 9 -1.7920408 0.0209745 0.9998201
Proton-coupled monocarboxylate transport 6 -1.5858403 0.0224858 0.9998201
ROS and RNS production in phagocytes 35 -0.6466300 0.0227899 0.9998201
Regulation of commissural axon pathfinding by SLIT and ROBO 10 -0.9774779 0.0240911 0.9998201
Scavenging of heme from plasma 11 -1.2249775 0.0243507 0.9998201

Whole gene analysis

# set cores to used for parallel execution
CORES= detectCores()

dm <- read.table("dma3a.tsv.gz")
dm <- dm[,4:9]
dm <- merge(myann,dm,by=0)
rownames(dm) <- dm[,1]
dm[,1] = NULL

calc_sc <- function(dm) {
  gn <- unique(unlist(strsplit( dm$UCSC_RefGene_Name ,";")))
  gnl <- strsplit( dm$UCSC_RefGene_Name ,";")
  gnl <- mclapply(gnl,unique,mc.cores=CORES)
  dm$UCSC_RefGene_Name <- gnl
  l <- mclapply(1:nrow(dm), function(i) {
    a <- dm[i,]
    len <- length(a[[1]][[1]])
    tvals <- as.numeric(rep(a["t"],len))
    genes <- a[[1]][[1]]
    data.frame(genes,tvals)
  },mc.cores=CORES)
  df <- do.call(rbind,l)
  gme_res <- mclapply( 1:length(gn), function(i) {
    g <- gn[i]
    tstats <- df[which(df$genes==g),"tvals"]
    myn <- length(tstats)
    mymean <- mean(tstats)
    mymedian <- median(tstats)
    wtselfcont <- wilcox.test(tstats)
    res <- c("gene"=g,"nprobes"=myn,"mean"=mymean,"median"=mymedian,
      "p-value(sc)"=wtselfcont$p.value)
  } , mc.cores=CORES )
  gme_res_df <- do.call(rbind, gme_res)
  rownames(gme_res_df) <- gme_res_df[,1]
  gme_res_df <- gme_res_df[,-1]
  tmp <- apply(gme_res_df,2,as.numeric)
  rownames(tmp) <- rownames(gme_res_df)
  gme_res_df <- as.data.frame(tmp)
  gme_res_df$sig <- -log10(gme_res_df[,4])
  gme_res_df <- gme_res_df[order(-gme_res_df$sig),]
  gme_res_df$`fdr(sc)` <- p.adjust(gme_res_df$`p-value(sc)`)
  out <- list("df"=df,"gme_res_df"=gme_res_df)
  return(out)
}

tic()
gme_res_wholegene <- calc_sc(dm)
time2 <- toc() #38 44 41 40 44 41 40
## 58.672 sec elapsed
time2
## $tic
##  elapsed 
## 30287.14 
## 
## $toc
##  elapsed 
## 30345.81 
## 
## $msg
## logical(0)
## 
## $callback_msg
## [1] "58.672 sec elapsed"
df <- gme_res_wholegene[[1]]
res <- gme_res_wholegene[[2]]
write.table(res,file="gmea_wholegene.tsv")

Table of top results.

head(res,50) %>%
  kbl(caption = "Top significant genes with GMEA") %>%
  kable_styling("hover", full_width = F)
Top significant genes with GMEA
nprobes mean median p-value(sc) sig fdr(sc)
TNXB 531 0.3429080 0.4078607 0e+00 14.041475 0.0000000
PCDHA1 162 -0.7077910 -0.6245086 0e+00 13.496797 0.0000000
NNAT 49 -0.9419415 -0.9392397 0e+00 13.303312 0.0000000
PCDHA2 149 -0.7188634 -0.6267169 0e+00 12.485679 0.0000000
PCDHA3 141 -0.7189282 -0.6267169 0e+00 11.583810 0.0000001
KCNQ1DN 39 -1.6144397 -1.7080108 0e+00 11.439140 0.0000001
TAP1 100 0.8373978 0.8170222 0e+00 10.577873 0.0000005
NCOR2 212 -0.6647509 -0.5447866 0e+00 10.345470 0.0000009
PCDHGA1 317 -0.4141393 -0.4153141 0e+00 10.238108 0.0000012
PCDHA4 131 -0.6779619 -0.6026401 0e+00 10.042257 0.0000018
PCDHGA2 309 -0.4165786 -0.4153141 0e+00 9.987553 0.0000021
PCDHGA3 295 -0.4180524 -0.3901466 0e+00 9.576696 0.0000053
MESTIT1 59 -0.7596278 -0.7939385 0e+00 9.544056 0.0000057
PCDHA5 122 -0.6998042 -0.6245086 0e+00 9.542358 0.0000058
NKX6-2 36 -1.3952706 -1.4319593 0e+00 9.536050 0.0000058
SOX2OT 85 -0.7468762 -0.8104998 0e+00 9.479982 0.0000066
PCDHA7 103 -0.7321981 -0.6267169 0e+00 9.375369 0.0000085
C11orf21 36 -1.7668062 -1.9463963 0e+00 9.257296 0.0000111
PITX2 64 -1.0007742 -0.9208371 0e+00 9.163509 0.0000138
PCDHA6 114 -0.6916765 -0.6245086 0e+00 8.749552 0.0000357
TSPAN32 42 -1.6254336 -1.9412022 0e+00 8.645175 0.0000454
MEST 85 -0.6582939 -0.7858506 0e+00 8.607705 0.0000495
ASCL2 49 -0.8873371 -0.9068647 0e+00 8.538922 0.0000580
WT1 60 -1.0380025 -1.0581139 0e+00 8.537528 0.0000582
PCDHGB1 277 -0.4040374 -0.3512600 0e+00 8.169027 0.0001360
PCDHA8 92 -0.7250898 -0.6311017 0e+00 8.158124 0.0001394
KIAA1949 101 0.7427567 0.6964985 0e+00 8.107412 0.0001567
PCDHA10 81 -0.7546498 -0.6842488 0e+00 7.961957 0.0002190
PCDHA9 84 -0.7351768 -0.6598677 0e+00 7.948914 0.0002257
PSMB8 83 0.8313260 0.6488706 0e+00 7.945020 0.0002277
PRDM13 41 -0.9251076 -0.9595314 0e+00 7.870850 0.0002701
GNA12 84 -0.9539754 -0.7963257 0e+00 7.622375 0.0004787
PCDHGA4 263 -0.4030756 -0.3512600 0e+00 7.620039 0.0004812
MAD1L1 684 -0.2827612 -0.2513758 0e+00 7.532317 0.0005889
SFRP2 44 -1.1033457 -1.2056608 0e+00 7.518236 0.0006083
SOX1 27 -1.2956875 -1.5392701 0e+00 7.349659 0.0008967
ZIC1 40 -1.0223609 -1.1114647 1e-07 7.295516 0.0010157
SPON2 30 -1.0371460 -1.0318217 1e-07 7.096401 0.0016064
TLX1 36 -0.7858743 -0.8711780 1e-07 7.094355 0.0016139
PPP1R2P1 27 -1.2635175 -1.2835267 1e-07 6.826780 0.0029884
TBX15 57 -0.8784010 -0.9985338 2e-07 6.710128 0.0039091
HLA-E 64 0.9883267 0.9471868 2e-07 6.621543 0.0047933
SOX2 31 -0.9356689 -0.9861379 4e-07 6.380592 0.0083477
HLA-J 60 -0.9474161 -0.9835159 4e-07 6.363271 0.0086869
TFAP2A 77 -0.6823000 -0.6389762 4e-07 6.359493 0.0087624
PCDHGB2 249 -0.3779342 -0.2994303 5e-07 6.334383 0.0092835
TBX2 42 -0.9192182 -0.9768360 5e-07 6.283615 0.0104341
NR2E1 55 -0.7936621 -0.8098274 6e-07 6.236670 0.0116246
DMRTA2 32 -0.8190626 -0.8833632 6e-07 6.231215 0.0117710
LOC100128811 24 -0.9214760 -1.0762458 6e-07 6.224720 0.0119478

Volcano plots

# volcano selfcont
sig <- subset(res,`fdr(sc)` < 0.05)
plot(res$median , -log10(res$`p-value(sc)`) ,
  xlab="effect size (mean t-stat)", ylab="-log10(p-value)",
  pch=19, cex=0.5, col="gray",main="self contained test")
grid()
points(sig$median , -log10(sig$`p-value(sc)`) ,
  pch=19, cex=0.5, col="red")

Probe bias

plot(res$nprobes,res$sig,log="x",ylim=c(0,50),pch=19,cex=0.6)
points(sig$nprobes,sig$sig,col="red",pch=19,cex=0.62)
MIN = min(sig$nprobes)
LEFT = nrow(subset(res,nprobes<MIN))
RIGHT = nrow(subset(res,nprobes>MIN))
SIG = nrow(sig)
TOT = nrow(res)
HEADER <- paste(TOT, "genes in total.", SIG, "with FDR<0.05.",
  RIGHT, "well covered and", LEFT, "poorly covered")
mtext(HEADER)
abline(v=MIN,lty=2)

Boxplots

Boxplots smallest pvalue.

par(mfrow=c(1,2))
n=50
# self contained

gs <- head(rownames(res),50)
tstats <- lapply(gs, function(g) {
  df[which(df$genes==g),"tvals"]
})
names(tstats) <- gs

tstats <- tstats[order(unlist(lapply(tstats,median)))]
boxplot(tstats,horizontal=TRUE,las=1,
  main="smallest p-val(selfcont)",cex.axis=0.6,
  xlab="t-statistic")
grid()

n=50
# effect size median
sig <- subset(res,`fdr(sc)` < 0.05)
gs <- head(rownames(sig[order(-abs(sig$median)),]),n)

if ( length(gs) >2 ) {
  tstats <- lapply(gs, function(g) {
    df[which(df$genes==g),"tvals"]
  })
  names(tstats) <- gs
  tstats <- tstats[order(unlist(lapply(tstats,median)))]
  boxplot(tstats,horizontal=TRUE,las=1,
    main="biggest effect size(median)",cex.axis=0.6,
    xlab="t-statistic")
  grid()
} else {
  plot(1)
  mtext("too few significant genes found")
}

Mitch

dmscore <- data.frame( res$median * res$sig)

rownames(dmscore) <- rownames(res)

colnames(dmscore) <- "metric"

if ( ! file.exists("ReactomePathways.gmt") ) {
  download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip",
    destfile="ReactomePathways.gmt.zip")
  unzip("ReactomePathways.gmt.zip")
}
file.info("ReactomePathways.gmt")
##                        size isdir mode               mtime               ctime
## ReactomePathways.gmt 897680 FALSE  664 2022-10-03 21:38:44 2022-10-03 21:38:44
##                                    atime  uid  gid uname grname
## ReactomePathways.gmt 2022-11-24 16:28:17 1000 1000   mdz    mdz
genesets <- gmt_import("ReactomePathways.gmt")
length(genesets)
## [1] 2546
mres <- mitch_calc(x=dmscore, genesets=genesets, priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
head(mres$enrichment_result,20) %>%
  kbl(caption = "Top enriched gene sets with GMEA-Mitch", row.names = FALSE) %>%
  kable_styling("hover", full_width = F)
Top enriched gene sets with GMEA-Mitch
set setSize pANOVA s.dist p.adjustANOVA
Negative regulation of activity of TFAP2 (AP-2) family transcription factors 10 0.0001209 -0.7018024 0.0009285
Regulation of commissural axon pathfinding by SLIT and ROBO 10 0.0003908 -0.6474208 0.0025714
Apoptotic cleavage of cell adhesion proteins 11 0.0002096 -0.6453083 0.0014958
Transcriptional regulation of testis differentiation 12 0.0002348 -0.6130531 0.0016520
Thyroxine biosynthesis 10 0.0034244 -0.5343657 0.0159178
POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation 10 0.0055806 -0.5060048 0.0228640
ERBB2 Activates PTK6 Signaling 13 0.0018315 -0.4990366 0.0092526
Negative regulation of TCF-dependent signaling by WNT ligand antagonists 15 0.0009549 -0.4925046 0.0053957
Adenylate cyclase activating pathway 10 0.0081256 -0.4832503 0.0312683
Acetylcholine Neurotransmitter Release Cycle 16 0.0009281 -0.4780294 0.0052637
GABA synthesis, release, reuptake and degradation 19 0.0003437 -0.4742558 0.0022913
Platelet sensitization by LDL 17 0.0008191 0.4686399 0.0047701
Defective B3GALTL causes PpS 34 0.0000029 -0.4632690 0.0000521
TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain 19 0.0004924 0.4616661 0.0031316
SRP-dependent cotranslational protein targeting to membrane 105 0.0000000 0.4519886 0.0000000
SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs 11 0.0094503 0.4518113 0.0354189
TFAP2 (AP-2) family regulates transcription of growth factors and their receptors 12 0.0074999 -0.4456644 0.0295334
O-glycosylation of TSR domain-containing proteins 35 0.0000051 -0.4453420 0.0000803
Carnitine metabolism 11 0.0106185 -0.4447950 0.0388601
Erythrocytes take up carbon dioxide and release oxygen 12 0.0079199 -0.4426103 0.0306439
mitch_report(mres,outfile="dma3a_mitch.html",overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpV6gDi1/dma3a_mitch.rds ".
## 
## 
## processing file: mitch.Rmd
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |..                                                                    |   3%
##    inline R code fragments
## 
## 
  |                                                                            
  |....                                                                  |   6%
## label: checklibraries (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |......                                                                |   9%
##   ordinary text without R code
## 
## 
  |                                                                            
  |........                                                              |  12%
## label: peek (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |..........                                                            |  15%
##   ordinary text without R code
## 
## 
  |                                                                            
  |............                                                          |  18%
## label: metrics (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |..............                                                        |  21%
##   ordinary text without R code
## 
## 
  |                                                                            
  |................                                                      |  24%
## label: scatterplot (with options) 
## List of 5
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6.5
##  $ message   : logi FALSE
##  $ warning   : logi FALSE
## 
  |                                                                            
  |...................                                                   |  26%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.....................                                                 |  29%
## label: contourplot (with options) 
## List of 5
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6.5
##  $ warning   : logi FALSE
##  $ message   : logi FALSE
## Contour plot does not apply to unidimensional analysis.
## 
  |                                                                            
  |.......................                                               |  32%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.........................                                             |  35%
## label: input_geneset_metrics1 (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |...........................                                           |  38%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.............................                                         |  41%
## label: input_geneset_metrics2 (with options) 
## List of 5
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
## 
  |                                                                            
  |...............................                                       |  44%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.................................                                     |  47%
## label: input_geneset_metrics3 (with options) 
## List of 5
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ message   : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
## 
  |                                                                            
  |...................................                                   |  50%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.....................................                                 |  53%
## label: echart1d (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.......................................                               |  56%
## label: echart2d (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.........................................                             |  59%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...........................................                           |  62%
## label: heatmap (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 10
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.............................................                         |  65%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...............................................                       |  68%
## label: effectsize (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.................................................                     |  71%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...................................................                   |  74%
## label: results_table (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |......................................................                |  76%
##   ordinary text without R code
## 
## 
  |                                                                            
  |........................................................              |  79%
## label: results_table_complete (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |..........................................................            |  82%
##   ordinary text without R code
## 
## 
  |                                                                            
  |............................................................          |  85%
## label: detailed_geneset_reports1d (with options) 
## List of 7
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6
##  $ out.width : chr "80%"
##  $ comment   : logi NA
##  $ message   : logi FALSE
## 
  |                                                                            
  |..............................................................        |  88%
##   ordinary text without R code
## 
## 
  |                                                                            
  |................................................................      |  91%
## label: detailed_geneset_reports2d (with options) 
## List of 7
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 5
##  $ fig.width : num 6
##  $ out.width : chr "80%"
##  $ comment   : logi NA
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |..................................................................    |  94%
##   ordinary text without R code
## 
## 
  |                                                                            
  |....................................................................  |  97%
## label: session_info (with options) 
## List of 3
##  $ include: logi TRUE
##  $ echo   : logi TRUE
##  $ results: chr "markup"
## 
## 
  |                                                                            
  |......................................................................| 100%
##   ordinary text without R code
## output file: /home/mdz/projects/gmea/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mdz/projects/gmea/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpV6gDi1/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpV6gDi1/rmarkdown-str112b71e1fa10b.html
## 
## Output created: /tmp/RtmpV6gDi1/mitch_report.html
## [1] TRUE

Session Information

For reproducibility.

sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      stats4    parallel  stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] pkgload_1.3.0                                      
##  [2] GGally_2.1.2                                       
##  [3] ggplot2_3.3.6                                      
##  [4] gtools_3.9.3                                       
##  [5] tibble_3.1.8                                       
##  [6] echarts4r_0.4.4                                    
##  [7] ENmix_1.32.0                                       
##  [8] doParallel_1.0.17                                  
##  [9] qqman_0.1.8                                        
## [10] RCircos_1.2.2                                      
## [11] beeswarm_0.4.0                                     
## [12] forestplot_3.1.0                                   
## [13] abind_1.4-5                                        
## [14] checkmate_2.1.0                                    
## [15] reshape2_1.4.4                                     
## [16] gplots_3.1.3                                       
## [17] GEOquery_2.64.2                                    
## [18] RColorBrewer_1.1-3                                 
## [19] topconfects_1.12.0                                 
## [20] DMRcatedata_2.14.0                                 
## [21] ExperimentHub_2.4.0                                
## [22] AnnotationHub_3.4.0                                
## [23] BiocFileCache_2.4.0                                
## [24] dbplyr_2.2.1                                       
## [25] DMRcate_2.10.0                                     
## [26] missMethyl_1.30.0                                  
## [27] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [28] R.utils_2.12.0                                     
## [29] R.oo_1.25.0                                        
## [30] R.methodsS3_1.8.2                                  
## [31] plyr_1.8.7                                         
## [32] limma_3.52.4                                       
## [33] tictoc_1.1                                         
## [34] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1 
## [35] IlluminaHumanMethylation450kmanifest_0.4.0         
## [36] minfi_1.42.0                                       
## [37] bumphunter_1.38.0                                  
## [38] locfit_1.5-9.6                                     
## [39] iterators_1.0.14                                   
## [40] foreach_1.5.2                                      
## [41] Biostrings_2.64.1                                  
## [42] XVector_0.36.0                                     
## [43] SummarizedExperiment_1.26.1                        
## [44] Biobase_2.56.0                                     
## [45] MatrixGenerics_1.8.1                               
## [46] matrixStats_0.62.0                                 
## [47] GenomicRanges_1.48.0                               
## [48] GenomeInfoDb_1.32.4                                
## [49] IRanges_2.30.1                                     
## [50] S4Vectors_0.34.0                                   
## [51] BiocGenerics_0.42.0                                
## [52] mitch_1.8.0                                        
## [53] eulerr_6.1.1                                       
## [54] kableExtra_1.3.4                                   
## [55] dplyr_1.0.10                                       
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3                rtracklayer_1.56.1           
##   [3] tidyr_1.2.1                   bit64_4.0.5                  
##   [5] knitr_1.40                    DelayedArray_0.22.0          
##   [7] data.table_1.14.4             rpart_4.1.19                 
##   [9] KEGGREST_1.36.3               RCurl_1.98-1.9               
##  [11] AnnotationFilter_1.20.0       generics_0.1.3               
##  [13] GenomicFeatures_1.48.4        preprocessCore_1.58.0        
##  [15] RSQLite_2.2.18                bit_4.0.4                    
##  [17] tzdb_0.3.0                    webshot_0.5.4                
##  [19] xml2_1.3.3                    httpuv_1.6.6                 
##  [21] assertthat_0.2.1              xfun_0.34                    
##  [23] jquerylib_0.1.4               hms_1.1.2                    
##  [25] evaluate_0.17                 promises_1.2.0.1             
##  [27] fansi_1.0.3                   restfulr_0.0.15              
##  [29] scrime_1.3.5                  progress_1.2.2               
##  [31] caTools_1.18.2                readxl_1.4.1                 
##  [33] DBI_1.1.3                     geneplotter_1.74.0           
##  [35] htmlwidgets_1.5.4             reshape_0.8.9                
##  [37] purrr_0.3.5                   ellipsis_0.3.2               
##  [39] backports_1.4.1               permute_0.9-7                
##  [41] calibrate_1.7.7               annotate_1.74.0              
##  [43] biomaRt_2.52.0                deldir_1.0-6                 
##  [45] sparseMatrixStats_1.8.0       vctrs_0.5.0                  
##  [47] ensembldb_2.20.2              withr_2.5.0                  
##  [49] cachem_1.0.6                  Gviz_1.40.1                  
##  [51] BSgenome_1.64.0               GenomicAlignments_1.32.1     
##  [53] prettyunits_1.1.1             mclust_5.4.10                
##  [55] svglite_2.1.0                 cluster_2.1.4                
##  [57] RPMM_1.25                     lazyeval_0.2.2               
##  [59] crayon_1.5.2                  genefilter_1.78.0            
##  [61] edgeR_3.38.4                  pkgconfig_2.0.3              
##  [63] nlme_3.1-160                  ProtGenerics_1.28.0          
##  [65] nnet_7.3-18                   rlang_1.0.6                  
##  [67] lifecycle_1.0.3               filelock_1.0.2               
##  [69] dichromat_2.0-0.1             cellranger_1.1.0             
##  [71] rngtools_1.5.2                base64_2.0.1                 
##  [73] Matrix_1.5-1                  Rhdf5lib_1.18.2              
##  [75] base64enc_0.1-3               png_0.1-7                    
##  [77] viridisLite_0.4.1             rjson_0.2.21                 
##  [79] bitops_1.0-7                  KernSmooth_2.23-20           
##  [81] rhdf5filters_1.8.0            blob_1.2.3                   
##  [83] DelayedMatrixStats_1.18.2     doRNG_1.8.2                  
##  [85] stringr_1.4.1                 nor1mix_1.3-0                
##  [87] readr_2.1.3                   jpeg_0.1-9                   
##  [89] scales_1.2.1                  memoise_2.0.1                
##  [91] magrittr_2.0.3                zlibbioc_1.42.0              
##  [93] compiler_4.2.1                BiocIO_1.6.0                 
##  [95] illuminaio_0.38.0             Rsamtools_2.12.0             
##  [97] cli_3.4.1                     DSS_2.44.0                   
##  [99] htmlTable_2.4.1               Formula_1.2-4                
## [101] MASS_7.3-58.1                 tidyselect_1.2.0             
## [103] stringi_1.7.8                 highr_0.9                    
## [105] yaml_2.3.6                    askpass_1.1                  
## [107] latticeExtra_0.6-30           sass_0.4.2                   
## [109] VariantAnnotation_1.42.1      tools_4.2.1                  
## [111] rstudioapi_0.14               foreign_0.8-83               
## [113] bsseq_1.32.0                  gridExtra_2.3                
## [115] digest_0.6.30                 BiocManager_1.30.19          
## [117] shiny_1.7.3                   quadprog_1.5-8               
## [119] Rcpp_1.0.9                    siggenes_1.70.0              
## [121] BiocVersion_3.15.2            later_1.3.0                  
## [123] org.Hs.eg.db_3.15.0           httr_1.4.4                   
## [125] AnnotationDbi_1.58.0          biovizBase_1.44.0            
## [127] colorspace_2.0-3              rvest_1.0.3                  
## [129] XML_3.99-0.11                 splines_4.2.1                
## [131] statmod_1.4.37                multtest_2.52.0              
## [133] systemfonts_1.0.4             xtable_1.8-4                 
## [135] jsonlite_1.8.3                dynamicTreeCut_1.63-1        
## [137] R6_2.5.1                      Hmisc_4.7-1                  
## [139] pillar_1.8.1                  htmltools_0.5.3              
## [141] mime_0.12                     glue_1.6.2                   
## [143] fastmap_1.1.0                 BiocParallel_1.30.4          
## [145] interactiveDisplayBase_1.34.0 beanplot_1.3.1               
## [147] codetools_0.2-18              utf8_1.2.2                   
## [149] bslib_0.4.0                   lattice_0.20-45              
## [151] curl_4.3.3                    openssl_2.0.4                
## [153] interp_1.1-3                  survival_3.4-0               
## [155] rmarkdown_2.17                munsell_0.5.0                
## [157] rhdf5_2.40.0                  GenomeInfoDbData_1.2.8       
## [159] impute_1.70.0                 HDF5Array_1.24.2             
## [161] gtable_0.3.1