Previously, Mandhri and I analysed the B-PROOF 450K data, trying to understand whether vitamin supplementation caused changes in gene methylation. We used Limma and some basic analyses, which showed no specific probes with FDR<0.05, nor any DMRs.
In this analysis we will use the principle of Gene Set Enrichment Analysis, applying it to many probes belonging to genes. If the probes are trending in concert, then we can make some judgement about the enrichment of those probes. The statistical test used is the CAMERA test, which is a competitive test that attempts to account for correlation between genes in a set, or in this case probes belonging to a gene.
library("parallel")
library("dplyr")
library("kableExtra")
library("eulerr")
library("mitch")
library("limma")
library("IlluminaHumanMethylation450kmanifest")
library("IlluminaHumanMethylation450kanno.ilmn12.hg19")
library("tictoc")CORES=detectCores()
ann450k <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
myann <- data.frame(ann450k[,c("UCSC_RefGene_Name","Regulatory_Feature_Group")])
promoters <- grep("Prom",myann$Regulatory_Feature_Group)
# make a list of probes that belong to a gene
gn <- unique(unlist(strsplit( myann$UCSC_RefGene_Name ,";")))
gnl <- strsplit( myann$UCSC_RefGene_Name ,";")
gnl <- mclapply(gnl,unique,mc.cores=CORES)
myann$UCSC_RefGene_Name <- gnl
gnl <- gnl[which(lapply(gnl,length)>0)]
if ( ! file.exists("sets.Rds") ) {
  l <- mclapply(1:nrow(myann), function(i) {
    a <- myann[i,]
    len <- length(a[[1]][[1]])
    probe <- rep(rownames(a),len)
    genes <- a[[1]][[1]]
    data.frame(genes,probe)
  },mc.cores=CORES)
  df <- do.call(rbind,l)
  sets <- mclapply(X=gn, FUN=function(g) {
    df[which(df$genes == g),2]
  } , mc.cores=CORES/2)
  names(sets) <- gn
  saveRDS(object=sets,file="sets.Rds")
} else {
  sets <- readRDS("sets.Rds")
}It is thought that high plasma homocysteine can inhibit DNA methylation. Let’s see whether that is the case, and which genes are most affected. This analysis is conducted at the whole gene level as well as on the level of promoters.
dm <- read.table("dma3a.tsv.gz")
dm <- dm[,4:9]
dm <- merge(myann,dm,by=0)
rownames(dm) <- dm[,1]
dm[,1] = NULL
# testing
#dm <- head(dm,40000)
head(dm,50) %>%
  kbl(caption = "Top significant genes with limma") %>%
  kable_paper("hover", full_width = F)| UCSC_RefGene_Name | Regulatory_Feature_Group | logFC | AveExpr | t | P.Value | adj.P.Val | B | |
|---|---|---|---|---|---|---|---|---|
| cg00000029 | RBL2 | Promoter_Associated | -0.0446959 | 0.4522209 | -0.8638867 | 0.3888420 | 0.9098372 | -5.265779 | 
| cg00000108 | C3orf35 | -0.0122602 | 3.6607954 | -0.1654468 | 0.8687848 | 0.9886500 | -5.576980 | |
| cg00000109 | FNDC3B | -0.0378447 | 2.0296336 | -0.5100334 | 0.6106758 | 0.9574373 | -5.476065 | |
| cg00000165 | -0.0277057 | -1.0289408 | -0.5477061 | 0.5845972 | 0.9528277 | -5.458804 | ||
| cg00000236 | VDAC3 | -0.0308775 | 1.8879879 | -0.6273277 | 0.5312685 | 0.9421655 | -5.418295 | |
| cg00000289 | ACTN1 | -0.0347776 | 0.2694825 | -0.5508856 | 0.5824203 | 0.9524415 | -5.457291 | |
| cg00000292 | ATP2A1 | 0.0078848 | 2.8508680 | 0.1712753 | 0.8642068 | 0.9883139 | -5.576129 | |
| cg00000321 | SFRP1 | -0.0006141 | -0.8769170 | -0.0091726 | 0.9926919 | 0.9994500 | -5.588821 | |
| cg00000363 | -0.0207565 | -0.2718208 | -0.3794289 | 0.7048330 | 0.9708901 | -5.526411 | ||
| cg00000622 | NIPA2 | Promoter_Associated | 0.0333418 | -4.8495004 | 0.7574773 | 0.4497908 | 0.9250804 | -5.340328 | 
| cg00000658 | MAN1B1 | 0.0226951 | 2.0750918 | 0.7385729 | 0.4611636 | 0.9276129 | -5.352556 | |
| cg00000714 | TSEN34 | -0.0767442 | -1.5409438 | -2.5167547 | 0.0127504 | 0.4684043 | -2.895740 | |
| cg00000721 | LRRC16A | Unclassified_Cell_type_specific | -0.0031114 | 2.7846882 | -0.0385133 | 0.9693227 | 0.9977628 | -5.588214 | 
| cg00000734 | CNBP | Unclassified | -0.0224123 | -3.0864719 | -0.8730215 | 0.3838572 | 0.9082510 | -5.258927 | 
| cg00000769 | DDX55 | Promoter_Associated | 0.0044715 | -3.1463101 | 0.1951579 | 0.8454975 | 0.9862198 | -5.572331 | 
| cg00000884 | TLR2 | -0.0355966 | 2.4344668 | -0.6542490 | 0.5138171 | 0.9388729 | -5.403363 | |
| cg00000905 | FAM81A | Unclassified | 0.0269914 | -2.1171455 | 0.5264592 | 0.5992411 | 0.9555164 | -5.468689 | 
| cg00000924 | KCNQ1 , KCNQ1OT1 | 0.0076655 | 0.4463612 | 0.2133270 | 0.8313222 | 0.9846206 | -5.569112 | |
| cg00000948 | -0.0512202 | 2.8596325 | -1.1837137 | 0.2381445 | 0.8535327 | -4.983571 | ||
| cg00000957 | NPHP4 | Unclassified_Cell_type_specific | 0.0113656 | 2.7283928 | 0.3477238 | 0.7284688 | 0.9734455 | -5.536407 | 
| cg00001099 | PSKH2 | -0.0540892 | 2.2699920 | -0.7493275 | 0.4546739 | 0.9262433 | -5.345637 | |
| cg00001245 | MRPS25 | Promoter_Associated | 0.0127411 | -4.2195473 | 0.3178478 | 0.7509823 | 0.9762343 | -5.545030 | 
| cg00001249 | 0.0878332 | 2.2493861 | 1.3410880 | 0.1816436 | 0.8210138 | -4.812929 | ||
| cg00001261 | 0.0441601 | -0.2075480 | 0.9709593 | 0.3329193 | 0.8918583 | -5.180991 | ||
| cg00001269 | 0.0390867 | 2.9907317 | 1.0911248 | 0.2767298 | 0.8718875 | -5.074204 | ||
| cg00001349 | MAEL | 0.0094591 | 1.9174464 | 0.1451613 | 0.8847519 | 0.9899344 | -5.579714 | |
| cg00001364 | PROX1 | -0.0859751 | 2.3099396 | -1.4045238 | 0.1619493 | 0.8064409 | -4.738269 | |
| cg00001446 | ELOVL1 | 0.0361831 | 2.9141672 | 0.8905659 | 0.3743945 | 0.9051405 | -5.245568 | |
| cg00001510 | LILRA6 | 0.0045678 | -0.0996494 | 0.1465904 | 0.8836254 | 0.9898532 | -5.579533 | |
| cg00001534 | FAF1 | -0.1186347 | 3.3033444 | -1.5710033 | 0.1180025 | 0.7613262 | -4.526384 | |
| cg00001582 | LOC283050, ZMIZ1 | 0.0248102 | -2.9750721 | 0.9292188 | 0.3540658 | 0.8980126 | -5.215208 | |
| cg00001583 | NR5A2 | -0.0441798 | -2.8591736 | -0.9330761 | 0.3520765 | 0.8973466 | -5.212108 | |
| cg00001594 | ROCK2 | 0.0042517 | -4.7593997 | 0.0853653 | 0.9320693 | 0.9944972 | -5.585695 | |
| cg00001687 | CDK10 | 0.0015161 | 5.0163253 | 0.0361013 | 0.9712431 | 0.9978621 | -5.588292 | |
| cg00001747 | Unclassified_Cell_type_specific | -0.1126870 | -2.7076297 | -1.5885362 | 0.1139845 | 0.7562820 | -4.502731 | |
| cg00001791 | TMEM182 | 0.0182578 | 2.9978670 | 0.2936189 | 0.7693998 | 0.9781258 | -5.551455 | |
| cg00001793 | ETV6 | -0.1098128 | 1.0746323 | -2.0295079 | 0.0439333 | 0.6192038 | -3.825126 | |
| cg00001809 | 0.0525778 | 1.7725728 | 1.1597328 | 0.2477500 | 0.8587519 | -5.007741 | ||
| cg00001854 | DNAJA2 | 0.0114339 | 2.8722017 | 0.2049001 | 0.8378902 | 0.9853220 | -5.570641 | |
| cg00001930 | 0.0632018 | 2.1698165 | 0.8056091 | 0.4215702 | 0.9186297 | -5.307809 | ||
| cg00002028 | PINK1 | Promoter_Associated | 0.0295245 | -3.5036247 | 0.8499858 | 0.3965035 | 0.9114511 | -5.276068 | 
| cg00002033 | LRFN1 | 0.0542461 | 1.7907903 | 0.4372262 | 0.6624906 | 0.9647231 | -5.505950 | |
| cg00002080 | RWDD2B | Unclassified_Cell_type_specific | 0.0795838 | 2.1256473 | 1.4263346 | 0.1555674 | 0.8004050 | -4.711822 | 
| cg00002116 | MRPL12 | Promoter_Associated | -0.0045132 | -5.0826553 | -0.0905479 | 0.9279562 | 0.9940693 | -5.585300 | 
| cg00002145 | COL6A3 | 0.0863898 | 2.7662213 | 1.9901870 | 0.0481398 | 0.6319901 | -3.891945 | |
| cg00002190 | -0.0809549 | 2.2105512 | -1.6860704 | 0.0935784 | 0.7287342 | -4.366527 | ||
| cg00002224 | C8orf31 | Unclassified_Cell_type_specific | 0.0994866 | 0.1264213 | 1.3473757 | 0.1796150 | 0.8195515 | -4.805679 | 
| cg00002236 | RTTN | Promoter_Associated | -0.0189864 | -3.5918761 | -0.6113878 | 0.5417426 | 0.9447402 | -5.426842 | 
| cg00002406 | CD2BP2 | Promoter_Associated | 0.0073673 | -4.1952587 | 0.2710988 | 0.7866371 | 0.9798899 | -5.556971 | 
| cg00002426 | SLMAP | 0.0357775 | 3.4533187 | 0.6786596 | 0.4982571 | 0.9355991 | -5.389284 | 
# trim down the input dataset
dm <- dm[,c("UCSC_RefGene_Name","t")]
# histogram of t values
hist(dm$t,breaks=seq(from=-6,to=6,by=1))# set cores to used for parallel execution
CORES= detectCores()
calc_sc <- function(dm) {
  gn <- unique(unlist(strsplit(unlist( dm$UCSC_RefGene_Name) ,", ")))
  gnl <- strsplit( unlist(dm$UCSC_RefGene_Name) ,";")
  gnl <- mclapply(gnl,unique,mc.cores=CORES)
  l <- mclapply(1:nrow(dm), function(i) {
    a <- dm[i,]
    len <- length(a[[1]][[1]])
    tvals <- as.numeric(rep(a[2],len))
    genes <- a[[1]][[1]]
    data.frame(genes,tvals)
  },mc.cores=CORES)
  df <- do.call(rbind,l)
  gme_res <- mclapply( 1:length(gn), function(i) {
    g <- gn[i]
    tstats <- df[which(df$genes==g),"tvals"] 
    myn <- length(tstats)
    mymean <- mean(tstats)
    mymedian <- median(tstats)
    wtselfcont <- wilcox.test(tstats)
    res <- c("gene"=g,"nprobes"=myn,"mean"=mymean,"median"=mymedian,
      "p-value(sc)"=wtselfcont$p.value)
  } , mc.cores=CORES )
  gme_res_df <- do.call(rbind, gme_res)
  rownames(gme_res_df) <- gme_res_df[,1]
  gme_res_df <- gme_res_df[,-1]
  tmp <- apply(gme_res_df,2,as.numeric)
  rownames(tmp) <- rownames(gme_res_df)
  gme_res_df <- as.data.frame(tmp)
  gme_res_df$sig <- -log10(gme_res_df[,4])
  gme_res_df <- gme_res_df[order(-gme_res_df$sig),]
  gme_res_df$`fdr(sc)` <- p.adjust(gme_res_df$`p-value(sc)`)
  out <- list("df"=df,"gme_res_df"=gme_res_df)
  return(out)
}
tic()
gme_res_wholegene <- calc_sc(dm)
time2 <- toc() #38 44 41 40 44 41 40## 51.175 sec elapsedtime2## $tic
##  elapsed 
## 3554.186 
## 
## $toc
##  elapsed 
## 3605.361 
## 
## $msg
## logical(0)df <- gme_res_wholegene[[1]]
res <- gme_res_wholegene[[2]]
write.table(res,file="gmea_wholegene.tsv")head(res,50) %>%
  kbl(caption = "Top significant genes with GMEA") %>%
  kable_paper("hover", full_width = F)| nprobes | mean | median | p-value(sc) | sig | fdr(sc) | |
|---|---|---|---|---|---|---|
| TNXB | 531 | 0.3429080 | 0.4078607 | 0e+00 | 14.041475 | 0.0000000 | 
| PCDHA1 | 162 | -0.7077910 | -0.6245086 | 0e+00 | 13.496797 | 0.0000000 | 
| NNAT | 49 | -0.9419415 | -0.9392397 | 0e+00 | 13.303312 | 0.0000000 | 
| PCDHA2 | 149 | -0.7188634 | -0.6267169 | 0e+00 | 12.485679 | 0.0000000 | 
| PCDHA3 | 141 | -0.7189282 | -0.6267169 | 0e+00 | 11.583810 | 0.0000001 | 
| KCNQ1DN | 39 | -1.6144397 | -1.7080108 | 0e+00 | 11.439140 | 0.0000001 | 
| TAP1 | 100 | 0.8373978 | 0.8170222 | 0e+00 | 10.577873 | 0.0000005 | 
| NCOR2 | 212 | -0.6647509 | -0.5447866 | 0e+00 | 10.345470 | 0.0000009 | 
| PCDHGA1 | 317 | -0.4141393 | -0.4153141 | 0e+00 | 10.238108 | 0.0000012 | 
| PCDHA4 | 131 | -0.6779619 | -0.6026401 | 0e+00 | 10.042257 | 0.0000018 | 
| PCDHGA2 | 309 | -0.4165786 | -0.4153141 | 0e+00 | 9.987553 | 0.0000021 | 
| PCDHGA3 | 295 | -0.4180524 | -0.3901466 | 0e+00 | 9.576696 | 0.0000053 | 
| MESTIT1 | 59 | -0.7596278 | -0.7939385 | 0e+00 | 9.544056 | 0.0000057 | 
| PCDHA5 | 122 | -0.6998042 | -0.6245086 | 0e+00 | 9.542358 | 0.0000058 | 
| NKX6-2 | 36 | -1.3952706 | -1.4319593 | 0e+00 | 9.536050 | 0.0000058 | 
| SOX2OT | 85 | -0.7468762 | -0.8104998 | 0e+00 | 9.479982 | 0.0000066 | 
| PCDHA7 | 103 | -0.7321981 | -0.6267169 | 0e+00 | 9.375369 | 0.0000085 | 
| C11orf21 | 36 | -1.7668062 | -1.9463963 | 0e+00 | 9.257296 | 0.0000111 | 
| PITX2 | 64 | -1.0007742 | -0.9208371 | 0e+00 | 9.163509 | 0.0000138 | 
| PCDHA6 | 114 | -0.6916765 | -0.6245086 | 0e+00 | 8.749552 | 0.0000357 | 
| TSPAN32 | 42 | -1.6254336 | -1.9412022 | 0e+00 | 8.645175 | 0.0000454 | 
| MEST | 85 | -0.6582939 | -0.7858506 | 0e+00 | 8.607705 | 0.0000495 | 
| ASCL2 | 49 | -0.8873371 | -0.9068647 | 0e+00 | 8.538922 | 0.0000580 | 
| WT1 | 60 | -1.0380025 | -1.0581139 | 0e+00 | 8.537528 | 0.0000582 | 
| PCDHGB1 | 277 | -0.4040374 | -0.3512600 | 0e+00 | 8.169027 | 0.0001360 | 
| PCDHA8 | 92 | -0.7250898 | -0.6311017 | 0e+00 | 8.158124 | 0.0001394 | 
| KIAA1949 | 101 | 0.7427567 | 0.6964985 | 0e+00 | 8.107412 | 0.0001567 | 
| PCDHA10 | 81 | -0.7546498 | -0.6842488 | 0e+00 | 7.961957 | 0.0002190 | 
| PCDHA9 | 84 | -0.7351768 | -0.6598677 | 0e+00 | 7.948914 | 0.0002257 | 
| PSMB8 | 83 | 0.8313260 | 0.6488706 | 0e+00 | 7.945020 | 0.0002277 | 
| PRDM13 | 41 | -0.9251076 | -0.9595314 | 0e+00 | 7.870850 | 0.0002701 | 
| GNA12 | 84 | -0.9539754 | -0.7963257 | 0e+00 | 7.622375 | 0.0004787 | 
| PCDHGA4 | 263 | -0.4030756 | -0.3512600 | 0e+00 | 7.620039 | 0.0004812 | 
| MAD1L1 | 684 | -0.2827612 | -0.2513758 | 0e+00 | 7.532317 | 0.0005889 | 
| SFRP2 | 44 | -1.1033457 | -1.2056608 | 0e+00 | 7.518236 | 0.0006083 | 
| SOX1 | 27 | -1.2956875 | -1.5392701 | 0e+00 | 7.349659 | 0.0008967 | 
| ZIC1 | 40 | -1.0223609 | -1.1114647 | 1e-07 | 7.295516 | 0.0010157 | 
| SPON2 | 30 | -1.0371460 | -1.0318217 | 1e-07 | 7.096401 | 0.0016064 | 
| TLX1 | 36 | -0.7858743 | -0.8711780 | 1e-07 | 7.094355 | 0.0016139 | 
| PPP1R2P1 | 27 | -1.2635175 | -1.2835267 | 1e-07 | 6.826780 | 0.0029884 | 
| TBX15 | 57 | -0.8784010 | -0.9985338 | 2e-07 | 6.710128 | 0.0039091 | 
| HLA-E | 64 | 0.9883267 | 0.9471868 | 2e-07 | 6.621543 | 0.0047933 | 
| SOX2 | 31 | -0.9356689 | -0.9861379 | 4e-07 | 6.380592 | 0.0083477 | 
| HLA-J | 60 | -0.9474161 | -0.9835159 | 4e-07 | 6.363271 | 0.0086869 | 
| TFAP2A | 77 | -0.6823000 | -0.6389762 | 4e-07 | 6.359493 | 0.0087624 | 
| PCDHGB2 | 249 | -0.3779342 | -0.2994303 | 5e-07 | 6.334383 | 0.0092835 | 
| TBX2 | 42 | -0.9192182 | -0.9768360 | 5e-07 | 6.283615 | 0.0104341 | 
| NR2E1 | 55 | -0.7936621 | -0.8098274 | 6e-07 | 6.236670 | 0.0116246 | 
| DMRTA2 | 32 | -0.8190626 | -0.8833632 | 6e-07 | 6.231215 | 0.0117710 | 
| LOC100128811 | 24 | -0.9214760 | -1.0762458 | 6e-07 | 6.224720 | 0.0119478 | 
# volcano selfcont
sig <- subset(res,`fdr(sc)` < 0.05)
plot(res$median , -log10(res$`p-value(sc)`) ,
  xlab="effect size (mean t-stat)", ylab="-log10(p-value)",
  pch=19, cex=0.5, col="gray",main="self contained test")
grid()
points(sig$median , -log10(sig$`p-value(sc)`) ,
  pch=19, cex=0.5, col="red")Boxplots smallest pvalue.
par(mfrow=c(1,2))
n=50
# self contained
gs <- head(rownames(res),50)
tstats <- lapply(gs, function(g) {
  df[which(df$genes==g),"tvals"]
})
names(tstats) <- gs
tstats <- tstats[order(unlist(lapply(tstats,median)))]
boxplot(tstats,horizontal=TRUE,las=1,
  main="smallest p-val(selfcont)",cex.axis=0.6,
  xlab="t-statistic")
grid()
n=50
# effect size median
sig <- subset(res,`fdr(sc)` < 0.05)
gs <- head(rownames(sig[order(-abs(sig$median)),]),n)
if ( length(gs) >2 ) {
  tstats <- lapply(gs, function(g) {
    df[which(df$genes==g),"tvals"]
  })
  names(tstats) <- gs
  tstats <- tstats[order(unlist(lapply(tstats,median)))]
  boxplot(tstats,horizontal=TRUE,las=1,
    main="biggest effect size(median)",cex.axis=0.6,
    xlab="t-statistic")
  grid()
} else {
  plot(1)
  mtext("too few significant genes found")
}dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
if ( ! file.exists("ReactomePathways.gmt") ) {
  download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip",
    destfile="ReactomePathways.gmt.zip")
  unzip("ReactomePathways.gmt.zip")
}
file.info("ReactomePathways.gmt")##                        size isdir mode               mtime               ctime
## ReactomePathways.gmt 897680 FALSE  664 2022-05-11 13:54:42 2022-05-11 13:54:42
##                                    atime  uid  gid uname grname
## ReactomePathways.gmt 2022-05-11 13:55:35 1001 1003   mdz    mdzgenesets <- gmt_import("ReactomePathways.gmt")
length(genesets)## [1] 2546mres <- mitch_calc(x=dmscore, genesets=genesets, priority="effect")## Note: Enrichments with large effect sizes may not be
##             statistically significant.head(mres$enrichment_result,20) %>%
  kbl(caption = "Top enriched gene sets with GMEA-Mitch") %>%
  kable_paper("hover", full_width = F)| set | setSize | pANOVA | s.dist | p.adjustANOVA | |
|---|---|---|---|---|---|
| 797 | Negative regulation of activity of TFAP2 (AP-2) family transcription factors | 10 | 0.0001209 | -0.7018024 | 0.0009285 | 
| 1099 | Regulation of commissural axon pathfinding by SLIT and ROBO | 10 | 0.0003908 | -0.6474208 | 0.0025714 | 
| 87 | Apoptotic cleavage of cell adhesion proteins | 11 | 0.0002096 | -0.6453083 | 0.0014958 | 
| 1418 | Transcriptional regulation of testis differentiation | 12 | 0.0002348 | -0.6130531 | 0.0016520 | 
| 1386 | Thyroxine biosynthesis | 10 | 0.0034244 | -0.5343657 | 0.0159178 | 
| 879 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 10 | 0.0055806 | -0.5060048 | 0.0228640 | 
| 367 | ERBB2 Activates PTK6 Signaling | 13 | 0.0018315 | -0.4990366 | 0.0092526 | 
| 796 | Negative regulation of TCF-dependent signaling by WNT ligand antagonists | 15 | 0.0009549 | -0.4925046 | 0.0053957 | 
| 64 | Adenylate cyclase activating pathway | 10 | 0.0081256 | -0.4832503 | 0.0312683 | 
| 29 | Acetylcholine Neurotransmitter Release Cycle | 16 | 0.0009281 | -0.4780294 | 0.0052637 | 
| 479 | GABA synthesis, release, reuptake and degradation | 19 | 0.0003437 | -0.4742558 | 0.0022913 | 
| 923 | Platelet sensitization by LDL | 17 | 0.0008191 | 0.4686399 | 0.0047701 | 
| 275 | Defective B3GALTL causes PpS | 34 | 0.0000029 | -0.4632690 | 0.0000521 | 
| 1360 | TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain | 19 | 0.0004924 | 0.4616661 | 0.0031316 | 
| 1167 | SRP-dependent cotranslational protein targeting to membrane | 105 | 0.0000000 | 0.4519886 | 0.0000000 | 
| 1162 | SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs | 11 | 0.0094503 | 0.4518113 | 0.0354189 | 
| 1340 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptors | 12 | 0.0074999 | -0.4456644 | 0.0295334 | 
| 837 | O-glycosylation of TSR domain-containing proteins | 35 | 0.0000051 | -0.4453420 | 0.0000803 | 
| 168 | Carnitine metabolism | 11 | 0.0106185 | -0.4447950 | 0.0388601 | 
| 385 | Erythrocytes take up carbon dioxide and release oxygen | 12 | 0.0079199 | -0.4426103 | 0.0306439 | 
mitch_report(mres,outfile="dma3a_mitch.html",overwrite=TRUE)## Note: overwriting existing report## Dataset saved as " /tmp/RtmphV0LWD/dma3a_mitch.rds ".## 
## 
## processing file: mitch.Rmd## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |..                                                                    |   3%
##    inline R code fragments
## 
## 
  |                                                                            
  |....                                                                  |   6%
## label: checklibraries (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |......                                                                |   9%
##   ordinary text without R code
## 
## 
  |                                                                            
  |........                                                              |  12%
## label: peek (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |..........                                                            |  15%
##   ordinary text without R code
## 
## 
  |                                                                            
  |............                                                          |  18%
## label: metrics (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |..............                                                        |  21%
##   ordinary text without R code
## 
## 
  |                                                                            
  |................                                                      |  24%
## label: scatterplot (with options) 
## List of 5
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6.5
##  $ message   : logi FALSE
##  $ warning   : logi FALSE## 
  |                                                                            
  |...................                                                   |  26%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.....................                                                 |  29%
## label: contourplot (with options) 
## List of 5
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6.5
##  $ warning   : logi FALSE
##  $ message   : logi FALSE## Contour plot does not apply to unidimensional analysis.## 
  |                                                                            
  |.......................                                               |  32%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.........................                                             |  35%
## label: input_geneset_metrics1 (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |...........................                                           |  38%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.............................                                         |  41%
## label: input_geneset_metrics2 (with options) 
## List of 5
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"## 
  |                                                                            
  |...............................                                       |  44%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.................................                                     |  47%
## label: input_geneset_metrics3 (with options) 
## List of 5
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ message   : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7## 
  |                                                                            
  |...................................                                   |  50%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.....................................                                 |  53%
## label: echart1d (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.......................................                               |  56%
## label: echart2d (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.........................................                             |  59%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...........................................                           |  62%
## label: heatmap (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 10
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.............................................                         |  65%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...............................................                       |  68%
## label: effectsize (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.................................................                     |  71%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...................................................                   |  74%
## label: results_table (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |......................................................                |  76%
##   ordinary text without R code
## 
## 
  |                                                                            
  |........................................................              |  79%
## label: results_table_complete (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |..........................................................            |  82%
##   ordinary text without R code
## 
## 
  |                                                                            
  |............................................................          |  85%
## label: detailed_geneset_reports1d (with options) 
## List of 7
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6
##  $ out.width : chr "80%"
##  $ comment   : logi NA
##  $ message   : logi FALSE## 
  |                                                                            
  |..............................................................        |  88%
##   ordinary text without R code
## 
## 
  |                                                                            
  |................................................................      |  91%
## label: detailed_geneset_reports2d (with options) 
## List of 7
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 5
##  $ fig.width : num 6
##  $ out.width : chr "80%"
##  $ comment   : logi NA
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |..................................................................    |  94%
##   ordinary text without R code
## 
## 
  |                                                                            
  |....................................................................  |  97%
## label: session_info (with options) 
## List of 3
##  $ include: logi TRUE
##  $ echo   : logi TRUE
##  $ results: chr "markup"
## 
## 
  |                                                                            
  |......................................................................| 100%
##   ordinary text without R code## output file: /mnt/data/mdz/projects/gmea/mitch.knit.md## /home/mdz/anaconda3/bin/pandoc +RTS -K512m -RTS /mnt/data/mdz/projects/gmea/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmphV0LWD/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --standalone --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmphV0LWD/rmarkdown-str3441fa6b40d25f.html## 
## Output created: /tmp/RtmphV0LWD/mitch_report.html## [1] TRUEstat <- dm$t
names(stat) <- rownames(dm)
# slow
sets2 <- head(sets,1000)
tic()
cres <- cameraPR(statistic=stat, index=sets2, use.ranks = FALSE, inter.gene.cor=0.01, sort = TRUE)
toc()## 33.653 sec elapsed# fast
CORES=detectCores()
#sets <- head(sets,100000)
sets_split <- split(sets,1:CORES)## Warning in split.default(sets, 1:CORES): data length is not a multiple of split
## variabletic()
cres <- mclapply(X=sets_split, function(mysets) {
  cameraPR(statistic=stat, index=mysets, use.ranks = FALSE, inter.gene.cor=0.01, sort = TRUE)
}, mc.cores=CORES)
cres <- do.call(rbind,cres)
rownames(cres) <- sapply(strsplit(rownames(cres),"\\."),"[[",2)
cres <- cres[order(cres$PValue),]
g <- rownames(cres)[1]
m <- mclapply(rownames(cres) , function(g) {
  probes <- sets[[g]]
  scores <- stat[which(names(stat) %in% probes)]
  mymedian <- median(scores)
  mymean <- mean(scores)
  c(mymean,mymedian)
},mc.cores=CORES)
mdf <- do.call(rbind,m)
colnames(mdf) <- c("mean","median")
cres <- cbind(mdf,cres)
toc()## 104.206 sec elapsedhead(subset(cres,Direction=="Up"),25)##               mean    median NGenes Direction       PValue          FDR
## PTPRCAP  2.3244582 2.4199633     16        Up 2.971405e-16 3.732084e-13
## LTA      1.9127107 2.1742753     24        Up 9.103873e-16 1.144357e-12
## POU2AF1  2.3400616 2.8811809     12        Up 4.108978e-13 5.177312e-10
## HLA-E    0.9883267 0.9471868     64        Up 6.711529e-10 4.214840e-07
## UBASH3A  2.1508739 2.4913830     10        Up 7.137722e-10 8.893602e-07
## TAP1     0.8373978 0.8170222    100        Up 1.770983e-09 1.488403e-06
## IL32     2.1626345 2.1155364      9        Up 3.539798e-09 2.215914e-06
## CD3D     2.2705304 2.5050647      8        Up 4.655631e-09 5.833505e-06
## IFITM1   1.6211476 1.8124585     16        Up 6.419055e-09 4.031166e-06
## PSMB8    0.8313260 0.6488706     83        Up 1.231922e-08 3.868234e-06
## CXCR5    1.3747828 1.5721151     22        Up 1.284890e-08 5.362276e-06
## HLA-F    0.9382476 0.9727570     56        Up 1.611764e-08 1.009770e-05
## DGKA     1.2742041 1.1275025     25        Up 2.378672e-08 9.966635e-06
## KIAA1949 0.7427567 0.6964985    101        Up 5.797326e-08 2.429080e-05
## BCL11B   0.8447215 1.1065618     61        Up 1.279820e-07 3.905623e-05
## GPR81    1.5466288 1.3820297     14        Up 1.593058e-07 6.653674e-05
## DIABLO   1.3096804 1.4524589     18        Up 5.685340e-07 1.190131e-04
## SNORD34  1.6297553 1.4291833     11        Up 7.563096e-07 1.578166e-04
## SNORD31  1.7803007 1.9604996      9        Up 9.213007e-07 4.984571e-04
## LIME1    1.3134401 1.7264438     17        Up 9.851513e-07 6.201527e-04
## LCK      1.0847201 1.5988245     26        Up 1.011981e-06 1.590075e-04
## PRSS22   1.2096414 1.2322848     20        Up 1.189635e-06 4.984571e-04
## SNORD22  2.1334924 2.1363205      6        Up 1.390755e-06 5.827262e-04
## ISG20    1.5104566 1.1300646     12        Up 1.678216e-06 5.290576e-04
## SEPT1    1.6389022 1.7726724     10        Up 1.910060e-06 5.091599e-04head(subset(cres,Direction=="Down"),25)##                    mean     median NGenes Direction       PValue          FDR
## C11orf21     -1.7668062 -1.9463963     36      Down 8.428364e-15 1.055231e-11
## TSPAN32      -1.6254336 -1.9412022     42      Down 6.104176e-14 7.691262e-11
## MPO          -2.4948914 -2.6484633     13      Down 1.841064e-13 2.312376e-10
## KCNQ1DN      -1.6144397 -1.7080108     39      Down 3.924695e-13 4.933342e-10
## PRTN3        -1.9416063 -2.5713679     19      Down 2.669346e-11 3.366045e-08
## MIR145       -2.5680735 -2.7594034      9      Down 1.303212e-10 8.216749e-08
## ELANE        -1.9193572 -2.0514902     17      Down 3.376629e-10 4.227540e-07
## AZU1         -2.3303366 -2.3559866     10      Down 1.107618e-09 4.637228e-07
## NKX6-2       -1.3952706 -1.4319593     36      Down 1.657257e-09 1.032471e-06
## CD177        -2.6754771 -3.7016583      7      Down 2.368184e-09 1.488403e-06
## CEBPE        -2.1853301 -2.8379658     11      Down 2.725895e-09 3.423724e-06
## OXT          -2.0521117 -2.2532375     12      Down 7.114327e-09 4.453569e-06
## SLC16A3      -1.2912785 -0.9007149     38      Down 1.571977e-08 6.528943e-06
## LOC646627    -2.5340767 -2.4228463      7      Down 1.679106e-08 2.107277e-05
## LOC100131496 -2.4936562 -2.3802536      7      Down 2.883213e-08 1.810658e-05
## MS4A3        -2.2133875 -2.3290819      9      Down 3.750388e-08 9.420974e-06
## GPR97        -2.4545992 -2.2893246      7      Down 4.821967e-08 2.429080e-05
## SLFN13       -1.6680322 -1.5960605     17      Down 6.246367e-08 2.615146e-05
## S100A9       -1.7520050 -2.3862889     15      Down 6.563207e-08 1.373898e-05
## FAM124B      -1.8078312 -1.7546957     13      Down 1.553549e-07 3.905623e-05
## SPI1         -1.5737683 -1.8428044     18      Down 1.880414e-07 5.904499e-05
## REC8         -1.6097189 -1.8430645     17      Down 1.888226e-07 3.388016e-05
## GNA12        -0.9539754 -0.7963257     84      Down 1.891490e-07 1.110827e-04
## WT1          -1.0380025 -1.0581139     60      Down 2.108660e-07 6.600105e-05
## TNFRSF6B     -2.3207431 -3.3172884      7      Down 2.644825e-07 1.110827e-04head(cres,50) %>%
  kbl(caption = "Top significant genes with CAMERA") %>%
  kable_paper("hover", full_width = F)| mean | median | NGenes | Direction | PValue | FDR | |
|---|---|---|---|---|---|---|
| PTPRCAP | 2.3244582 | 2.4199633 | 16 | Up | 0e+00 | 0.0000000 | 
| LTA | 1.9127107 | 2.1742753 | 24 | Up | 0e+00 | 0.0000000 | 
| C11orf21 | -1.7668062 | -1.9463963 | 36 | Down | 0e+00 | 0.0000000 | 
| TSPAN32 | -1.6254336 | -1.9412022 | 42 | Down | 0e+00 | 0.0000000 | 
| MPO | -2.4948914 | -2.6484633 | 13 | Down | 0e+00 | 0.0000000 | 
| KCNQ1DN | -1.6144397 | -1.7080108 | 39 | Down | 0e+00 | 0.0000000 | 
| POU2AF1 | 2.3400616 | 2.8811809 | 12 | Up | 0e+00 | 0.0000000 | 
| PRTN3 | -1.9416063 | -2.5713679 | 19 | Down | 0e+00 | 0.0000000 | 
| MIR145 | -2.5680735 | -2.7594034 | 9 | Down | 0e+00 | 0.0000001 | 
| ELANE | -1.9193572 | -2.0514902 | 17 | Down | 0e+00 | 0.0000004 | 
| HLA-E | 0.9883267 | 0.9471868 | 64 | Up | 0e+00 | 0.0000004 | 
| UBASH3A | 2.1508739 | 2.4913830 | 10 | Up | 0e+00 | 0.0000009 | 
| AZU1 | -2.3303366 | -2.3559866 | 10 | Down | 0e+00 | 0.0000005 | 
| NKX6-2 | -1.3952706 | -1.4319593 | 36 | Down | 0e+00 | 0.0000010 | 
| TAP1 | 0.8373978 | 0.8170222 | 100 | Up | 0e+00 | 0.0000015 | 
| CD177 | -2.6754771 | -3.7016583 | 7 | Down | 0e+00 | 0.0000015 | 
| CEBPE | -2.1853301 | -2.8379658 | 11 | Down | 0e+00 | 0.0000034 | 
| IL32 | 2.1626345 | 2.1155364 | 9 | Up | 0e+00 | 0.0000022 | 
| CD3D | 2.2705304 | 2.5050647 | 8 | Up | 0e+00 | 0.0000058 | 
| IFITM1 | 1.6211476 | 1.8124585 | 16 | Up | 0e+00 | 0.0000040 | 
| OXT | -2.0521117 | -2.2532375 | 12 | Down | 0e+00 | 0.0000045 | 
| PSMB8 | 0.8313260 | 0.6488706 | 83 | Up | 0e+00 | 0.0000039 | 
| CXCR5 | 1.3747828 | 1.5721151 | 22 | Up | 0e+00 | 0.0000054 | 
| SLC16A3 | -1.2912785 | -0.9007149 | 38 | Down | 0e+00 | 0.0000065 | 
| HLA-F | 0.9382476 | 0.9727570 | 56 | Up | 0e+00 | 0.0000101 | 
| LOC646627 | -2.5340767 | -2.4228463 | 7 | Down | 0e+00 | 0.0000211 | 
| DGKA | 1.2742041 | 1.1275025 | 25 | Up | 0e+00 | 0.0000100 | 
| LOC100131496 | -2.4936562 | -2.3802536 | 7 | Down | 0e+00 | 0.0000181 | 
| MS4A3 | -2.2133875 | -2.3290819 | 9 | Down | 0e+00 | 0.0000094 | 
| GPR97 | -2.4545992 | -2.2893246 | 7 | Down | 0e+00 | 0.0000243 | 
| KIAA1949 | 0.7427567 | 0.6964985 | 101 | Up | 1e-07 | 0.0000243 | 
| SLFN13 | -1.6680322 | -1.5960605 | 17 | Down | 1e-07 | 0.0000262 | 
| S100A9 | -1.7520050 | -2.3862889 | 15 | Down | 1e-07 | 0.0000137 | 
| BCL11B | 0.8447215 | 1.1065618 | 61 | Up | 1e-07 | 0.0000391 | 
| FAM124B | -1.8078312 | -1.7546957 | 13 | Down | 2e-07 | 0.0000391 | 
| GPR81 | 1.5466288 | 1.3820297 | 14 | Up | 2e-07 | 0.0000665 | 
| SPI1 | -1.5737683 | -1.8428044 | 18 | Down | 2e-07 | 0.0000590 | 
| REC8 | -1.6097189 | -1.8430645 | 17 | Down | 2e-07 | 0.0000339 | 
| GNA12 | -0.9539754 | -0.7963257 | 84 | Down | 2e-07 | 0.0001111 | 
| WT1 | -1.0380025 | -1.0581139 | 60 | Down | 2e-07 | 0.0000660 | 
| TNFRSF6B | -2.3207431 | -3.3172884 | 7 | Down | 3e-07 | 0.0001111 | 
| PITX2 | -1.0007742 | -0.9208371 | 64 | Down | 4e-07 | 0.0000779 | 
| PSIMCT-1 | -1.8716010 | -1.8122459 | 11 | Down | 4e-07 | 0.0004985 | 
| SFRP2 | -1.1033457 | -1.2056608 | 44 | Down | 5e-07 | 0.0003373 | 
| TACR3 | -1.7300623 | -1.9615634 | 13 | Down | 6e-07 | 0.0001190 | 
| DIABLO | 1.3096804 | 1.4524589 | 18 | Up | 6e-07 | 0.0001190 | 
| HORMAD2 | -1.7271886 | -2.0776542 | 13 | Down | 6e-07 | 0.0001450 | 
| SOX1 | -1.2956875 | -1.5392701 | 27 | Down | 6e-07 | 0.0001099 | 
| MGC12982 | -1.5745583 | -1.6173178 | 16 | Down | 7e-07 | 0.0006202 | 
| SNORD34 | 1.6297553 | 1.4291833 | 11 | Up | 8e-07 | 0.0001578 | 
There’s no ES and the p-value is biased, so not sure about this
dm <- read.table("dma3a.tsv.gz")
dm <- dm[,4:9]
dm <- merge(myann,dm,by=0)
rownames(dm) <- dm[,1]
dm[,1] = NULL
dm <- dm[grep("Promoter_Associated",dm$Regulatory_Feature_Group),]
head(dm,50) %>%
  kbl(caption = "Top significant genes with limma") %>%
  kable_paper("hover", full_width = F)| UCSC_RefGene_Name | Regulatory_Feature_Group | logFC | AveExpr | t | P.Value | adj.P.Val | B | |
|---|---|---|---|---|---|---|---|---|
| cg00000029 | RBL2 | Promoter_Associated | -0.0446959 | 0.4522209 | -0.8638867 | 0.3888420 | 0.9098372 | -5.265779 | 
| cg00000622 | NIPA2 | Promoter_Associated | 0.0333418 | -4.8495004 | 0.7574773 | 0.4497908 | 0.9250804 | -5.340328 | 
| cg00000769 | DDX55 | Promoter_Associated | 0.0044715 | -3.1463101 | 0.1951579 | 0.8454975 | 0.9862198 | -5.572331 | 
| cg00001245 | MRPS25 | Promoter_Associated | 0.0127411 | -4.2195473 | 0.3178478 | 0.7509823 | 0.9762343 | -5.545030 | 
| cg00002028 | PINK1 | Promoter_Associated | 0.0295245 | -3.5036247 | 0.8499858 | 0.3965035 | 0.9114511 | -5.276068 | 
| cg00002116 | MRPL12 | Promoter_Associated | -0.0045132 | -5.0826553 | -0.0905479 | 0.9279562 | 0.9940693 | -5.585300 | 
| cg00002236 | RTTN | Promoter_Associated | -0.0189864 | -3.5918761 | -0.6113878 | 0.5417426 | 0.9447402 | -5.426842 | 
| cg00002406 | CD2BP2 | Promoter_Associated | 0.0073673 | -4.1952587 | 0.2710988 | 0.7866371 | 0.9798899 | -5.556971 | 
| cg00002660 | SMARCC2 | Promoter_Associated | -0.0276799 | -3.4149124 | -0.9195186 | 0.3591001 | 0.8995507 | -5.222947 | 
| cg00002930 | NFKBIL1 , ATP6V1G2 | Promoter_Associated | 0.0431087 | -2.5246196 | 0.9921947 | 0.3224833 | 0.8886832 | -5.163013 | 
| cg00003173 | CHCHD4, TMEM43 | Promoter_Associated | 0.0440248 | -3.1942015 | 1.2228554 | 0.2230416 | 0.8453216 | -4.943077 | 
| cg00003202 | RFX5 | Promoter_Associated | 0.0246642 | -4.4899392 | 0.4925218 | 0.6229727 | 0.9593472 | -5.483671 | 
| cg00003784 | CCDC45, DDX5 | Promoter_Associated | 0.0271078 | -3.7722693 | 0.8931927 | 0.3729904 | 0.9046774 | -5.243545 | 
| cg00004072 | ZFP36 | Promoter_Associated | 0.0532912 | -3.1321117 | 1.4801258 | 0.1406519 | 0.7861540 | -4.644902 | 
| cg00004082 | SLC2A9 | Promoter_Associated | -0.0567563 | -2.1842139 | -0.9558817 | 0.3404610 | 0.8938321 | -5.193522 | 
| cg00004207 | SFRS7 | Promoter_Associated_Cell_type_specific | -0.0362644 | -3.0355991 | -0.8113672 | 0.4182657 | 0.9177356 | -5.303786 | 
| cg00005010 | MT1F | Promoter_Associated_Cell_type_specific | 0.0077148 | -4.0442169 | 0.2134724 | 0.8312090 | 0.9845704 | -5.569085 | 
| cg00005543 | TCTE3 , C6orf70 | Promoter_Associated | -0.0049202 | -4.2181795 | -0.1388422 | 0.8897358 | 0.9905448 | -5.580493 | 
| cg00006032 | GPHN | Promoter_Associated | -0.0762156 | -3.1976445 | -1.3023458 | 0.1945231 | 0.8284346 | -4.856869 | 
| cg00006122 | C12orf44 | Promoter_Associated | 0.0572183 | -3.0480148 | 2.0292594 | 0.0439589 | 0.6192964 | -3.825553 | 
| cg00006884 | CCDC126 | Promoter_Associated | 0.0081832 | -3.4410951 | 0.2750624 | 0.7835953 | 0.9796542 | -5.556032 | 
| cg00007226 | PACS2 | Promoter_Associated | 0.0187771 | -2.7369800 | 0.6756715 | 0.5001482 | 0.9360383 | -5.391035 | 
| cg00007269 | ZNF77 | Promoter_Associated | 0.0243405 | -3.2605321 | 0.9476296 | 0.3446351 | 0.8950468 | -5.200298 | 
| cg00007898 | DSTYK | Promoter_Associated | -0.0487729 | -4.7627008 | -0.9935158 | 0.3218412 | 0.8884407 | -5.161882 | 
| cg00008004 | Promoter_Associated | 0.0530924 | -3.1300562 | 1.2249733 | 0.2222445 | 0.8448815 | -4.940849 | |
| cg00008033 | ZNF613 | Promoter_Associated | -0.0926061 | -2.3343986 | -1.8015212 | 0.0733558 | 0.6948466 | -4.195215 | 
| cg00008188 | C14orf181 | Promoter_Associated | 0.0310443 | -3.3313383 | 1.0703318 | 0.2859557 | 0.8754919 | -5.093560 | 
| cg00008387 | TMEM188 | Promoter_Associated | 0.0187394 | -2.6875103 | 0.7807688 | 0.4360017 | 0.9222170 | -5.324840 | 
| cg00008665 | C3orf39 | Promoter_Associated | 0.0274437 | 2.6784492 | 0.6050298 | 0.5459492 | 0.9453510 | -5.430190 | 
| cg00008671 | FAM190B | Promoter_Associated | 0.0367837 | -0.8166720 | 0.9195016 | 0.3591090 | 0.8995507 | -5.222960 | 
| cg00008713 | IMPA2 | Promoter_Associated | 0.0547502 | -2.6401426 | 1.6624517 | 0.0982265 | 0.7348906 | -4.400228 | 
| cg00008823 | NRD1 | Promoter_Associated | 0.0392469 | -4.1361594 | 1.3306030 | 0.1850646 | 0.8228002 | -4.824945 | 
| cg00008839 | OAZ1 | Promoter_Associated | -0.0109090 | -5.3145920 | -0.2359452 | 0.8137533 | 0.9829590 | -5.564703 | 
| cg00009167 | KIAA1324, C1orf194 | Promoter_Associated | 0.0203360 | -2.6887142 | 0.7767049 | 0.4383897 | 0.9227737 | -5.327576 | 
| cg00009214 | DERA | Promoter_Associated_Cell_type_specific | 0.0165604 | -2.8461860 | 0.7015914 | 0.4838734 | 0.9326330 | -5.375591 | 
| cg00009407 | TTC8 | Promoter_Associated | 0.0546805 | -3.7141576 | 1.8150757 | 0.0712380 | 0.6896927 | -4.174389 | 
| cg00009412 | DDX18 | Promoter_Associated | 0.0556711 | -3.8699150 | 1.5351918 | 0.1265570 | 0.7705896 | -4.573905 | 
| cg00009970 | MEX3C | Promoter_Associated | 0.0057340 | -3.9394691 | 0.1630548 | 0.8706649 | 0.9887727 | -5.577321 | 
| cg00010046 | MGC23284, MVD | Promoter_Associated | 0.0578509 | -3.2839645 | 1.7147500 | 0.0881753 | 0.7201932 | -4.324988 | 
| cg00010168 | MMS19, UBTD1 | Promoter_Associated | 0.0215936 | -2.4492618 | 0.7670533 | 0.4440916 | 0.9238443 | -5.334016 | 
| cg00010266 | MFSD3 | Promoter_Associated | -0.0110287 | -3.5919353 | -0.3064669 | 0.7596164 | 0.9770348 | -5.548111 | 
| cg00010659 | TMEM14C | Promoter_Associated | -0.0108691 | -3.4079584 | -0.3903382 | 0.6967649 | 0.9700739 | -5.522770 | 
| cg00010853 | KIAA1949 | Promoter_Associated | 0.0616603 | -0.2660541 | 1.0482193 | 0.2959945 | 0.8797502 | -5.113741 | 
| cg00010932 | METTL5 | Promoter_Associated | -0.0433476 | 1.7565091 | -0.7089306 | 0.4793184 | 0.9317887 | -5.371113 | 
| cg00010947 | HELQ , MRPS18C | Promoter_Associated | 0.0352093 | -3.4402376 | 0.6786797 | 0.4982445 | 0.9355984 | -5.389272 | 
| cg00011122 | C16orf75 | Promoter_Associated | -0.0340731 | -2.7978920 | -0.5123938 | 0.6090266 | 0.9571802 | -5.475019 | 
| cg00011284 | RBL2 | Promoter_Associated | -0.0490232 | -3.3631727 | -1.2791249 | 0.2025600 | 0.8332300 | -4.882602 | 
| cg00011578 | PPP5C | Promoter_Associated | 0.0318908 | -2.3697313 | 1.3798035 | 0.1694215 | 0.8125546 | -4.767763 | 
| cg00011994 | FLOT1, IER3 | Promoter_Associated | -0.0011729 | -3.7442208 | -0.0386883 | 0.9691833 | 0.9977478 | -5.588208 | 
| cg00012036 | H3F3B | Promoter_Associated | 0.0349406 | -2.9522732 | 1.2434522 | 0.2153776 | 0.8415437 | -4.921250 | 
# trim down the input dataset
dm <- dm[,c("UCSC_RefGene_Name","t")]
# histogram of t values
hist(dm$t,breaks=seq(from=-6,to=6,by=1))# set cores to used for parallel execution
tic()
gme_res_promoter <- calc_sc(dm)
time2 <- toc() #15.7 20.2 20.3 17.5 17.9 17.7 20.6 ## 15.222 sec elapsedtime2## $tic
## elapsed 
## 3780.97 
## 
## $toc
##  elapsed 
## 3796.192 
## 
## $msg
## logical(0)df <- gme_res_promoter[[1]]
res <- gme_res_promoter[[2]] 
write.table(res ,file="gmea_promo.tsv")head(res,50) %>%
  kbl(caption = "Top significant genes with GMEA") %>%
  kable_paper("hover", full_width = F)| nprobes | mean | median | p-value(sc) | sig | fdr(sc) | |
|---|---|---|---|---|---|---|
| PSMB9 | 49 | 0.5761512 | 0.5821938 | 0.0000026 | 5.576796 | 0.0273321 | 
| LTA | 17 | 2.3851459 | 2.5326143 | 0.0000153 | 4.816480 | 0.1573792 | 
| ZNF331 | 22 | -0.8964193 | -0.9539272 | 0.0000205 | 4.688161 | 0.2114577 | 
| HLA-F | 37 | 0.8824152 | 0.8890888 | 0.0000264 | 4.579069 | 0.2718154 | 
| TAP1 | 52 | 0.5228433 | 0.5670995 | 0.0000274 | 4.561618 | 0.2829321 | 
| PHTF2 | 29 | 0.6846189 | 0.5747849 | 0.0000318 | 4.497636 | 0.3278101 | 
| TMEM60 | 29 | 0.6846189 | 0.5747849 | 0.0000318 | 4.497636 | 0.3278101 | 
| KDM6B | 19 | 0.9253189 | 0.5649357 | 0.0000381 | 4.418540 | 0.3932190 | 
| C20orf94 | 15 | 0.6004834 | 0.6045686 | 0.0000610 | 4.214420 | 0.6290894 | 
| KIAA1949 | 67 | 0.5198463 | 0.5612521 | 0.0000614 | 4.211571 | 0.6331675 | 
| SF3A2 | 17 | 1.0063875 | 0.6782074 | 0.0000763 | 4.117510 | 0.7862091 | 
| TUBB | 26 | 0.8749918 | 0.9736874 | 0.0000816 | 4.088475 | 0.8404865 | 
| PSMB8 | 46 | 0.5721948 | 0.4699794 | 0.0001023 | 3.989915 | 1.0000000 | 
| KIF5B | 14 | 0.7902940 | 0.5348532 | 0.0001221 | 3.913390 | 1.0000000 | 
| SRP68 | 14 | 0.9111961 | 0.8667275 | 0.0001221 | 3.913390 | 1.0000000 | 
| PLEKHJ1 | 16 | 1.0268987 | 0.8825641 | 0.0001526 | 3.816480 | 1.0000000 | 
| HSPE1 | 23 | 0.6167638 | 0.5507955 | 0.0001814 | 3.741275 | 1.0000000 | 
| HSPD1 | 23 | 0.6167638 | 0.5507955 | 0.0001814 | 3.741275 | 1.0000000 | 
| TMEM134 | 19 | 0.5859688 | 0.5494877 | 0.0002098 | 3.678177 | 1.0000000 | 
| HSPA1B | 23 | 0.6806965 | 0.5842477 | 0.0002148 | 3.667935 | 1.0000000 | 
| IQCH | 13 | 0.8418442 | 0.6822960 | 0.0002441 | 3.612360 | 1.0000000 | 
| AAGAB | 13 | 0.8418442 | 0.6822960 | 0.0002441 | 3.612360 | 1.0000000 | 
| RWDD1 | 13 | 0.8209741 | 0.6082937 | 0.0002441 | 3.612360 | 1.0000000 | 
| SSH3 | 13 | -1.5301230 | -1.4511893 | 0.0002441 | 3.612360 | 1.0000000 | 
| STAG3L4 | 13 | 0.7675809 | 0.8131921 | 0.0002441 | 3.612360 | 1.0000000 | 
| PMS2L4 | 13 | 0.7675809 | 0.8131921 | 0.0002441 | 3.612360 | 1.0000000 | 
| PTPRCAP | 13 | 2.3916698 | 2.4635616 | 0.0002441 | 3.612360 | 1.0000000 | 
| BCL11B | 14 | 1.3268440 | 1.3321196 | 0.0002441 | 3.612360 | 1.0000000 | 
| GALK2 | 25 | 0.7274296 | 0.7982154 | 0.0002498 | 3.602402 | 1.0000000 | 
| PEX10 | 22 | 0.7323587 | 0.8632916 | 0.0002556 | 3.592465 | 1.0000000 | 
| TRIM27 | 55 | 0.4703276 | 0.4519905 | 0.0003200 | 3.494916 | 1.0000000 | 
| C5orf36 | 20 | 0.7279515 | 0.8111289 | 0.0003223 | 3.491683 | 1.0000000 | 
| ANKRD32 | 20 | 0.7279515 | 0.8111289 | 0.0003223 | 3.491683 | 1.0000000 | 
| IRAK1BP1 | 14 | 0.7353866 | 0.7967438 | 0.0003662 | 3.436269 | 1.0000000 | 
| C5orf35 | 14 | 1.1025095 | 0.9671847 | 0.0003662 | 3.436269 | 1.0000000 | 
| PRKRA | 15 | 0.7994224 | 0.7985942 | 0.0004272 | 3.369322 | 1.0000000 | 
| DFNB59 | 15 | 0.7994224 | 0.7985942 | 0.0004272 | 3.369322 | 1.0000000 | 
| ZBTB9 | 35 | 0.5068120 | 0.4382240 | 0.0004435 | 3.353107 | 1.0000000 | 
| HIST1H2AK | 12 | 0.6486225 | 0.6487854 | 0.0004883 | 3.311330 | 1.0000000 | 
| ZC3H12D | 12 | 1.0249054 | 0.8920786 | 0.0004883 | 3.311330 | 1.0000000 | 
| TBC1D10C | 12 | 1.2114500 | 0.9331465 | 0.0004883 | 3.311330 | 1.0000000 | 
| TMEM128 | 12 | 1.0851858 | 0.8574542 | 0.0004883 | 3.311330 | 1.0000000 | 
| LYSMD1 | 12 | 0.8175382 | 0.6964782 | 0.0004883 | 3.311330 | 1.0000000 | 
| SCNM1 | 12 | 0.8175382 | 0.6964782 | 0.0004883 | 3.311330 | 1.0000000 | 
| PPM1M | 13 | 1.3734122 | 1.2332757 | 0.0004883 | 3.311330 | 1.0000000 | 
| OBFC2A | 12 | 0.4234877 | 0.3051854 | 0.0004883 | 3.311330 | 1.0000000 | 
| NME1-NME2 | 25 | 0.6867271 | 0.7243284 | 0.0004895 | 3.310271 | 1.0000000 | 
| CDC7 | 16 | 0.8879637 | 0.8115182 | 0.0005798 | 3.236696 | 1.0000000 | 
| ARSG | 16 | 0.7496755 | 0.8700503 | 0.0005798 | 3.236696 | 1.0000000 | 
| UVRAG | 15 | 0.8486591 | 0.9494920 | 0.0006104 | 3.214420 | 1.0000000 | 
# volcano selfcont
sig <- subset(res,`fdr(sc)` < 0.05)
plot(res$median , -log10(res$`p-value(sc)`) ,
  xlab="effect size (mean t-stat)", ylab="-log10(p-value)",
  pch=19, cex=0.5, col="gray",main="self contained test")
grid()
points(sig$median , -log10(sig$`p-value(sc)`) ,
  pch=19, cex=0.5, col="red")Boxplots smallest pvalue.
par(mfrow=c(1,2))
n=50
# self contained
gs <- head(rownames(res),50)
tstats <- lapply(gs, function(g) {
  df[which(df$genes==g),"tvals"]
})
names(tstats) <- gs
tstats <- tstats[order(unlist(lapply(tstats,median)))]
boxplot(tstats,horizontal=TRUE,las=1,
  main="smallest p-val(selfcont)",cex.axis=0.6,
  xlab="t-statistic")
grid()
n=50
# effect size median
sig <- subset(res,`fdr(sc)` < 0.05)
gs <- head(rownames(sig[order(-abs(sig$median)),]),n)
if ( length(gs) >2 ) {
  tstats <- lapply(gs, function(g) {
    df[which(df$genes==g),"tvals"]
  })
  names(tstats) <- gs
  tstats <- tstats[order(unlist(lapply(tstats,median)))]
  boxplot(tstats,horizontal=TRUE,las=1,
    main="biggest effect size(median)",cex.axis=0.6,
    xlab="t-statistic")
  grid()
} else {
  plot(1)
  mtext("too few significant genes found")
}dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
genesets <- gmt_import("ReactomePathways.gmt")
mres <- mitch_calc(x=dmscore, genesets=genesets,priority="effect")## Note: Enrichments with large effect sizes may not be
##             statistically significant.head(mres$enrichment_result,20) %>%
  kbl(caption = "Top enriched gene sets with GMEA-Mitch (promoter only)") %>%
  kable_paper("hover", full_width = F)| set | setSize | pANOVA | s.dist | p.adjustANOVA | |
|---|---|---|---|---|---|
| 829 | Regulation of FZD by ubiquitination | 12 | 0.0004435 | -0.5854282 | 0.0293696 | 
| 812 | RUNX2 regulates osteoblast differentiation | 13 | 0.0002702 | -0.5832176 | 0.0230084 | 
| 379 | Glutamate Neurotransmitter Release Cycle | 11 | 0.0022989 | -0.5306853 | 0.0830377 | 
| 65 | Assembly of collagen fibrils and other multimeric structures | 10 | 0.0046010 | -0.5173411 | 0.1166405 | 
| 526 | Maturation of nucleoprotein | 11 | 0.0047419 | 0.4916096 | 0.1166405 | 
| 1160 | Voltage gated Potassium channels | 10 | 0.0076020 | -0.4873265 | 0.1372969 | 
| 625 | Neurotransmitter release cycle | 18 | 0.0003600 | -0.4856269 | 0.0266115 | 
| 864 | Regulation of pyruvate dehydrogenase (PDH) complex | 11 | 0.0069827 | -0.4696146 | 0.1328140 | 
| 250 | Dopamine Neurotransmitter Release Cycle | 10 | 0.0142609 | -0.4474236 | 0.1868015 | 
| 508 | Long-term potentiation | 11 | 0.0104895 | -0.4455287 | 0.1615337 | 
| 672 | PKA activation | 10 | 0.0174194 | -0.4341194 | 0.2171792 | 
| 1001 | Signaling by Retinoic Acid | 17 | 0.0020036 | -0.4327568 | 0.0770417 | 
| 673 | PKA-mediated phosphorylation of CREB | 11 | 0.0133879 | -0.4305654 | 0.1793073 | 
| 614 | Negative regulation of NMDA receptor-mediated neuronal transmission | 12 | 0.0105702 | -0.4261380 | 0.1615337 | 
| 811 | RUNX2 regulates bone development | 17 | 0.0025294 | -0.4229719 | 0.0861428 | 
| 384 | Glycogen storage diseases | 10 | 0.0219436 | -0.4183503 | 0.2356464 | 
| 817 | Ras activation upon Ca2+ influx through NMDA receptor | 10 | 0.0272862 | -0.4030277 | 0.2450697 | 
| 1053 | TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway | 10 | 0.0296084 | 0.3971664 | 0.2468059 | 
| 1034 | Synthesis of Leukotrienes (LT) and Eoxins (EX) | 10 | 0.0334008 | -0.3883940 | 0.2602207 | 
| 835 | Regulation of KIT signaling | 10 | 0.0350228 | 0.3849005 | 0.2642229 | 
mitch_report(mres,outfile="dma3a_mitch_promo.html",overwrite=TRUE)## Note: overwriting existing report## Dataset saved as " /tmp/RtmphV0LWD/dma3a_mitch_promo.rds ".## 
## 
## processing file: mitch.Rmd## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |..                                                                    |   3%
##    inline R code fragments
## 
## 
  |                                                                            
  |....                                                                  |   6%
## label: checklibraries (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |......                                                                |   9%
##   ordinary text without R code
## 
## 
  |                                                                            
  |........                                                              |  12%
## label: peek (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |..........                                                            |  15%
##   ordinary text without R code
## 
## 
  |                                                                            
  |............                                                          |  18%
## label: metrics (with options) 
## List of 1
##  $ echo: logi FALSE
## 
## 
  |                                                                            
  |..............                                                        |  21%
##   ordinary text without R code
## 
## 
  |                                                                            
  |................                                                      |  24%
## label: scatterplot (with options) 
## List of 5
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6.5
##  $ message   : logi FALSE
##  $ warning   : logi FALSE## 
  |                                                                            
  |...................                                                   |  26%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.....................                                                 |  29%
## label: contourplot (with options) 
## List of 5
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6.5
##  $ warning   : logi FALSE
##  $ message   : logi FALSE## Contour plot does not apply to unidimensional analysis.## 
  |                                                                            
  |.......................                                               |  32%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.........................                                             |  35%
## label: input_geneset_metrics1 (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |...........................                                           |  38%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.............................                                         |  41%
## label: input_geneset_metrics2 (with options) 
## List of 5
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"## 
  |                                                                            
  |...............................                                       |  44%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.................................                                     |  47%
## label: input_geneset_metrics3 (with options) 
## List of 5
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ message   : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7## 
  |                                                                            
  |...................................                                   |  50%
##   ordinary text without R code
## 
## 
  |                                                                            
  |.....................................                                 |  53%
## label: echart1d (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.......................................                               |  56%
## label: echart2d (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.........................................                             |  59%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...........................................                           |  62%
## label: heatmap (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 10
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.............................................                         |  65%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...............................................                       |  68%
## label: effectsize (with options) 
## List of 6
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 7
##  $ fig.width : num 7
##  $ fig.show  : chr "all"
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |.................................................                     |  71%
##   ordinary text without R code
## 
## 
  |                                                                            
  |...................................................                   |  74%
## label: results_table (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |......................................................                |  76%
##   ordinary text without R code
## 
## 
  |                                                                            
  |........................................................              |  79%
## label: results_table_complete (with options) 
## List of 2
##  $ results: chr "asis"
##  $ echo   : logi FALSE
## 
## 
  |                                                                            
  |..........................................................            |  82%
##   ordinary text without R code
## 
## 
  |                                                                            
  |............................................................          |  85%
## label: detailed_geneset_reports1d (with options) 
## List of 7
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 6
##  $ fig.width : num 6
##  $ out.width : chr "80%"
##  $ comment   : logi NA
##  $ message   : logi FALSE## 
  |                                                                            
  |..............................................................        |  88%
##   ordinary text without R code
## 
## 
  |                                                                            
  |................................................................      |  91%
## label: detailed_geneset_reports2d (with options) 
## List of 7
##  $ results   : chr "asis"
##  $ echo      : logi FALSE
##  $ fig.height: num 5
##  $ fig.width : num 6
##  $ out.width : chr "80%"
##  $ comment   : logi NA
##  $ message   : logi FALSE
## 
## 
  |                                                                            
  |..................................................................    |  94%
##   ordinary text without R code
## 
## 
  |                                                                            
  |....................................................................  |  97%
## label: session_info (with options) 
## List of 3
##  $ include: logi TRUE
##  $ echo   : logi TRUE
##  $ results: chr "markup"
## 
## 
  |                                                                            
  |......................................................................| 100%
##   ordinary text without R code## output file: /mnt/data/mdz/projects/gmea/mitch.knit.md## /home/mdz/anaconda3/bin/pandoc +RTS -K512m -RTS /mnt/data/mdz/projects/gmea/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmphV0LWD/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --standalone --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmphV0LWD/rmarkdown-str3441fa75898b7.html## 
## Output created: /tmp/RtmphV0LWD/mitch_report.html## [1] TRUEFor reproducibility.
sessionInfo()## R version 4.2.0 (2022-04-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
## 
## locale:
##  [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
##  [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
##  [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] pkgload_1.3.0                                     
##  [2] GGally_2.1.2                                      
##  [3] ggplot2_3.3.6                                     
##  [4] reshape2_1.4.4                                    
##  [5] beeswarm_0.4.0                                    
##  [6] gplots_3.1.3                                      
##  [7] gtools_3.9.3                                      
##  [8] tibble_3.1.7                                      
##  [9] echarts4r_0.4.4                                   
## [10] tictoc_1.0.1                                      
## [11] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1
## [12] IlluminaHumanMethylation450kmanifest_0.4.0        
## [13] minfi_1.42.0                                      
## [14] bumphunter_1.38.0                                 
## [15] locfit_1.5-9.6                                    
## [16] iterators_1.0.14                                  
## [17] foreach_1.5.2                                     
## [18] Biostrings_2.64.0                                 
## [19] XVector_0.36.0                                    
## [20] SummarizedExperiment_1.26.1                       
## [21] Biobase_2.56.0                                    
## [22] MatrixGenerics_1.8.1                              
## [23] matrixStats_0.62.0                                
## [24] GenomicRanges_1.48.0                              
## [25] GenomeInfoDb_1.32.2                               
## [26] IRanges_2.30.0                                    
## [27] S4Vectors_0.34.0                                  
## [28] BiocGenerics_0.42.0                               
## [29] limma_3.52.2                                      
## [30] mitch_1.8.0                                       
## [31] eulerr_6.1.1                                      
## [32] kableExtra_1.3.4                                  
## [33] dplyr_1.0.9                                       
## 
## loaded via a namespace (and not attached):
##   [1] BiocFileCache_2.4.0       systemfonts_1.0.4        
##   [3] plyr_1.8.7                splines_4.2.0            
##   [5] BiocParallel_1.30.3       digest_0.6.29            
##   [7] htmltools_0.5.3           fansi_1.0.3              
##   [9] magrittr_2.0.3            memoise_2.0.1            
##  [11] tzdb_0.3.0                readr_2.1.2              
##  [13] annotate_1.74.0           svglite_2.1.0            
##  [15] askpass_1.1               siggenes_1.70.0          
##  [17] prettyunits_1.1.1         colorspace_2.0-3         
##  [19] blob_1.2.3                rvest_1.0.2              
##  [21] rappdirs_0.3.3            xfun_0.31                
##  [23] crayon_1.5.1              RCurl_1.98-1.7           
##  [25] jsonlite_1.8.0            genefilter_1.78.0        
##  [27] GEOquery_2.64.2           survival_3.3-1           
##  [29] glue_1.6.2                gtable_0.3.0             
##  [31] zlibbioc_1.42.0           webshot_0.5.3            
##  [33] DelayedArray_0.22.0       Rhdf5lib_1.18.2          
##  [35] HDF5Array_1.24.1          scales_1.2.0             
##  [37] DBI_1.1.3                 rngtools_1.5.2           
##  [39] Rcpp_1.0.9                viridisLite_0.4.0        
##  [41] xtable_1.8-4              progress_1.2.2           
##  [43] bit_4.0.4                 mclust_5.4.10            
##  [45] preprocessCore_1.58.0     htmlwidgets_1.5.4        
##  [47] httr_1.4.3                RColorBrewer_1.1-3       
##  [49] ellipsis_0.3.2            pkgconfig_2.0.3          
##  [51] reshape_0.8.9             XML_3.99-0.10            
##  [53] sass_0.4.2                dbplyr_2.2.1             
##  [55] utf8_1.2.2                tidyselect_1.1.2         
##  [57] rlang_1.0.4               later_1.3.0              
##  [59] AnnotationDbi_1.58.0      munsell_0.5.0            
##  [61] tools_4.2.0               cachem_1.0.6             
##  [63] cli_3.3.0                 generics_0.1.3           
##  [65] RSQLite_2.2.15            evaluate_0.15            
##  [67] stringr_1.4.0             fastmap_1.1.0            
##  [69] yaml_2.3.5                knitr_1.39               
##  [71] bit64_4.0.5               beanplot_1.3.1           
##  [73] scrime_1.3.5              caTools_1.18.2           
##  [75] purrr_0.3.4               KEGGREST_1.36.3          
##  [77] nlme_3.1-158              doRNG_1.8.2              
##  [79] sparseMatrixStats_1.8.0   mime_0.12                
##  [81] nor1mix_1.3-0             xml2_1.3.3               
##  [83] biomaRt_2.52.0            compiler_4.2.0           
##  [85] rstudioapi_0.13           filelock_1.0.2           
##  [87] curl_4.3.2                png_0.1-7                
##  [89] bslib_0.4.0               stringi_1.7.8            
##  [91] highr_0.9                 GenomicFeatures_1.48.3   
##  [93] lattice_0.20-45           Matrix_1.4-1             
##  [95] multtest_2.52.0           vctrs_0.4.1              
##  [97] pillar_1.8.0              lifecycle_1.0.1          
##  [99] rhdf5filters_1.8.0        jquerylib_0.1.4          
## [101] data.table_1.14.2         bitops_1.0-7             
## [103] httpuv_1.6.5              rtracklayer_1.56.1       
## [105] R6_2.5.1                  BiocIO_1.6.0             
## [107] promises_1.2.0.1          KernSmooth_2.23-20       
## [109] gridExtra_2.3             codetools_0.2-18         
## [111] MASS_7.3-58               assertthat_0.2.1         
## [113] rhdf5_2.40.0              openssl_2.0.2            
## [115] rjson_0.2.21              withr_2.5.0              
## [117] GenomicAlignments_1.32.0  Rsamtools_2.12.0         
## [119] GenomeInfoDbData_1.2.8    hms_1.1.1                
## [121] quadprog_1.5-8            grid_4.2.0               
## [123] tidyr_1.2.0               base64_2.0               
## [125] rmarkdown_2.14            DelayedMatrixStats_1.18.0
## [127] illuminaio_0.38.0         shiny_1.7.2              
## [129] restfulr_0.0.15