Source: https://github.com/markziemann/SurveyEnrichmentMethods
Here we are performing an analysis of some gene expression data to demonstrate the difference between ORA and FCS methods and to highlight the differences caused by improper background gene set use.
The dataset being used is SRP096178 and we are comparing the cells grown in normal condition (control) to those grown with addition of SAHA (case).
Data are obtained from http://dee2.io/
suppressPackageStartupMessages({
library("getDEE2")
library("DESeq2")
library("clusterProfiler")
library("mitch")
library("kableExtra")
library("eulerr")
})
I’m using some RNA-seq data looking at the effect of SAHA on HAEC cells.
name="SRP037718"
mdat<-getDEE2Metadata("hsapiens")
samplesheet <- mdat[grep("SRP037718",mdat$SRP_accession),]
samplesheet<-samplesheet[order(samplesheet$SRR_accession),]
samplesheet$trt<-as.factor(c(1,1,1,0,0,0))
s1 <- samplesheet
s1 %>% kbl(caption = "sample sheet") %>% kable_paper("hover", full_width = F)
SRR_accession | QC_summary | SRX_accession | SRS_accession | SRP_accession | Sample_name | GEO_series | Library_name | trt | |
---|---|---|---|---|---|---|---|---|---|
238589 | SRR1168225 | PASS | SRX469930 | SRS557162 | SRP037718 | GSM1326469 | GSE37378 | 1 | |
238590 | SRR1168226 | PASS | SRX469931 | SRS557163 | SRP037718 | GSM1326470 | GSE37378 | 1 | |
238591 | SRR1168227 | PASS | SRX469932 | SRS557164 | SRP037718 | GSM1326471 | GSE37378 | 1 | |
238592 | SRR1168228 | PASS | SRX469933 | SRS557165 | SRP037718 | GSM1326472 | GSE37378 | 0 | |
238593 | SRR1168229 | PASS | SRX469934 | SRS557166 | SRP037718 | GSM1326473 | GSE37378 | 0 | |
238594 | SRR1168230 | PASS | SRX469935 | SRS557167 | SRP037718 | GSM1326474 | GSE37378 | 0 |
w<-getDEE2("hsapiens",s1$SRR_accession,metadata=mdat,legacy = TRUE)
## For more information about DEE2 QC metrics, visit
## https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
x<-Tx2Gene(w)
x<-x$Tx2Gene
# save the genetable for later
gt<-w$GeneInfo[,1,drop=FALSE]
gt$accession<-rownames(gt)
# counts
x1<-x[,which(colnames(x) %in% samplesheet$SRR_accession)]
Here show the number of genes in the annotation set, and those detected above the detection threshold.
# filter out lowly expressed genes
x1<-x1[which(rowSums(x1)/ncol(x1)>=(10)),]
nrow(x)
## [1] 39297
nrow(x1)
## [1] 15477
Now multidimensional scaling (MDS) plot to show the correlation between the datasets. If the control and case datasets are clustered separately, then it is likely that there will be many differentially expressed genes with FDR<0.05.
plot(cmdscale(dist(t(x1))), xlab="Coordinate 1", ylab="Coordinate 2", pch=19, col=s1$trt, main="MDS")
Now run DESeq2 for control vs case.
y <- DESeqDataSetFromMatrix(countData = round(x1), colData = s1, design = ~ trt)
## converting counts to integer mode
y <- DESeq(y)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- results(y)
de<-as.data.frame(de[order(de$pvalue),])
rownames(de)<-sapply(strsplit(rownames(de),"\\."),"[[",1)
head(de) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
ENSG00000099250 | 6148.277 | -4.163885 | 0.1204942 | -34.55671 | 0 | 0 |
ENSG00000187193 | 3478.958 | 4.219910 | 0.1248838 | 33.79071 | 0 | 0 |
ENSG00000126785 | 2075.476 | -3.356182 | 0.1085961 | -30.90517 | 0 | 0 |
ENSG00000166741 | 1046.262 | -5.101344 | 0.1661858 | -30.69662 | 0 | 0 |
ENSG00000102010 | 1153.368 | -5.552842 | 0.1817905 | -30.54528 | 0 | 0 |
ENSG00000159167 | 1898.444 | 7.629754 | 0.2499001 | 30.53122 | 0 | 0 |
Now let’s have a look at some of the charts showing differential expression. In particular, an MA plot and volcano plot.
maplot <- function(de,contrast_name) {
sig <-subset(de, padj < 0.05 )
up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
GENESUP <- length(up)
GENESDN <- length(dn)
DET=nrow(de)
SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down", DET, "detected")
ns <-subset(de, padj > 0.05 )
plot(log2(de$baseMean),de$log2FoldChange,
xlab="log2 basemean", ylab="log2 foldchange",
pch=19, cex=0.5, col="dark gray",
main=contrast_name, cex.main=0.7)
points(log2(sig$baseMean),sig$log2FoldChange,
pch=19, cex=0.5, col="red")
mtext(SUBHEADER,cex = 0.7)
}
make_volcano <- function(de,name) {
sig <- subset(de,padj<0.05)
N_SIG=nrow(sig)
N_UP=nrow(subset(sig,log2FoldChange>0))
N_DN=nrow(subset(sig,log2FoldChange<0))
DET=nrow(de)
HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn", DET, "detected")
plot(de$log2FoldChange,-log10(de$padj),cex=0.5,pch=19,col="darkgray",
main=name, xlab="log2 FC", ylab="-log10 pval", xlim=c(-6,6))
mtext(HEADER)
grid()
points(sig$log2FoldChange,-log10(sig$padj),cex=0.5,pch=19,col="red")
}
maplot(de,name)
make_volcano(de,name)
In order to perform gene set analysis, we need some gene sets.
if (! file.exists("ReactomePathways.gmt")) {
download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip",
destfile="ReactomePathways.gmt.zip")
unzip("ReactomePathways.gmt.zip")
}
genesets<-gmt_import("ReactomePathways.gmt")
Mitch uses rank-ANOVA statistics for enrichment detection.
m <- mitch_import(de,DEtype = "DEseq2", geneTable = gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 15477
## Note: no. genes in output = 14488
## Note: estimated proportion of input genes in output = 0.936
mres <- mitch_calc(m,genesets = genesets)
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
m_up <- subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist > 0)[,1]
m_dn <- subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist < 0)[,1]
message(paste("Number of up-regulated pathways:",length(m_up) ))
## Number of up-regulated pathways: 49
message(paste("Number of down-regulated pathways:",length(m_dn) ))
## Number of down-regulated pathways: 266
head(mres$enrichment_result,10) %>% kbl() %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
624 | Metabolism of RNA | 661 | 0 | -0.2779789 | 0 |
1283 | Translation | 273 | 0 | -0.3429991 | 0 |
149 | Cell Cycle | 599 | 0 | -0.2319664 | 0 |
151 | Cell Cycle, Mitotic | 484 | 0 | -0.2524928 | 0 |
1365 | rRNA processing | 208 | 0 | -0.3505784 | 0 |
150 | Cell Cycle Checkpoints | 251 | 0 | -0.3161425 | 0 |
636 | Metabolism of proteins | 1562 | 0 | -0.1313830 | 0 |
1367 | rRNA processing in the nucleus and cytosol | 187 | 0 | -0.3472750 | 0 |
728 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 113 | 0 | -0.4428306 | 0 |
730 | Nonsense-Mediated Decay (NMD) | 113 | 0 | -0.4428306 | 0 |
Clusterprofiler uses a hypergeometric test. Firstly I will conduct the analysis separately for up and down regulated genes and with the correct background (as intended by the developers).
genesets2 <- read.gmt("ReactomePathways.gmt")
de_up <- rownames(subset(de,log2FoldChange>0,padj<0.05))
de_up <- unique(gt[which(rownames(gt) %in% de_up),1])
de_dn <- rownames(subset(de,log2FoldChange<0,padj<0.05))
de_dn <- unique(gt[which(rownames(gt) %in% de_dn),1])
de_bg <- rownames(de)
de_bg <- unique(gt[which(rownames(gt) %in% de_bg),1])
c_up <- as.data.frame(enricher(gene = de_up, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2))
c_up <- rownames(subset(c_up, p.adjust < 0.05))
c_dn <- as.data.frame(enricher(gene = de_dn, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2))
c_dn <- rownames(subset(c_dn, p.adjust < 0.05))
Now performing ORA with clusterprofiler combining up and down.
de_de <- rownames(subset(de,padj<0.05))
de_de <- unique(gt[which(rownames(gt) %in% de_de),1])
d_de <- as.data.frame(enricher(gene = de_de, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2))
d_de <- rownames(subset(d_de, p.adjust < 0.05))
Now performing ORA with clusterprofiler with whole genome background list
de_bg <- w$GeneInfo$GeneSymbol
f_up <- as.data.frame(enricher(gene = de_up, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2))
f_up <- rownames(subset(f_up, p.adjust < 0.05))
f_dn <- as.data.frame(enricher(gene = de_dn, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2))
f_dn <- rownames(subset(f_dn, p.adjust < 0.05))
Now performing ORA (combining up and down gene lists) with clusterprofiler with whole genome background list
e_de <- as.data.frame(enricher(gene = de_de, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2))
e_de <- rownames(subset(e_de, p.adjust < 0.05))
The Venn (or Euler to be more correct) diagram is useful to visualise the overlaps between sets.
par(cex.main=0.5)
par(mar=c(2,2,2,2))
v0 <- list("ORA up"=c_up,"ORA dn"=c_dn,
"ORA comb" = d_de)
plot(euler(v0),quantities = TRUE, edges = "gray", main="effect of combining up and down regulated genes")
## Warning in colSums(id & !empty) == 0 | merged_sets: longer object length is not
## a multiple of shorter object length
v1 <- list("FCS up"=m_up, "FCS dn"=m_dn,
"ORA up"=c_up,"ORA dn"=c_dn)
plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS compared to ORA")
v2 <- list("ORA up"=c_up,"ORA dn"=c_dn,
"ORA* up"=f_up,"ORA* dn"=f_dn )
plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")
vx <- list("ORA up"=c_up,"ORA dn"=c_dn,
"ORA comb" = d_de, "ORA* comb" = e_de)
plot(euler(vx),quantities = TRUE, edges = "gray", main="combining up and down genes and whole genome bg*")
## Warning in colSums(id & !empty) == 0 | merged_sets: longer object length is not
## a multiple of shorter object length
v3 <- list("ORA up"=c_up,"ORA dn"=c_dn,
"ORA* up"=f_up,"ORA* dn"=f_dn ,
"FCS up"=m_up, "FCS dn"=m_dn)
png("images/fcs_ora3.png")
plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS vs ORA")
dev.off()
## png
## 2
png("images/orabg3.png")
plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")
dev.off()
## png
## 2
png("images/oracomb3.png")
plot(euler(vx),quantities = TRUE, main="combining up and down genes and whole genome bg*")
## Warning in colSums(id & !empty) == 0 | merged_sets: longer object length is not
## a multiple of shorter object length
dev.off()
## png
## 2
pdf("images/fcs_ora3.pdf",width=4,height=4)
plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS vs ORA")
dev.off()
## png
## 2
pdf("images/orabg3.pdf",width=4,height=4)
plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")
dev.off()
## png
## 2
pdf("images/oracomb3.pdf",width=4,height=4)
plot(euler(vx),quantities = TRUE, edges = "gray", main="combining up and down genes and whole genome bg*")
## Warning in colSums(id & !empty) == 0 | merged_sets: longer object length is not
## a multiple of shorter object length
dev.off()
## png
## 2
# ORA vs ORA combined
dc <- length(intersect(d_de, c(c_up,c_dn))) / length(union(d_de, c(c_up,c_dn)))
# ORA vs ORA* combined
ec <- length(intersect(e_de, c(c_up,c_dn))) / length(union(e_de, c(c_up,c_dn)))
# FCS vs ORA
cm <- length(intersect(c(c_up,c_dn), c(m_up,m_dn))) / length(union(c(c_up,c_dn), c(m_up,m_dn)))
m_up <- gsub("^","up ",m_up)
m_dn <- gsub("^","dn ",m_dn)
m_de <- union(m_up,m_dn)
c_up <- gsub("^","up ",c_up)
c_dn <- gsub("^","dn ",c_dn)
c_de <- union(c_up,c_dn)
f_up <- gsub("^","up ",f_up)
f_dn <- gsub("^","dn ",f_dn)
f_de <- union(f_up,f_dn)
# ORA vs ORA*
cf <- length(intersect(c_de, f_de )) / length(union(c_de, f_de))
# FCS vs ORA*
mf <- length(intersect(m_de, f_de )) / length(union(m_de, f_de))
dat <- c("FCS vs ORA"=cm,"ORA vs ORA*"=cf,"FCS vs ORA*"=mf, "ORA vs ORA comb"=dc, "ORA vs ORA* comb"=ec)
dat
## FCS vs ORA ORA vs ORA* FCS vs ORA* ORA vs ORA comb
## 0.6645963 0.4019608 0.4871324 0.0000000
## ORA vs ORA* comb
## 0.2492308
barplot(dat,ylab="jaccard metric")
saveRDS(dat,file = "ex3dat.rds")
sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] rmdformats_1.0.3 beeswarm_0.4.0
## [3] eulerr_6.1.1 mitch_1.5.1
## [5] clusterProfiler_4.0.5 DESeq2_1.32.0
## [7] SummarizedExperiment_1.22.0 Biobase_2.52.0
## [9] MatrixGenerics_1.4.3 matrixStats_0.61.0
## [11] GenomicRanges_1.44.0 GenomeInfoDb_1.28.4
## [13] IRanges_2.26.0 S4Vectors_0.30.0
## [15] BiocGenerics_0.38.0 getDEE2_1.2.0
## [17] anytime_0.3.9 kableExtra_1.3.4
## [19] XML_3.99-0.8 reutils_0.2.3
## [21] vioplot_0.3.7 zoo_1.8-9
## [23] sm_2.2-5.7 wordcloud_2.6
## [25] RColorBrewer_1.1-2 rsvg_2.1.2
## [27] DiagrammeRsvg_0.1 DiagrammeR_1.0.6.1
## [29] forcats_0.5.1 stringr_1.4.0
## [31] dplyr_1.0.7 purrr_0.3.4
## [33] readr_2.0.2 tidyr_1.1.4
## [35] tibble_3.1.5 ggplot2_3.3.5
## [37] tidyverse_1.3.1
##
## loaded via a namespace (and not attached):
## [1] utf8_1.2.2 tidyselect_1.1.1 RSQLite_2.2.8
## [4] AnnotationDbi_1.54.1 htmlwidgets_1.5.4 grid_4.1.2
## [7] BiocParallel_1.26.2 scatterpie_0.1.7 munsell_0.5.0
## [10] withr_2.4.2 colorspace_2.0-2 GOSemSim_2.18.1
## [13] highr_0.9 knitr_1.36 rstudioapi_0.13
## [16] DOSE_3.18.3 GenomeInfoDbData_1.2.6 polyclip_1.10-0
## [19] bit64_4.0.5 farver_2.1.0 downloader_0.4
## [22] vctrs_0.3.8 treeio_1.16.2 generics_0.1.0
## [25] xfun_0.26 R6_2.5.1 graphlayouts_0.7.2
## [28] locfit_1.5-9.4 bitops_1.0-7 cachem_1.0.6
## [31] reshape_0.8.8 fgsea_1.18.0 gridGraphics_0.5-1
## [34] DelayedArray_0.18.0 assertthat_0.2.1 promises_1.2.0.1
## [37] scales_1.1.1 ggraph_2.0.5 enrichplot_1.12.3
## [40] gtable_0.3.0 tidygraph_1.2.0 rlang_0.4.11
## [43] genefilter_1.74.0 systemfonts_1.0.2 splines_4.1.2
## [46] lazyeval_0.2.2 htm2txt_2.1.1 broom_0.7.9
## [49] yaml_2.2.1 reshape2_1.4.4 modelr_0.1.8
## [52] backports_1.2.1 httpuv_1.6.3 qvalue_2.24.0
## [55] tools_4.1.2 bookdown_0.24 ggplotify_0.1.0
## [58] gplots_3.1.1 ellipsis_0.3.2 jquerylib_0.1.4
## [61] Rcpp_1.0.7 plyr_1.8.6 visNetwork_2.1.0
## [64] zlibbioc_1.38.0 RCurl_1.98-1.5 viridis_0.6.1
## [67] cowplot_1.1.1 haven_2.4.3 ggrepel_0.9.1
## [70] fs_1.5.0 magrittr_2.0.1 data.table_1.14.2
## [73] DO.db_2.9 reprex_2.0.1 hms_1.1.1
## [76] patchwork_1.1.1 mime_0.12 evaluate_0.14
## [79] xtable_1.8-4 readxl_1.3.1 gridExtra_2.3
## [82] compiler_4.1.2 KernSmooth_2.23-20 V8_3.6.0
## [85] crayon_1.4.1 shadowtext_0.0.9 htmltools_0.5.2
## [88] ggfun_0.0.4 later_1.3.0 tzdb_0.1.2
## [91] geneplotter_1.70.0 aplot_0.1.1 lubridate_1.8.0
## [94] DBI_1.1.1 tweenr_1.0.2 dbplyr_2.1.1
## [97] MASS_7.3-54 Matrix_1.3-4 cli_3.0.1
## [100] igraph_1.2.6 pkgconfig_2.0.3 xml2_1.3.2
## [103] ggtree_3.0.4 svglite_2.0.0 annotate_1.70.0
## [106] bslib_0.3.1 webshot_0.5.2 XVector_0.32.0
## [109] rvest_1.0.1 yulab.utils_0.0.4 digest_0.6.28
## [112] Biostrings_2.60.2 polylabelr_0.2.0 rmarkdown_2.11
## [115] cellranger_1.1.0 fastmatch_1.1-3 tidytree_0.3.6
## [118] curl_4.3.2 gtools_3.9.2 shiny_1.7.1
## [121] lifecycle_1.0.1 nlme_3.1-153 jsonlite_1.7.2
## [124] echarts4r_0.4.2 viridisLite_0.4.0 fansi_0.5.0
## [127] pillar_1.6.3 lattice_0.20-45 GGally_2.1.2
## [130] KEGGREST_1.32.0 fastmap_1.1.0 httr_1.4.2
## [133] survival_3.2-13 GO.db_3.13.0 glue_1.4.2
## [136] png_0.1-7 bit_4.0.4 ggforce_0.3.3
## [139] stringi_1.7.5 sass_0.4.0 blob_1.2.2
## [142] caTools_1.18.2 memoise_2.0.0 ape_5.5