Source: https://github.com/markziemann/SurveyEnrichmentMethods

Intro

Here we are performing an analysis of some gene expression data to demonstrate the difference between ORA and FCS methods and to highlight the differences caused by improper background gene set use.

The dataset being used is SRP068733 and we are comparing the healthy endothelial cells with a scrambled siRNA to cells treated with a p300 targeting siRNA.

Data are obtained from http://dee2.io/

suppressPackageStartupMessages({
library("getDEE2") 
library("DESeq2")
library("clusterProfiler")
library("mitch")
library("kableExtra")
library("eulerr")
})

Get expression data

I’m using some RNA-seq data looking at the difference in healthy endothelial cell gene expression between vehicle and C646 samples.

name="SRP068733"
mdat<-getDEE2Metadata("hsapiens")
samplesheet <- mdat[grep("SRP068733",mdat$SRP_accession),]
samplesheet<-samplesheet[order(samplesheet$SRR_accession),]
SRRvec <- c("SRR3112216","SRR3112217","SRR3112218","SRR3112219","SRR3112220","SRR3112221")
samplesheet <- samplesheet[which(samplesheet$SRR_accession %in% SRRvec),]
samplesheet$trt<-as.factor(c(0,0,0,1,1,1)) 
s1 <- samplesheet

s1 %>% kbl(caption = "sample sheet") %>% kable_paper("hover", full_width = F)
sample sheet
SRR_accession QC_summary SRX_accession SRS_accession SRP_accession Sample_name GEO_series Library_name trt
299400 SRR3112216 PASS SRX1540348 SRS1256815 SRP068733 GSM2044428 GSE77108 0
299401 SRR3112217 PASS SRX1540349 SRS1256814 SRP068733 GSM2044429 GSE77108 0
299402 SRR3112218 PASS SRX1540350 SRS1256812 SRP068733 GSM2044430 GSE77108 0
299403 SRR3112219 PASS SRX1540351 SRS1256813 SRP068733 GSM2044431 GSE77108 1
299404 SRR3112220 PASS SRX1540352 SRS1256811 SRP068733 GSM2044432 GSE77108 1
299405 SRR3112221 PASS SRX1540353 SRS1256810 SRP068733 GSM2044433 GSE77108 1
w<-getDEE2("hsapiens",SRRvec,metadata=mdat,legacy = TRUE)
## For more information about DEE2 QC metrics, visit
##     https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
x<-Tx2Gene(w)
x<-x$Tx2Gene

# save the genetable for later
gt<-w$GeneInfo[,1,drop=FALSE]
gt$accession<-rownames(gt)

# counts 
x1<-x[,which(colnames(x) %in% samplesheet$SRR_accession)]

Here show the number of genes in the annotation set, and those detected above the detection threshold.

# filter out lowly expressed genes
x1<-x1[which(rowSums(x1)/ncol(x1)>=(10)),]
nrow(x)
## [1] 39297
nrow(x1)
## [1] 14255

Now multidimensional scaling (MDS) plot to show the correlation between the datasets. If the control and case datasets are clustered separately, then it is likely that there will be many differentially expressed genes with FDR<0.05.

plot(cmdscale(dist(t(x1))), xlab="Coordinate 1", ylab="Coordinate 2", pch=19, col=s1$trt, main="MDS")

Differential expression

Now run DESeq2 for control vs case.

y <- DESeqDataSetFromMatrix(countData = round(x1), colData = s1, design = ~ trt)
## converting counts to integer mode
y <- DESeq(y)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- results(y)
de<-as.data.frame(de[order(de$pvalue),])
rownames(de)<-sapply(strsplit(rownames(de),"\\."),"[[",1)
head(de) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
ENSG00000049449 10375.678 -1.319179 0.0346992 -38.01753 0 0
ENSG00000065308 9062.133 -1.354569 0.0335259 -40.40362 0 0
ENSG00000066056 10429.917 -1.273349 0.0333485 -38.18314 0 0
ENSG00000068001 6526.375 -1.635372 0.0423455 -38.61975 0 0
ENSG00000076706 25433.097 -1.625573 0.0301945 -53.83679 0 0
ENSG00000087245 19077.593 -1.541325 0.0312561 -49.31281 0 0

Now let’s have a look at some of the charts showing differential expression. In particular, an MA plot and volcano plot.

maplot <- function(de,contrast_name) {
  sig <-subset(de, padj < 0.05 )
  up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
  dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
  GENESUP <- length(up)
  GENESDN <- length(dn)
  DET=nrow(de)
  SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down", DET, "detected")
  ns <-subset(de, padj > 0.05 )
  plot(log2(de$baseMean),de$log2FoldChange, 
       xlab="log2 basemean", ylab="log2 foldchange",
       pch=19, cex=0.5, col="dark gray",
       main=contrast_name, cex.main=0.7)
  points(log2(sig$baseMean),sig$log2FoldChange,
         pch=19, cex=0.5, col="red")
  mtext(SUBHEADER,cex = 0.7)
}

make_volcano <- function(de,name) {
    sig <- subset(de,padj<0.05)
    N_SIG=nrow(sig)
    N_UP=nrow(subset(sig,log2FoldChange>0))
    N_DN=nrow(subset(sig,log2FoldChange<0))
    DET=nrow(de)
    HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn", DET, "detected")
    plot(de$log2FoldChange,-log10(de$padj),cex=0.5,pch=19,col="darkgray",
        main=name, xlab="log2 FC", ylab="-log10 pval", xlim=c(-6,6))
    mtext(HEADER)
    grid()
    points(sig$log2FoldChange,-log10(sig$padj),cex=0.5,pch=19,col="red")
}

maplot(de,name)

make_volcano(de,name)

Gene sets from Reactome

In order to perform gene set analysis, we need some gene sets.

if (! file.exists("ReactomePathways.gmt")) {
  download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip", 
    destfile="ReactomePathways.gmt.zip")
  unzip("ReactomePathways.gmt.zip")
}
genesets<-gmt_import("ReactomePathways.gmt")

FCS with Mitch

Mitch uses rank-ANOVA statistics for enrichment detection.

m <- mitch_import(de,DEtype = "DEseq2", geneTable = gt)
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 14255
## Note: no. genes in output = 13309
## Note: estimated proportion of input genes in output = 0.934
mres <- mitch_calc(m,genesets = genesets)
## Note: When prioritising by significance (ie: small
##             p-values), large effect sizes might be missed.
m_up <- subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist > 0)[,1]
m_dn <- subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist < 0)[,1]
message(paste("Number of up-regulated pathways:",length(m_up) ))
## Number of up-regulated pathways: 73
message(paste("Number of down-regulated pathways:",length(m_dn) ))
## Number of down-regulated pathways: 183
head(mres$enrichment_result,10)  %>% kbl() %>% kable_paper("hover", full_width = F)
set setSize pANOVA s.dist p.adjustANOVA
339 Extracellular matrix organization 191 0 -0.5684105 0
1021 SRP-dependent cotranslational protein targeting to membrane 110 0 -0.5997810 0
373 Formation of a pool of free 40S subunits 99 0 -0.6132743 0
333 Eukaryotic Translation Elongation 91 0 -0.6251432 0
1300 Viral mRNA Translation 87 0 -0.6323578 0
563 L13a-mediated translational silencing of Ceruloplasmin expression 109 0 -0.5636308 0
413 GTP hydrolysis and joining of the 60S ribosomal subunit 110 0 -0.5596347 0
774 Peptide chain elongation 87 0 -0.6269001 0
130 Cap-dependent Translation Initiation 117 0 -0.5359684 0
334 Eukaryotic Translation Initiation 117 0 -0.5359684 0

ORA with clusterprofiler

Clusterprofiler uses a hypergeometric test. Firstly I will conduct the analysis separately for up and down regulated genes and with the correct backgound (as intended by the developers).

genesets2 <- read.gmt("ReactomePathways.gmt")

de_up <- rownames(subset(de,log2FoldChange>0,padj<0.05))
de_up <- unique(gt[which(rownames(gt) %in% de_up),1])

de_dn <- rownames(subset(de,log2FoldChange<0,padj<0.05))
de_dn <- unique(gt[which(rownames(gt) %in% de_dn),1])

de_bg <- rownames(de)
de_bg <- unique(gt[which(rownames(gt) %in% de_bg),1])

c_up <- as.data.frame(enricher(gene = de_up, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2))
c_up <- rownames(subset(c_up, p.adjust < 0.05))
       
c_dn <- as.data.frame(enricher(gene = de_dn, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2))
c_dn <- rownames(subset(c_dn, p.adjust < 0.05))

Now performing ORA with clusterprofiler combining up and down.

de_de <- rownames(subset(de,padj<0.05))
de_de <- unique(gt[which(rownames(gt) %in% de_de),1])

d_de <- as.data.frame(enricher(gene = de_de, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2))
d_de <- rownames(subset(d_de, p.adjust < 0.05))

Now performing ORA with clusterprofiler with whole genome background list

de_bg <- w$GeneInfo$GeneSymbol

f_up <- as.data.frame(enricher(gene = de_up, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2))
f_up <- rownames(subset(f_up, p.adjust < 0.05))
       
f_dn <- as.data.frame(enricher(gene = de_dn, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2))
f_dn <- rownames(subset(f_dn, p.adjust < 0.05))

Now performing ORA (combining up and down gene lists) with clusterprofiler with whole genome background list

e_de <- as.data.frame(enricher(gene = de_de, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2))
e_de <- rownames(subset(e_de, p.adjust < 0.05))

Venn diagram comparison

The Venn (or Euler to be more correct) diagram is useful to visualise the overlaps between sets.

par(cex.main=0.5)

par(mar=c(2,2,2,2))

v0 <- list("ORA up"=c_up,"ORA dn"=c_dn,
           "ORA comb" = d_de)

plot(euler(v0),quantities = TRUE, edges = "gray", main="effect of combining up and down regulated genes")

v1 <- list("FCS up"=m_up, "FCS dn"=m_dn,
           "ORA up"=c_up,"ORA dn"=c_dn)
  
plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS compared to ORA")

v2 <- list("ORA up"=c_up,"ORA dn"=c_dn, 
           "ORA* up"=f_up,"ORA* dn"=f_dn )

plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")

vx <- list("ORA up"=c_up,"ORA dn"=c_dn,
           "ORA comb" = d_de, "ORA* comb" = e_de)

plot(euler(vx),quantities = TRUE, edges = "gray", main="combining up and down genes and whole genome bg*")

v3 <- list("ORA up"=c_up,"ORA dn"=c_dn, 
           "ORA* up"=f_up,"ORA* dn"=f_dn ,
           "FCS up"=m_up, "FCS dn"=m_dn)

png("images/fcs_ora7.png")
plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS vs ORA")
dev.off()
## png 
##   2
png("images/orabg7.png")
plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")
dev.off()
## png 
##   2
png("images/oracomb7.png")
plot(euler(vx),quantities = TRUE, main="combining up and down genes and whole genome bg*")
dev.off()
## png 
##   2
pdf("images/fcs_ora7.pdf",width=4,height=4)
plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS vs ORA")
dev.off()
## png 
##   2
pdf("images/orabg7.pdf",width=4,height=4)
plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")
dev.off()
## png 
##   2
pdf("images/oracomb7.pdf",width=4,height=4)
plot(euler(vx),quantities = TRUE, edges = "gray", main="combining up and down genes and whole genome bg*")
dev.off()
## png 
##   2

Jaccard calculation

# ORA vs ORA combined
dc <- length(intersect(d_de, c(c_up,c_dn))) / length(union(d_de, c(c_up,c_dn)))

# ORA vs ORA* combined
ec <- length(intersect(e_de, c(c_up,c_dn))) / length(union(e_de, c(c_up,c_dn)))

# FCS vs ORA
cm <- length(intersect(c(c_up,c_dn), c(m_up,m_dn))) / length(union(c(c_up,c_dn), c(m_up,m_dn)))

m_up <- gsub("^","up ",m_up)
m_dn <- gsub("^","dn ",m_dn)
m_de <- union(m_up,m_dn)

c_up <- gsub("^","up ",c_up)
c_dn <- gsub("^","dn ",c_dn)
c_de <- union(c_up,c_dn)

f_up <- gsub("^","up ",f_up)
f_dn <- gsub("^","dn ",f_dn)
f_de <- union(f_up,f_dn)

# ORA vs ORA*
cf <- length(intersect(c_de, f_de )) / length(union(c_de, f_de))

# FCS vs ORA*
mf <- length(intersect(m_de, f_de )) / length(union(m_de, f_de))

dat <- c("FCS vs ORA"=cm,"ORA vs ORA*"=cf,"FCS vs ORA*"=mf, "ORA vs ORA comb"=dc, "ORA vs ORA* comb"=ec)

dat
##       FCS vs ORA      ORA vs ORA*      FCS vs ORA*  ORA vs ORA comb 
##        0.5877863        0.2017094        0.2970779        0.2688172 
## ORA vs ORA* comb 
##        0.1871921
barplot(dat,ylab="jaccard metric")

saveRDS(dat,file = "ex7dat.rds")

Session information

sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] rmdformats_1.0.3            beeswarm_0.4.0             
##  [3] eulerr_6.1.1                mitch_1.5.1                
##  [5] clusterProfiler_4.0.5       DESeq2_1.32.0              
##  [7] SummarizedExperiment_1.22.0 Biobase_2.52.0             
##  [9] MatrixGenerics_1.4.3        matrixStats_0.61.0         
## [11] GenomicRanges_1.44.0        GenomeInfoDb_1.28.4        
## [13] IRanges_2.26.0              S4Vectors_0.30.0           
## [15] BiocGenerics_0.38.0         getDEE2_1.2.0              
## [17] anytime_0.3.9               kableExtra_1.3.4           
## [19] XML_3.99-0.8                reutils_0.2.3              
## [21] vioplot_0.3.7               zoo_1.8-9                  
## [23] sm_2.2-5.7                  wordcloud_2.6              
## [25] RColorBrewer_1.1-2          rsvg_2.1.2                 
## [27] DiagrammeRsvg_0.1           DiagrammeR_1.0.6.1         
## [29] forcats_0.5.1               stringr_1.4.0              
## [31] dplyr_1.0.7                 purrr_0.3.4                
## [33] readr_2.0.2                 tidyr_1.1.4                
## [35] tibble_3.1.5                ggplot2_3.3.5              
## [37] tidyverse_1.3.1            
## 
## loaded via a namespace (and not attached):
##   [1] utf8_1.2.2             tidyselect_1.1.1       RSQLite_2.2.8         
##   [4] AnnotationDbi_1.54.1   htmlwidgets_1.5.4      grid_4.1.2            
##   [7] BiocParallel_1.26.2    scatterpie_0.1.7       munsell_0.5.0         
##  [10] withr_2.4.2            colorspace_2.0-2       GOSemSim_2.18.1       
##  [13] highr_0.9              knitr_1.36             rstudioapi_0.13       
##  [16] DOSE_3.18.3            GenomeInfoDbData_1.2.6 polyclip_1.10-0       
##  [19] bit64_4.0.5            farver_2.1.0           downloader_0.4        
##  [22] vctrs_0.3.8            treeio_1.16.2          generics_0.1.0        
##  [25] xfun_0.26              R6_2.5.1               graphlayouts_0.7.2    
##  [28] locfit_1.5-9.4         bitops_1.0-7           cachem_1.0.6          
##  [31] reshape_0.8.8          fgsea_1.18.0           gridGraphics_0.5-1    
##  [34] DelayedArray_0.18.0    assertthat_0.2.1       promises_1.2.0.1      
##  [37] scales_1.1.1           ggraph_2.0.5           enrichplot_1.12.3     
##  [40] gtable_0.3.0           tidygraph_1.2.0        rlang_0.4.11          
##  [43] genefilter_1.74.0      systemfonts_1.0.2      splines_4.1.2         
##  [46] lazyeval_0.2.2         htm2txt_2.1.1          broom_0.7.9           
##  [49] yaml_2.2.1             reshape2_1.4.4         modelr_0.1.8          
##  [52] backports_1.2.1        httpuv_1.6.3           qvalue_2.24.0         
##  [55] tools_4.1.2            bookdown_0.24          ggplotify_0.1.0       
##  [58] gplots_3.1.1           ellipsis_0.3.2         jquerylib_0.1.4       
##  [61] Rcpp_1.0.7             plyr_1.8.6             visNetwork_2.1.0      
##  [64] zlibbioc_1.38.0        RCurl_1.98-1.5         viridis_0.6.1         
##  [67] cowplot_1.1.1          haven_2.4.3            ggrepel_0.9.1         
##  [70] fs_1.5.0               magrittr_2.0.1         data.table_1.14.2     
##  [73] DO.db_2.9              reprex_2.0.1           hms_1.1.1             
##  [76] patchwork_1.1.1        mime_0.12              evaluate_0.14         
##  [79] xtable_1.8-4           readxl_1.3.1           gridExtra_2.3         
##  [82] compiler_4.1.2         KernSmooth_2.23-20     V8_3.6.0              
##  [85] crayon_1.4.1           shadowtext_0.0.9       htmltools_0.5.2       
##  [88] ggfun_0.0.4            later_1.3.0            tzdb_0.1.2            
##  [91] geneplotter_1.70.0     aplot_0.1.1            lubridate_1.8.0       
##  [94] DBI_1.1.1              tweenr_1.0.2           dbplyr_2.1.1          
##  [97] MASS_7.3-54            Matrix_1.3-4           cli_3.0.1             
## [100] igraph_1.2.6           pkgconfig_2.0.3        xml2_1.3.2            
## [103] ggtree_3.0.4           svglite_2.0.0          annotate_1.70.0       
## [106] bslib_0.3.1            webshot_0.5.2          XVector_0.32.0        
## [109] rvest_1.0.1            yulab.utils_0.0.4      digest_0.6.28         
## [112] Biostrings_2.60.2      polylabelr_0.2.0       rmarkdown_2.11        
## [115] cellranger_1.1.0       fastmatch_1.1-3        tidytree_0.3.6        
## [118] curl_4.3.2             gtools_3.9.2           shiny_1.7.1           
## [121] lifecycle_1.0.1        nlme_3.1-153           jsonlite_1.7.2        
## [124] echarts4r_0.4.2        viridisLite_0.4.0      fansi_0.5.0           
## [127] pillar_1.6.3           lattice_0.20-45        GGally_2.1.2          
## [130] KEGGREST_1.32.0        fastmap_1.1.0          httr_1.4.2            
## [133] survival_3.2-13        GO.db_3.13.0           glue_1.4.2            
## [136] png_0.1-7              bit_4.0.4              ggforce_0.3.3         
## [139] stringi_1.7.5          sass_0.4.0             blob_1.2.2            
## [142] caTools_1.18.2         memoise_2.0.0          ape_5.5