Source: https://github.com/markziemann/SurveyEnrichmentMethods
Here we are performing an analysis of some gene expression data to demonstrate the difference between ORA and FCS methods and to highlight the differences caused by improper background gene set use.
The dataset being used is SRP038101 and we are comparing the cells expressing a set7kd shRNA construct (case) compared to the scrambled construct (control).
Data are obtained from http://dee2.io/
suppressPackageStartupMessages({
library("getDEE2")
library("DESeq2")
library("clusterProfiler")
library("mitch")
library("kableExtra")
library("eulerr")
})
I’m using some RNA-seq data looking at the effect of Set7 knockdown on HMEC cells.
name="SRP096177"
mdat<-getDEE2Metadata("hsapiens")
samplesheet <- mdat[grep("SRP096177",mdat$SRP_accession),]
samplesheet<-samplesheet[order(samplesheet$SRR_accession),]
samplesheet$trt<-as.factor(c(1,1,1,0,0,0))
s1 <- samplesheet
s1 %>% kbl(caption = "sample sheet") %>% kable_paper("hover", full_width = F)
SRR_accession | QC_summary | SRX_accession | SRS_accession | SRP_accession | Sample_name | GEO_series | Library_name | trt | |
---|---|---|---|---|---|---|---|---|---|
379112 | SRR5150592 | PASS | SRX2468682 | SRS1901000 | SRP096177 | GSM2448982 | GSE93236 | 1 | |
379113 | SRR5150593 | PASS | SRX2468683 | SRS1901005 | SRP096177 | GSM2448983 | GSE93236 | 1 | |
379114 | SRR5150594 | PASS | SRX2468684 | SRS1901001 | SRP096177 | GSM2448984 | GSE93236 | 1 | |
379115 | SRR5150595 | PASS | SRX2468685 | SRS1901002 | SRP096177 | GSM2448985 | GSE93236 | 0 | |
379116 | SRR5150596 | PASS | SRX2468686 | SRS1901003 | SRP096177 | GSM2448986 | GSE93236 | 0 | |
379117 | SRR5150597 | PASS | SRX2468687 | SRS1901004 | SRP096177 | GSM2448987 | GSE93236 | 0 |
w<-getDEE2("hsapiens",samplesheet$SRR_accession,metadata=mdat,legacy = TRUE)
## For more information about DEE2 QC metrics, visit
## https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
x<-Tx2Gene(w)
x<-x$Tx2Gene
# save the genetable for later
gt<-w$GeneInfo[,1,drop=FALSE]
gt$accession<-rownames(gt)
# counts
x1<-x[,which(colnames(x) %in% samplesheet$SRR_accession)]
Here show the number of genes in the annotation set, and those detected above the detection threshold.
# filter out lowly expressed genes
x1<-x1[which(rowSums(x1)/ncol(x1)>=(10)),]
nrow(x)
## [1] 39297
nrow(x1)
## [1] 15607
Now multidimensional scaling (MDS) plot to show the correlation between the datasets. If the control and case datasets are clustered separately, then it is likely that there will be many differentially expressed genes with FDR<0.05.
plot(cmdscale(dist(t(x1))), xlab="Coordinate 1", ylab="Coordinate 2", pch=19, col=s1$trt, main="MDS")
Now run DESeq2 for control vs case.
y <- DESeqDataSetFromMatrix(countData = round(x1), colData = s1, design = ~ trt)
## converting counts to integer mode
y <- DESeq(y)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- results(y)
de<-as.data.frame(de[order(de$pvalue),])
rownames(de)<-sapply(strsplit(rownames(de),"\\."),"[[",1)
head(de) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
ENSG00000168542 | 1259.1001 | 2.7325696 | 0.0952226 | 28.69666 | 0 | 0 |
ENSG00000164692 | 11379.8760 | 2.2961488 | 0.0887089 | 25.88407 | 0 | 0 |
ENSG00000172531 | 2130.9201 | -1.7175060 | 0.0712043 | -24.12082 | 0 | 0 |
ENSG00000106484 | 4549.7360 | 1.2253274 | 0.0581660 | 21.06603 | 0 | 0 |
ENSG00000163017 | 300.4833 | 4.8785541 | 0.2741929 | 17.79242 | 0 | 0 |
ENSG00000130508 | 10277.9876 | -0.9442904 | 0.0530794 | -17.79015 | 0 | 0 |
Now let’s have a look at some of the charts showing differential expression. In particular, an MA plot and volcano plot.
maplot <- function(de,contrast_name) {
sig <-subset(de, padj < 0.05 )
up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
GENESUP <- length(up)
GENESDN <- length(dn)
DET=nrow(de)
SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down", DET, "detected")
ns <-subset(de, padj > 0.05 )
plot(log2(de$baseMean),de$log2FoldChange,
xlab="log2 basemean", ylab="log2 foldchange",
pch=19, cex=0.5, col="dark gray",
main=contrast_name, cex.main=0.7)
points(log2(sig$baseMean),sig$log2FoldChange,
pch=19, cex=0.5, col="red")
mtext(SUBHEADER,cex = 0.7)
}
make_volcano <- function(de,name) {
sig <- subset(de,padj<0.05)
N_SIG=nrow(sig)
N_UP=nrow(subset(sig,log2FoldChange>0))
N_DN=nrow(subset(sig,log2FoldChange<0))
DET=nrow(de)
HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn", DET, "detected")
plot(de$log2FoldChange,-log10(de$padj),cex=0.5,pch=19,col="darkgray",
main=name, xlab="log2 FC", ylab="-log10 pval", xlim=c(-6,6))
mtext(HEADER)
grid()
points(sig$log2FoldChange,-log10(sig$padj),cex=0.5,pch=19,col="red")
}
maplot(de,name)
make_volcano(de,name)
In order to perform gene set analysis, we need some gene sets.
if (! file.exists("ReactomePathways.gmt")) {
download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip",
destfile="ReactomePathways.gmt.zip")
unzip("ReactomePathways.gmt.zip")
}
genesets<-gmt_import("ReactomePathways.gmt")
Mitch uses rank-ANOVA statistics for enrichment detection.
m <- mitch_import(de,DEtype = "DEseq2", geneTable = gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 15607
## Note: no. genes in output = 14564
## Note: estimated proportion of input genes in output = 0.933
mres <- mitch_calc(m,genesets = genesets)
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
m_up <- subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist > 0)[,1]
m_dn <- subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist < 0)[,1]
message(paste("Number of up-regulated pathways:",length(m_up) ))
## Number of up-regulated pathways: 308
message(paste("Number of down-regulated pathways:",length(m_dn) ))
## Number of down-regulated pathways: 44
head(mres$enrichment_result,10) %>% kbl() %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
346 | Eukaryotic Translation Elongation | 93 | 0 | -0.5843493 | 0 |
796 | Peptide chain elongation | 88 | 0 | -0.5846275 | 0 |
1066 | Selenocysteine synthesis | 91 | 0 | -0.5615284 | 0 |
1015 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 100 | 0 | -0.5355088 | 0 |
629 | Metabolism of RNA | 661 | 0 | 0.2112927 | 0 |
1335 | Viral mRNA Translation | 88 | 0 | -0.5452426 | 0 |
348 | Eukaryotic Translation Termination | 92 | 0 | -0.5319553 | 0 |
668 | Mitotic Metaphase and Anaphase | 222 | 0 | 0.3387003 | 0 |
665 | Mitotic Anaphase | 221 | 0 | 0.3384478 | 0 |
387 | Formation of a pool of free 40S subunits | 100 | 0 | -0.4948438 | 0 |
m_up_nom <- subset(mres$enrichment_result,pANOVA<0.05 & s.dist > 0)[,1]
m_dn_nom <- subset(mres$enrichment_result,pANOVA<0.05 & s.dist < 0)[,1]
Clusterprofiler uses a hypergeometric test. Firstly I will conduct the analysis separately for up and down regulated genes and with the correct backgound (as intended by the developers).
genesets2 <- read.gmt("ReactomePathways.gmt")
de_up <- rownames(subset(de,log2FoldChange>0,padj<0.05))
de_up <- unique(gt[which(rownames(gt) %in% de_up),1])
de_dn <- rownames(subset(de,log2FoldChange<0,padj<0.05))
de_dn <- unique(gt[which(rownames(gt) %in% de_dn),1])
de_bg <- rownames(de)
de_bg <- unique(gt[which(rownames(gt) %in% de_bg),1])
c_up <- as.data.frame(enricher(gene = de_up, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="fdr"))
c_up <- rownames(subset(c_up, p.adjust < 0.05))
c_dn <- as.data.frame(enricher(gene = de_dn, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="fdr"))
c_dn <- rownames(subset(c_dn, p.adjust < 0.05))
c_up_nom <- as.data.frame(enricher(gene = de_up, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="none" ))
c_up_nom <- rownames(subset(c_up_nom, pvalue < 0.05))
c_dn_nom <- as.data.frame(enricher(gene = de_dn, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="none"))
c_dn_nom <- rownames(subset(c_dn_nom, pvalue < 0.05))
Now performing ORA with clusterprofiler with whole genome background list
wg_bg <- w$GeneInfo$GeneSymbol
f_up <- as.data.frame(enricher(gene = de_up, universe = wg_bg, maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="fdr"))
f_up <- rownames(subset(f_up, p.adjust < 0.05))
f_dn <- as.data.frame(enricher(gene = de_dn, universe = wg_bg, maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="fdr"))
f_dn <- rownames(subset(f_dn, p.adjust < 0.05))
f_up_nom <- as.data.frame(enricher(gene = de_up, universe = wg_bg, maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="none"))
f_up_nom <- rownames(subset(f_up_nom, pvalue < 0.05))
f_dn_nom <- as.data.frame(enricher(gene = de_dn, universe = wg_bg, maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="none"))
f_dn_nom <- rownames(subset(f_dn_nom, pvalue < 0.05))
f_de_nom <- union(f_up_nom,f_dn_nom)
Here the idea is to classify the pathways as 1 not significant, 2 nominally significant, or 3 FDR significant
c_up_df <- as.data.frame(enricher(gene = de_up, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2,
pAdjustMethod="fdr" ,qvalueCutoff=1,pvalueCutoff=1))
n_c_up_ns <- nrow( subset(c_up_df,pvalue>0.05) )
n_c_up_nom <- nrow( subset(c_up_df,pvalue<0.05 ) )
n_c_up_fdr <- nrow( subset(c_up_df,p.adjust<0.05) )
c_dn_df <- as.data.frame(enricher(gene = de_dn, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2,
pAdjustMethod="fdr" ,qvalueCutoff=1,pvalueCutoff=1))
n_c_dn_ns <- nrow( subset(c_dn_df,pvalue>0.05) )
n_c_dn_nom <- nrow( subset(c_dn_df,pvalue<0.05 ) )
n_c_dn_fdr <- nrow( subset(c_dn_df,p.adjust<0.05) )
n_m_up <- length(m_up)
n_m_dn <- length(m_dn)
n_m_up_nom <- length(m_up_nom)
n_m_dn_nom <- length(m_dn_nom)
par(mar=c(5,10,5,2))
ngenes <- c("ORA up fdr"=n_c_up_fdr,"ORA up nom"=n_c_up_nom,
"ORA dn fdr"=n_c_dn_fdr,"ORA dn nom"=n_c_dn_nom,
"FCS up fdr"=n_m_up,"FCS up nom"=n_m_up_nom,
"FCS dn fdr"=n_m_dn,"FCS dn nom"=n_m_dn_nom )
barplot(ngenes, horiz=TRUE,las=1)
c_up <- subset(c_up_df,p.adjust<0.05)$ID
c_dn <- subset(c_dn_df,p.adjust<0.05)$ID
c_up_nom <- subset(c_up_df,pvalue<0.05)$ID
c_dn_nom <- subset(c_dn_df,pvalue<0.05)$ID
n_c_fdr <- length(union(c_dn,c_up))
n_c_nom <- length(union(c_dn_nom,c_up_nom))
n_m_fdr <- length(subset(mres$enrichment_result,p.adjustANOVA<0.05 )[,1])
n_m_nom <- length(subset(mres$enrichment_result,pANOVA<0.05 )[,1])
par(mar=c(5,5,5,2))
ngenes <- c("ORA FDR<0.05"=n_c_fdr,"ORA p<0.05"=n_c_nom,"FCS FDR<0.05"=n_m_fdr,"FCS p<0.05"=n_m_nom)
barplot(ngenes,ylab="no. gene sets")
text((0:3*1.2)+0.7,ngenes-50,labels=ngenes,cex=1.1)
The Venn (or Euler to be more correct) diagram is useful to visualise the overlaps between sets.
par(cex.main=0.5)
par(mar=c(2,2,2,2))
v1 <- list("FCS up"=m_up, "FCS dn"=m_dn,
"ORA up"=c_up,"ORA dn"=c_dn)
plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS compared to ORA")
v0 <- list("FDR up"=m_up, "FDR dn"=m_dn,
"Nom up"=m_up_nom,"Nom dn"=m_dn_nom)
plot(euler(v0),quantities = TRUE, edges = "gray", main="Effect of FDR correction on FCS results")
v0 <- list("FDR up"=c_up, "FDR dn"=c_dn,
"Nom up"=c_up_nom,"Nom dn"=c_dn_nom)
plot(euler(v0),quantities = TRUE, edges = "gray", main="Effect of FDR correction on ORA results")
ora_nom <- union(c_up_nom,c_dn_nom)
ora_fdr <- union(c_up,c_dn)
fcs_nom <- union(m_up_nom,m_dn_nom)
fcs_fdr <- union(m_up,m_dn)
v3 <- list("ORA nom"=ora_nom, "ORA FDR"=ora_fdr,
"FCS nom"=fcs_nom,"FCS FDR"=fcs_fdr)
plot(euler(v3),quantities = TRUE, edges = "gray", main="Effect of FDR correction")
v2 <- list("ORA up"=c_up,"ORA dn"=c_dn,
"ORA* up"=f_up,"ORA* dn"=f_dn )
plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")
# FCS vs ORA
cm <- length(intersect(c(c_up,c_dn), c(m_up,m_dn))) / length(union(c(c_up,c_dn), c(m_up,m_dn)))
#FCS fdr vs nom
fcs_fdr_nom <- length(intersect(c(fcs_nom), c(fcs_fdr))) / length(union(c(fcs_nom), c(fcs_fdr)))
#ORA fdr vs nom
ora_fdr_nom <- length(intersect(c(ora_nom), c(ora_fdr))) / length(union(c(ora_nom), c(ora_fdr)))
m_up <- gsub("^","up ",m_up)
m_dn <- gsub("^","dn ",m_dn)
m_de <- union(m_up,m_dn)
c_up <- gsub("^","up ",c_up)
c_dn <- gsub("^","dn ",c_dn)
c_de <- union(c_up,c_dn)
f_up <- gsub("^","up ",f_up)
f_dn <- gsub("^","dn ",f_dn)
f_de <- union(f_up,f_dn)
f_up_nom <- gsub("^","up ",f_up_nom)
f_dn_nom <- gsub("^","dn ",f_dn_nom)
f_de_nom <- union(f_up,f_dn_nom)
# ORA vs ORA*
cf <- length(intersect(c_de, f_de )) / length(union(c_de, f_de))
# ORA vs ORA*nom
cfn <- length(intersect(c_de, f_de_nom )) / length(union(c_de, f_de_nom))
dat <- c( "FCS vs ORA"=cm,
"FCS: FDR vs nominal"=fcs_fdr_nom,
"ORA: FDR vs nominal"= ora_fdr_nom,
"ORA vs ORA*"=cf,
"ORA vs ORA*nom"=cfn)
dat
## FCS vs ORA FCS: FDR vs nominal ORA: FDR vs nominal ORA vs ORA*
## 0.6292135 0.7652174 0.5547445 0.4209524
## ORA vs ORA*nom
## 0.3745763
saveRDS(dat,file = "ex4dat.rds")
par(mar=c(5,10,3,1))
barplot(rev(dat),xlab="Jaccard index",horiz = TRUE, las =1, xlim=c(0,.8) , main=name)
text( x=rev(dat)-0.05 , y= 1:length(rev(dat))*1.2-0.5, labels = signif(rev(dat),2))
sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
##
## locale:
## [1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
## [5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
## [7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] beeswarm_0.4.0 eulerr_6.1.1
## [3] kableExtra_1.3.4 mitch_1.4.1
## [5] clusterProfiler_4.0.5 DESeq2_1.32.0
## [7] SummarizedExperiment_1.22.0 Biobase_2.52.0
## [9] MatrixGenerics_1.4.3 matrixStats_0.61.0
## [11] GenomicRanges_1.44.0 GenomeInfoDb_1.28.4
## [13] IRanges_2.26.0 S4Vectors_0.30.2
## [15] BiocGenerics_0.38.0 getDEE2_1.2.0
##
## loaded via a namespace (and not attached):
## [1] shadowtext_0.1.1 fastmatch_1.1-3 systemfonts_1.0.3
## [4] plyr_1.8.6 igraph_1.2.11 lazyeval_0.2.2
## [7] polylabelr_0.2.0 splines_4.1.2 BiocParallel_1.26.2
## [10] ggplot2_3.3.5 digest_0.6.29 yulab.utils_0.0.4
## [13] htmltools_0.5.2 GOSemSim_2.18.1 viridis_0.6.2
## [16] GO.db_3.13.0 fansi_1.0.0 magrittr_2.0.1
## [19] memoise_2.0.1 Biostrings_2.60.2 annotate_1.70.0
## [22] graphlayouts_0.8.0 svglite_2.0.0 enrichplot_1.12.3
## [25] colorspace_2.0-2 rvest_1.0.2 blob_1.2.2
## [28] ggrepel_0.9.1 xfun_0.29 dplyr_1.0.7
## [31] crayon_1.4.2 RCurl_1.98-1.5 jsonlite_1.7.2
## [34] scatterpie_0.1.7 genefilter_1.74.1 survival_3.2-13
## [37] ape_5.6-1 glue_1.6.0 polyclip_1.10-0
## [40] gtable_0.3.0 zlibbioc_1.38.0 XVector_0.32.0
## [43] webshot_0.5.2 htm2txt_2.1.1 DelayedArray_0.18.0
## [46] scales_1.1.1 DOSE_3.18.3 DBI_1.1.2
## [49] GGally_2.1.2 Rcpp_1.0.7 viridisLite_0.4.0
## [52] xtable_1.8-4 gridGraphics_0.5-1 tidytree_0.3.7
## [55] bit_4.0.4 htmlwidgets_1.5.4 httr_1.4.2
## [58] fgsea_1.18.0 gplots_3.1.1 RColorBrewer_1.1-2
## [61] ellipsis_0.3.2 pkgconfig_2.0.3 reshape_0.8.8
## [64] XML_3.99-0.8 farver_2.1.0 sass_0.4.0
## [67] locfit_1.5-9.4 utf8_1.2.2 ggplotify_0.1.0
## [70] tidyselect_1.1.1 rlang_0.4.12 reshape2_1.4.4
## [73] later_1.3.0 AnnotationDbi_1.54.1 munsell_0.5.0
## [76] tools_4.1.2 cachem_1.0.6 downloader_0.4
## [79] generics_0.1.1 RSQLite_2.2.9 evaluate_0.14
## [82] stringr_1.4.0 fastmap_1.1.0 yaml_2.2.1
## [85] ggtree_3.0.4 knitr_1.37 bit64_4.0.5
## [88] tidygraph_1.2.0 caTools_1.18.2 purrr_0.3.4
## [91] KEGGREST_1.32.0 ggraph_2.0.5 nlme_3.1-153
## [94] mime_0.12 aplot_0.1.2 xml2_1.3.3
## [97] DO.db_2.9 rstudioapi_0.13 compiler_4.1.2
## [100] png_0.1-7 treeio_1.16.2 tibble_3.1.6
## [103] tweenr_1.0.2 geneplotter_1.70.0 bslib_0.3.1
## [106] stringi_1.7.6 highr_0.9 lattice_0.20-45
## [109] Matrix_1.4-0 vctrs_0.3.8 pillar_1.6.4
## [112] lifecycle_1.0.1 jquerylib_0.1.4 data.table_1.14.2
## [115] cowplot_1.1.1 bitops_1.0-7 httpuv_1.6.5
## [118] patchwork_1.1.1 qvalue_2.24.0 R6_2.5.1
## [121] promises_1.2.0.1 KernSmooth_2.23-20 echarts4r_0.4.3
## [124] gridExtra_2.3 gtools_3.9.2 MASS_7.3-54
## [127] assertthat_0.2.1 GenomeInfoDbData_1.2.6 grid_4.1.2
## [130] ggfun_0.0.4 tidyr_1.1.4 rmarkdown_2.11
## [133] ggforce_0.3.3 shiny_1.7.1