Source: https://github.com/markziemann/SurveyEnrichmentMethods

Intro

Here we are performing an analysis of some gene expression data to demonstrate the difference between ORA and FCS methods and to highlight the differences caused by improper background gene set use.

The dataset being used is SRP247621 and we are comparing the fibroblast cells from LHON patients (case) versus healthy controls.

Data are obtained from http://dee2.io/

suppressPackageStartupMessages({
library("getDEE2") 
library("DESeq2")
library("clusterProfiler")
library("mitch")
library("kableExtra")
library("eulerr")
})

Get expression data

I’m using some RNA-seq data looking at the difference in fibroblast gene expression between control and LHON patients.

name="SRP247621"
mdat<-getDEE2Metadata("hsapiens")
samplesheet <- mdat[grep("SRP247621",mdat$SRP_accession),]
samplesheet<-samplesheet[order(samplesheet$SRR_accession),]
samplesheet$trt<-as.factor(c(1,1,1,2,2,2,0,0,0)) # exclude carriers for simplicity
samplesheet <- samplesheet[which(samplesheet$trt!=2),]
s1 <- samplesheet

s1 %>% kbl(caption = "sample sheet") %>% kable_paper("hover", full_width = F)
sample sheet
SRR_accession QC_summary SRX_accession SRS_accession SRP_accession Sample_name GEO_series Library_name trt
204421 SRR11040359 PASS SRX7692166 SRS6118270 SRP247621 GSM4300731 GSE144914 1
204422 SRR11040360 WARN(3,4,6) SRX7692167 SRS6118272 SRP247621 GSM4300732 GSE144914 1
204423 SRR11040361 PASS SRX7692168 SRS6118271 SRP247621 GSM4300733 GSE144914 1
204427 SRR11040365 PASS SRX7692172 SRS6118276 SRP247621 GSM4300737 GSE144914 0
204428 SRR11040366 PASS SRX7692173 SRS6118277 SRP247621 GSM4300738 GSE144914 0
204429 SRR11040367 PASS SRX7692174 SRS6118278 SRP247621 GSM4300739 GSE144914 0
w<-getDEE2("hsapiens",samplesheet$SRR_accession,metadata=mdat,legacy = TRUE)
## For more information about DEE2 QC metrics, visit
##     https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
x<-Tx2Gene(w)
x<-x$Tx2Gene

# save the genetable for later
gt<-w$GeneInfo[,1,drop=FALSE]
gt$accession<-rownames(gt)

# counts 
x1<-x[,which(colnames(x) %in% samplesheet$SRR_accession)]

Here show the number of genes in the annotation set, and those detected above the detection threshold.

# filter out lowly expressed genes
x1<-x1[which(rowSums(x1)/ncol(x1)>=(10)),]
nrow(x)
## [1] 39297
nrow(x1)
## [1] 14288

Now multidimensional scaling (MDS) plot to show the correlation between the datasets. If the control and case datasets are clustered separately, then it is likely that there will be many differentially expressed genes with FDR<0.05.

plot(cmdscale(dist(t(x1))), xlab="Coordinate 1", ylab="Coordinate 2", pch=19, col=s1$trt, main="MDS")

Differential expression

Now run DESeq2 for control vs case.

y <- DESeqDataSetFromMatrix(countData = round(x1), colData = s1, design = ~ trt)
## converting counts to integer mode
## factor levels were dropped which had no samples
y <- DESeq(y)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- results(y)
de<-as.data.frame(de[order(de$pvalue),])
rownames(de)<-sapply(strsplit(rownames(de),"\\."),"[[",1)
head(de) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
ENSG00000233948 156.47249 -2.955957 0.3146608 -9.394106 0 0e+00
ENSG00000103326 241.05789 1.543670 0.2180326 7.079999 0 0e+00
ENSG00000268861 72.30512 -6.854266 1.0078846 -6.800645 0 0e+00
ENSG00000175221 419.46036 1.246384 0.1836166 6.787967 0 0e+00
ENSG00000273542 17.71562 21.242888 3.1581883 6.726289 0 0e+00
ENSG00000168140 1121.18373 1.113196 0.1771604 6.283553 0 7e-07

Now let’s have a look at some of the charts showing differential expression. In particular, an MA plot and volcano plot.

maplot <- function(de,contrast_name) {
  sig <-subset(de, padj < 0.05 )
  up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
  dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
  GENESUP <- length(up)
  GENESDN <- length(dn)
  DET=nrow(de)
  SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down", DET, "detected")
  ns <-subset(de, padj > 0.05 )
  plot(log2(de$baseMean),de$log2FoldChange, 
       xlab="log2 basemean", ylab="log2 foldchange",
       pch=19, cex=0.5, col="dark gray",
       main=contrast_name, cex.main=0.7)
  points(log2(sig$baseMean),sig$log2FoldChange,
         pch=19, cex=0.5, col="red")
  mtext(SUBHEADER,cex = 0.7)
}

make_volcano <- function(de,name) {
    sig <- subset(de,padj<0.05)
    N_SIG=nrow(sig)
    N_UP=nrow(subset(sig,log2FoldChange>0))
    N_DN=nrow(subset(sig,log2FoldChange<0))
    DET=nrow(de)
    HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn", DET, "detected")
    plot(de$log2FoldChange,-log10(de$padj),cex=0.5,pch=19,col="darkgray",
        main=name, xlab="log2 FC", ylab="-log10 pval", xlim=c(-6,6))
    mtext(HEADER)
    grid()
    points(sig$log2FoldChange,-log10(sig$padj),cex=0.5,pch=19,col="red")
}

maplot(de,name)

make_volcano(de,name)

Gene sets from Reactome

In order to perform gene set analysis, we need some gene sets.

if (! file.exists("ReactomePathways.gmt")) {
  download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip", 
    destfile="ReactomePathways.gmt.zip")
  unzip("ReactomePathways.gmt.zip")
}
genesets<-gmt_import("ReactomePathways.gmt")

FCS with Mitch

Mitch uses rank-ANOVA statistics for enrichment detection.

m <- mitch_import(de,DEtype = "DEseq2", geneTable = gt)
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 14288
## Note: no. genes in output = 13355
## Note: estimated proportion of input genes in output = 0.935
mres <- mitch_calc(m,genesets = genesets)
## Note: When prioritising by significance (ie: small
##             p-values), large effect sizes might be missed.
m_up <- subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist > 0)[,1]
m_dn <- subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist < 0)[,1]
message(paste("Number of up-regulated pathways:",length(m_up) ))
## Number of up-regulated pathways: 69
message(paste("Number of down-regulated pathways:",length(m_dn) ))
## Number of down-regulated pathways: 156
head(mres$enrichment_result,10)  %>% kbl() %>% kable_paper("hover", full_width = F)
set setSize pANOVA s.dist p.adjustANOVA
77 Asparagine N-linked glycosylation 251 0 -0.2409732 1.0e-07
242 Defective CFTR causes cystic fibrosis 57 0 -0.4646418 9.0e-07
315 ER to Golgi Anterograde Transport 124 0 -0.3078072 1.4e-06
1305 Vif-mediated degradation of APOBEC3G 52 0 -0.4683385 1.4e-06
2 ABC transporter disorders 65 0 -0.4189732 1.4e-06
696 Negative regulation of NOTCH4 signaling 53 0 -0.4583167 1.8e-06
932 Regulation of Apoptosis 51 0 -0.4636878 2.0e-06
1312 Vpu mediated degradation of CD4 49 0 -0.4687681 2.3e-06
478 Hh mutants abrogate ligand secretion 54 0 -0.4425343 2.8e-06
1293 Ubiquitin-dependent degradation of Cyclin D 50 0 -0.4565351 3.2e-06
m_up_nom <- subset(mres$enrichment_result,pANOVA<0.05 & s.dist > 0)[,1]
m_dn_nom <- subset(mres$enrichment_result,pANOVA<0.05 & s.dist < 0)[,1]

ORA with clusterprofiler

Clusterprofiler uses a hypergeometric test. Firstly I will conduct the analysis separately for up and down regulated genes and with the correct backgound (as intended by the developers).

genesets2 <- read.gmt("ReactomePathways.gmt")

de_up <- rownames(subset(de,log2FoldChange>0,padj<0.05))
de_up <- unique(gt[which(rownames(gt) %in% de_up),1])

de_dn <- rownames(subset(de,log2FoldChange<0,padj<0.05))
de_dn <- unique(gt[which(rownames(gt) %in% de_dn),1])

de_bg <- rownames(de)
de_bg <- unique(gt[which(rownames(gt) %in% de_bg),1])

c_up <- as.data.frame(enricher(gene = de_up, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="fdr"))
c_up <- rownames(subset(c_up, p.adjust < 0.05))

c_dn <- as.data.frame(enricher(gene = de_dn, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="fdr"))
c_dn <- rownames(subset(c_dn, p.adjust < 0.05))

c_up_nom <- as.data.frame(enricher(gene = de_up, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="none" ))
c_up_nom <- rownames(subset(c_up_nom, pvalue < 0.05))

c_dn_nom <- as.data.frame(enricher(gene = de_dn, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="none"))
c_dn_nom <- rownames(subset(c_dn_nom, pvalue < 0.05))

Now performing ORA with clusterprofiler with whole genome background list

wg_bg <- w$GeneInfo$GeneSymbol

f_up <- as.data.frame(enricher(gene = de_up, universe = wg_bg,  maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="fdr"))
f_up <- rownames(subset(f_up, p.adjust < 0.05))

f_dn <- as.data.frame(enricher(gene = de_dn, universe = wg_bg, maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="fdr"))
f_dn <- rownames(subset(f_dn, p.adjust < 0.05))

f_up_nom <- as.data.frame(enricher(gene = de_up, universe = wg_bg,  maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="none"))
f_up_nom <- rownames(subset(f_up_nom, pvalue < 0.05))

f_dn_nom <- as.data.frame(enricher(gene = de_dn, universe = wg_bg, maxGSSize = 5000, TERM2GENE = genesets2, pAdjustMethod="none"))
f_dn_nom <- rownames(subset(f_dn_nom, pvalue < 0.05))

f_de_nom <- union(f_up_nom,f_dn_nom)

Bar chart of significance

Here the idea is to classify the pathways as 1 not significant, 2 nominally significant, or 3 FDR significant

c_up_df <- as.data.frame(enricher(gene = de_up, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2,
  pAdjustMethod="fdr" ,qvalueCutoff=1,pvalueCutoff=1))

n_c_up_ns <- nrow( subset(c_up_df,pvalue>0.05) )
n_c_up_nom <- nrow( subset(c_up_df,pvalue<0.05 ) )
n_c_up_fdr <- nrow( subset(c_up_df,p.adjust<0.05) )

c_dn_df <- as.data.frame(enricher(gene = de_dn, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2,
  pAdjustMethod="fdr" ,qvalueCutoff=1,pvalueCutoff=1))

n_c_dn_ns <- nrow( subset(c_dn_df,pvalue>0.05) )
n_c_dn_nom <- nrow( subset(c_dn_df,pvalue<0.05 ) )
n_c_dn_fdr <- nrow( subset(c_dn_df,p.adjust<0.05) )

n_m_up <- length(m_up)
n_m_dn <- length(m_dn)

n_m_up_nom <- length(m_up_nom)
n_m_dn_nom <- length(m_dn_nom)

par(mar=c(5,10,5,2))

ngenes <- c("ORA up fdr"=n_c_up_fdr,"ORA up nom"=n_c_up_nom,
  "ORA dn fdr"=n_c_dn_fdr,"ORA dn nom"=n_c_dn_nom,
  "FCS up fdr"=n_m_up,"FCS up nom"=n_m_up_nom,
  "FCS dn fdr"=n_m_dn,"FCS dn nom"=n_m_dn_nom )

barplot(ngenes, horiz=TRUE,las=1)

c_up <- subset(c_up_df,p.adjust<0.05)$ID
c_dn <- subset(c_dn_df,p.adjust<0.05)$ID
c_up_nom <- subset(c_up_df,pvalue<0.05)$ID
c_dn_nom <- subset(c_dn_df,pvalue<0.05)$ID

n_c_fdr <- length(union(c_dn,c_up))
n_c_nom <- length(union(c_dn_nom,c_up_nom))
n_m_fdr <- length(subset(mres$enrichment_result,p.adjustANOVA<0.05 )[,1])
n_m_nom <- length(subset(mres$enrichment_result,pANOVA<0.05 )[,1])

par(mar=c(5,5,5,2))

ngenes <- c("ORA FDR<0.05"=n_c_fdr,"ORA p<0.05"=n_c_nom,"FCS FDR<0.05"=n_m_fdr,"FCS p<0.05"=n_m_nom)
barplot(ngenes,ylab="no. gene sets")
text((0:3*1.2)+0.7,ngenes-50,labels=ngenes,cex=1.1)

Venn diagram comparison

Here I will omit combined analysis and include nominal p-value sets.

par(cex.main=0.5)

par(mar=c(2,2,2,2))

v1 <- list("FCS up"=m_up, "FCS dn"=m_dn,
           "ORA up"=c_up,"ORA dn"=c_dn)

plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS compared to ORA")

v0 <- list("FDR up"=m_up, "FDR dn"=m_dn,
           "Nom up"=m_up_nom,"Nom dn"=m_dn_nom)

plot(euler(v0),quantities = TRUE, edges = "gray", main="Effect of FDR correction on FCS results")

v0 <- list("FDR up"=c_up, "FDR dn"=c_dn,
           "Nom up"=c_up_nom,"Nom dn"=c_dn_nom)

plot(euler(v0),quantities = TRUE, edges = "gray", main="Effect of FDR correction on ORA results")

ora_nom <- union(c_up_nom,c_dn_nom)
ora_fdr <- union(c_up,c_dn)
fcs_nom <- union(m_up_nom,m_dn_nom)
fcs_fdr <- union(m_up,m_dn)

v3 <- list("ORA nom"=ora_nom, "ORA FDR"=ora_fdr,
           "FCS nom"=fcs_nom,"FCS FDR"=fcs_fdr)

plot(euler(v3),quantities = TRUE, edges = "gray", main="Effect of FDR correction")

v2 <- list("ORA up"=c_up,"ORA dn"=c_dn,
           "ORA* up"=f_up,"ORA* dn"=f_dn )

plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")

Jaccard calculation

# FCS vs ORA
cm <- length(intersect(c(c_up,c_dn), c(m_up,m_dn))) / length(union(c(c_up,c_dn), c(m_up,m_dn)))

#FCS fdr vs nom
fcs_fdr_nom <- length(intersect(c(fcs_nom), c(fcs_fdr))) / length(union(c(fcs_nom), c(fcs_fdr)))

#ORA fdr vs nom
ora_fdr_nom <- length(intersect(c(ora_nom), c(ora_fdr))) / length(union(c(ora_nom), c(ora_fdr)))

m_up <- gsub("^","up ",m_up)
m_dn <- gsub("^","dn ",m_dn)
m_de <- union(m_up,m_dn)

c_up <- gsub("^","up ",c_up)
c_dn <- gsub("^","dn ",c_dn)
c_de <- union(c_up,c_dn)

f_up <- gsub("^","up ",f_up)
f_dn <- gsub("^","dn ",f_dn)
f_de <- union(f_up,f_dn)

f_up_nom <- gsub("^","up ",f_up_nom)
f_dn_nom <- gsub("^","dn ",f_dn_nom)
f_de_nom <- union(f_up,f_dn_nom)

# ORA vs ORA*
cf <- length(intersect(c_de, f_de )) / length(union(c_de, f_de))

# ORA vs ORA*nom
cfn <- length(intersect(c_de, f_de_nom )) / length(union(c_de, f_de_nom))

dat <- c(  "FCS vs ORA"=cm,
  "FCS: FDR vs nominal"=fcs_fdr_nom,
  "ORA: FDR vs nominal"= ora_fdr_nom,
  "ORA vs ORA*"=cf,
  "ORA vs ORA*nom"=cfn)

dat
##          FCS vs ORA FCS: FDR vs nominal ORA: FDR vs nominal         ORA vs ORA* 
##           0.4826087           0.5890052           0.3085106           0.1779242 
##      ORA vs ORA*nom 
##           0.1508380
saveRDS(dat,file = "ex5dat.rds")

par(mar=c(5,10,3,1))
barplot(rev(dat),xlab="Jaccard index",horiz = TRUE, las =1, xlim=c(0,.8) , main=name)
text( x=rev(dat)-0.05 , y= 1:length(rev(dat))*1.2-0.5, labels = signif(rev(dat),2))

Session information

sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
## 
## locale:
##  [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
##  [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
##  [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] beeswarm_0.4.0              eulerr_6.1.1               
##  [3] kableExtra_1.3.4            mitch_1.4.1                
##  [5] clusterProfiler_4.0.5       DESeq2_1.32.0              
##  [7] SummarizedExperiment_1.22.0 Biobase_2.52.0             
##  [9] MatrixGenerics_1.4.3        matrixStats_0.61.0         
## [11] GenomicRanges_1.44.0        GenomeInfoDb_1.28.4        
## [13] IRanges_2.26.0              S4Vectors_0.30.2           
## [15] BiocGenerics_0.38.0         getDEE2_1.2.0              
## 
## loaded via a namespace (and not attached):
##   [1] shadowtext_0.1.1       fastmatch_1.1-3        systemfonts_1.0.3     
##   [4] plyr_1.8.6             igraph_1.2.11          lazyeval_0.2.2        
##   [7] polylabelr_0.2.0       splines_4.1.2          BiocParallel_1.26.2   
##  [10] ggplot2_3.3.5          digest_0.6.29          yulab.utils_0.0.4     
##  [13] htmltools_0.5.2        GOSemSim_2.18.1        viridis_0.6.2         
##  [16] GO.db_3.13.0           fansi_1.0.0            magrittr_2.0.1        
##  [19] memoise_2.0.1          Biostrings_2.60.2      annotate_1.70.0       
##  [22] graphlayouts_0.8.0     svglite_2.0.0          enrichplot_1.12.3     
##  [25] colorspace_2.0-2       rvest_1.0.2            blob_1.2.2            
##  [28] ggrepel_0.9.1          xfun_0.29              dplyr_1.0.7           
##  [31] crayon_1.4.2           RCurl_1.98-1.5         jsonlite_1.7.2        
##  [34] scatterpie_0.1.7       genefilter_1.74.1      survival_3.2-13       
##  [37] ape_5.6-1              glue_1.6.0             polyclip_1.10-0       
##  [40] gtable_0.3.0           zlibbioc_1.38.0        XVector_0.32.0        
##  [43] webshot_0.5.2          htm2txt_2.1.1          DelayedArray_0.18.0   
##  [46] scales_1.1.1           DOSE_3.18.3            DBI_1.1.2             
##  [49] GGally_2.1.2           Rcpp_1.0.7             viridisLite_0.4.0     
##  [52] xtable_1.8-4           gridGraphics_0.5-1     tidytree_0.3.7        
##  [55] bit_4.0.4              htmlwidgets_1.5.4      httr_1.4.2            
##  [58] fgsea_1.18.0           gplots_3.1.1           RColorBrewer_1.1-2    
##  [61] ellipsis_0.3.2         pkgconfig_2.0.3        reshape_0.8.8         
##  [64] XML_3.99-0.8           farver_2.1.0           sass_0.4.0            
##  [67] locfit_1.5-9.4         utf8_1.2.2             ggplotify_0.1.0       
##  [70] tidyselect_1.1.1       rlang_0.4.12           reshape2_1.4.4        
##  [73] later_1.3.0            AnnotationDbi_1.54.1   munsell_0.5.0         
##  [76] tools_4.1.2            cachem_1.0.6           downloader_0.4        
##  [79] generics_0.1.1         RSQLite_2.2.9          evaluate_0.14         
##  [82] stringr_1.4.0          fastmap_1.1.0          yaml_2.2.1            
##  [85] ggtree_3.0.4           knitr_1.37             bit64_4.0.5           
##  [88] tidygraph_1.2.0        caTools_1.18.2         purrr_0.3.4           
##  [91] KEGGREST_1.32.0        ggraph_2.0.5           nlme_3.1-153          
##  [94] mime_0.12              aplot_0.1.2            xml2_1.3.3            
##  [97] DO.db_2.9              rstudioapi_0.13        compiler_4.1.2        
## [100] png_0.1-7              treeio_1.16.2          tibble_3.1.6          
## [103] tweenr_1.0.2           geneplotter_1.70.0     bslib_0.3.1           
## [106] stringi_1.7.6          highr_0.9              lattice_0.20-45       
## [109] Matrix_1.4-0           vctrs_0.3.8            pillar_1.6.4          
## [112] lifecycle_1.0.1        jquerylib_0.1.4        data.table_1.14.2     
## [115] cowplot_1.1.1          bitops_1.0-7           httpuv_1.6.5          
## [118] patchwork_1.1.1        qvalue_2.24.0          R6_2.5.1              
## [121] promises_1.2.0.1       KernSmooth_2.23-20     echarts4r_0.4.3       
## [124] gridExtra_2.3          gtools_3.9.2           MASS_7.3-54           
## [127] assertthat_0.2.1       GenomeInfoDbData_1.2.6 grid_4.1.2            
## [130] ggfun_0.0.4            tidyr_1.1.4            rmarkdown_2.11        
## [133] ggforce_0.3.3          shiny_1.7.1