Source: https://github.com/markziemann/SurveyEnrichmentMethods

Intro

Here we are performing an analysis of some gene expression data to demonstrate the difference between ORA and FCS methods and to highlight the differences caused by improper background gene set use.

The dataset being used is SRP247621 and we are comparing the fibroblast cells from LHON patients (case) versus healthy controls.

Data are obtained from http://dee2.io/

suppressPackageStartupMessages({
library("getDEE2") 
library("DESeq2")
library("clusterProfiler")
library("mitch")
library("kableExtra")
library("eulerr")
})

Get expression data

I’m using some RNA-seq data looking at the difference in fibroblast gene expression between control and LHON patients.

name="SRP247621"
mdat<-getDEE2Metadata("hsapiens")
samplesheet <- mdat[grep("SRP247621",mdat$SRP_accession),]
samplesheet<-samplesheet[order(samplesheet$SRR_accession),]
samplesheet$trt<-as.factor(c(1,1,1,2,2,2,0,0,0)) # exclude carriers for simplicity
samplesheet <- samplesheet[which(samplesheet$trt!=2),]
s1 <- samplesheet

w<-getDEE2("hsapiens",samplesheet$SRR_accession,metadata=mdat,legacy = TRUE)
## For more information about DEE2 QC metrics, visit
##     https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
x<-Tx2Gene(w)
x<-x$Tx2Gene

# save the genetable for later
gt<-w$GeneInfo[,1,drop=FALSE]
gt$accession<-rownames(gt)

# counts 
x1<-x[,which(colnames(x) %in% samplesheet$SRR_accession)]

Here show the number of genes in the annotation set, and those detected above the detection threshold.

# filter out lowly expressed genes
x1<-x1[which(rowSums(x1)/ncol(x1)>=(10)),]
nrow(x)
## [1] 39297
nrow(x1)
## [1] 14288

Now multidimensional scaling (MDS) plot to show the correlation between the datasets. If the control and case datasets are clustered separately, then it is likely that there will be many differentially expressed genes with FDR<0.05.

plot(cmdscale(dist(t(x1))), xlab="Coordinate 1", ylab="Coordinate 2", pch=19, col=s1$trt, main="MDS")

Differential expression

Now run DESeq2 for control vs case.

y <- DESeqDataSetFromMatrix(countData = round(x1), colData = s1, design = ~ trt)
## converting counts to integer mode
## factor levels were dropped which had no samples
y <- DESeq(y)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- results(y)
de<-as.data.frame(de[order(de$pvalue),])
rownames(de)<-sapply(strsplit(rownames(de),"\\."),"[[",1)
head(de) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean log2FoldChange lfcSE stat pvalue padj
ENSG00000233948 156.47249 -2.955957 0.3146608 -9.394106 0 0e+00
ENSG00000103326 241.05789 1.543670 0.2180326 7.079999 0 0e+00
ENSG00000268861 72.30512 -6.854266 1.0078846 -6.800645 0 0e+00
ENSG00000175221 419.46036 1.246384 0.1836166 6.787967 0 0e+00
ENSG00000273542 17.71562 21.242888 3.1581883 6.726289 0 0e+00
ENSG00000168140 1121.18373 1.113196 0.1771604 6.283553 0 7e-07

Now let’s have a look at some of the charts showing differential expression. In particular, an MA plot and volcano plot.

maplot <- function(de,contrast_name) {
  sig <-subset(de, padj < 0.05 )
  up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
  dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
  GENESUP <- length(up)
  GENESDN <- length(dn)
  DET=nrow(de)
  SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down", DET, "detected")
  ns <-subset(de, padj > 0.05 )
  plot(log2(de$baseMean),de$log2FoldChange, 
       xlab="log2 basemean", ylab="log2 foldchange",
       pch=19, cex=0.5, col="dark gray",
       main=contrast_name, cex.main=0.7)
  points(log2(sig$baseMean),sig$log2FoldChange,
         pch=19, cex=0.5, col="red")
  mtext(SUBHEADER,cex = 0.7)
}

make_volcano <- function(de,name) {
    sig <- subset(de,padj<0.05)
    N_SIG=nrow(sig)
    N_UP=nrow(subset(sig,log2FoldChange>0))
    N_DN=nrow(subset(sig,log2FoldChange<0))
    DET=nrow(de)
    HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn", DET, "detected")
    plot(de$log2FoldChange,-log10(de$padj),cex=0.5,pch=19,col="darkgray",
        main=name, xlab="log2 FC", ylab="-log10 pval", xlim=c(-6,6))
    mtext(HEADER)
    grid()
    points(sig$log2FoldChange,-log10(sig$padj),cex=0.5,pch=19,col="red")
}

maplot(de,name)

make_volcano(de,name)

Gene sets from Reactome

In order to perform gene set analysis, we need some gene sets.

if (! file.exists("ReactomePathways.gmt")) {
  download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip", 
    destfile="ReactomePathways.gmt.zip")
  unzip("ReactomePathways.gmt.zip")
}
genesets<-gmt_import("ReactomePathways.gmt")

FCS with Mitch

Mitch uses rank-ANOVA statistics for enrichment detection.

m <- mitch_import(de,DEtype = "DEseq2", geneTable = gt)
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 14288
## Note: no. genes in output = 13355
## Note: estimated proportion of input genes in output = 0.935
mres <- mitch_calc(m,genesets = genesets)
## Note: When prioritising by significance (ie: small
##             p-values), large effect sizes might be missed.
m_up <- subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist > 0)[,1]
m_dn <- subset(mres$enrichment_result,p.adjustANOVA<0.05 & s.dist < 0)[,1]
message(paste("Number of up-regulated pathways:",length(m_up) ))
## Number of up-regulated pathways: 69
message(paste("Number of down-regulated pathways:",length(m_dn) ))
## Number of down-regulated pathways: 156
head(mres$enrichment_result,10)  %>% kbl() %>% kable_paper("hover", full_width = F)
set setSize pANOVA s.dist p.adjustANOVA
77 Asparagine N-linked glycosylation 251 0 -0.2409732 1.0e-07
241 Defective CFTR causes cystic fibrosis 57 0 -0.4646418 9.0e-07
312 ER to Golgi Anterograde Transport 124 0 -0.3078072 1.4e-06
1303 Vif-mediated degradation of APOBEC3G 52 0 -0.4683385 1.4e-06
2 ABC transporter disorders 65 0 -0.4189732 1.4e-06
693 Negative regulation of NOTCH4 signaling 53 0 -0.4583167 1.8e-06
930 Regulation of Apoptosis 51 0 -0.4636878 2.0e-06
1310 Vpu mediated degradation of CD4 49 0 -0.4687681 2.3e-06
475 Hh mutants abrogate ligand secretion 54 0 -0.4425343 2.8e-06
1291 Ubiquitin-dependent degradation of Cyclin D 50 0 -0.4565351 3.2e-06

ORA with clusterprofiler

Clusterprofiler uses a hypergeometric test. Firstly I will conduct the analysis separately for up and down regulated genes and with the correct backgound (as intended by the developers).

genesets2 <- read.gmt("ReactomePathways.gmt")

de_up <- rownames(subset(de,log2FoldChange>0,padj<0.05))
de_up <- unique(gt[which(rownames(gt) %in% de_up),1])

de_dn <- rownames(subset(de,log2FoldChange<0,padj<0.05))
de_dn <- unique(gt[which(rownames(gt) %in% de_dn),1])

de_bg <- rownames(de)
de_bg <- unique(gt[which(rownames(gt) %in% de_bg),1])

c_up <- as.data.frame(enricher(gene = de_up, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2))
c_up <- rownames(subset(c_up, p.adjust < 0.05))
       
c_dn <- as.data.frame(enricher(gene = de_dn, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2))
c_dn <- rownames(subset(c_dn, p.adjust < 0.05))

Now performing ORA with clusterprofiler combining up and down.

de_de <- rownames(subset(de,padj<0.05))
de_de <- unique(gt[which(rownames(gt) %in% de_de),1])

d_de <- as.data.frame(enricher(gene = de_de, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2))
d_de <- rownames(subset(d_de, p.adjust < 0.05))

Now performing ORA with clusterprofiler with whole genome background list

de_bg <- w$GeneInfo$GeneSymbol

f_up <- as.data.frame(enricher(gene = de_up, universe = de_bg,  maxGSSize = 5000, TERM2GENE = genesets2))
f_up <- rownames(subset(f_up, p.adjust < 0.05))
       
f_dn <- as.data.frame(enricher(gene = de_dn, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2))
f_dn <- rownames(subset(f_dn, p.adjust < 0.05))

Now performing ORA (combining up and down gene lists) with clusterprofiler with whole genome background list

e_de <- as.data.frame(enricher(gene = de_de, universe = de_bg, maxGSSize = 5000, TERM2GENE = genesets2))
e_de <- rownames(subset(e_de, p.adjust < 0.05))

Venn diagram comparison

The Venn (or Euler to be more correct) diagram is useful to visualise the overlaps between sets.

par(cex.main=0.5)

par(mar=c(2,2,2,2))

v0 <- list("ORA up"=c_up,"ORA dn"=c_dn,
           "ORA comb" = d_de)

plot(euler(v0),quantities = TRUE, edges = "gray", main="effect of combining up and down regulated genes")

v1 <- list("FCS up"=m_up, "FCS dn"=m_dn,
           "ORA up"=c_up,"ORA dn"=c_dn)
  
plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS compared to ORA")

v2 <- list("ORA up"=c_up,"ORA dn"=c_dn, 
           "ORA* up"=f_up,"ORA* dn"=f_dn )

plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")

vx <- list("ORA up"=c_up,"ORA dn"=c_dn,
           "ORA comb" = d_de, "ORA* comb" = e_de)

plot(euler(vx),quantities = TRUE, edges = "gray", main="combining up and down genes and whole genome bg*")

v3 <- list("ORA up"=c_up,"ORA dn"=c_dn, 
           "ORA* up"=f_up,"ORA* dn"=f_dn ,
           "FCS up"=m_up, "FCS dn"=m_dn)

png("images/fcs_ora5.png")
plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS vs ORA")
dev.off()
## png 
##   2
png("images/orabg5.png")
plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")
dev.off()
## png 
##   2
png("images/oracomb5.png")
plot(euler(vx),quantities = TRUE, main="combining up and down genes and whole genome bg*")
dev.off()
## png 
##   2
pdf("images/fcs_ora5.pdf",width=4,height=4)
plot(euler(v1),quantities = TRUE, edges = "gray", main="FCS vs ORA")
dev.off()
## png 
##   2
pdf("images/orabg5.pdf",width=4,height=4)
plot(euler(v2),quantities = TRUE, edges = "gray", main="Effect of inappropriate background* (whole genome)")
dev.off()
## png 
##   2
pdf("images/oracomb5.pdf",width=4,height=4)
plot(euler(vx),quantities = TRUE, edges = "gray", main="combining up and down genes and whole genome bg*")
dev.off()
## png 
##   2

Jaccard calculation

# ORA vs ORA combined
dc <- length(intersect(d_de, c(c_up,c_dn))) / length(union(d_de, c(c_up,c_dn)))

# ORA vs ORA* combined
ec <- length(intersect(e_de, c(c_up,c_dn))) / length(union(e_de, c(c_up,c_dn)))

# FCS vs ORA
cm <- length(intersect(c(c_up,c_dn), c(m_up,m_dn))) / length(union(c(c_up,c_dn), c(m_up,m_dn)))

m_up <- gsub("^","up ",m_up)
m_dn <- gsub("^","dn ",m_dn)
m_de <- union(m_up,m_dn)

c_up <- gsub("^","up ",c_up)
c_dn <- gsub("^","dn ",c_dn)
c_de <- union(c_up,c_dn)

f_up <- gsub("^","up ",f_up)
f_dn <- gsub("^","dn ",f_dn)
f_de <- union(f_up,f_dn)

# ORA vs ORA*
cf <- length(intersect(c_de, f_de )) / length(union(c_de, f_de))

# FCS vs ORA*
mf <- length(intersect(m_de, f_de )) / length(union(m_de, f_de))

dat <- c("FCS vs ORA"=cm,"ORA vs ORA*"=cf,"FCS vs ORA*"=mf, "ORA vs ORA comb"=dc, "ORA vs ORA* comb"=ec)

dat
##       FCS vs ORA      ORA vs ORA*      FCS vs ORA*  ORA vs ORA comb ORA vs ORA* comb 
##      0.473913043      0.165390505      0.301492537      0.008620690      0.008474576
barplot(dat,ylab="jaccard metric")

saveRDS(dat,file = "ex5dat.rds")

Session information

sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
## 
## locale:
##  [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C               LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
##  [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8    LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] eulerr_6.1.1                kableExtra_1.3.4            mitch_1.4.1                 clusterProfiler_4.0.5      
##  [5] DESeq2_1.32.0               SummarizedExperiment_1.22.0 Biobase_2.52.0              MatrixGenerics_1.4.3       
##  [9] matrixStats_0.61.0          GenomicRanges_1.44.0        GenomeInfoDb_1.28.4         IRanges_2.26.0             
## [13] S4Vectors_0.30.2            BiocGenerics_0.38.0         getDEE2_1.2.0              
## 
## loaded via a namespace (and not attached):
##   [1] shadowtext_0.0.9       fastmatch_1.1-3        systemfonts_1.0.3      plyr_1.8.6            
##   [5] igraph_1.2.8           lazyeval_0.2.2         polylabelr_0.2.0       splines_4.1.2         
##   [9] BiocParallel_1.26.2    ggplot2_3.3.5          digest_0.6.28          yulab.utils_0.0.4     
##  [13] htmltools_0.5.2        GOSemSim_2.18.1        viridis_0.6.2          GO.db_3.13.0          
##  [17] fansi_0.5.0            magrittr_2.0.1         memoise_2.0.0          Biostrings_2.60.2     
##  [21] annotate_1.70.0        graphlayouts_0.7.1     svglite_2.0.0          enrichplot_1.12.3     
##  [25] colorspace_2.0-2       rvest_1.0.2            blob_1.2.2             ggrepel_0.9.1         
##  [29] xfun_0.28              dplyr_1.0.7            crayon_1.4.2           RCurl_1.98-1.5        
##  [33] jsonlite_1.7.2         scatterpie_0.1.7       genefilter_1.74.1      survival_3.2-13       
##  [37] ape_5.5                glue_1.5.0             polyclip_1.10-0        gtable_0.3.0          
##  [41] zlibbioc_1.38.0        XVector_0.32.0         webshot_0.5.2          htm2txt_2.1.1         
##  [45] DelayedArray_0.18.0    scales_1.1.1           DOSE_3.18.3            DBI_1.1.1             
##  [49] GGally_2.1.2           Rcpp_1.0.7             viridisLite_0.4.0      xtable_1.8-4          
##  [53] gridGraphics_0.5-1     tidytree_0.3.6         bit_4.0.4              htmlwidgets_1.5.4     
##  [57] httr_1.4.2             fgsea_1.18.0           gplots_3.1.1           RColorBrewer_1.1-2    
##  [61] ellipsis_0.3.2         pkgconfig_2.0.3        reshape_0.8.8          XML_3.99-0.8          
##  [65] farver_2.1.0           sass_0.4.0             locfit_1.5-9.4         utf8_1.2.2            
##  [69] ggplotify_0.1.0        tidyselect_1.1.1       rlang_0.4.12           reshape2_1.4.4        
##  [73] later_1.3.0            AnnotationDbi_1.54.1   munsell_0.5.0          tools_4.1.2           
##  [77] cachem_1.0.6           downloader_0.4         generics_0.1.1         RSQLite_2.2.8         
##  [81] evaluate_0.14          stringr_1.4.0          fastmap_1.1.0          yaml_2.2.1            
##  [85] ggtree_3.0.4           knitr_1.36             bit64_4.0.5            tidygraph_1.2.0       
##  [89] caTools_1.18.2         purrr_0.3.4            KEGGREST_1.32.0        ggraph_2.0.5          
##  [93] nlme_3.1-153           mime_0.12              aplot_0.1.1            xml2_1.3.2            
##  [97] DO.db_2.9              compiler_4.1.2         rstudioapi_0.13        beeswarm_0.4.0        
## [101] png_0.1-7              treeio_1.16.2          tibble_3.1.6           tweenr_1.0.2          
## [105] geneplotter_1.70.0     bslib_0.3.1            stringi_1.7.5          highr_0.9             
## [109] lattice_0.20-45        Matrix_1.3-4           vctrs_0.3.8            pillar_1.6.4          
## [113] lifecycle_1.0.1        jquerylib_0.1.4        data.table_1.14.2      cowplot_1.1.1         
## [117] bitops_1.0-7           httpuv_1.6.3           patchwork_1.1.1        qvalue_2.24.0         
## [121] R6_2.5.1               promises_1.2.0.1       KernSmooth_2.23-20     echarts4r_0.4.2       
## [125] gridExtra_2.3          MASS_7.3-54            gtools_3.9.2           assertthat_0.2.1      
## [129] GenomeInfoDbData_1.2.6 grid_4.1.2             ggfun_0.0.4            tidyr_1.1.4           
## [133] rmarkdown_2.11         ggforce_0.3.3          shiny_1.7.1