Yap KD profile
Reactome
TFBS TSS
TFBS ENH
suppressPackageStartupMessages({
library("tidyverse")
library("reshape2")
library("DESeq2")
library("gplots")
library("fgsea")
library("MASS")
library("mitch")
})
Here is the Yap knock-down data we generated previously.
x<-read.table("edgeR_rna_LacZvsYap.xls",header=T,row.names=1)
head(x)
## logFC logCPM LR PValue
## ENSMUSG00000090556_Olfr753-ps1 2.902399 0.2753907 278.4418 1.641213e-62
## ENSMUSG00000020641_Rsad2 2.898768 0.4462312 266.5600 6.377743e-60
## ENSMUSG00000028874_Fgr 3.031279 1.3941254 258.6872 3.316488e-58
## ENSMUSG00000040264_Gbp2b 3.519186 1.4699838 256.2288 1.139138e-57
## ENSMUSG00000038037_Socs1 2.801552 0.7219252 256.6370 9.281046e-58
## ENSMUSG00000074896_Ifit3 3.026735 0.9071686 256.2250 1.141291e-57
## adj.p.value disp Lacz.1 Lacz.2
## ENSMUSG00000090556_Olfr753-ps1 2.697498e-58 0.01898323 3.277764 2.513037
## ENSMUSG00000020641_Rsad2 5.241229e-56 0.01945147 5.861156 4.493704
## ENSMUSG00000028874_Fgr 1.816993e-54 0.02157487 22.126610 16.964305
## ENSMUSG00000040264_Gbp2b 3.126377e-54 0.03213525 12.758172 9.781594
## ENSMUSG00000038037_Socs1 3.126377e-54 0.01776111 12.075605 9.258276
## ENSMUSG00000074896_Ifit3 3.126377e-54 0.02256274 11.321296 8.679952
## Lacz.3 Yap.1 Yap.2 Yap.3 sampleLacz
## ENSMUSG00000090556_Olfr753-ps1 4.158072 183.3558 126.7408 159.7393 -14.87752
## ENSMUSG00000020641_Rsad2 7.435284 205.4915 142.0417 179.0239 -14.77293
## ENSMUSG00000028874_Fgr 28.069145 388.7369 268.7062 338.6670 -14.27751
## ENSMUSG00000040264_Gbp2b 16.184629 423.2850 292.5868 368.7652 -14.53526
## ENSMUSG00000038037_Socs1 15.318746 243.7032 168.4547 212.3138 -14.55147
## ENSMUSG00000074896_Ifit3 14.361852 280.6797 194.0140 244.5277 -14.57815
## sampleYap
## ENSMUSG00000090556_Olfr753-ps1 -12.86573
## ENSMUSG00000020641_Rsad2 -12.76366
## ENSMUSG00000028874_Fgr -12.17639
## ENSMUSG00000040264_Gbp2b -12.09595
## ENSMUSG00000038037_Socs1 -12.60959
## ENSMUSG00000074896_Ifit3 -12.48018
gt<-data.frame(rownames(x),stringsAsFactors=FALSE)
gt$gene<-sapply(strsplit(gt[,1],"_"),"[[",2)
# gene table
head(gt)
## rownames.x. gene
## 1 ENSMUSG00000090556_Olfr753-ps1 Olfr753-ps1
## 2 ENSMUSG00000020641_Rsad2 Rsad2
## 3 ENSMUSG00000028874_Fgr Fgr
## 4 ENSMUSG00000040264_Gbp2b Gbp2b
## 5 ENSMUSG00000038037_Socs1 Socs1
## 6 ENSMUSG00000074896_Ifit3 Ifit3
We will perform analysis using Reactome gene sets as well as Cistrome transcription factor targets (promoter and enhancer).
download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip", destfile="ReactomePathways.gmt.zip")
unzip("ReactomePathways.gmt.zip")
reactome <- gmt_import("ReactomePathways.gmt")
tft_tss <- gmt_import("MouseTfPeaks.gmt")
tft_enh <- gmt_import("MouseTfPeaks_enh.gmt")
atac_gset<-gmt_import("atac.gmt")
m<-mitch_import(x,DEtype="edgeR",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 16436
## Note: no. genes in output = 16428
## Note: estimated proportion of input genes in output = 1
capture.output(
res<-mitch_calc(m,atac_gset)
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
head(res$enrichment_result,20)
## set setSize pANOVA s.dist
## 2 ATAC enhancer down 141 4.098161e-10 -0.3050516
## 3 ATAC tss up 94 2.334283e-09 0.3565217
## 1 ATAC enhancer up 88 7.359889e-08 0.3320185
## 4 ATAC tss down 112 9.714728e-07 -0.2680093
## 5 ATAC enhancer down with TEAD motif 28 4.840224e-02 -0.2155488
## 6 ATAC enhancer up with TEAD motif 14 9.554903e-02 0.2573152
## p.adjustANOVA
## 2 2.458896e-09
## 3 7.002850e-09
## 1 1.471978e-07
## 4 1.457209e-06
## 5 5.808269e-02
## 6 9.554903e-02
capture.output(
mitch_plots(res,outfile="atac_mitch.pdf")
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
unlink("atac_mitch.html")
capture.output(
mitch_report(res,outfile="atac_mitch.html")
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/RtmpT467pk/./atac_mitch.RData ".
##
##
## processing file: mitch.Rmd
## Contour plot does not apply to unidimensional analysis.
## output file: /mnt/bfx6/bfx/kevinwatt/yap_enhancer_analysis/rna/mitch.knit.md
##
## Output created: /tmp/RtmpT467pk/mitch_report.html
capture.output(
res<-mitch_calc(m,tft_tss)
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
head(res$enrichment_result,20)
## set setSize pANOVA s.dist
## 3651 STAT1_None_Macrophage_5379 696 7.126142e-52 0.3377381
## 8594 NCOR2_None_Macrophage_9637 684 2.890613e-51 0.3384984
## 8279 POLR2A_None_None_87698 841 9.998539e-47 -0.2924893
## 3655 STAT1_None_Macrophage_5383 704 1.070880e-46 0.3181840
## 3642 STAT1_None_Macrophage_5377 713 2.235769e-46 0.3151398
## 3137 IRF8_None_Macrophage_51059 694 4.651191e-46 0.3180984
## 5912 POLR2A_None_None_72694 882 7.439971e-46 -0.2832180
## 7258 HDAC3_None_Macrophage_82102 681 1.932959e-44 0.3151040
## 3333 SIRT1_None_SatelliteCells_51941 844 1.997002e-44 -0.2844750
## 3649 STAT1_None_Macrophage_5385 723 5.959922e-44 0.3044745
## 7146 IRF8_None_Macrophage_81563 682 6.095241e-44 0.3130486
## 3842 SPI1_X18.1.1_MyeloidCell_54713 720 9.424369e-44 0.3043630
## 5911 POLR2A_None_None_72693 872 1.021300e-42 -0.2744891
## 5913 POLR2A_None_None_72696 882 3.036724e-42 -0.2714439
## 344 PPARG_10T1_2_Fibroblast_32988 854 3.325198e-42 -0.2754764
## 3635 STAT1_None_Macrophage_5375 691 4.290068e-42 0.3042440
## 8289 POLR2A_None_None_87700 831 6.256433e-42 -0.2781137
## 5906 POLR2A_None_None_72695 875 8.837851e-42 -0.2709098
## 3658 STAT1_None_Macrophage_5381 693 3.260407e-41 0.3005081
## 7162 EP300_None_Macrophage_81589 645 9.577788e-41 0.3091760
## p.adjustANOVA
## 3651 6.142022e-48
## 8594 1.245710e-47
## 8279 2.307480e-43
## 3655 2.307480e-43
## 3642 3.854019e-43
## 3137 6.681435e-43
## 5912 9.160729e-43
## 7258 1.912462e-41
## 3333 1.912462e-41
## 3649 4.775898e-41
## 7146 4.775898e-41
## 3842 6.769053e-41
## 5911 6.771220e-40
## 5913 1.869537e-39
## 344 1.910659e-39
## 3635 2.311006e-39
## 8289 3.172012e-39
## 5906 4.231858e-39
## 3658 1.479024e-38
## 7162 4.127548e-38
capture.output(
mitch_plots(res,outfile="tft_tss_mitch.pdf")
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
unlink("tft_tss_mitch.html")
capture.output(
mitch_report(res,outfile="tft_tss_mitch.html")
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/RtmpT467pk/./tft_tss_mitch.RData ".
##
##
## processing file: mitch.Rmd
## Contour plot does not apply to unidimensional analysis.
## output file: /mnt/bfx6/bfx/kevinwatt/yap_enhancer_analysis/rna/mitch.knit.md
##
## Output created: /tmp/RtmpT467pk/mitch_report.html
capture.output(
res<-mitch_calc(m,tft_enh)
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
## Note: When prioritising by significance (ie: small
## p-values), large effect sizes might be missed.
head(res$enrichment_result,20)
## set setSize pANOVA s.dist
## 2871 POLR2A_Swiss-3T3_Fibroblast_48405 594 1.168779e-21 0.2303909
## 4602 POLR2A_S194_BLymphocyte_59366 630 2.930701e-21 0.2217329
## 4656 MAPK8_None_EmbryonicStemCell_6011 616 5.891514e-21 0.2224092
## 4659 MAPK8_None_NeuralProgenitorCell_6021 617 1.080809e-20 0.2207229
## 2877 POLR2A_Swiss-3T3_Fibroblast_48404 594 7.821003e-20 0.2196920
## 5589 POLR2A_KH2_EmbryonicStemCell_70887 619 9.173194e-20 0.2149720
## 1208 STAT1_None_Macrophage_38421 610 1.462626e-19 0.2152843
## 5953 SMARCA4_None_EmbryonicFibroblast_72190 580 1.511793e-19 0.2204849
## 3290 STAT1_None_Macrophage_51073 598 2.096373e-19 0.2164070
## 3291 STAT1_None_Macrophage_51089 608 4.134470e-19 0.2129094
## 2465 SMARCA4_None_TLymphocyte_4548 644 6.617810e-19 0.2059022
## 2258 WDR5_C2C12_Myoblast_44373 593 7.148617e-19 0.2140213
## 2709 POLR2A_None_EmbryonicStemCell_47348 605 1.160660e-18 0.2106787
## 5195 TCF3_None_BLymphocyte_68985 603 1.446415e-18 0.2104252
## 2705 POLR2A_None_EmbryonicStemCell_47346 601 1.948574e-18 0.2099600
## 3311 STAT1_None_Macrophage_51075 630 2.383399e-18 0.2047273
## 1403 NR1D1_None_Macrophage_39665 620 2.580051e-18 0.2060953
## 3076 FOS_None_CorticalNeuron_49581 610 2.804810e-18 0.2074876
## 4676 MAPK8_None_Neuron_6036 632 3.005125e-18 0.2038038
## 3426 STAT1_None_Macrophage_51921 579 3.146521e-18 0.2124442
## p.adjustANOVA
## 2871 1.056694e-17
## 4602 1.324823e-17
## 4656 1.775506e-17
## 4659 2.442898e-17
## 2877 1.382247e-16
## 5589 1.382247e-16
## 1208 1.708516e-16
## 5953 1.708516e-16
## 3290 2.105923e-16
## 3291 3.737974e-16
## 2465 5.385887e-16
## 2258 5.385887e-16
## 2709 8.071945e-16
## 5195 9.340742e-16
## 2705 1.174470e-15
## 3311 1.346769e-15
## 1403 1.372132e-15
## 3076 1.408794e-15
## 4676 1.422385e-15
## 3426 1.422385e-15
capture.output(
mitch_plots(res,outfile="tft_enh_mitch.pdf")
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
unlink("tft_enh_mitch.html")
capture.output(
mitch_report(res,outfile="tft_enh_mitch.html")
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/RtmpT467pk/./tft_enh_mitch.RData ".
##
##
## processing file: mitch.Rmd
## Contour plot does not apply to unidimensional analysis.
## output file: /mnt/bfx6/bfx/kevinwatt/yap_enhancer_analysis/rna/mitch.knit.md
##
## Output created: /tmp/RtmpT467pk/mitch_report.html
x<-read.table("edgeR_rna_LacZvsYap.xls",header=T,row.names=1)
rownames(x) <- sapply(strsplit(rownames(x),"_"),"[[",1)
m2h <- read.table("mouse2human.txt.sort")
m2h[,1]=NULL
m <- mitch_import(x=x,DEtype="edger",geneTable=m2h)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 16436
## Note: no. genes in output = 13056
## Note: estimated proportion of input genes in output = 0.794
capture.output(
res <- mitch_calc(x=m,genesets=reactome,priority="effect")
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(res$enrichment_result,20)
## set
## 353 FCGR activation
## 756 PD-1 signaling
## 503 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell
## 538 Interleukin-10 signaling
## 798 Phosphorylation of CD3 and TCR zeta chains
## 533 Interferon alpha/beta signaling
## 1040 Signal regulatory protein family interactions
## 435 Generation of second messenger molecules
## 749 Other interleukin signaling
## 544 Interleukin-2 signaling
## 376 Folding of actin by CCT/TriC
## 218 Crosslinking of collagen fibrils
## 99 BBSome-mediated cargo-targeting to cilium
## 250 Dectin-2 family
## 184 Citric acid cycle (TCA cycle)
## 757 PECAM1 interactions
## 927 Regulation of IFNA signaling
## 89 Assembly of collagen fibrils and other multimeric structures
## 509 Inflammasomes
## 195 Collagen chain trimerization
## setSize pANOVA s.dist p.adjustANOVA
## 353 11 3.453606e-07 0.8872644 1.091997e-05
## 756 13 8.375517e-07 0.7889584 2.471708e-05
## 503 49 2.044241e-20 0.7640078 9.049173e-18
## 538 26 1.386850e-10 0.7268404 8.007550e-09
## 798 12 1.654699e-05 0.7179802 3.433500e-04
## 533 42 2.846722e-15 0.7039214 4.200496e-13
## 1040 13 2.736896e-05 0.6718016 5.192283e-04
## 435 24 4.347035e-08 0.6456543 1.603573e-06
## 749 18 3.588792e-06 0.6308270 9.531833e-05
## 544 10 7.002171e-04 0.6189943 7.749070e-03
## 376 10 8.943730e-04 -0.6066380 9.426407e-03
## 218 10 1.981105e-03 0.5648781 1.730860e-02
## 99 20 1.376215e-05 -0.5615565 2.947764e-04
## 250 10 2.139086e-03 0.5607083 1.850414e-02
## 184 21 9.188208e-06 -0.5591064 2.103783e-04
## 757 11 1.377017e-03 0.5571274 1.344616e-02
## 927 12 9.329772e-04 0.5518565 9.679638e-03
## 89 49 7.731280e-11 0.5372099 4.933650e-09
## 509 19 6.241228e-05 0.5305507 1.062609e-03
## 195 40 8.325879e-09 0.5264943 3.455240e-07
capture.output(
mitch_plots(res,outfile="yaprna_mitch.pdf")
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
# report
unlink("yaprna_reactome.html")
capture.output(
mitch_report(res, "yaprna_reactome.html")
, file = "/dev/null", append = FALSE,
type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/RtmpT467pk/./yaprna_reactome.RData ".
##
##
## processing file: mitch.Rmd
## Contour plot does not apply to unidimensional analysis.
## output file: /mnt/bfx6/bfx/kevinwatt/yap_enhancer_analysis/rna/mitch.knit.md
##
## Output created: /tmp/RtmpT467pk/mitch_report.html