date generated: 2020-08-06
Mitch performs unidimensional and multidimensional gene set enrichment analysis. The concept behind this dates to work by Cox and Mann (https://doi.org/10.1186/1471-2105-13-S16-S12). This implementation is suited to R based workflows of multi-omics datasets. This software was developed by Antony Kaspi and Mark Ziemann. Learn more about Mitch at the website: https://github.com/markziemann/Mitch
Here is the first few lines of the input profile.
## x
## 0610005C13Rik 0.5455811
## 0610009B22Rik -0.2758387
## 0610009E02Rik -0.1942335
## 0610009L18Rik 0.6285430
## 0610010F05Rik -1.9585193
## 0610012D04Rik -7.3024303
Here are some metrics about the input data profile:
Profile metrics | |
---|---|
num_genesets | 26 |
num_genes_in_profile | 16428 |
duplicated_genes_present | 0 |
num_profile_genes_in_sets | 67 |
num_profile_genes_not_in_sets | 16361 |
Here is a plot of the input profiles. Note the dynamic ranges.
Here is the contour plot of the profile including all detected genes.
Here are some metrics about the gene sets used: GMT file of genesets: promoter_motifs.gmt
Gene sets metrics | |
---|---|
num_genesets | 26 |
num_genesets_excluded | 23 |
num_genesets_included | 3 |
Significance is calculated by -log10(p-value). All points shown are FDR<0.05.
Top N= 3 gene sets
set | setSize | pANOVA | s.dist | p.adjustANOVA |
---|---|---|---|---|
motif12.motif.bed TEAD2(TEA) | 12 | 0.01830 | -0.393 | 0.0275 |
motif7.motif.bed NF1-halfsite(CTF) | 24 | 0.00888 | -0.309 | 0.0266 |
motif2.motif.bed PGR(NR) | 15 | 0.65300 | -0.067 | 0.6530 |
set | setSize | pANOVA | s.dist | p.adjustANOVA |
---|---|---|---|---|
motif12.motif.bed TEAD2(TEA) | 12 | 0.01830 | -0.393 | 0.0275 |
motif7.motif.bed NF1-halfsite(CTF) | 24 | 0.00888 | -0.309 | 0.0266 |
motif2.motif.bed PGR(NR) | 15 | 0.65300 | -0.067 | 0.6530 |
motif12.motif.bed_TEAD2(TEA)
1 | |
---|---|
set | motif12.motif.bed_TEAD2(TEA) |
setSize | 12 |
pANOVA | 0.0183 |
s.dist | -0.393 |
p.adjustANOVA | 0.0275 |
Top enriched genes
GeneID | Gene Rank |
---|---|
8430426J06Rik | -7886 |
Napa | -7692 |
Gm15169 | -7267 |
Arrdc2 | -7211 |
Gm826 | -5552 |
Impact | -5346 |
Fbxo9 | -4954 |
Ick | -4328 |
Pcdh9 | -3947 |
Gm10800 | 4026 |
Ppp2r3d | 6833 |
Litaf | 8272 |
GeneID | Gene Rank |
---|---|
8430426J06Rik | -7886 |
Napa | -7692 |
Gm15169 | -7267 |
Arrdc2 | -7211 |
Gm826 | -5552 |
Impact | -5346 |
Fbxo9 | -4954 |
Ick | -4328 |
Pcdh9 | -3947 |
Gm10800 | 4026 |
Ppp2r3d | 6833 |
Litaf | 8272 |
motif7.motif.bed_NF1-halfsite(CTF)
3 | |
---|---|
set | motif7.motif.bed_NF1-halfsite(CTF) |
setSize | 24 |
pANOVA | 0.00888 |
s.dist | -0.309 |
p.adjustANOVA | 0.0266 |
Top enriched genes
GeneID | Gene Rank |
---|---|
Odf3l2 | -7821 |
Gm29323 | -7805 |
Tmem52 | -7766 |
D830013O20Rik | -7610 |
Apoo | -7420 |
Glb1l2 | -7307 |
Gm15169 | -7267 |
Rhobtb1 | -6431 |
Max | -6319 |
Gm826 | -5552 |
Impact | -5346 |
Gm38074 | -4240 |
Pcdh9 | -3947 |
Abt1 | -2342 |
Nt5dc3 | -2100 |
Larp4b | -1434 |
Pex7 | -693 |
Gm32569 | 364 |
Gm26836 | 5243 |
Gm5444 | 5296 |
GeneID | Gene Rank |
---|---|
Odf3l2 | -7821 |
Gm29323 | -7805 |
Tmem52 | -7766 |
D830013O20Rik | -7610 |
Apoo | -7420 |
Glb1l2 | -7307 |
Gm15169 | -7267 |
Rhobtb1 | -6431 |
Max | -6319 |
Gm826 | -5552 |
Impact | -5346 |
Gm38074 | -4240 |
Pcdh9 | -3947 |
Abt1 | -2342 |
Nt5dc3 | -2100 |
Larp4b | -1434 |
Pex7 | -693 |
Gm32569 | 364 |
Gm26836 | 5243 |
Gm5444 | 5296 |
Kcnip1 | 5753 |
Exo5 | 6109 |
Plekhg1 | 6996 |
Litaf | 8272 |
motif2.motif.bed_PGR(NR)
2 | |
---|---|
set | motif2.motif.bed_PGR(NR) |
setSize | 15 |
pANOVA | 0.653 |
s.dist | -0.067 |
p.adjustANOVA | 0.653 |
Top enriched genes
GeneID | Gene Rank |
---|---|
Napa | -7692 |
Tet1 | -6217 |
Bhlhe40 | -6098 |
Mettl5 | -4756 |
Clcn1 | -3501 |
Bbs2 | -1983 |
Gm37257 | -1815 |
Pex7 | -693 |
Tyw1 | -175 |
Dnal1 | 758 |
Crebzf | 2745 |
Awat2 | 4955 |
Exo5 | 6109 |
Grip2 | 7263 |
Fam189a1 | 7465 |
GeneID | Gene Rank |
---|---|
Napa | -7692 |
Tet1 | -6217 |
Bhlhe40 | -6098 |
Mettl5 | -4756 |
Clcn1 | -3501 |
Bbs2 | -1983 |
Gm37257 | -1815 |
Pex7 | -693 |
Tyw1 | -175 |
Dnal1 | 758 |
Crebzf | 2745 |
Awat2 | 4955 |
Exo5 | 6109 |
Grip2 | 7263 |
Fam189a1 | 7465 |
Here is the session info with all the versions of packages used.
sessionInfo()
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] pkgload_1.1.0 GGally_2.0.0
## [3] beeswarm_0.2.3 gtools_3.8.2
## [5] echarts4r_0.3.2 mitch_1.0.6
## [7] MASS_7.3-51.6 fgsea_1.14.0
## [9] gplots_3.0.3 DESeq2_1.28.1
## [11] SummarizedExperiment_1.18.1 DelayedArray_0.14.0
## [13] matrixStats_0.56.0 Biobase_2.48.0
## [15] GenomicRanges_1.40.0 GenomeInfoDb_1.24.2
## [17] IRanges_2.22.2 S4Vectors_0.26.1
## [19] BiocGenerics_0.34.0 reshape2_1.4.4
## [21] forcats_0.5.0 stringr_1.4.0
## [23] dplyr_1.0.0 purrr_0.3.4
## [25] readr_1.3.1 tidyr_1.1.0
## [27] tibble_3.0.1 ggplot2_3.3.2
## [29] tidyverse_1.3.0
##
## loaded via a namespace (and not attached):
## [1] colorspace_1.4-1 ellipsis_0.3.1 rprojroot_1.3-2
## [4] XVector_0.28.0 fs_1.4.2 rstudioapi_0.11
## [7] bit64_0.9-7 AnnotationDbi_1.50.1 fansi_0.4.1
## [10] lubridate_1.7.9 xml2_1.3.2 splines_4.0.2
## [13] geneplotter_1.66.0 knitr_1.29 jsonlite_1.7.0
## [16] broom_0.5.6 annotate_1.66.0 dbplyr_1.4.4
## [19] shiny_1.5.0 compiler_4.0.2 httr_1.4.1
## [22] backports_1.1.8 assertthat_0.2.1 Matrix_1.2-18
## [25] fastmap_1.0.1 cli_2.0.2 later_1.1.0.1
## [28] htmltools_0.5.0 tools_4.0.2 gtable_0.3.0
## [31] glue_1.4.1 GenomeInfoDbData_1.2.3 fastmatch_1.1-0
## [34] Rcpp_1.0.4.6 cellranger_1.1.0 vctrs_0.3.1
## [37] gdata_2.18.0 nlme_3.1-148 xfun_0.15
## [40] testthat_2.3.2 rvest_0.3.5 mime_0.9
## [43] lifecycle_0.2.0 XML_3.99-0.3 zlibbioc_1.34.0
## [46] scales_1.1.1 hms_0.5.3 promises_1.1.1
## [49] RColorBrewer_1.1-2 yaml_2.2.1 memoise_1.1.0
## [52] gridExtra_2.3 reshape_0.8.8 stringi_1.4.6
## [55] RSQLite_2.2.0 highr_0.8 genefilter_1.70.0
## [58] desc_1.2.0 caTools_1.18.0 BiocParallel_1.22.0
## [61] rlang_0.4.6 pkgconfig_2.0.3 bitops_1.0-6
## [64] evaluate_0.14 lattice_0.20-41 htmlwidgets_1.5.1
## [67] bit_1.1-15.2 tidyselect_1.1.0 plyr_1.8.6
## [70] magrittr_1.5 R6_2.4.1 generics_0.0.2
## [73] DBI_1.1.0 pillar_1.4.4 haven_2.3.1
## [76] withr_2.2.0 survival_3.2-3 RCurl_1.98-1.2
## [79] modelr_0.1.8 crayon_1.3.4 KernSmooth_2.23-17
## [82] rmarkdown_2.3 locfit_1.5-9.4 grid_4.0.2
## [85] readxl_1.3.1 data.table_1.12.8 blob_1.2.1
## [88] reprex_0.3.0 digest_0.6.25 pbmcapply_1.5.0
## [91] xtable_1.8-4 httpuv_1.5.4 munsell_0.5.0
END of report