Scatterplot of all genes

Rank-rank plot of all genes

Rank in contrast KO

number of genes in each quadrant

geneset size

number of genesets FDR<0.05

Scatterplot of all gene sets; FDR<0.05 in red

0.5 0.0 s.drug -0.5 -0.5 0.0 0.5

Scatterplot of all gene sets; top 50 in red

Peptide chain elongation Eukaryotic Translation Elongation Response of EIF2AK4 (GCN2) to amino acid deficiency Formation of a pool of free 40S subunits **Eukaryotic Translation Initiation** SRP-dependent cotranslational protein targeting to membrane Nonsense-Mediated Decay (NMD) rRNA processing Influenza Viral RNA Transcription and Replication GTP hydrolysis and joining of the 60S ribosomal subunit Formation of the ternary complex, and subsequently, the 43S complex rRNA processing in the nucleus and cytosol Ribosomal scanning and start codon recognition Translation initiation complex formation SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs Biotin transport and metabolism The activation of arylsulfatases Diseases associated with glycosaminoglycan metabolism A tetrasaccharide linker sequence is required for GAG synthesis Defective EXT1 causes exostoses 1, TRPS2 and CHDS Other semaphorin interactions Defective B3GAT3 causes JDSSDHD PKA activation Syndecan interactions MET activates PTK2 signaling

effect size versus statistical significance

s.dist (effect size)

Peptide chain elongation

Rank in contrast KO

Peptide chain elongation

Rank in contrast KO

Rank in contrast drug

Peptide chain elongation

Viral mRNA Translation

Viral mRNA Translation

Viral mRNA Translation

Formation of a pool of free 40S subunits

Formation of a pool of free 40S subunits

Formation of a pool of free 40S subunits

Eukaryotic Translation Termination

Eukaryotic Translation Termination

Eukaryotic Translation Termination

Eukaryotic Translation Elongation

Eukaryotic Translation Elongation

Rank in contrast KO

Rank in contrast drug

Eukaryotic Translation Elongation

Defective EXT1 causes exostoses 1, TRPS2 and CHDS

Rank in contrast KO

Defective EXT1 causes exostoses 1, TRPS2 and CHDS

Rank in contrast KO

Rank in contrast drug

Defective EXT1 causes exostoses 1, TRPS2 and

Defective EXT2 causes exostoses 2

Rank in contrast KO

Defective EXT2 causes exostoses 2

Rank in contrast KO

Rank in contrast drug

Defective EXT2 causes exostoses 2

Laminin interactions

Rank in contrast KO

Rank in contrast KO

Laminin interactions

Laminin interactions

Response of EIF2AK4 (GCN2) to amino acid deficiency

Response of EIF2AK4 (GCN2) to amino acid deficiency

Rank in contrast KO

Rank in contrast drug

Response of EIF2AK4 (GCN2) to amino acid def

se Mediated Decay (NMD) independent of the Exon Junction (

onsense Mediated Decay (NMD) independent of the Exon Junction Complex

Nonsense Mediated Decay (NMD) independent of

Selenocysteine synthesis

Selenocysteine synthesis

Rank in contrast KO

Rank in contrast drug

Selenocysteine synthesis

ormation of the ternary complex, and subsequently, the 43S c

Formation of the ternary complex, and subsequently, the 43S complex

Formation of the ternary complex, and subseque

Syndecan interactions

Rank in contrast KO

Syndecan interactions

Syndecan interactions

Mucopolysaccharidoses

Rank in contrast KO

Mucopolysaccharidoses

Mucopolysaccharidoses

Defective B4GALT7 causes EDS, progeroid type

Defective B4GALT7 causes EDS, progeroid type

Rank in contrast KO

Rank in contrast drug

Defective B4GALT7 causes EDS, progeroid type

L13a–mediated translational silencing of Ceruloplasmin expr

L13a-mediated translational silencing of Ceruloplasmin expression

L13a-mediated translational silencing of Cerulop

GTP hydrolysis and joining of the 60S ribosomal subun

Rank in contrast KO

GTP hydrolysis and joining of the 60S ribosomal subunit

GTP hydrolysis and joining of the 60S ribosomal

Defective B3GAT3 causes JDSSDHD

Defective B3GAT3 causes JDSSDHD

Rank in contrast KO

Rank in contrast drug

Defective B3GAT3 causes JDSSDHD

Other semaphorin interactions

Rank in contrast KO

Other semaphorin interactions

Rank in contrast KO

Rank in contrast drug

Other semaphorin interactions

Defective B3GALT6 causes EDSP2 and SEMDJL1

Defective B3GALT6 causes EDSP2 and SEMDJL1

Rank in contrast KO

Rank in contrast drug

Defective B3GALT6 causes EDSP2 and SEMDJI

Cap-dependent Translation Initiation

Cap-dependent Translation Initiation

Cap-dependent Translation Initiation

Eukaryotic Translation Initiation

Eukaryotic Translation Initiation

Rank in contrast KO

Eukaryotic Translation Initiation

SRP-dependent cotranslational protein targeting to memb

SRP-dependent cotranslational protein targeting to membrane

SRP-dependent cotranslational protein targeting

Reduction of cytosolic Ca++ levels

Reduction of cytosolic Ca++ levels

Rank in contrast KO

Reduction of cytosolic Ca++ levels

Non-integrin membrane-ECM interactions

Rank in contrast KO

Non-integrin membrane-ECM interactions

Rank in contrast KO

Non-integrin membrane-ECM interactions

MET activates **PTK2** signaling

Rank in contrast KO

MET activates **PTK2** signaling

Rank in contrast KO

MET activates PTK2 signaling

NA upon binding of the cap-binding complex and elFs, and :

the mRNA upon binding of the cap-binding complex and eIFs, and subseque

Activation of the mRNA upon binding of the cap-

Mitochondrial iron-sulfur cluster biogenesis

Mitochondrial iron-sulfur cluster biogenesis

Rank in contrast KO

Mitochondrial iron-sulfur cluster biogenesis

Translation initiation complex formation

Translation initiation complex formation

Translation initiation complex formation

The activation of arylsulfatases

10000 5000 0 -5000 -10000 -10000 -5000 5000 10000 0

The activation of arylsulfatases

Rank in contrast KO

The activation of arylsulfatases

HS-GAG degradation

Rank in contrast KO

HS-GAG degradation

Rank in contrast KO

HS-GAG degradation

Ribosomal scanning and start codon recognition

Ribosomal scanning and start codon recognition

Ribosomal scanning and start codon recognition

Major pathway of rRNA processing in the nucleolus and cyt

Major pathway of rRNA processing in the nucleolus and cytosol

Major pathway of rRNA processing in the nucleol

rRNA processing in the nucleus and cytosol

rRNA processing in the nucleus and cytosol

Rank in contrast KO

Rank in contrast drug

rRNA processing in the nucleus and cytosol

Selenoamino acid metabolism

Selenoamino acid metabolism

Selenoamino acid metabolism

nse Mediated Decay (NMD) enhanced by the Exon Junction C

Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (

Rank in contrast KO

Nonsense Mediated Decay (NMD) enhanced by

Nonsense-Mediated Decay (NMD)

Nonsense-Mediated Decay (NMD)

Rank in contrast KO

Rank in contrast drug

Nonsense-Mediated Decay (NMD)

Complex I biogenesis

Rank in contrast KO

Complex I biogenesis

Complex I biogenesis

Biotin transport and metabolism

Biotin transport and metabolism

Rank in contrast KO

Rank in contrast drug

Biotin transport and metabolism

rRNA processing

rRNA processing

Rank in contrast KO

Rank in contrast drug

rRNA processing

ATF4 activates genes in response to endoplasmic reticulum

Rank in contrast KO

ATF4 activates genes in response to endoplasmic reticulum stress

ATF4 activates genes in response to endoplasmi

P Dependent Processing of Replication–Dependent Histone F

SLBP Dependent Processing of Replication–Dependent Histone Pre–mRN

SLBP Dependent Processing of Replication-Dep

SLBP independent Processing of Histone Pre-mRNAs

SLBP independent Processing of Histone Pre-mRNAs

SLBP independent Processing of Histone Pre-m

Regulation of expression of SLITs and ROBOs

Regulation of expression of SLITs and ROBOs

Rank in contrast KO

Rank in contrast drug

Regulation of expression of SLITs and ROBOs

CREB1 phosphorylation through the activation of Adenylate (

CREB1 phosphorylation through the activation of Adenylate Cyclase

CREB1 phosphorylation through the activation of

A tetrasaccharide linker sequence is required for GAG syntl

A tetrasaccharide linker sequence is required for GAG synthesis

Rank in contrast KO

Rank in contrast drug

A tetrasaccharide linker sequence is required for

Influenza Viral RNA Transcription and Replication

Rank in contrast KO

Influenza Viral RNA Transcription and Replication

Influenza Viral RNA Transcription and Replication

Chondroitin sulfate biosynthesis

Chondroitin sulfate biosynthesis

Rank in contrast KO

Rank in contrast drug

Chondroitin sulfate biosynthesis

PKA activation

PKA activation

PKA activation

Diseases associated with glycosaminoglycan metabolis

Diseases associated with glycosaminoglycan metabolism

Rank in contrast KO

Rank in contrast drug

Diseases associated with glycosaminoglycan me

