Source: https://github.com/markziemann/miR-enrichment

Introduction

The predicted targets of microRNAs are used in functional enrichment analysis to justify the potential function of microRNAs, but there are some logical problems with this. In a biological tissue, not all of these targets will be expressed. Also the enrichment analysis requires a background list which is all the genes that can be measured. Not all genes are expressed in a tissue, at least half are silenced, so each enrichment analysis requires a custom background gene list. Unfortunately a custom background list is rarely used. We argue that this causes a dramatic distortion to the results.

Sample sheet

Control mRNA: SRR8591371,SRR8591372,SRR8591373

Case mRNA: SRR8591374,SRR8591375,SRR8591376

Methods

suppressPackageStartupMessages({
    library("DESeq2")
    library("gplots")
    library("mitch")
    library("eulerr")
    library("getDEE2")
    library("kableExtra")
})

Import read counts

Importing RNA-seq data

myfiles <-list.files(".",pattern="ke.tsv",recursive=TRUE)

x <- lapply(myfiles,function(x) {
  xx <- read.table(x,header=TRUE,row.names=1)
  xx[,3,drop=FALSE]
})

x <-  do.call(cbind,x)
colnames(x) <- gsub("_est_counts","",colnames(x))

Need gene symbols to map to the transcripts.

mdat <- getDEE2Metadata("hsapiens")
d <- getDEE2(species="hsapiens",SRRvec="SRR11509477",mdat,outfile="NULL",counts="GeneCounts",legacy=TRUE)
## For more information about DEE2 QC metrics, visit
##     https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
head(d$TxInfo)
##                              GeneID GeneSymbol TxLength
## ENST00000434970.2 ENSG00000237235.2      TRDD2        9
## ENST00000448914.1 ENSG00000228985.1      TRDD3       13
## ENST00000415118.1 ENSG00000223997.1      TRDD1        8
## ENST00000631435.1 ENSG00000282253.1 AC239618.6       12
## ENST00000632684.1 ENSG00000282431.1 AC245427.8       12
## ENST00000454908.1 ENSG00000236170.1    IGHD1-1       17
txinfo <- d$TxInfo

Merge txinfo.

xm <- merge(x,txinfo,by=0)
xm$GeneID_symbol <- paste(xm$GeneID,xm$GeneSymbol)
xm$Row.names = xm$GeneID = xm$GeneSymbol = xm$TxLength = NULL
xa <- aggregate(. ~ GeneID_symbol,xm,sum)
rownames(xa) <- xa[,1]
xa[,1] = NULL

Differential expression

xaf <- xa[which(rowMeans(xa)>=10),]
dim(xa) ; dim(xaf)
## [1] 39297     6
## [1] 14213     6
ss <- data.frame("run"=colnames(xaf),"trt"=c(0,0,0,1,1,1))
rownames(ss) <- ss$run

mds <- cmdscale(dist(t(xaf)))
plot(mds,cex=2,col="gray",pch=19)
text(mds, labels=rownames(mds) ,col="black")

colSums(xaf)
## SRR8591371 SRR8591372 SRR8591373 SRR8591374 SRR8591375 SRR8591376 
##   11297724   10303122    8832962   10951979   11794458   14481840
dds <- DESeqDataSetFromMatrix(countData = round(xaf) , colData = ss , design = ~ trt )
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge)
##                             baseMean log2FoldChange      lfcSE      stat
## ENSG00000126016.15 AMOT     1691.782      -5.047014 0.12509014 -40.34702
## ENSG00000163584.17 RPL22L1  2179.673      -3.635100 0.09586755 -37.91793
## ENSG00000244306.10 DUXAP10  1613.381      -4.334217 0.10901115 -39.75939
## ENSG00000277586.2 NEFL     10478.821       4.144682 0.07101692  58.36190
## ENSG00000119888.10 EPCAM    1084.099       6.572289 0.21128578  31.10616
## ENSG00000198814.12 GK       2351.257       2.811259 0.09064397  31.01429
##                                   pvalue          padj SRR8591371 SRR8591372
## ENSG00000126016.15 AMOT     0.000000e+00  0.000000e+00  11.930848  11.982751
## ENSG00000163584.17 RPL22L1  0.000000e+00  0.000000e+00  12.142310  12.276959
## ENSG00000244306.10 DUXAP10  0.000000e+00  0.000000e+00  11.959925  11.905256
## ENSG00000277586.2 NEFL      0.000000e+00  0.000000e+00  10.885016  10.908753
## ENSG00000119888.10 EPCAM   1.988284e-212 5.651897e-209   9.184872   9.126083
## ENSG00000198814.12 GK      3.459053e-211 8.193921e-208  10.361394  10.459553
##                            SRR8591373 SRR8591374 SRR8591375 SRR8591376
## ENSG00000126016.15 AMOT     12.131337   9.442136   9.477723   9.561110
## ENSG00000163584.17 RPL22L1  12.351615   9.980381  10.046691  10.018334
## ENSG00000244306.10 DUXAP10  11.959180   9.615197   9.610674   9.723229
## ENSG00000277586.2 NEFL      10.938320  14.350810  14.265333  14.400292
## ENSG00000119888.10 EPCAM     9.136095  11.429224  11.604468  11.593412
## ENSG00000198814.12 GK       10.349032  12.200252  12.288476  12.357482
ups <- rownames(subset(dge,padj<0.05 & log2FoldChange>0))
dns <- rownames(subset(dge,padj<0.05 & log2FoldChange<0))
lapply(list("UPs"=ups,"DNs"=dns),length)
## $UPs
## [1] 3847
## 
## $DNs
## [1] 3738
nrow(dge)
## [1] 14213
saveRDS(dge,file="GSE126751.Rds")

Session information

For reproducibility.

sessionInfo()
## R version 4.4.0 (2024-04-24)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] kableExtra_1.4.0            getDEE2_1.14.0             
##  [3] eulerr_7.0.2                mitch_1.16.0               
##  [5] gplots_3.1.3.1              DESeq2_1.44.0              
##  [7] SummarizedExperiment_1.34.0 Biobase_2.64.0             
##  [9] MatrixGenerics_1.16.0       matrixStats_1.3.0          
## [11] GenomicRanges_1.56.0        GenomeInfoDb_1.40.0        
## [13] IRanges_2.38.0              S4Vectors_0.42.0           
## [15] BiocGenerics_0.50.0        
## 
## loaded via a namespace (and not attached):
##  [1] tidyselect_1.2.1        viridisLite_0.4.2       dplyr_1.1.4            
##  [4] bitops_1.0-7            fastmap_1.2.0           GGally_2.2.1           
##  [7] promises_1.3.0          digest_0.6.35           mime_0.12              
## [10] lifecycle_1.0.4         magrittr_2.0.3          compiler_4.4.0         
## [13] rlang_1.1.4             sass_0.4.9              tools_4.4.0            
## [16] utf8_1.2.4              yaml_2.3.8              knitr_1.47             
## [19] S4Arrays_1.4.0          htmlwidgets_1.6.4       DelayedArray_0.30.1    
## [22] xml2_1.3.6              plyr_1.8.9              RColorBrewer_1.1-3     
## [25] abind_1.4-5             BiocParallel_1.38.0     KernSmooth_2.23-24     
## [28] purrr_1.0.2             grid_4.4.0              fansi_1.0.6            
## [31] caTools_1.18.2          xtable_1.8-4            colorspace_2.1-0       
## [34] ggplot2_3.5.1           MASS_7.3-60.2           scales_1.3.0           
## [37] gtools_3.9.5            cli_3.6.2               rmarkdown_2.27         
## [40] crayon_1.5.2            generics_0.1.3          rstudioapi_0.16.0      
## [43] reshape2_1.4.4          httr_1.4.7              cachem_1.1.0           
## [46] stringr_1.5.1           zlibbioc_1.50.0         parallel_4.4.0         
## [49] XVector_0.44.0          vctrs_0.6.5             Matrix_1.7-0           
## [52] jsonlite_1.8.8          echarts4r_0.4.5         beeswarm_0.4.0         
## [55] systemfonts_1.1.0       locfit_1.5-9.9          jquerylib_0.1.4        
## [58] tidyr_1.3.1             glue_1.7.0              ggstats_0.6.0          
## [61] codetools_0.2-20        stringi_1.8.4           gtable_0.3.5           
## [64] later_1.3.2             UCSC.utils_1.0.0        htm2txt_2.2.2          
## [67] munsell_0.5.1           tibble_3.2.1            pillar_1.9.0           
## [70] htmltools_0.5.8.1       GenomeInfoDbData_1.2.12 R6_2.5.1               
## [73] evaluate_0.23           shiny_1.8.1.1           lattice_0.22-6         
## [76] highr_0.11              httpuv_1.6.15           bslib_0.7.0            
## [79] Rcpp_1.0.12             svglite_2.1.3           gridExtra_2.3          
## [82] SparseArray_1.4.3       xfun_0.44               pkgconfig_2.0.3