Source: https://github.com/markziemann/miR-enrichment

Introduction

The predicted targets of microRNAs are used in functional enrichment analysis to justify the potential function of microRNAs, but there are some logical problems with this. In a biological tissue, not all of these targets will be expressed. Also the enrichment analysis requires a background list which is all the genes that can be measured. Not all genes are expressed in a tissue, at least half are silenced, so each enrichment analysis requires a custom background gene list. Unfortunately a custom background list is rarely used. We argue that this causes a dramatic distortion to the results.

Sample sheet

GSE188236

Control mRNA: SRR16776697, SRR16776698, SRR16776699, SRR16776700, SRR16776701

Case mRNA: SRR16776702, SRR16776703, SRR16776704, SRR16776705, SRR16776706

Methods

suppressPackageStartupMessages({
    library("DESeq2")
    library("gplots")
    library("mitch")
    library("eulerr")
    library("getDEE2")
    library("kableExtra")
})

Import read counts

Importing RNA-seq data

myfiles <-list.files(".",pattern="ke.tsv",recursive=TRUE)

x <- lapply(myfiles,function(x) {
  xx <- read.table(x,header=TRUE,row.names=1)
  xx[,3,drop=FALSE]
})

x <-  do.call(cbind,x)
colnames(x) <- gsub("_est_counts","",colnames(x))

Need gene symbols to map to the transcripts.

mdat <- getDEE2Metadata("hsapiens")
d <- getDEE2(species="hsapiens",SRRvec="SRR11509477",mdat,outfile="NULL",counts="GeneCounts",legacy=TRUE)
## For more information about DEE2 QC metrics, visit
##     https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
head(d$TxInfo)
##                              GeneID GeneSymbol TxLength
## ENST00000434970.2 ENSG00000237235.2      TRDD2        9
## ENST00000448914.1 ENSG00000228985.1      TRDD3       13
## ENST00000415118.1 ENSG00000223997.1      TRDD1        8
## ENST00000631435.1 ENSG00000282253.1 AC239618.6       12
## ENST00000632684.1 ENSG00000282431.1 AC245427.8       12
## ENST00000454908.1 ENSG00000236170.1    IGHD1-1       17
txinfo <- d$TxInfo

Merge txinfo.

xm <- merge(x,txinfo,by=0)
xm$GeneID_symbol <- paste(xm$GeneID,xm$GeneSymbol)
xm$Row.names = xm$GeneID = xm$GeneSymbol = xm$TxLength = NULL
xa <- aggregate(. ~ GeneID_symbol,xm,sum)
rownames(xa) <- xa[,1]
xa[,1] = NULL

Differential expression

xaf <- xa[which(rowMeans(xa)>=10),]
dim(xa) ; dim(xaf)
## [1] 39297    10
## [1] 16154    10
ss <- data.frame("run"=colnames(xaf),"trt"=c(0,0,0,0,0,1,1,1,1,1))
rownames(ss) <- ss$run

mds <- cmdscale(dist(t(xaf)))
plot(mds,cex=2,col="gray",pch=19)
text(mds, labels=rownames(mds) ,col="black")

colSums(xaf)
## SRR16776697 SRR16776698 SRR16776699 SRR16776700 SRR16776701 SRR16776702 
##    20851813    15048854    16499348    23223668    18558851    17235920 
## SRR16776703 SRR16776704 SRR16776705 SRR16776706 
##    17302662    19596025    20248684    23226440
dds <- DESeqDataSetFromMatrix(countData = round(xaf) , colData = ss , design = ~ trt )
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge)
##                            baseMean log2FoldChange     lfcSE      stat
## ENSG00000175899.14 A2M    800.81446      -2.992388 0.3829692 -7.813650
## ENSG00000036448.9 MYOM2    42.80861      -3.863181 0.5497154 -7.027603
## ENSG00000155792.9 DEPTOR   54.00814      -1.328929 0.2253752 -5.896519
## ENSG00000140022.9 STON2   122.21686      -1.339664 0.2514313 -5.328152
## ENSG00000183230.16 CTNNA3  30.30637      -3.233864 0.6400371 -5.052620
## ENSG00000203805.10 PLPP4   16.28701       1.938232 0.3872831  5.004689
##                                 pvalue         padj SRR16776697 SRR16776698
## ENSG00000175899.14 A2M    5.555501e-15 8.948246e-11   10.107534   11.618025
## ENSG00000036448.9 MYOM2   2.101113e-12 1.692131e-08    7.546546    7.269915
## ENSG00000155792.9 DEPTOR  3.712498e-09 1.993240e-05    7.010804    7.120820
## ENSG00000140022.9 STON2   9.921700e-08 3.995221e-04    7.739233    8.009003
## ENSG00000183230.16 CTNNA3 4.357899e-07 1.403853e-03    7.055342    6.816519
## ENSG00000203805.10 PLPP4  5.595224e-07 1.502038e-03    5.440559    5.627143
##                           SRR16776699 SRR16776700 SRR16776701 SRR16776702
## ENSG00000175899.14 A2M       9.442345    9.713343   10.626583    7.158413
## ENSG00000036448.9 MYOM2      6.112004    6.541083    6.892428    5.063438
## ENSG00000155792.9 DEPTOR     6.556042    6.930972    6.982053    6.145468
## ENSG00000140022.9 STON2      6.966114    7.941694    8.069984    6.864357
## ENSG00000183230.16 CTNNA3    5.498888    6.443474    6.767443    5.420513
## ENSG00000203805.10 PLPP4     5.253353    5.219782    5.359617    6.095143
##                           SRR16776703 SRR16776704 SRR16776705 SRR16776706
## ENSG00000175899.14 A2M       7.528419    8.032977    7.955137    8.184869
## ENSG00000036448.9 MYOM2      5.357869    5.491584    5.523437    4.906753
## ENSG00000155792.9 DEPTOR     6.157142    6.255327    6.190020    6.106284
## ENSG00000140022.9 STON2      6.847433    6.816014    6.874447    6.747807
## ENSG00000183230.16 CTNNA3    5.413657    4.645806    5.604366    5.165596
## ENSG00000203805.10 PLPP4     6.057143    6.094705    5.952312    6.045172
ups <- rownames(subset(dge,padj<0.05 & log2FoldChange>0))
dns <- rownames(subset(dge,padj<0.05 & log2FoldChange<0))
lapply(list("UPs"=ups,"DNs"=dns),length)
## $UPs
## [1] 20
## 
## $DNs
## [1] 35
nrow(dge)
## [1] 16154
saveRDS(dge,file="GSE188236.Rds")

Session information

For reproducibility.

sessionInfo()
## R version 4.4.0 (2024-04-24)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] kableExtra_1.4.0            getDEE2_1.14.0             
##  [3] eulerr_7.0.2                mitch_1.16.0               
##  [5] gplots_3.1.3.1              DESeq2_1.44.0              
##  [7] SummarizedExperiment_1.34.0 Biobase_2.64.0             
##  [9] MatrixGenerics_1.16.0       matrixStats_1.3.0          
## [11] GenomicRanges_1.56.0        GenomeInfoDb_1.40.0        
## [13] IRanges_2.38.0              S4Vectors_0.42.0           
## [15] BiocGenerics_0.50.0        
## 
## loaded via a namespace (and not attached):
##  [1] tidyselect_1.2.1        viridisLite_0.4.2       dplyr_1.1.4            
##  [4] bitops_1.0-7            fastmap_1.2.0           GGally_2.2.1           
##  [7] promises_1.3.0          digest_0.6.35           mime_0.12              
## [10] lifecycle_1.0.4         magrittr_2.0.3          compiler_4.4.0         
## [13] rlang_1.1.4             sass_0.4.9              tools_4.4.0            
## [16] utf8_1.2.4              yaml_2.3.8              knitr_1.47             
## [19] S4Arrays_1.4.0          htmlwidgets_1.6.4       DelayedArray_0.30.1    
## [22] xml2_1.3.6              plyr_1.8.9              RColorBrewer_1.1-3     
## [25] abind_1.4-5             BiocParallel_1.38.0     KernSmooth_2.23-24     
## [28] purrr_1.0.2             grid_4.4.0              fansi_1.0.6            
## [31] caTools_1.18.2          xtable_1.8-4            colorspace_2.1-0       
## [34] ggplot2_3.5.1           MASS_7.3-60.2           scales_1.3.0           
## [37] gtools_3.9.5            cli_3.6.2               rmarkdown_2.27         
## [40] crayon_1.5.2            generics_0.1.3          rstudioapi_0.16.0      
## [43] reshape2_1.4.4          httr_1.4.7              cachem_1.1.0           
## [46] stringr_1.5.1           zlibbioc_1.50.0         parallel_4.4.0         
## [49] XVector_0.44.0          vctrs_0.6.5             Matrix_1.7-0           
## [52] jsonlite_1.8.8          echarts4r_0.4.5         beeswarm_0.4.0         
## [55] systemfonts_1.1.0       locfit_1.5-9.9          jquerylib_0.1.4        
## [58] tidyr_1.3.1             glue_1.7.0              ggstats_0.6.0          
## [61] codetools_0.2-20        stringi_1.8.4           gtable_0.3.5           
## [64] later_1.3.2             UCSC.utils_1.0.0        htm2txt_2.2.2          
## [67] munsell_0.5.1           tibble_3.2.1            pillar_1.9.0           
## [70] htmltools_0.5.8.1       GenomeInfoDbData_1.2.12 R6_2.5.1               
## [73] evaluate_0.23           shiny_1.8.1.1           lattice_0.22-6         
## [76] highr_0.11              httpuv_1.6.15           bslib_0.7.0            
## [79] Rcpp_1.0.12             svglite_2.1.3           gridExtra_2.3          
## [82] SparseArray_1.4.3       xfun_0.44               pkgconfig_2.0.3