Abstract Glioblastoma multiform (GBM) is categorized as the most malignant subtype of gliomas, which comprise nearly 75% of malignant brain tumors in adults. Increasing evidence suggests that network pharmacology will be a novel method for identifying the systemic mechanism of therapeutic compounds in diseases like cancer. The present study aimed to use a network pharmacology approach to establish the predictive targets of sciadopitysin against GBM and elucidate its biological mechanisms. Firstly, targets of sciadopitysin were obtained from the SwissTargetPrediction database, and genes associated with the pathogenesis of GBM were identified from the DiGeNET database. Sixty-four correlative hits were identified as anti-glioblastoma targets of sciadopitysin. Functional enrichment and pathway analysis revealed significant biological mechanisms of the targets. Interaction of protein network and cluster analysis using STRING resulted in two crucial interacting hub genes, namely, HSP90 and AKT1. Additionally, the in vitro cytotoxic potential of sciadopitysin was assessed on GBM U87 cells. The findings indicate that the pharmacological action of sciadopitysin against GBM might be associated with the regulation of two core targets: HSP90 and AKT1. Thus, the network pharmacology undertaken in the current study established the core active targets of sciadopitysin, which may be extensively applied with further validations for treatment in GBM. Keywords: sciadopitysin, glioblastoma, network pharmacology, HSP90, AKT1 Introduction Adult glioblastoma (GBM) is the most common malignant primary brain tumor, representing approximately 57% of all gliomas and 48% of all primary malignant central nervous system (CNS) tumors [37]^1. It is also one of the most deadly and recalcitrant of all malignant solid tumors. Despite recent advances that have been made in multimodality therapy for glioblastoma incorporating surgery, radiotherapy, systemic therapy (chemotherapy, targeted therapy), and supportive care, the overall prognosis is still poor, and long-term survival is rare. The latest research shows that in the United States alone, the annual incidence of glioblastoma is about 34 cases per 1 million people, with a median survival of about 8 months, and more than 7,000 people die from glioblastoma each year [38]^2. For most patients with GBM, there is no known cause of the disease. It may occur at any age and originate by genetic alterations affecting neuroglial stem or progenitor cells [39]^3. Incidence increases steadily with age. The therapeutic efficacy of glioblastoma could be improved by figuring out molecular pathways and alterations in the signaling mechanisms of the tumor cells. Sciadopitysin (SP), a biflavonoid compound that is common in gymnosperms such as Cyperus roxburghii, Cryptomeria fortunei, Podocarpus, Taxus chinensis, and Ginkgo biloba, exhibits various biological properties [40]^4. In recent years, the biological activity of SP has been gradually investigated. Studies have shown that SP has various pharmacological effects, such as anti-tumor, antioxidation, reducing blood glucose and blood lipid, etc. Bioflavonoids show potential proteins or enzymes related to metabolism, growth, and survival, which are related to tumor growth, tumor metastasis, and angiogenesis [41]^5. Glioblastoma is a kind of heterogeneous disease, meaning a distinct understanding of its mechanism is required for significant treatment preferences. However, due to limitations in