Abstract Background Lignocellulose is the most abundant renewable bioresource on earth, and its biodegradation and utilization would contribute to the sustainable development of the global environment. Ruminiclostridium papyrosolvens, an anaerobic, mesophilic, and cellulolytic bacterium, produces an enzymatic complex known as the cellulosome. As one of the most highly evolved species among Ruminiclostridium-type species, R. papyrosolvens is particularly relevant for understanding how cellulolytic clostridia modulate their biomass degradation mechanisms in response to diverse carbon sources. Results Our study investigates the transcriptional responses of Ruminiclostridium papyrosolvens to different carbon sources to understand its lignocellulose utilization. Using RNA-seq, we analyzed gene expression under glucose, cellobiose, xylan, cellulose, and corn stover, identifying distinct metabolic preferences and regulatory