Abstract This study elucidated the regulatory mechanisms of age-related meat flavor precursors in naturally grazed Sunit sheep of different ages (6, 18, and 30 months) by analyzing their metabolite and mRNA profiles. The longissimus dorsi muscle was sampled from each group and subjected to metabolomics and transcriptomics analyses. A total of 395 differential metabolites (DMs) and 1482 differentially expressed genes (DEGs) were detected across the age groups. As the age increased, the expression levels of GOT1 and GLUL increased, activating arginine biosynthesis and alanine, aspartate, and glutamate metabolism pathways, which promoted the accumulation of umami compounds (L-glutamate and L-glutamine). Meanwhile, the expression level of LPIN1 increased with age, promoting glycerophospholipid metabolism and contributing to the development of lipid-related aroma. FADS1 and FADS2 expressed the highest levels at age Mth_18. This pattern influenced the unsaturated fatty acid biosynthesis pathway and consequently had a regulatory effect on the DHA levels. An amino acid metabolic regulatory network that involved arginine biosynthesis, alanine, aspartate and glutamate metabolisms, and arginine and proline metabolisms was established. This study provided insights into the variations in meat flavor precursors among sheep of different ages and elucidated the underlying regulatory mechanisms. Keywords: Sunit sheep, flavor precursor, age, regulation mechanism 1. Introduction Meat quality, including the tenderness, flavor, color, and juiciness, influences consumer preferences and choices. Flavor is considered a