Abstract Most organisms possess circadian clocks that are able to anticipate the day/night cycle and are reset or “entrained” by the ambient light. In the zebrafish, many organs and even cultured cell lines are directly light responsive, allowing for direct entrainment of the clock by light. Here, we have characterized light induced gene transcription in the zebrafish at several organizational levels. Larvae, heart organ cultures and cell cultures were exposed to 1- or 3-hour light pulses, and changes in gene expression were compared with controls kept in the dark. We identified 117 light regulated genes, with the majority being induced and some repressed by light. Cluster analysis groups the genes into five major classes that show regulation at all levels of organization or in different subset combinations. The regulated genes cover a variety of functions, and the analysis of gene ontology categories reveals an enrichment of genes involved in circadian rhythms, stress response and DNA repair, consistent with the exposure to visible wavelengths of light priming cells for UV-induced damage repair. Promoter analysis of the induced genes shows an enrichment of various short sequence motifs, including E- and D-box enhancers that have previously been implicated in light regulation of the zebrafish period2 gene. Heterologous reporter constructs with sequences matching these motifs reveal light regulation of D-box elements in both cells and larvae. Morpholino-mediated knock-down studies of two homologues of the D-box binding factor Tef indicate that these are differentially involved in the cell autonomous light induction in a gene-specific manner. These findings suggest that the mechanisms involved in period2 regulation might represent a more general pathway leading to light induced gene expression. Introduction The ability to perceive sunlight provides animals with many adaptive advantages. Light perception can be used for orientation in the environment, the location of prey and the escape from predators as well as for communication via visual signals. The daily changes in lighting conditions also represent an important time cue for the optimal temporal distribution of activities and physiological processes of the organism, which in turn enhances survival. In this case, environmental lighting signals cooperate with endogenous timers, the most important of which is the circadian clock. Circadian clocks regulate daily changes in physiology in most organisms, ranging from cyanobacteria to humans [45][1]. These clocks consist of an oscillator mechanism that generates rhythms with a period of roughly 24 hours even in the absence of external cues. Molecularly, the oscillator is composed of proteins participating in a transcription-translation feedback loop (reviewed in [46][2], [47][3], [48][4]). In vertebrates for example, the transcription factors Clock and Bmal1 activate transcription of the period (per) and cryptochrome (cry) genes via so-called E-box elements in their promoters. The Period and Cryptochrome proteins accumulate in the cytoplasm, re-enter the nucleus and act there to inhibit the transcriptional activity of the Clock-Bmal1 complex. This reduces the transcription of the cry and per genes, hence less protein is made, and the repression is released, so that the cycle can start again. Additional feedback loops and posttranslational modifications are thought to confer the 24 h period of this mechanism and to render it more robust. This molecular clock mechanism is encountered in the neural circadian pacemaker of the brain, the paired suprachiasmatic nucleus (SCN) situated in the hypothalamus above the optic chiasm, which drives rhythms of behavior and other “centrally” regulated aspects of physiology. However, this clock mechanism is also present in most other tissues of the body, constituting so-called “peripheral” clocks. These clocks govern many aspects of cell and tissue physiology, acting either autonomously or in concert with systemic cues. The circadian oscillator can be synchronized with (or “entrained” to) the environment via a number of different cues, including temperature, food, various chemical compounds and, perhaps most pervasively, light. In mammals, a subset of retinal ganglion cells which are intrinsically photosensitive (so-called ipRGCs, [49][5]) projects to the SCN. The opsin photopigment, melanopsin, is expressed in the ipRGCs and is sufficient for circadian light responses in the absence of functional rods and cones [50][6], [51][7], [52][8]. However, melanopsin knock-out mice still entrain to light-dark (LD) cycles when rods and cones are present, therefore the ipRGCs can also transmit light information received through the rods and cones [53][9]. Light induced changes in ipRGC activity are signalled via glutamate and PACAP containing projections to the neurons of the SCN, leading to acute changes in neuronal activity and also to gene expression changes mediated by the transcription factor CREB [54][10]. Currently poorly defined signals, which might include hormones such as glucocorticoids, as well as body temperature changes and the activity of the autonomic nervous system, then transmit timing information from the SCN to the peripheral tissue clocks [55][11], [56][12]. However, under some conditions, e.g. unnaturally timed feeding schedules [57][13], peripheral clocks can be “decoupled” from the SCN clock and run even in antiphase to it, revealing the principal autonomy of peripheral tissue clocks from the central pacemaker. Nevertheless, to perceive changes in environmental lighting conditions, mammalian peripheral clocks rely upon systemic signals from the SCN. This is not the case in many other organisms. In Drosophila, peripheral tissue clocks respond directly to light [58][14]. Cryptochrome, which functions as part of the core clock feedback loop in mammals, serves as a photopigment in the fruit fly [59][15]. Strikingly, direct light responsiveness of peripheral clocks is also encountered in a vertebrate, the zebrafish. Clock gene expression in zebrafish organ cultures can be entrained to LD cycles [60][16], and even single zebrafish cell culture cells are able to entrain their clocks in response to light pulses [61][17], [62][18]. In the absence of light, rhythms in single cells continue, but drift out of phase with respect to the other cells, leading to an apparent dampening of the rhythm of the entire culture. The nature of the photoreceptor mediating this peripheral light responsiveness is still elusive, although various candidates have been proposed, including Teleost Multiple Tissue (TMT-) Opsin and Cryptochromes [63][19], [64][20]. A more recent study has implicated specifically the cry1a gene in mediating the effects of light on the clock. However, Cry1a is hypothesized to act as an element of the signalling pathway, rather than serving as a light receptor itself [65][21]. The expression of several clock genes acutely responds to light in zebrafish cells, e.g. per1, per2 and cry1a [66][17], [67][22], [68][23], [69][24]. Light induced expression of the per2 gene has very recently been shown to depend on D- and E-box enhancer elements within its promoter [70][25]. Strikingly, evidence points to the signalling pathways mediating light induced clock gene expression in fish being conserved in mammals, despite the lack of peripheral photoreception. Fibroblasts transfected with melanopsin become light sensitive and can entrain their clocks in response to exposure to LD cycles [71][26], [72][27]. Furthermore, the light responsive D- and E-box enhancer elements of the per2 gene are conserved in chicken and mammals, including humans, and a human promoter fragment containing these elements mediates light induction of a reporter gene when transfected into zebrafish cells. One way to interpret these findings would be that, in mammals, SCN-controlled signals for the entrainment of peripheral clocks might have co-opted pathways that formerly acted downstream of the now lost peripheral light receptor [73][25]. Interestingly, the direct light reception in peripheral tissues might affect physiology not only indirectly, via regulating the clock, but also more directly. For example, one gene that has been shown to be light inducible already in the early embryo, even before the clock is running properly, is the DNA repair enzyme 6,4-photolyase/cry5 [74][28]. This regulation seems likely to have physiological relevance, since mortality caused by UV treatment was reduced when zebrafish embryos had been exposed to light prior to treatment [75][28]. Similar findings have recently been reported in the zebrafish z3 cell line [76][29]. Here, we set out to characterize light induced transcription in the zebrafish more globally by identifying light responsive genes at three levels of organization: whole larvae, heart organ cultures and cell culture cells. We identified a relatively restricted set of 117 regulated genes, the majority (90) being upregulated by light. Induced genes fell into a variety of functional categories, including genes involved in circadian clock function, DNA repair, retinal light reception and metabolism, highlighting the pervasive effects of light exposure on physiology. Strikingly, examination of the promoters of the upregulated genes revealed an enrichment for E- and D-box binding sites, indicating that the role E- and D-box binding factors play in light induction of the per2 gene might also extend to many other light responsive genes. Materials and Methods Ethics Statement All zebrafish husbandry and experimental procedures were performed in accordance with the German animal protection standards and were approved by the Government of Baden-Württemberg, Regierungspräsidium Karlsruhe, Germany (Aktenzeichen 35-9185.64). Raising adult and larval zebrafish Adult zebrafish (Tübingen strain) were raised according to standard methods [77][30]. Fertilized eggs were collected within 2 h of laying, and aliquots of 20 eggs were transferred into 20 ml of E3 buffer in 25-cm^2 tissue culture flasks [78][31]. The flasks were incubated in a large-volume thermostat-controlled water bath equipped with an Osram L15W/41-827 light source for 5 days in constant darkness (DD) at 25°C, then illuminated with an approximate intensity of 1,200 lux for 1 or 3 h or maintained in DD before RNA extraction. The intensity of illumination was measured with a POCKET LUX Illuminance Meter (LMT, Berlin). In vitro heart culture In vitro heart cultures were carried out essentially as described before [79][32]. Briefly, freshly dissected tissue was placed in L15 medium supplemented with 15% fetal calf serum and with gentamycin (50 µg/ml) and Pen/Strep (100 units/ml; 100 µg/ml). Organs were dissected from fish and washed 4 times with medium (10 ml/5 hearts). 5 hearts each were placed into cell culture flasks containing 5 ml of medium and submerged in the water bath in constant darkness for 4 days, then subjected to the light pulse as performed for the larvae and finally directly processed for RNA extraction. Cell culture PAC2 cell culture was carried out essentially as described before [80][16], [81][17]. Cells were seeded into 75 cm^2 flasks and submerged in the waterbath in constant darkness for a week before light pulse treatment and RNA isolation. RNA isolation and microarray hybridization Total RNA was extracted from at least three biological repeat samples per experimental condition using Trizol RNA isolation reagent (GIBCO-BRL) according to the manufacturer's instructions. Synthesis and labeling of antisense RNA was performed as recommended by the array manufacturer, using kits for double-stranded cDNA synthesis (Invitrogen), for transcription and labeling of antisense RNA (Enzo Life Sciences) and for probe purification and hybridization controls (Affymetrix). Samples were hybridized to the Affymetrix Zebrafish GeneChip, representing 15,617 probes. Microarray analysis Microarray hybridization data were analyzed using scripts written in the statistical programming language R [82][33] supported by packages provided by the Bioconductor project [83][34]. Background correction, normalization and probe set summarization were performed using the robust multi array algorithm with background adjustment (gcrma, [84][35]). Two methods were employed to detect genes differentially expressed in response to light exposure. First we used linear models and a moderated t-statistic from the package limma [85][36]. Multiple testing correction was performed using Benjamini and Hochberg false discovery rate (FDR) [86][37] and genes with an adjusted p-value of ≤0.05 were considered differentially expressed. Secondly, we used the meta-analysis technique, Rank Product [87][38], to generate a non-parametric statistic that detects genes consistently highly ranked in the comparisons between light exposed and control samples. All data is MIAME compliant, and raw and normalized data were stored in the ArrayExpress data base ([88]http://www.ebi.ac.uk/microarray-as/ae/, accession-no. E-MTAB-381). Annotations for the differentially expressed genes were retrieved with the Affymetrix probe set IDs using BioMart version 0.7 [89][39], querying the dataset of zebrafish genes based on the genome release Zv8 in the Ensembl database (release 56). In the cases where no Ensembl Gene IDs were assigned, we examined the location of the probe set by BLAST to check whether they were located 5′ or 3′ to an annotated gene. If there was a unique BLAST hit close to a gene annotation, the corresponding Ensembl Gene ID was assigned to the probe set and marked as a 5′ or 3′-hit. The Ensembl Gene IDs were subsequently used to assign the corresponding ZFIN IDs and Entrez Gene IDs. For some probes, including the two most highly downregulated ones, no annotated sequence could be identified in the Zv8 release with either strategy, and they were therefore excluded from the subsequent analyses. Where no particular references are given, the gene description is based on