Abstract Motivation Protein ubiquitination is one of the important post-translational modifications by attaching ubiquitin to specific lysine (K) residues in target proteins, and plays important regulatory roles in many cell processes. Recent studies indicated that abnormal protein ubiquitination have been implicated in many diseases by degradation of many key regulatory proteins including tumor suppressor, oncoprotein, and cell cycle regulator. The detailed information of protein ubiquitination sites is useful for scientists to investigate the mechanism of many cell activities and related diseases. Results In this study we established mUbiSida for mammalian Ubiquitination Site Database, which provides a scientific community with a comprehensive, freely and high-quality accessible resource of mammalian protein ubiquitination sites. In mUbiSida, we deposited about 35,494 experimentally validated ubiquitinated proteins with 110,976 ubiquitination sites from five species. The mUbiSiDa can also provide blast function to predict novel protein ubiquitination sites in other species by blast the query sequence in the deposit sequences in mUbiSiDa. The mUbiSiDa was designed to be a widely used tool for biologists and biomedical researchers with a user-friendly interface, and facilitate the further research of protein ubiquitination, biological networks and functional proteomics. The mUbiSiDa database is freely available at [35]http://reprod.njmu.edu.cn/mUbiSiDa. Introduction Protein ubiquitination, known as the important protein post-translational modification of targeting proteins by ubiquitins for their subsequent degradation in the ATP-dependent ubiquitin proteasome system (UPS), plays an important role in cell activity [36][1]–[37][5]. Currently, many regulatory functions of protein ubiquitination have been discovered, including the regulation of DNA repair and transcription, control of signal transduction, and implication of endocytosis and sorting. There are also sufficient evidences showing that the deregulation of protein ubiquitination have been implicated in many diseases by degradation of many key regulatory proteins, including tumor suppressor, oncoprotein, and cell cycle regulator [38][6]–[39][8]. Therefore protein ubiquitination has captured the attention of researchers in life science fields. Protein ubiquitination is implemented by ubiquitin binding to the lysine site of a target protein. The location, numbers, and distribution of ubiquitination site are important information for scientists to investigate the mechanism of UPS and relevant diseases [40][9], [41][10]. Therefore recently scientists began to focus on collecting and managing the available protein ubiquitination information. The current available ubiquitination database like UbiProt provides information almost exclusively on yeast protein ubiquitination due to the previous experimental limits [42][11]. For human, hUbiquitome mainly focused on the relationship between ubiquination enzymes and substrates, and only 279 substrates were included in the database [43][12]. With the recent new technology advances, such as proteomic technology, mass spectrometry technology, the growing number of the experimentally confirmed ubiquitination sites of mammalian protein laid the solid basis for investigating the regulatory mechanism of protein stability. Therefore it is imperative for scientific community to construct the comprehensive database for depositing and retrieving mammalian protein ubiquitination sites. Consequently, in this study we constructed a user-friendly database, mUbiSida, which meets the above requirements. The dataset in mUbiSiDa are mainly collected from published papers. In total, we searched and obtained 104 references containing experimentally validated 35,494