Abstract The activation of signaling cascades in response to extracellular and intracellular stimuli to control cell growth, proliferation and survival, is orchestrated by protein kinases via phosphorylation. A critical issue is the study of the mechanisms of cancer cells for the development of more effective drugs. With the application of the new proteomic technologies, together with the advancement in the sequencing of the human proteome, patients will therefore be benefited by the discovery of novel therapeutic and/or diagnostic protein targets. Furthermore, the advances in proteomic approaches and the Human Proteome Organization (HUPO) have opened a new door which is helpful in the identification of patients at risk and towards improving current therapies. Modification of the signaling-networks via mutations or abnormal protein expression underlies the cause or consequence of many diseases including cancer. Resulting data is used to reveal connections between genes proteins and compounds and the related molecular pathways for underlining disease states. As a delegate of HUPO, for human proteome on children assays and studies, we, at Hospital Universitario Niño Jesús, are seeking to support the human proteome in this context. Clinical goals have to be clearly established and proteomics experts have to set up the appropriate proteomic strategy, which coupled to bioinformatics will make it possible to achieve new therapies for patients with poor prognosis. We envision to combine our up-coming data to the HUPO organization in order to support international efforts to advance the cure of cancer disease. Keywords: Diagnosis, Oncology, Proteomics, Treatment Background Proteomics is a powerful tool in biomarker discovery and mechanism understanding. Proteomics is the next generation following genomics. Using proteomics, researchers can efficiently perform large-scale screening to achieve valuable information [[30]1]. The Human Proteome Organization (HUPO) main goal is to serve the Public Health Service in an international manner via collaborators from the best expertise and well-known excellence academics. In this context, we would like to point out the important contribution from Spanish Proteomic Society (SeProt), European Proteomic Society (EUPA) and HUPO to obtain the sequence of the human proteome. We aim to contribute with our future data from Hospital Niño Jesus using body fluids (such as bone marrow, peripheral blood) from children suffering cancer, and by collaboration with several international hospitals and research centers of prestige for this important labor, which will benefit children with poor prognoses as at present there is no correct therapy for all types of pediatric cancers [[31]2–[32]5]. As different phosphosites in a protein trigger either protein activation or inactivation; phosphosites can be used for quantification. The high number which can be identified as altered phosphoproteins in a clinical study, implies that many can also be reported with key roles in tumor progression and/or drug resistance. Indeed, when obtaining phosphoproteomics data in clinical research, vast knowledge of drug resistance appear, and thus, new insights are offered for future drug candidates. Several articles show that proteomic analysis is a powerful tool for profiling the phosphorylation patterns and may help to better understand drug resistance [[33]6–[34]11]. We aim to show some proteomic and bioinformatics tools which are useful for clinical research and which contribute towards accurate diagnoses and improve therapies in order to benefit the patients. Findings Phosphoproteomics for deciphering drug resistance and new therapies related to phosphorylation pathways in cancer Our aim is to outline as basic ideas and tools of proteomics, how evolution is aiming to reach clinical advances. Amino acids site-specific phosphorylation assignments on thousands of proteins in a single experiment are possible. The combination of different proteomic-MS strategies is already being carried out to characterize signaling pathways that govern oncogenesis and also to unravel targets of kinase inhibitors, difficult to characterize because of spatial and temporal cellular events. It is, therefore, helpful for understanding cell pathways and facilitating drug discovery [[35]1]. Sample preparation The sample preparation step is the key to successful phosphoproteomic-analysis. These include: (a) be snap-frozen; (b) include treatments with phosphatase inhibitors to avoid modifying phosphopeptides during sample work-up; and (c) avoid salts and detergents, which interfere with subsequent analyses. Using Immobilized metal ion affinity chromatography (IMAC), titanium dioxide metal-based chromatography (TiO[2]), zirconium dioxide (ZrO[2]) and sequential elution from IMAC (SIMAC), the negatively charged phosphopeptides are purified by their affinity to positively charged metal ions [[36]1, [37]8]. During IMAC and TiO[2] operations, simple and complex samples containing phosphopeptides and non-phosphorylated peptides are dissolved in an acidic solution to reduce the non-specific binding of acidic peptides, and to stimulate the electrostatic interactions between the negatively charged peptides, mainly phosphopeptides, and the metal ions. IMAC mainly elutes multiple-phosphopeptides while TiO[2]chiefly elutes mono-phosphopeptides. Both resins have the drawback of binding acidic non-phosphorylated peptides (negatively charged peptides), as peptides containing acidic amino acid residues (e.g. glutamic acid and aspartic acid), can also bind to the metal ions. This drawback on IMAC (Fe^3+) is circumvented via converting acidic amino acid residues to methyl esters and esterification of the acidic residues prior to the MS analysis. In addition, higher specificity is achieved and yield compared to IMAC (Fe^3+) for the selective enrichment of phosphorylated peptides from model proteins when using 2,5-dihydroxybenzoic acid (DHB) with TiO[2]. In fact, more phosphopeptides are bound to the metal ions and more phosphopeptides can be isolated by using ammonium hydroxide as the eluent by use of glycolic acid in the loading buffer of TiO[2]. SIMAC is the combination of IMAC with TiO[2] protocols. It includes improvements in both resins to be coupled in an efficient manner in order to allow enrichment of mono-and multiple-phosphorylated peptides in a single experiment. Mono-phosphorylated peptides mainly elute from IMAC (Fe^3+) under acidic conditions whereas multi-phosphorylated peptides elute at high basic pH. ZrO[2] is another useful phosphopeptide enrichment prior to MS analysis and its principle is based on metal affinity chromatography such as IMAC and TiO[2]. The relevant clue related to ZrO[2] is that it permits the isolation of single phosphorylated peptides in a more selective manner than TiO[2] [[38]12–[39]24]. In addition, purification of phosphorylated proteins can be carried out via antibody-purification. This methodology is highly efficient when purifying tyrosine –phosphorylated proteins, and it can also be coupled to phosphoenrichments such as IMAC, TiO[2], ZrO[2] and SIMAC for further MS analysis. This is an important advantage as phosphorylation on tyrosines is under-represented by MS-assays, thus the use of specific antibodies to enrich tyrosine phosphorylated peptides from complex samples is of advantage [[40]25]. When combining the previously mentioned phosphoenrichments with strong cation and anion exchange (SCX and SAX) or hydrophilic interaction chromatography (HILIC), large-scale phosphoproteomic studies of interest can be carried out successfully. During SAX operations, a negatively charged analyte is attracted to a positively charged solid support, and during SCX operations, a positively charged analyte is attracted to a negatively charged solid support. Both techniques were, for the first time, successfully coupled to IMAC, achieving greater recovery and identification by MS of important phosphorylated peptides originating from signalling pathways and membrane proteins respectively, therefore making it possible to carry out relevant scientific studies following those protocols described in the references previously detailed. In addition, today’s scientists use