Abstract Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle. __________________________________________________________________ Flame retardants are widely used industrial chemicals that are added to many products to prevent them from burning and to reduce the risk of fires. Since 2004, polybrominated diphenyl ethers (PBDEs), such as octaBDE and pentaBDE, which once were used worldwide and which shared a large proportion of the worldwide flame retardant market, have been gradually phased out of the market because of their environmental ubiquity and potential adverse health effects. To satisfy the market demand, production of alternative flame retardants, including organophosphate flame retardants (OPFRs), has been increased[34]^1. Additionally, OPFRs are physically added but not chemically bonded to materials, which can lead to easy release of such compounds into the environment. Due to their increasing use, OPFRs have been detected in multiple environmental media, including indoor and outdoor air[35]^2,[36]^3, surface water[37]^4, groundwater[38]^5 and drinking water[39]^6, and in aquatic biota and human milk[40]^7. Under this circumstance, the environmental and human health risk assessment of OPFRs is extraordinarily exigent. Triphenyl phosphate (TPhP, also called TPP) is a high production volume OPFR used in unsaturated polyester resins, in PVC (polyvinyl chloride), and in commercial mixtures, such as FM550 from Chemtura (Firemaster® 550 flame retardant, a Chemtura proprietary mixture of brominated and non-halogen flame retardants) and AC073 from Supresta (commercial flame retardant mixture of proprietary aryl phosphates and triphenyl phosphate)[41]^8. Due to the increasing use of this compound, TPhP has been the most frequently detected OPFR in both environmental media and biota[42]^9. According to Zheng et al. and Stapleton et al.[43]^10,[44]^11, TPhP is the main OPFR detected in house dust, with levels of 9810 and 7360 ng/g in China and the USA, respectively. In surface water, the maximum reported level of TPhP was 14000 ng/L in influent samples in Norway in 2007[45]^12. Although TPhP is easily biodegraded as a non-halogen organophosphate ester and has not been considered to be persistent or bioaccumulative[46]^13,[47]^14, the constant and abundant use and release of this compound may also cause sustained exposure to humans and wildlife. Moreover, TPhP has been reported to show multiplex toxicities, including neurotoxicity, developmental toxicity and endocrine disrupting ability, in organisms[48]^15,[49]^16,[50]^17. Various indications have suggested that TPhP poses risks to the environment and to health. However, toxicology data are still insufficient to assess all aspects of the environmental and health risks of TPhP. The liver is a vital organ that plays a major role in metabolism and has numerous functions in vertebrates and is sensitive to xenobiotics. The hepatotoxicity of TPhP remains unknown, although many studies have investigated TPhP metabolism in the liver[51]^18,[52]^19,[53]^20. Omics, including transcriptomics, proteomics and metabolomics, have been well developed and widely introduced in toxicology studies in the past 10 years[54]^21. Compared to traditional toxicological endpoints, omics approaches can provide high-throughput data of numerous biomolecules and reflect integrated global responses within an organism[55]^22. Furthermore, the integration of these omics streams (2 or 3 of them) can provide a deep mechanistic understanding of how compounds perturb normal biological processes and activate defense mechanisms[56]^23. Deng et al. have provided a comprehensive view of the toxic effects of haloacetamides, which are disinfection by-products, by combining metabolomics methods and traditional oxidative stress endpoints[57]^24. Omics approaches have also been introduced to investigate the toxic effects of OPFRs. Scanlan et al., by using metabolomics and transcriptomics tools, have found that FM550 impairs nutrient utilization or uptake in Daphnia magna[58]^25. Alam et al. have investigated the metabolic influences of tributyl phosphate (TBP) and TPhP in a nuclear magnetic resonance (NMR)-based metabolomics study of rat urine and have found that TPhP disturbs cellular energy metabolism and creatine synthesis in rats[59]^26. These studies have revealed that TPhP or TPhP-containing material impairs nutrient utilization and cellular energy metabolism in different animals at an individual level. Omics is a good methodology to investigate the hepatotoxicity of TPhP. Zebrafish provide several experimental advantages, such as their low cost, ease of raising large numbers of animals, rapid liver development, and similar molecular and cellular processes to those of humans. Hence, they have been widely employed as a model organism in human disease research and in aquatic ecosystem health studies. The Zebrafish has also been used as a model organism to study drug-induced liver injury[60]^27. To broaden understanding of the hepatotoxicity of TPhP, we performed transcriptomics and metabolomics analyses of adult zebrafish liver after 7 days of exposure to two different concentrations of TPhP. Histopathological liver changes, blood glucose levels and blood lipid levels were also investigated to provide a systematic understanding of adverse effects induced by TPhP in zebrafish. Methods All experimental protocols were approved by the School of the Environment, Nanjing University, and the methods were carried out in accordance with the approved guidelines. Fish Care and Exposure Five-month-old adult zebrafish (Danio rerio, AB strain; sex ratio, 1:1) were purchased from the Institute of Hydrobiology, Chinese Academy of Sciences (Wuhan, China). Before the exposure period, the fish were cultured for more than 1 week in tap water (aerated and basked for two days for dechlorination before use, with oxygen saturation exceeding 80%) and allowed to acclimate to the following conditions[61]^28: 12h:12h light/dark regime, 26 ± 1 °C, pH 7.4–8.1 and a daily feeding (9:00 am) with dry flake food at a maximum of 2% body weight. Before exposure experiments were initiated, the 96h-LC[50] of TPhP to adult zebrafish was determined following the guidance of OECD No. 203[62]^29 (details are shown in [63]Supplementary information, Section S2). The 96h-LC[50] of TPhP to adult zebrafish was found to be 1.026 mg/L; thus, the experimental concentrations of TPhP were set at 0.050 and 0.300 mg/L. The concentration 0.050 mg/L was close to the maximum concentration of TPhP that has been reported in surface water. In total, 270 fish were exposed to related concentrations of TPhP (99+%, purchased from Sigma–Aldrich, USA) with a solvent control (0.1% dimethyl sulfoxide [DMSO], chromatographic grade, purchased from Merck, Germany) in 10 L glass tanks. Each tank contained 30 fish (15 males and 15 females), with 3 parallel tanks per treatment group. The exposure experiments were carried out with a semi-static protocol. Half of the solution in each tank was renewed daily. Other conditions were the same as in the above-mentioned acclimation period. The stability of the TPhP concentrations was confirmed using solid phase extraction and high-performance liquid chromatography (details are shown in [64]Supplementary Information, Section S1). The exposure period lasted for 7 days. The fish were fed daily except on the sampling day. When the fish were sampled, they were first anesthetized in ice-cold water. The exposure experiment was performed twice (540 fish were used), once for metabolomic, transcriptomic and histopathological tests and once for blood and RT-qPCR (reverse transcription-polymerase chain reaction) tests. Histopathological Observation After a one-week exposure period, the livers of zebrafish (10 fish for each concentration group) were dissected and fixed in 10% formalin at 4 °C for 24h. Subsequently, the fixed liver tissues were dehydrated in gradient ethanol, hyalinized in xylene, and embedded in paraffin wax at 56 °C. Then, the paraffin blocks were sectioned at 4-μm thickness. The sections were collected on glass slides and stained with hematoxylin and eosin (H&E) using an H&E Staining Kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) following the manufacturer’s recommendations (standard H&E staining protocol). Histologic lesions were observed using an optical microscope equipped with a digital camera. Metabolomic Analysis After a one-week exposure period, the zebrafish were anesthetized on ice, and their livers were dissected and used for extraction immediately. The extraction was carried out using a methanol/chloroform/water system at 4 °C as described by C.Y. Lin et al. with minor modifications[65]^30. In detail, approximately 50 mg frozen liver tissue (dissected from 12 fish) was homogenized using an electric tissue homogenizer in 400 μL methanol (chromatographic grade, Merck, Germany) and 85 μL ultrapure water (UPW) in a glass tube. The homogenizer was washed with 75 μL UPW; this fluid was also collected in the tube. Then, another 200 μL UPW and 400 μL chloroform (chromatographic grade, Merck, Germany) were added after the tube was vortexed for 60 seconds. Next, the tube was centrifuged at 2000 g at 4 °C for 5 min, and 500 μL methanol/water (upper) and 350 μL chloroform (lower) were separately transferred to new glass tubes followed by lyophilization or vacuum drying, respectively. Polar and nonpolar residues were redissolved using 400 μL UPW + 100 μL D[2]O (99.9 atom% D, containing 0.05 wt% TSP, Sigma–Aldrich, USA) or 500 μL chloroform-d (99.8 atom% D, containing 0.03% v/v TMS, Sigma–Aldrich, USA) separately before NMR analysis. Six parallel samples (12 fish were sacrificed for each sample) were prepared for each treatment/control group. ^1H NMR spectra of all samples were acquired using a Bruker AV600 MHz spectrometer (Bruker Co., Germany) operating at 600.17 MHz and 298.5 K. Spectra of the aqueous samples were acquired using a Carr-Purcell-Meiboom-Gill, 1D acquisition with presaturation (CPMGPR1D) pulse program with 32 scans (FIDs) collected into 65536 data points with Fourier transformation. For the chloroform phase samples, spectra were acquired using a zg pulse program with 16 scans (FIDs) collected into 32768 data points with Fourier transformation. NMR spectra were processed (phase correction, baseline correction and ppm shift correction using trisilylpropionic acid [TSP] or tetramethylsilane [TMS]) and analyzed (GSD, Global Spectral Deconvolution) using MestReNova v6.1.0–6224 software. Metabolite resonances were identified using both Chenomx NMR Suite 8.02 and published literature[66]^31,[67]^32,[68]^33. NMR spectra and assigned metabolites are presented in [69]Figure S1, [70]Figure S2 and [71]Table S1. Integrations of water resonance (4.70–5.15 ppm in spectra of aqueous samples) and methanol resonance (3.34–3.38 ppm in spectra of aqueous samples and 3.30–3.40 ppm in spectra of chloroform phase samples) were excluded. Following the removal of these regions, the metabolites were then normalized to the total integrated spectral area (0.65–9.37 ppm for aqueous samples and 0.60–7.00 ppm for chloroform phase samples). Then, the data set was log transformed and Pareto scaled (mean-centered and divided by the square root of the standard deviation of each variable) before statistical analysis. Significantly changed metabolites (SCMs) were identified by t-test and partial least squares-discriminant analysis (PLS-DA) using an online tool for metabolomics data analysis, MetaboAnalyst 3.0[72]^34. Transcriptomic Analysis The livers of 4 zebrafish were dissected and used for total RNA extraction. Total RNA extraction was performed using TRIzol reagent (Life Technologies). Two parallel total RNA samples were prepared for each treatment group. Then, the transcriptomic analysis was conducted by BGI Tech. (Shenzhen, China) using BGI RNA-Seq (Quantification) analysis ([73]http://bgi-international.com/services/genomics/rna-seq-quantificat ion/#tab-id-1). In detail, the total RNA samples were first treated with DNase I to degrade any possible DNA contamination. Then, the mRNA was enriched by using oligo(dT) magnetic beads (for eukaryotes). The mRNA was mixed with the fragmentation buffer and fragmented into short fragments (approximately 200 bp). Then, the first strand of cDNA was synthesized by using random hexamer primers. Buffer, dNTPs, RNase H and DNA polymerase I were added to synthesize the second strand. The double-stranded cDNA was purified with magnetic beads. End repair and 3′-end single nucleotide A (adenine) addition were then performed. Finally, sequencing adaptors were ligated to the fragments. The fragments were enriched by PCR amplification. During the quality control step, an Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-Time PCR System were used to qualify and quantify the sample library. The library products were used for sequencing via an Illumina HiSeq^TM 2000 or other sequencer when necessary. Then, the raw data were cleaned by removing low-quality reads as well as reads with adaptor sequences and reads containing unknown bases more than 10%. Clean reads were mapped to reference sequences and/or references. No more than 2 mismatches