Abstract Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans. We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved “regeneration genes” and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery. Keywords: spinal cord injuries, genomics, RNAseq analysis, turtles, amniotes, animal models, axon regeneration, glial scarring Introduction Spinal cord injury (SCI) is the cause of one of the most devastating conditions for humans because leads to permanent loss of nervous functions below the site of injury. Considerable research efforts have been made to find new therapies aimed to reduce (or revert) damage or to improve the quality of life of patients living with SCI (Silva et al., [33]2014). Some groups explored the use of mesenchymal (Park et al., [34]2004; Kanno, [35]2013; Li and Lepski, [36]2013) and neural stem cells (Sandner et al., [37]2012), whereas others focused on gene therapy. The latter approach appears as a promising alternative oriented to stimulate intrinsic repairing mechanisms of the injured cord (Weidner et al., [38]2012). In this regard, special attention has been paid to the modulation of diverse cell growth factors. Among them, those from the neurotrophin gene family (particularly BDNF that promotes axonal growth) yielded the most promising results in relation to therapeutic possibilities. However, currently available gene therapy treatments do not achieve a significant functional recovery (Neirinckx et al., [39]2014). Moreover, complications from potential treatments, such as an increased risk of tumorigenesis (Lee et al., [40]2013), have hampered possible clinical applications. The inability to regenerate the spinal cord is not restricted to adult mammals, but is also observed in birds, most reptiles, and even in non-amniotes like frogs (Diaz Quiroz and Echeverri, [41]2013). In non-amniote vertebrates, regeneration of the spinal cord is more common. Among the latter, urodele amphibians (salamanders) appear as one of the most notable examples, as they regenerate several parts of their body after amputation, including the spinal cord (Tanaka and Ferretti, [42]2009; Diaz Quiroz and Echeverri, [43]2013). In fact, 2.5–5 months after spinalization, salamanders recover the ability to walk and swim almost as uninjured animals (Chevallier et al., [44]2004; Cabelguen et al., [45]2010). Some Osteichthyes (bony fishes) can also regenerate their spinal cords. Such is the case of the model species Danio rerio (Zebrafish), yet its regeneration ability is more limited than in salamanders (Becker et al., [46]1997). So far, the only known amniotes with spinal cord regenerating capacity are the slider turtles, a group of American freshwater turtles commonly used as pets (Rehermann et al., [47]2009, [48]2011). The phylogenetic location of this group implies that they are the closest relative to mammals exhibiting this feature. This evolutionary aspect is an essential consideration that makes these turtles a unique model to investigate the peculiar cellular and molecular mechanisms that allow regeneration or reconnection in some vertebrate groups but not in others. The cellular and functional processes that take place after traumatic spinal injury in turtles were characterized by Rehermann et al. ([49]2009) in the species Trachemys dorbignyi. Briefly, the first histological indications of healing appear about 5 days after injury, consisting in the formation of a cellular bridge permissive for growing axons, which connects the cephalic and caudal portions of the injured cord. Although, full anatomical restoration and functional recovery was never observed, given a proper recovery time, turtles are able to walk again using their four legs though stepping is slower than in normal animals. Moreover, their hindlimbs are not employed for swimming (Rehermann et al., [50]2009). Therefore, this group of turtles represents an intermediate stage between non-regenerating vertebrates, like mammals, and fully regenerating animals like most anamniote vertebrates. In summary, the crucial phylogenetic location of turtles (relative proximity to mammals) and their incomplete regeneration capacity are strong reasons to consider this group a unique model to study spinal cord regeneration. Most previous molecular studies on the response to SCI were focused on limited sets of genes, which were known or suspected to have a direct correlation with the process (van Horssen et al., [51]2006; García et al., [52]2012; Demircan et al., [53]2013; Verslegers et al., [54]2013). However, considering the complexity of SCI response, both in regenerative and non-regenerative vertebrates, it would be also important to tackle its study from a genome wide perspective rather than focusing only on some potential candidate genes. At present, there is no genome-scale study characterizing the response to SCI in turtles, and to the best of our knowledge, neither there is any global comparative analysis among other vertebrate groups (having different or similar regenerating abilities). Besides, genome scale studies on mammals are scarce with just some assessments in rodents (Velardo et al., [55]2004; Chen K. et al., [56]2013; Torres-Espín et al., [57]2013). In this work, we explore the gene expression patterns (in a genome wide scale) associated with the response to SCI in turtles, aiming to understand the molecular mechanisms that allow regeneration in these animals but are absent or inhibited in mammals. Materials and methods Animals and surgical procedure Fresh-water turtles of the species Trachemys scripta elegans (carapace lengths 6 cm) were used (n = 12) in this study. The detailed surgical procedures and post-operative care have been described previously (Rehermann et al., [58]2009). As control we used “sham injured” animals that were obtained using the same surgical procedure as in actual injured animals, but leaving the spinal cord intact. This control allowed us to “subtract” the side effects of surgery on gene expression from those caused by SCI itself. All animal handling and experimental procedures were performed according to the animal welfare guidelines of CNEA (National Commission for Animal Experimentation). The protocols were evaluated and approved (license # 005-09-2015) by the CEUA-IIBCE (Comisión de Ética en el Uso de Animales), the Committee for Animal Care and Use of Instituto de Investigaciones Biológicas Clemente Estable. Tissue preparation For RNASeq differential expression analysis we studied a total of 9 turtles that were killed 4 days after surgery. In injured turtles, a 4 mm long cord segment of the spinal cord centered on the lesion epicenter was quickly dissected out and placed in RNAlater (Sigma-Aldrich, St. Louis, MO, USA). Spinal cord segments of sham injured animals were processed in the same way as those with a spinal cord transection. RNA extraction, library preparation, and sequencing The tissue was mechanically homogenized using a cordless motor and pellet pestle (Sigma–Aldrich). Total RNA was extracted and purified using TRIZOL reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer's protocol. The concentration of RNA samples were quantified using the Nanodrop (Nano-Drop Inc., Rockland, DE, USA) and RNA integrity was determined using Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Only samples with a RNA Integrity Number (RIN) higher than 7 were used to make sequencing libraries. RNA samples were polyA selected and sequencing libraries were constructed using ScriptSeq RNA Sample Prep Kit as described in the ScriptSeq RNA Sample Preparation V2 Guide (Illumina). ScriptSeq Index PCR primers were used to allow sequencing several libraries in a single lane. In total, six samples were sequenced, two derived from sham animals, three from injured ones, and one sample which consisted on a pool of different tissues. The latter was used only for transcriptome assembly (see Section De novo Transcriptome Assembly). Two replicates, one derived from sham and the second from injured animals consisted in a pool of 3 specimens each and were sequenced using 2 × 100 paired-end reads in an Illumina GAIIX platform. Three additional biological replicates (one sham and two spinalized animals) were derived from one specimen each, and were sequenced using 2 × 75 paired end reads in Illumina MiSeq system. RNASeq data used for this study was deposited in the SRA repository under the accession number [59]SRP082501. Gene expression analysis The genome of a close relative species, Chrysemys picta, was combined with de novo transcriptome assembly (from T. scripta itself) to obtain a mapping reference. The assembled transcriptome allowed us to analyze genes which are too divergent between the two species (hence preventing read mapping on C. picta) or not present in the C. picta genome assembly. Improving the annotation of C. picta (reference) genome using RNAseq data Reads were mapped to the C. picta genome (NCBI cpic v 3.0.1) with Tophat (v 2.0.8) using default options. Reads that failed to map into this genome were isolated and analyzed separately (see Section Differential Expression Analysis). Mapped reads were assembled using RBTA (Reference Based Transcriptome Assembler) with Cufflinks (Trapnell et al., [60]2012; v 2.1.1). Assemblies for each condition were combined with the C. picta reference genome (NCBI C. picta reference v3.0.1) using Cuffmerge (Trapnell et al., [61]2012; v 1.0.0) to produce a final enriched consensus genomic reference file (gtf file) that was used for downstream analyses (for details see Figure [62]1 and Figure [63]SF4). Figure 1. [64]Figure 1 [65]Open in a new tab Schematic depiction of the experimental pipeline used to generate an “enriched” C. picta mapping reference and subsequent differential gene expression analysis. Further details in section under the title “de novo transcriptome assembly” and Figures [66]S1–S6 in supplementary file. De novo transcriptome assembly Only Illumina GAIIX reads (2 × 100 pe) were used for assembling. These were quality filtered: undetermined and low quality bases were trimmed out, and the resulting read fragments shorter than 70 nt were discarded (results are summarized in Figure [67]SF1 and Table [68]S1). De novo assembly was performed using Trinity RNA-seq assembler (v r2013-05-25) which in the case of our dataset, outperformed other assembling algorithms tested (Abyss, Oases, and a two-step strategy combining Abyss and Cap3 as described in Supplementary File, in section under the title “de novo transcriptome Assembly” and Figure [69]SF2). The experimental pipeline of the analysis is depicted in Figure [70]1. Differential expression analysis TopHat2 (Trapnell et al., [71]2009) was used to map reads on the enriched C. picta mapping reference obtained with Cuffmerge as described in Section Improving the Annotation of C. picta (Reference) Genome Using RNAseq Data (i.e., C. picta genome, gtf enriched annotation file). When assessing the expression levels of divergent genes (or genes not present in the C. picta genome) using the “de novo” mapping reference, read mapping was done with Bowtie2 (Langmead and Salzberg, [72]2012). Read counts were obtained with HTSeq-count (v 0.6.0) and differential expression analysis was conducted using DEseq2 (Anders and Huber, [73]2010; Love et al., [74]2014). Genes were considered as differentially expressed (DE) when the three following conditions were met: a value of FDR lower than 0.1 (FDR is the False Discovery Rate, a correction of the p-value to account for multiple simultaneous tests); a fold change in transcript abundance of at least two (in either direction) and a minimum number of mapped reads in at least one of the conditions not lower than 50. Functional characterization of differentially expressed genes: gene ontology and metabolic pathways analyses Because the annotation of C. picta genome publicly available has no Gene Ontology (GO) terms associated to its genes, we generated a GO annotation using Blast2go (v 2.7.0). Genes containing several isoforms may pose biases because these isoforms share GO terms, therefore leading to their overrepresentation. To avoid possible artifacts, isoforms were collapsed into their corresponding genes using a homemade pipeline. Gene Ontology enrichment analysis was done using the Fisher's exact test applying FDR correction for multiple tests. Terms with FDR < 0.05 were denoted as enriched and used in downstream analysis. Enriched terms were filtered to extract the most specific ones (i.e., those that have higher information content; defined as relative frequency of occurrence of the term in the protein annotation dataset under consideration, see Lord et al., [75]2003), using the filtering tool available in blast2go suite. Analysis of metabolic pathway enrichment was conducted using Panther Classification System ([76]http://pantherdb.org/). Protein-protein interaction analysis Interactions among the proteins encoded by differentially expressed genes were assessed using STRING ([77]http://string-db.org). In order to simplify the network and highlight the most biologically relevant interactions, we excluded those interactions with a confidence score below 0.7. Clustering of the network was obtained using the Louvain algorithm (Blondel et al., [78]2008), implemented in the software Pajek (v 4.09). The resulting network was exported to Gephi (graph visualization and manipulation software; Bastian et al., [79]2009) to conduct additional analysis and obtain graphical representations. Results Mapping references: reference genome and divergent gene set